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A B S T R A C T

This paper presents a coupled, neural network-aided longitudinal cruise and lateral path-tracking controller
for an autonomous vehicle with model uncertainties and experiencing unknown external disturbances. Using
a feedback error learning mechanism, an inverse vehicle dynamics learning scheme utilizing an adaptive
Radial Basis Function (RBF) neural network, referred to as the Extended Minimal Resource Allocating Network
(EMRAN) is employed. EMRAN uses an extended Kalman filter for online learning and weight updates,
and also incorporates a growing/pruning strategy for maintaining a compact network for easier real-time
implementation. The online learning algorithm handles the parametric uncertainties and eliminates the effect
of unknown disturbances on the road. Combined with a self-regulating learning scheme for improving
generalization performance, the proposed EMRAN-aided control architecture aids a basic PID cruise and
Stanley path-tracking controllers in a coupled form. Its performance and robustness to various disturbances and
uncertainties are compared with the conventional PID and Stanley controllers, along with a comparison with a
fuzzy-based PID controller and an active disturbance rejection control (ADRC) scheme. Simulation results are
presented for both slow and high speed scenarios. The root mean square (RMS) and maximum tracking errors
clearly indicate the effectiveness of the proposed control scheme in achieving better tracking performance in
autonomous vehicles under unknown environments.
. Introduction

Recent technological developments in Advanced Driver Assistance
ystems (ADAS) such as adaptive cruise control, lane keeping assis-
ance, and automated parking have opened the doors for different
rototypes of autonomous vehicles (AVs) to operate in real-life traffic
onditions in public roads. With the number of vehicle fatalities on
he rise due to traffic congestion, human error, and lack of safety
eatures, AVs are increasingly gaining attention as solutions to the
bove problems and for improving general road safety (Eskandarian,
012). Smart mobility features for perception, planning, control, and
ituational awareness on-board these vehicles (Schwarting et al., 2018)
llow them to safely navigate without any human operator through
omplex and unstructured environments. One inherent attribute that
akes an AV possess such a high level of intelligence is its ability

o simultaneously control both the longitudinal and lateral dynamics
hile ensuring stability and ride comfort.

In autonomous driving, longitudinal control methods are designed
o control the speed using the throttle and brake, while a lateral
ontroller automatically steers the vehicle along a reference trajec-
ory (Khodayari et al., 2010). The longitudinal controller maintains

constant speed and keeps a safe distance behind another vehicle,
sing methods like Adaptive Cruise Control (ACC) (Ntousakis et al.,

∗ Corresponding author.
E-mail addresses: sauranild@iisc.ac.in (S. Debarshi), vssuresh@iisc.ac.in (S. Sundaram), ensundara@gmail.com (N. Sundararajan).

2015), emergency brake assist system (Lie et al., 2014), and car-
following Chen et al. (2016). Several control algorithms utilizing Model
Predictive Control (MPC) (Shakouri and Ordys, 2014), extremum seek-
ing approach (Dinçmen and Altınel, 2018), proportional–integral (PI)
control (Azızıaghdam and Alankus, 2021), and model reference adap-
tive control (Raffin et al., 2017) have been proposed in the literature
to control the longitudinal dynamics. On the contrary, the focus of the
lateral control system is to avoid obstacles and assist in lane-keeping
and lane-changing maneuvers. Arifin et al. (2019) surveyed some of the
current state-of-the-art lateral control methods based on adaptive PID,
fuzzy logic, and neural networks. Other steering algorithms present
in the literature include a lateral H∞ controller (Huang et al., 2014),
linear quadratic regulator (LQR) (Piao et al., 2019), and a combination
of backstepping and sliding mode controllers (SMCs) (Norouzi et al.,
2019).

Recently, use of learning-based controllers is increasingly becoming
popular in AVs because of their ability to self-optimize and adapt
to the dynamics of the environment. Neural controllers, for instance,
have been widely used in the literature for AV control. Taghavifar
et al. (2020) proposed a type-2 fuzzy neural PID controller to minimize
the heading and lateral errors during path-tracking. Additionally, they
developed an extended Kalman filter-based adaptive observer to elim-
inate the effects of external disturbances and parametric uncertainties.
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Nomenclature

Vehicle Dynamics

𝑥, 𝑦: Longitudinal/lateral displacement of the
vehicle in global frame

𝑥̇, 𝑦̇: Longitudinal/lateral velocity of the vehicle
in global frame

𝑣𝑥, 𝑣𝑦: Longitudinal/lateral velocity in vehicle
frame

𝑣̇𝑥, 𝑣̇𝑦: Longitudinal/lateral acceleration of the
vehicle

𝜓, 𝑟, 𝑟̇: Yaw angle, yaw rate, and angular accelera-
tion of the vehicle

𝑖: Denotes the front (f ) and rear (r) wheels
𝐹𝑥𝑖, 𝐹𝑦𝑖: Longitudinal/lateral tire force
𝜔𝑤𝑖: Angular velocity of the wheel
𝐼𝑤: Moment of inertia of the wheel
𝑅𝑡, 𝑅𝑒𝑖: Static/effective wheel radius
𝐹𝑧𝑖: Wheel load
𝜅𝑖, 𝛼𝑖: Tire slip ratio/angle
𝐶𝜅𝑖, 𝐶𝛼𝑖: Longitudinal/lateral tire stiffness
𝑓𝑎𝑖(), 𝑓𝑠𝑖(): Adhesion/sliding function
𝜎: Adhesion potential rate
𝐶𝜅𝑠𝑖: Longitudinal stiffness in sliding mode
𝜇𝑝𝑥𝑖, 𝜇𝑝𝑦𝑖: Peak coefficient of friction in the longitudi-

nal/lateral direction
𝜇𝑠𝑥𝑖, 𝜇𝑠𝑦𝑖: Sliding coefficient of friction in the longitu-

dinal/lateral direction
𝑙𝑓 , 𝑙𝑟: Distance to the front/rear axle from the

center of gravity (CoG) of the vehicle
𝐼𝑧: Vehicle’s yaw moment of inertia
𝑚: Mass of the vehicle
𝑇𝑑 , 𝑇𝑏: Drive/brake torque

EMRAN Parameters

𝐯: Network inputs
𝝁𝑘,𝝈𝑘: Center and width of the kth hidden neuron
ℎ: Number of hidden neurons
𝑧𝑘: Output of the kth hidden neuron with

Gaussian activation function
𝛼𝑗𝑘: Interconnection weight between the kth

hidden neuron and the 𝑗th output
𝛼0𝑗 : Bias at the 𝑗th output
𝑢𝑗ad: Output of the neural network
𝑝: Total number of outputs of the network
𝜖1, 𝜖2, 𝜖3: Thresholds for adding hidden neurons
𝐲𝑒: Error in the network output
𝑤: Represents the hidden neuron closest to v,

called the ‘‘winner neuron’’
𝝁𝑤: Center of the ‘‘winner neuron’’
𝛾: Decay constant between 0 and 1
𝑆𝑤: Sliding window’s length
𝜅: Overlap factor

A backstepping variable structure control (BVSC) coupled to an RBF
neural network (RBFNN) was presented in Ji et al. (2018). The BVSC
steers the vehicle, while the RBFNN eliminates the errors by acting as
the estimator for the tire nonlinearities. In another study, Wang et al.
(2019) proposed an SMC with an RBFNN for improving the tracking
2

𝐍𝐏𝑤: Connection weights, centers and widths of
the ‘‘winner neuron’’

𝐊𝑤: Kalman gain matrix
𝐁𝑤: Gradient matrix
𝐑: Variance of the measurement noise
𝐏𝑤: Error of the covariance matrix
𝛿: Threshold for pruning a hidden neuron
𝑁𝑤: Number of consecutive input samples for

which the output of a hidden neuron is less
than 𝛿

𝑙: Number of parameters of the ‘‘winner
neuron’’

Other variables

𝑣𝑟, 𝑒𝑣: Reference cruising speed/velocity error
𝑦𝑟, 𝑒𝑦: Reference lateral position in global

frame/lateral error
𝜓𝑟, 𝑒𝜓 : Reference yaw angle/heading error
𝐲𝐝: Reference signal to be tracked by the

vehicle
𝐱, 𝐲: State vector/output of the vehicle
𝐮𝐯: Control input to the vehicle
𝑢𝑝𝑖𝑑 : Acceleration/deceleration commands from

the PID controller
𝑢𝑛𝑛: Acceleration/deceleration from the longitu-

dinal EMRAN
𝑢𝑡: Total longitudinal control input
𝛿𝑠: Steering angle from the Stanley controller
𝛿𝑛𝑛: Steering angle from the lateral EMRAN
𝛿𝑓 : Total steering input
𝐱𝐜𝐜: Input vector of the longitudinal EMRAN
𝐱𝐥: Input vector of the lateral EMRAN

of the speed. The RBF network with its adaptive and universal function
approximation ability reduces the large errors of the SMC and improves
the robustness of the system. More recently, a comprehensive study
on a wide range of longitudinal and lateral vehicle control methods
based on deep learning was conducted by Kuutti et al. (2021). Various
supervised and reinforcement learning strategies were compared in
terms of network complexity, learning capabilities, and performance. It
has been concluded that while deep learning has shown great promise
in AV control applications, it also presents numerous challenges for
actual deployment in vehicles. The need for large amount of data
that captures all possible driving scenarios, computational effort, and
selection of network architecture limits the use of deep learning-based
control in AVs.

It should be noted that much of the existing research addresses
the longitudinal and lateral controllers separately, assuming that there
is no dynamic interaction (coupling) between them. However, it is
not the case in an actual vehicle, and in many critical autonomous
driving scenarios, a coupled control strategy is required (Amer et al.,
2017). A simultaneous longitudinal and lateral control architecture was
presented in Attia et al. (2014). A nonlinear MPC was employed as
the steering controller and a Lyapunov-based control law considering
the powertrain dynamics was used for the longitudinal speed-tracking.
Another coupled method was shown in Devineau et al. (2018) by
quantitatively comparing two different deep learning models, a Multi-
layer Perceptron (MLP) and a Convolutional Neural Network (CNN).
The CNN proved to be a better controller in terms of accuracy and
smoothness of input commands. A recent study by Tork et al. (2021)
describes an integrated control system using an adaptive multi-layer
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neural network based on an interval type-2 fuzzy activation func-
tion. They performed Double Lane Change (DLC) maneuvers with
and without parametric uncertainties, and their proposed controller
outperformed other neural network-based controllers. However, effect
of external disturbances such as slippery road conditions and different
velocities were not taken into account in their study.

In this paper, we propose a novel neuro-aided coupled longitudinal
and lateral control scheme for an AV by utilizing an inverse vehicle
dynamics learning technique. We employ a previously developed RBF
neural network referred to as the Extended Minimal Resource Allocat-
ing Network (EMRAN) (Li et al., 2000) and integrate a self-regulated
learning mechanism (Suresh et al., 2010) as an extension for efficient
training with fewer samples. EMRAN is a fast, adaptive, sequential
learning algorithm that requires no a priori training and overcomes
the challenges of deep learning-based controllers discussed earlier. It
starts with zero hidden neurons and incorporates a growing/pruning
strategy, making it a computationally inexpensive learning algorithm
with a compact and efficient network suitable for real-time implemen-
tation in AVs. To the best of the authors’ knowledge, no prior studies
have examined an online inverse vehicle dynamics learning model for
developing an integrated control system that is robust to unknown
disturbances and uncertainties. Another major drawback of most of the
learning-based approaches such as Deep Neural Networks (DNNs), is
that they scale poorly and provide no generalization guarantee (Kuutti
et al., 2021). The online inverse dynamics learning method addresses
this issue by allowing a neural controller to be used in conjunction with
any feedback controller for improving the tracking performance. The
main contributions of the paper are as follows:

• A model-free, coupled EMRAN-aided controller is proposed for
longitudinal cruise control and lateral path-tracking. A conven-
tional PID aided by an EMRAN neural network (PID-EMRAN)
provides the acceleration/deceleration commands for maintain-
ing the desired velocity. Another EMRAN is used to aid a Stan-
ley (Hoffmann et al., 2007) controller (Stanley-EMRAN) for steer-
ing the vehicle along a reference trajectory.

• The EMRAN-aided controller supports online adaptability and
learns to approximate the inverse dynamics of the vehicle using a
feedback error learning strategy. It ensures stability and provides
robustness against various unknown disturbances and parametric
uncertainties.

• The neuro-aided control architecture could be used as an add-on
with any feedback controller for improving the tracking per-
formance, thereby providing flexibility in the overall controller
design.

The performance of the EMRAN-aided controller has been evaluated
gainst conventional PID and Stanley methods, for both coupled and
ecoupled states. Additionally, the proposed controller is compared
ith a recently developed type-2 Fuzzy PID controller (Taghavifar
t al., 2020) and an active disturbance rejection control scheme (Xia
t al., 2016). The obtained results highlight the benefits of using
MRAN for real-time longitudinal and lateral control of AVs.

Rest of the paper is organized as follows: In Section 2, the prob-
em statement related to AV control is formulated. Section 3 dis-
usses the EMRAN-aided inverse dynamics learning controller in de-
ail. Performance evaluation using simulation results is shown in Sec-
ion 4. Finally, the conclusions based on the study are summarized in
ection 5.

. Problem formulation

Before presenting the mathematical model of the nonlinear vehicle
sed for the simulations, we first formulate the control problem in AVs
o track a reference signal 𝐲𝐝 as:
𝐝 = {𝑣𝑟, {𝑦𝑟, 𝜓𝑟}} (1) o

3

Fig. 1. Representation of a typical vehicle control architecture.

where 𝑣𝑟 represents the reference cruise speed, and 𝑦𝑟 and 𝜓𝑟 re-
spectively denote the reference lateral displacement and desired yaw
angle of the vehicle. These reference signals are generated by a motion
planning algorithm in an actual AV and a discussion on the same is
outside the scope of the current study. This paper only investigates the
longitudinal and lateral control problem in AVs through cruise control
and DLC maneuvers.

The state-space model of the vehicle at time 𝑡 is given by:
∑

𝐱̇ = 𝑔(𝐱,𝐮𝐯, 𝑡) (2)

where the dynamics of the vehicle is denoted by the nonlinear function
𝑔(). 𝐮𝐯 ∈ R𝑞 is the control input and 𝐱 ∈ R𝑚 is the state vector. Also, 𝐮𝐯
belongs to a class of permissible inputs, given by:

𝑈 ∶=
{

𝐮𝐯 ∶ ‖𝐮𝐯(𝑡)‖ ≤ 𝜁, 𝑡 > 𝑡0
}

(3)

where 𝜁 is a real positive number and it puts a constraint on the control
input such that the vehicle follows the reference signals as closely as
possible after a certain time instant, 𝑡0, and without losing stability.
With the constraint on 𝐮𝐯, we define the control objective as:

‖𝐲𝐝 − 𝐲‖ → 0 (4)

where 𝐲𝐝 is the reference signal and 𝐲 is the output of the vehicle.
Fig. 1 shows the representation of an AV with multiple onboard

sensors to replicate the human understanding of its location, percep-
tion, and navigation. The sensors provide critical information to the
controller for generating the control input 𝐮𝐯, such that the vehicle can
track the reference signal 𝐲𝐝 with minimum errors. For the purpose of
this study, a nonlinear single-track or ‘‘bicycle model’’ is used for the
simulations, as depicted in Fig. 2. Due to the symmetry of the left and
right side of a vehicle, the bicycle model provides a simplified, and at
the same time, an accurate representation of the vehicle’s dynamics.

Plessen et al. (2018) and Rajamani (2011) describe the dynamics of
the bicycle model, with the longitudinal (𝑥̇) and lateral (𝑦̇) velocities in
the global frame given by:

𝑥̇ = 𝑣𝑥 cos𝜓 − 𝑣𝑦 sin𝜓

𝑦̇ = 𝑣𝑥 sin𝜓 + 𝑣𝑦 cos𝜓
(5)

where, 𝑣𝑥 and 𝑣𝑦 represent the longitudinal and lateral velocities in the
vehicle frame respectively and 𝜓 is the yaw angle. The angular rate (𝜓̇)
and acceleration (𝑟̇) are defined as:

𝜓̇ = 𝑟

𝑟̇ = 1
𝐼𝑧

(𝐹𝑦𝑓 𝑙𝑓 − 𝐹𝑦𝑟𝑙𝑟)
(6)

where, 𝐹𝑦𝑓 is the lateral tire force of the front wheel and 𝐹𝑦𝑟 is the
ateral tire force of the rear wheel. 𝑙𝑓 and 𝑙𝑟 are respectively the
istances to the front and rear axles from the center of gravity (CoG)
f the vehicle, 𝐼 is the yaw moment of inertia, and 𝑟 is the yaw rate.
𝑧
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Fig. 2. Nonlinear single-track vehicle dynamics model.

The vehicle’s longitudinal (𝑣̇𝑥) and lateral (𝑣̇𝑦) acceleration are
btained using:

𝑣̇𝑥 = 1
𝑚
(𝐹𝑥𝑓 + 𝐹𝑥𝑟) + 𝑣𝑦𝑟

𝑣̇𝑦 =
1
𝑚
(𝐹𝑦𝑓 + 𝐹𝑦𝑟) − 𝑣𝑥𝑟

(7)

where, 𝐹𝑥𝑓 and 𝐹𝑥𝑟 denote the longitudinal tire forces of the front and
rear wheels respectively and 𝑚 is the mass of the vehicle.

The angular velocities of the front (𝜔𝑤𝑓 ) and rear (𝜔𝑤𝑟) wheels are
alculated from the drive (𝑇𝑑) and brake (𝑇𝑏) torques as:

𝜔𝑤𝑓 = 1
𝐼𝑤

(𝑇𝑑 − 𝑅𝑡𝐹𝑥𝑓 − 𝑇𝑏)

𝜔𝑤𝑟 =
1
𝐼𝑤

(𝑇𝑑 − 𝑅𝑡𝐹𝑥𝑟 − 𝑇𝑏)
(8)

where, 𝑅𝑡 is the static radius of the wheel with moment of inertia 𝐼𝑤.
For estimating the forces on the wheels in the longitudinal (𝐹𝑥) and

lateral (𝐹𝑦) directions, an analytical tire model developed by Salaani
(2007) has been used. This nonlinear tire model captures the wheel-
road dynamics accurately and has been validated from experimental
data using four different tires. The longitudinal and lateral wheel forces
are given as:

𝐹𝑥𝑖 = −
𝜅𝑖𝐹𝑧𝑖𝐶𝜅𝑖𝑓𝑎𝑖(𝜎)

√

(

𝐶𝜅𝑖𝜅𝑖
𝜇𝑝𝑥𝑖

)2
+
(

𝐶𝛼𝑖 tan(𝛼𝑖)
𝜇𝑝𝑦𝑖

)2

−
𝜅𝑖𝐹𝑧𝑖𝐶𝜅𝑠𝑖𝑓𝑠𝑖(𝜎)

√

(

𝐶𝜅𝑠𝑖𝜅𝑖
𝜇𝑠𝑥𝑖

)2
+
(

𝐶𝛼𝑖 tan(𝛼𝑖)
𝜇𝑠𝑦𝑖

)2
(𝑖 = 𝑓, 𝑟)

𝐹𝑦𝑖 =
𝐶𝛼𝑖 tan(𝛼𝑖)𝐹𝑧𝑖𝑓𝑎𝑖(𝜎)

√

(

𝐶𝜅𝑖𝜅𝑖
𝜇𝑝𝑥𝑖

)2
+
(

𝐶𝛼𝑖 tan(𝛼𝑖)
𝜇𝑝𝑦𝑖

)2

+
𝐶𝛼𝑖 tan(𝛼𝑖)𝐹𝑧𝑖𝑓𝑠𝑖(𝜎)

√

(

𝐶𝜅𝑠𝑖𝜅𝑖
𝜇𝑠𝑥𝑖

)2
+
(

𝐶𝛼𝑖 tan(𝛼𝑖)
𝜇𝑠𝑦𝑖

)2
(𝑖 = 𝑓, 𝑟)

(9)

where 𝐹𝑧𝑖, 𝜅𝑖, and 𝛼𝑖 are the wheel load, longitudinal slip ratio, and
slip angle, respectively. 𝐶𝜅𝑖 and 𝐶𝛼𝑖 denote the longitudinal and lateral
tire stiffness, 𝑓𝑎𝑖() and 𝑓𝑠𝑖() are the adhesion and sliding functions, 𝜎 is
he adhesion potential rate, and lastly 𝐶𝜅𝑠𝑖 represents the longitudinal
tiffness in sliding mode. The peak/sliding coefficients of friction in the
ongitudinal and lateral directions are given by 𝜇𝑝𝑥𝑖, 𝜇𝑠𝑥𝑖, 𝜇𝑝𝑦𝑖, and 𝜇𝑠𝑦𝑖,

where the subscript 𝑖 denotes the front and rear tires.
4

Fig. 3. EMRAN architecture with Gaussian activation functions.

Using small angle approximations, the tire slip angle in the front
(𝛼𝑓 ) and rear (𝛼𝑟) can be linearized (Liu et al., 2018) as:

𝛼𝑓 = arctan
( 𝑦̇ + 𝑙𝑓 𝜓̇

𝑥̇

)

− 𝛿𝑓 ≈
𝑦̇ + 𝑙𝑓 𝜓̇

𝑥̇
− 𝛿𝑓

𝛼𝑟 = arctan
(

𝑦̇ − 𝑙𝑟𝜓̇
𝑥̇

)

≈
𝑦̇ − 𝑙𝑟𝜓̇
𝑥̇

(10)

where 𝛿𝑓 represents the steering angle. Additionally, the tire slip ratio
(𝜅𝑖) (Suzuki and Fujimoto, 2010) is defined as:

𝜅𝑖 =
𝑅𝑒𝑖𝜔𝑤𝑖 − 𝑣𝑥

max(𝑅𝑒𝑖𝜔𝑤𝑖, 𝑣𝑥, 𝜖)
(𝑖 = 𝑓, 𝑟) (11)

where 𝑅𝑒𝑖 is the effective tire radius and 𝜖 is a small constant (𝜖 ≪ 1)
o avoid zero denominator.

Next, we describe the online inverse dynamics learning controller
or AVs in detail.

. Inverse dynamics learning EMRAN controller

In this section, the EMRAN-aided coupled longitudinal and lat-
ral controller is presented. An inverse dynamics learning with self-
egulation is proposed to achieve the tracking objective. The working
f EMRAN is briefly discussed next.

.1. Extended Minimal Resource Allocating Network (EMRAN)

EMRAN is a fast, online learning algorithm developed by Li et al.
2000), ideal for real-time application. It implements a compact RBF
eural network by incorporating a fully adaptive learning strategy, with
he capability to add and prune the hidden neurons based on the net-
ork inputs and the responses of the controlled object. It is an extension
f the previously developed sequential learning RBF algorithm called
he Minimal Resource Allocation Network (MRAN) (Lu et al., 1997,
998). MRAN also utilizes a growing/pruning strategy for ensuring
ompactness. However, unlike EMRAN in which the parameters of
nly the nearest hidden neuron (in a norm sense) are updated, MRAN
pdates the centers, widths and weights of all the hidden neurons at
very timestep. This causes the size of the matrices to be updated to
ecome large as the hidden neurons increase and the RBF network
tructure becomes more complex computationally, thereby limiting the
se of MRAN for real-time implementations.

Fig. 3 shows the EMRAN architecture consisting of a single hidden
ayer with ℎ hidden neurons. It initially starts with zero hidden neurons
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and they are added/pruned based on a heuristic condition. The coef-
ficients 𝛼𝑗𝑘 are the interconnection weights between the hidden and
the output layer. The activation functions used in the hidden layer are
Gaussian, whose outputs are given by:

𝑧𝑘 = 𝑒𝑥𝑝
−‖𝐯−𝝁𝑘‖2

2(𝝈𝑘)2 (𝑘 = 1, 2,… ., ℎ) (12)

here 𝐯 ∈ R𝑠 is the network input, while 𝝁𝑘,𝝈𝑘 ∈ R are the center
nd width of the hidden neurons respectively. Gaussian activation
unctions have good local interpolation (each neuron responds only
o a specified region of the input space) and global approximation
bility (Lu et al., 1997; Li et al., 2000). EMRAN, thus, explicitly stores
nformation regarding the input characteristics, instead of merely using
he information for updating the network parameters. The outputs of
he neural network are then given by:

𝑗
ad =

ℎ
∑

𝑘=1
𝛼𝑗𝑘𝑧

𝑘 + 𝛼0𝑗 (𝑗 = 1, 2,… ., 𝑝) (13)

here 𝛼0𝑗 are the biases at the output layer and 𝑝 is the total number
f outputs of the network.

EMRAN starts with no hidden neurons. A new neuron is added when
he following criteria are satisfied at any time step, 𝜏:

𝐯[𝜏] − 𝝁𝑤[𝜏]‖ > 𝜖1[𝜏]

𝐲𝑒[𝜏]‖2 ≥ 𝜖2

𝑟𝑚𝑠𝑒 =

√

√

√

√

∑𝑙
𝜏=𝑙−𝑆𝑤+1

‖𝐲𝑒[𝜏]‖2

𝑆𝑤
≥ 𝜖3

(14)

where 𝜖1[𝜏] = max[𝜖𝑚𝑎𝑥 𝛾𝜏−1, 𝜖𝑚𝑖𝑛]. EMRAN starts with 𝜖1[𝜏] = 𝜖𝑚𝑎𝑥, the
largest scale of interest, which is typically the size of the entire input
space of nonzero probability density, and decays exponentially until it
reaches 𝜖𝑚𝑖𝑛. 𝛾 is the decay constant between 0 and 1 and represents
the scale of resolution (Platt, 1991). 𝐲𝑒[𝜏] is the error in the network
output, 𝝁𝑤 is the center of the hidden neuron closest to 𝐯[𝜏], referred to
as the ‘‘winner neuron’’ and represented by the subscript 𝑤. 𝑆𝑤 is the
sliding window’s length and 𝜖1, 𝜖2, and 𝜖3 are the thresholds that needs
to be selected appropriately. The distance between the new observation
and all the existing nodes is compared by the first criterion. The second
criterion ascertains that the existing neurons are sufficient to produce
a reasonable network output. The third criterion is based on the root
mean square error for the window of samples 𝑆𝑤, which controls the
noise from over-fitting the neurons. The parameters of the newly added
hidden neuron are given by:

𝜶𝑘+1[𝜏] = 𝐲𝑒[𝜏 − 1]

𝝁𝑘+1[𝜏] = 𝐯[𝜏]
𝝈𝑘+1[𝜏] = 𝜅‖𝐯[𝜏] − 𝝁𝑤[𝜏]‖

(15)

where 𝜅 determines the overlap of the responses of the hidden neurons
in the input space.

When the above criteria are not satisfied, an Extended Kalman Filter
(EKF) updates the parameters of the neuron whose center is nearest to
the network input data 𝐯 (‘‘winner neuron’’), whose parameters (𝐍𝐏𝑤 =
connection weights, centers, and widths) at the 𝜏th instant are updated
as:

𝐍𝐏𝑤[𝜏] = 𝐍𝐏𝑤[𝜏 − 1] +𝐊𝑤[𝜏]‖𝐲𝑒[𝜏 − 1]‖ (16)

where 𝐊𝑤[𝜏] is the Kalman gain matrix given by:

𝐊𝑤[𝜏] = 𝐏𝑤[𝜏 − 1]𝐁𝑤[𝜏](𝐑[𝜏] + 𝐁𝑤[𝜏]𝑇𝐏𝑤[𝜏 − 1]𝐁𝑤[𝜏])−1 (17)

where 𝐁𝑤[𝜏] = ∇𝐰𝐮ad is the gradient matrix of 𝐮ad with respect to the
parameter vector 𝐰[𝜏] evaluated at 𝐰[𝜏 − 1]. 𝐑[𝜏] is the variance of
the measurement noise and 𝐏𝑤[𝜏] is the error of the covariance matrix,
which is updated by:

𝐏𝑤[𝜏] = (𝐈 −𝐊𝑤[𝜏]𝐁𝑤[𝜏]𝑇 )𝐏𝑤[𝜏 − 1] + 𝑞𝐈 (18)
5

where 𝑞 is a scalar quantity that determines the allowed random step in
the direction of the gradient vector. When a new hidden unit is added
to the network, the dimensionality of the covariance matrix increases
to:

𝐏𝑤[𝜏] =
[

𝐏𝑤[𝜏 − 1] 0
0 𝑃0𝐈

]

(19)

where 𝑃0 is a scalar value that represents the uncertainty in the initial
parameters of the new hidden neuron.

EMRAN incorporates a pruning strategy for maintaining a compact
network. It ensures that the neurons that have not been contributing
significantly (based on a threshold parameter (𝛿)) to the network
performance for a predefined period of time (𝑁𝑤), are pruned from the
network. In addition, two hidden neurons are combined into a single
hidden neuron if they are found to be closer to one another, as defined
by a threshold value. It results in a network that is computationally
inexpensive and adapted to fast real-time online applications. More-
over, since only the parameters of the winner neuron are updated,
the computations required to update its parameters is 𝑂(𝑙3), where
𝑙 is the number of parameters of the nearest neuron. Therefore, the
total computational burden at each step is 83 floating point operations
(FLOPS) (1 FLOP = 1𝑒−06 s), which is relatively small. Control output
calculation is 𝑂(ℎ), where ℎ is the number of hidden neurons.

To further improve the online learning process and avoid over-
training the EMRAN network, a self-regulated learning scheme (Suresh
et al., 2010; Savitha et al., 2012) has been incorporated. The EKF,
instead of using every training samples for updating the parameters
of the winner neuron, utilizes only a subset of the training data based
on certain thresholds of the tracking and residual errors. It achieves
similar control performance to a conventionally trained network while
using fewer samples, allowing the EMRAN network to learn faster,
with reduced computational effort. Next, the EMRAN-aided control
architecture and its functioning for AV control are described.

3.2. EMRAN-aided inverse vehicle dynamics learning

Consider the dynamics of the vehicle in Eqs. (5)–(7) to be in the
form of:

𝐱̇ = 𝑔(𝐱,𝐮𝐯) (20)

where 𝐮𝐯 = [𝑢𝑡, 𝛿𝑓 ] constitutes the control input vector to the AV, with
𝑢𝑡 representing the acceleration/deceleration command for longitudinal
cruise control and 𝛿𝑓 denoting the steering angle for lateral path-
tracking. In this paper, we utilize the feedback error learning technique
of Gomi and Kawato (1990) to learn the inverse dynamics of the vehicle
using the EMRAN neural network. By learning the inverse dynamics,
EMRAN can compensate for the nonlinearities of the vehicle such
that it follows the desired response set closely. The inversion can be
represented by the equation:

𝐮𝐯 = 𝑔−1(𝐱̇, 𝐱) (21)

Further, if the function 𝑔−1() is changing with time due to external fac-
tors, the neural controllers can generate immediate corrective actions
to compensate for such changes.

The architectures of the EMRAN-aided longitudinal and lateral con-
trol subsystems of the coupled controller are shown in Fig. 4, with their
respective control input to the AV given by:

𝑢𝑡 = 𝑢𝑝𝑖𝑑 + 𝑢𝑛𝑛
𝛿𝑓 = 𝛿𝑠 + 𝛿𝑛𝑛

(22)

The outputs of the baseline PID and Stanley controllers are denoted
by a vector, 𝐮𝐛 = [𝑢𝑝𝑖𝑑 , 𝛿𝑠] while their respective EMRAN outputs
are represented by another vector as 𝐮𝐧𝐧 = [𝑢𝑛𝑛, 𝛿𝑛𝑛]. The outputs of
the AV, namely, the velocity, lateral position and yaw rate are given
as feedbacks to calculate their respective errors, which in turn form
the inputs to the baseline controllers. In both the architectures, the
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Fig. 4. Schematic of the EMRAN-aided longitudinal and lateral control architectures.

aseline controllers provide the basic stability requirements and also
enerate the signals to train their EMRAN networks online. The EM-
ANs compensate for the disturbances and parametric uncertainties of

he vehicle, thereby aiding the baseline controllers to achieve a better
racking performance. The online learning process of the proposed
ontroller is discussed next.

.3. Online learning process

The inner loop of the longitudinal cruise control uses a fully tuned
ID controller as the baseline controller, as shown in Fig. 4a. It gen-
rates acceleration and deceleration commands (𝑢𝑝𝑖𝑑) based on the
ifferences between the reference (𝑣𝑟) and actual (𝑣𝑥) velocities. The
nput vector (𝐱𝐜𝐜) to the cruise control EMRAN consists of the longitu-
inal states of the vehicle, namely the position (𝑥), velocity (𝑣𝑥), and
cceleration (𝑣̇𝑥). Sensor information from the GPS, LIDAR, and Vehicle
peed sensor (VSS) onboard an AV could be used to calculate the states
n real-time and given as inputs to the controllers, whose mathematical
epresentation is given by:

𝑣 = 𝑣𝑟 − 𝑣𝑥

𝐜𝐜 = [𝑥, 𝑣𝑥, 𝑣̇𝑥]
(23)

n practice, these states are susceptible to sensor noises, which can
egrade the overall performance of the controllers. However, in this
ork, all the states of the vehicle are measured from the simulation
nvironment and are assumed to be noise-free. Based on the postulate
f Gomi and Kawato (1990), the output of the PID controller (𝑢𝑝𝑖𝑑 =
𝑡 − 𝑢𝑛𝑛) is used as the signal for updating the weights and neurons of
he network. EMRAN learns the total control signal (𝑢𝑛𝑛 → 𝑢𝑡) over time
nd eventually driving the PID output to zero. This means that EMRAN
as generated the inverse longitudinal dynamics of the vehicle and is
sing it for control. However, if EMRAN learns only from the baseline
ontroller, there is the possibility that it will not achieve any better
esults than the PID, since the conventional controllers are not robust
gainst unknown disturbances and uncertainties. Hence, to get a better
erformance and eliminate the effects of unwanted nonlinearities, the
earning signal is modified by adding the output of the PID controller
ith a scaled (K1) velocity error signal. The drive torque (𝑇𝑑) and brake

orque (𝑇𝑏) are ultimately computed from the acceleration/deceleration

ommand (𝑢𝑡) using dynamic equations.

6

Similarly, for the lateral path-tracking subsystem, a Stanley con-
troller (Hoffmann et al., 2007) is used in the inner loop, as depicted in
Fig. 4b. The Stanley controller is a geometrical path-tracking algorithm
developed by the Stanford University’s DARPA grand challenge team.
It is a nonlinear feedback function of the cross-track/lateral (𝑒𝑦) and
heading (𝑒𝜓 ) errors measured from the vehicle’s front axle. The steering
angle is given by:

𝛿𝑠 = 𝑒𝜓 + tan−1
(𝑘𝑓 𝑒𝑦

𝑣𝑥

)

(24)

here 𝑘𝑓 is the position gain in the forward motion, and 𝑣𝑥 is the
longitudinal velocity of the vehicle. Moreover, as it considers both
the heading and the lateral errors, it has shown to perform well in
previous studies (Paden et al., 2016; Amer et al., 2019). Similar to
the longitudinal control architecture, the lateral states of the vehicle
are given as inputs (𝐱𝐥) to the path-tracking EMRAN. The output of the
Stanley controller (𝛿𝑠) added to the scaled (𝐊 = [K2,K3]) error signal,
is given as the excitation signal to the EMRAN network for learning the
inverse lateral dynamics and improving the robustness.

4. Performance evaluation of EMRAN-aided controller for AVs

In this section, the performances of the proposed EMRAN-aided PID
(PID-EMRAN) and Stanley (Stanley-EMRAN) controllers for a typical
AV are presented for various test cases with and without external distur-
bances/uncertainties. As defined by the control objective in Eq. (4), the
controllers have to minimize the tracking errors such that they rapidly
converge to zero, and with minimum overshoots and steady-state er-
rors. Moreover, the objective has to be achieved without degrading the
stability of the vehicle during the maneuvers. As a first step, simula-
tions were conducted for the longitudinal cruise control to evaluate
the PID-EMRAN controller against a conventional PID method. Then,
the Stanley-EMRAN controller is assessed through DLC maneuvers for
lateral path-tracking at slow as well as high speed scenarios. Note that
the effect of the longitudinal vehicle dynamics on the path-tracking
performance was considered negligible during the simulations with the
Stanley-EMRAN controller. However, in practice, it cannot be over-
looked since the longitudinal dynamics can affect the performance
of the lateral controller during maneuvers such as lane changing.
To address this issue, an integrated PID-EMRAN and Stanley-EMRAN
controller, referred to as the Coupled-EMRAN was employed, which
took into account the dynamics of both the longitudinal and lateral
directions of the vehicle. Finally, quantitative comparisons of the lateral
Stanley-EMRAN controller with a fuzzy logic-based method and an
active disturbance rejection control scheme are shown.

Simulations have been performed in MATLAB/Simulink-Unreal En-
gine (UE) 4 interface on a system with Ryzen 9 5900HX processor,
32 GB of memory and Nvidia RTX 3080 GPU. This configuration was
chosen to support UE visualization. The physical parameters of the
vehicle used for the simulation studies are given in Table 1, where 𝐶𝑓
and 𝐶𝑟 are the stiffness values of the front and rear tires, respectively.
Moreover, the hyperparameters (𝜖𝑚𝑎𝑥, 𝜖𝑚𝑖𝑛, 𝛾, 𝜖2, 𝜖3, 𝛿, 𝑁𝑤, 𝑆𝑤, 𝜅,
𝑃0, 𝑞, and 𝑟) associated with EMRAN are problem-dependent and are
determined offline through an optimization by a Genetic Algorithm
(GA) for achieving the best results. Note that these hyperparameters
remain constant throughout the simulations. More detailed descriptions
of the parameters can be obtained from Kadirkamanathan and Niranjan
(1993) and Lu et al. (1997). The GA parameters used in finding the
best EMRAN parameters are as follows: crossover probability of 0.8,
selection probability of 0.08, mutation probability of 0.15, maximum
number of generations of 10, and a population size of 20. For a detailed
description of optimization using a genetic algorithm, refer to Suresh
et al. (2014).

For optimizing the hyperparameters associated with both the EM-
RAN networks, offline simulations involving speed tracking and DLC

maneuvers were conducted. A reference cruise speed of 15 m/s was
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Table 1
Vehicle parameters.

Parameters Values

𝑚 1480 kg
𝐼𝑧 2350 kg m2

𝑙𝑓 1.05 m
𝑙𝑟 1.63 m
𝐶𝑓 67 500 N/rad
𝐶𝑟 47 500 N/rad

Table 2
GA optimized parameters of the longitudinal and lateral
EMRAN controllers.

Parameters Longitudinal Lateral

𝜖𝑚𝑎𝑥 7.455 4.003
𝜖𝑚𝑖𝑛 3.938 3.086
𝛾 0.915 0.981
𝜖2 0.357 0.005
𝜖3 0.071 0.003
𝛿 0.091 0.073
𝑁𝑤 12 9
𝑆𝑤 10 14
𝜅 0.609 0.603
𝑃0 1.079 1.155
𝑞 0.015 0.001
𝑟 1.074 1.120

Table 3
RMS and maximum values of cruise speed tracking errors without disturbances.

Controller 𝑒𝑣𝑟𝑚𝑠 (m/s) 𝑒𝑣𝑚𝑎𝑥 (m/s)

PID 0.0149 0.0784
PID-EMRAN 0.0017 0.0332

set for the PID aiding EMRAN to track without any disturbances and
uncertainties. The optimized values were determined using GA by
minimizing the objective of the fitness function, i.e., the RMS error
between the reference and actual speeds. Similarly for the path-tracking
EMRAN controller, a decoupled DLC maneuver at a constant velocity of
10 m/s was performed at ideal conditions, with the RMS lateral error
as the objective of the fitness function to be reduced. The optimized
hyperparameters of both the networks are given in Table 2.

4.1. Longitudinal cruise control

4.1.1. No disturbance
To evaluate the performance of the PID-EMRAN controller, ideal

conditions without disturbances and uncertainties have been consid-
ered. The vehicle’s cruising speed is changed from 28 m/s to 25 m/s
at time 𝑡 = 30 s, and it is assumed that the vehicle travels on a dry
sphalt (𝜇 = 1.0), straight road. The proportional (𝐾𝑃 ), integral (𝐾𝐼 ),
nd derivative (𝐾𝐷) gains associated with the baseline PID controller
ere tuned using GA and set as 1.841, 2.603, and 0.682, respectively.

The performances of the conventional PID and neuro-aided PID-
MRAN controllers to track the reference cruise speed are shown in
 (
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Fig. 6. Neuron history of PID aiding EMRAN for tracking the cruise speed without any
disturbances.

Table 4
Cruise speed tracking errors in the presence of disturbance.

Controller 𝑒𝑣𝑟𝑚𝑠 (m/s) 𝑒𝑣𝑚𝑎𝑥 (m/s)

PID 0.1368 0.5145
PID-EMRAN 0.0163 0.0817

Fig. 5. The PID-EMRAN controller outperforms the PID-based approach
by lowering the overshoots and undershoots. Table 3 validates this
claim, which shows the RMS (𝑒𝑣𝑟𝑚𝑠 ) and maximum (𝑒𝑣𝑚𝑎𝑥 ) values of the
rrors. Significant improvements are observed, with the PID-EMRAN
ontroller reducing both the 𝑒𝑣𝑟𝑚𝑠 and 𝑒𝑣𝑚𝑎𝑥 by 88.59% and 57.65%,
espectively. The neuron growth history in EMRAN is also shown in
ig. 6. The EMRAN controller adds hidden neurons to compensate for
he errors during the change in cruise speed, thus tracking the reference
ignal more accurately during the transition.

.1.2. External disturbances and parametric uncertainties
To evaluate the disturbance rejection ability of the proposed PID-

MRAN controller under extreme conditions, the vehicle was subjected
o road inclinations of ±40◦. The vehicle starts on a level road initially
𝑡 < 10 s) and encounters an uphill road with an inclination of 40◦ from
= 10 s to 𝑡 = 20 s. At 𝑡 = 20 s, the slope reduces to zero, and the vehicle
tarts moving on the level road for another 10 s. Similar test cases were
erformed for the subsequent duration of the simulation, in which the
ehicle started descending on a steep road of slope −40◦ from 𝑡 = 30 s
o 𝑡 = 40 s, after which it started moving on a level road again.

Fig. 7 shows the performances of both the conventional PID and
MRAN-aided PID controllers in the presence of the road disturbances.
he proposed control architecture shows robustness against the varying
oad inclinations by minimizing the overshoot/undershoots and the
teady-state errors. The vehicle also maintains smooth transitions in
ruise speed. It has been verified quantitatively in Table 4, which
hows the RMS and maximum errors. For the case with disturbance,
ID-EMRAN reduces the tracking errors by 86.88% (𝑒𝑣𝑟𝑚𝑠 ) and 81.85%
𝑒 ). The neuron history is also shown in Fig. 8. It can be inferred
𝑣𝑚𝑎𝑥
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Fig. 8. Neuron history of longitudinal EMRAN for varying road inclinations.

Table 5
Tracking errors with parametric uncertainties.

Controller 𝑒𝑣𝑟𝑚𝑠 (m/s) 𝑒𝑣𝑚𝑎𝑥 (m/s)

PID 0.1463 0.2678
PID-EMRAN 0.0076 0.0340

by comparing Figs. 6 and 8 that the EMRAN controller constantly
adds new neurons to mitigate the errors due to the disturbances, thus
showing the effectiveness in its online learning ability. Because of the
various instances of road inclinations during the simulation, no pruning
of hidden neurons is observed.

Similarly, uncertainties related to vehicle parameters, (𝑚 = 𝑚 +
0.15𝑚 sin(𝑡)) and (𝐼𝑦 = 𝐼𝑦 + 0.2𝐼𝑦 sin(𝑡)) were included, where 𝐼𝑦 is the
pitch moment of inertia. Additionally, environmental perturbations of
the road-friction coefficient (𝜇 = 𝜇 + 0.5𝜇 sin(𝑡)) and wind velocity
(𝑉𝑤 = 15 ∗ sin(𝑡)) in the longitudinal direction were also considered.

Table 5 shows that even with large parametric uncertainties and ex-
ternal perturbations, the proposed longitudinal controller can track the
reference cruise speed with minimum errors. The PID-EMRAN scheme
clearly improves the speed tracking performance with or without dis-
turbances/uncertainties, thereby improving vehicle safety in terms of
minimizing the risk of collisions with nearby vehicles.

4.2. Lateral path-tracking control

DLC maneuvers at constant longitudinal velocities were performed
to assess the lateral path-tracking ability of the proposed Stanley-
EMRAN controller. The reference trajectory in terms of lateral displace-
ment (𝑦𝑟) and yaw angle (𝜓𝑟) are expressed as in Xia et al. (2016):

𝑦𝑟 =
4.05
2

(1 + tanh(𝑎)) − 5.7
2

(1 + tanh(𝑏))

𝑟 = arctan
(

4.05
(

1
cosh(𝑎)

)2(1.2
25

)

− 5.7
(

1
)2( 1.2

))

(25)
cosh(𝑏) 21.95 e
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Table 6
Error characteristics of the lateral controllers without disturbances and uncertainties.

Controller 𝑒𝑦𝑟𝑚𝑠 (m) 𝑒𝑦𝑚𝑎𝑥 (m) 𝑒𝜓𝑟𝑚𝑠 (rad) 𝑒𝜓𝑚𝑎𝑥 (rad)

Stanley 0.0683 0.2031 0.0160 0.0447
Stanley-EMRAN 0.0218 0.0462 0.0089 0.0256
Coupled-EMRAN 0.0274 0.0677 0.0083 0.0267

where 𝑎 = 2.4(𝑣𝑥𝑡−27.19)
25 −1.2 and 𝑏 = 2.4(𝑣𝑥𝑡−56.46)

21.95 −1.2. The results of the
roposed lateral controller with and without disturbances/uncertainties
re presented below for both slow and high speed scenarios.

.2.1. Slow speed and no disturbance
This case examines the performance and online learning capability

f the Stanley-EMRAN controller through a slow DLC maneuver at a
onstant velocity of 10 m/s, without any external disturbances and
ncertainties. Fig. 9 shows the lateral position (𝑦) and the correspond-

ing lateral error (𝑒𝑦) for both the conventional and EMRAN-aided
Stanley controllers. Table 6 presents a quantitative comparison of their
performances in terms of the RMS and maximum values of the lateral
and heading angle errors. The proposed neuro-controller improves the
trajectory tracking by reducing the peak lateral offset (𝑒𝑦𝑚𝑎𝑥 ) by 77.25%
during the DLC maneuver. The responsiveness of the vehicle to lane
change has also improved compared to that of the conventional Stanley
approach. Additionally, the vehicle’s ability to follow the reference
heading is achieved rapidly with a smaller maximum error (Fig. 10),
which decreased by 42.72%. It is evident from the results that the
proposed Stanley-EMRAN scheme improves the trajectory following
ability of the vehicle, thereby reducing the chances of collision with
another vehicle during sudden lane changes.

From Table 6, it is seen that the integrated Coupled-EMRAN con-
troller is capable of maintaining the desired performance even under
the effects of the longitudinal dynamics of the vehicle and the results
of the coupled state are also comparable to that of the Stanley-EMRAN
lateral control method. Minor deviations in errors are observed with
the coupled architecture because of the small variations in the vehicle’s
velocity during the lane changes.

The yaw rate and the lateral velocity of the vehicle during the DLC
maneuver are shown in Fig. 11. Both the conventional and EMRAN-
aided Stanley controllers maintain the yaw rate and the lateral velocity
within a reasonable range, thereby not degrading the stability of the
AV. Fig. 12 shows the control input, i.e. the steering angle (𝛿𝑓 ) of the
controllers for the DLC maneuver. The figure indicates that, at slow-
speed, the vehicle is able to track the reference paths accurately, with
reasonable control inputs.

The neuron growth history is shown in Fig. 13. It may be noted that
EMRAN adds neurons when the AV is undergoing the lane changes and
prunes when it is in steady-state operation. Neuron peaks are observed
during 7 s < 𝑡 < 9 s so as to minimize the large lateral and heading

rrors with the Stanley controller during that time period.
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Fig. 9. Vehicle trajectory and corresponding lateral error without external disturbances and uncertainties.
Fig. 10. Vehicle heading and error without external disturbances and uncertainties.
Fig. 11. Lateral dynamics during the slow DLC maneuver without disturbances and uncertainties.
Fig. 12. Steering input for the DLC maneuver.

.2.2. Slow speed and disturbance
It is crucial to study the effects of external factors while design-

ng lateral controllers for AVs. These factors can arise from wind
usts, external forces, and varying road friction in the form of distur-
ances and uncertainties and have the potential to degrade the desired
ath-tracking performance of the vehicle.
9

Fig. 13. Lateral EMRAN neuron profile during the DLC maneuver at slow speed and
without disturbances.

The effectiveness of the Stanley-EMRAN controller has been verified
by applying a constant external lateral force of 1500 N on the vehicle.
The tracking errors are shown in Fig. 14. Initially, EMRAN starts by
learning to approximate the nonlinearities due to the disturbance.
During this period, the lateral errors (𝑒 ) are greater compared to
𝑦
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Fig. 14. Tracking errors at slow speed and in presence of a constant external force of 1500 N.
Fig. 15. Tracking errors at high speed and without disturbances.
Table 7
Path-tracking errors at slow speed and with external disturbance.

Controller 𝑒𝑦𝑟𝑚𝑠 (m) 𝑒𝑦𝑚𝑎𝑥 (m) 𝑒𝜓𝑟𝑚𝑠 (rad) 𝑒𝜓𝑚𝑎𝑥 (rad)

Stanley 0.0943 0.2508 0.0197 0.0555
Stanley-EMRAN 0.0647 0.0983 0.0145 0.0372
Coupled-EMRAN 0.0652 0.1188 0.0144 0.0373

Table 8
Tracking errors at high speed and without disturbances.

Controller 𝑒𝑦𝑟𝑚𝑠 (m) 𝑒𝑦𝑚𝑎𝑥 (m) 𝑒𝜓𝑟𝑚𝑠 (rad) 𝑒𝜓𝑚𝑎𝑥 (rad)

Stanley 0.2163 0.7131 0.0391 0.1558
Stanley-EMRAN 0.0981 0.2968 0.0305 0.1171
Coupled-EMRAN 0.0943 0.3041 0.0304 0.1168

Stanley. It is indicative that once the learning and adaptation process
is complete (𝑡 > 4 s), the EMRAN-aided Stanley controller outperforms
he conventional Stanley method and significantly reduces both the
eaks of lateral and heading errors. Due to the bounded nature of the
ontrol input as described in Eq. (3), the steady-state errors cannot
e completely eliminated for all the cases. The bounded input ensures
hat the vehicle can follow the desired response set as closely as
ossible without losing its yaw stability. The quantitative results of the
ontrollers are presented in Table 7. The robustness of Stanley-EMRAN
o external disturbances is apparent, as it decreases 𝑒𝑦𝑚𝑎𝑥 by 60.8%
nd 𝑒𝜓𝑚𝑎𝑥 by 32.97%. Moreover, the results of the coupled system
uggest that both the EMRAN-aided PID and Stanley controllers work
oherently in rejecting the effects of the external force.

.2.3. High speed and no disturbance
Next, we consider a high-speed DLC maneuver at constant velocity

f 20 m/s and without disturbances/uncertainties. Note that it be-
omes more difficult for the controllers to control a fast-moving vehicle
ecause of the shorter response time, leading to greater tracking errors.

It is observed from Table 8 and Fig. 15 that, compared to the con-
entional Stanley, the proposed Stanley-EMRAN controller improves
he tracking performance by minimizing the overshoots and under-

hoots, and peak lateral errors. However, not much improvement is

10
Table 9
Tracking errors at high speed and with disturbances.

Controller 𝑒𝑦𝑟𝑚𝑠 (m) 𝑒𝑦𝑚𝑎𝑥 (m) 𝑒𝜓𝑟𝑚𝑠 (rad) 𝑒𝜓𝑚𝑎𝑥 (rad)

Stanley 75.3552 152.1152 1.3771 1.6698
Stanley-EMRAN 1.0765 2.4869 0.3893 0.5753
Coupled-EMRAN 1.0854 2.5523 0.3913 0.5928

Table 10
Range of internal vehicle parameters.

Nominal value Minimum value Maximum value

𝑚 0.8 m 1.2 m
𝐼𝑧 0.8𝐼𝑧 1.2𝐼𝑧
𝐶𝑓 0.85𝐶𝑓 1.15𝐶𝑓
𝐶𝑟 0.85𝐶𝑟 1.15𝐶𝑟

Table 11
RMS and maximum path-tracking errors with parametric uncertainties.

Controller 𝑒𝑦𝑟𝑚𝑠 (m) 𝑒𝑦𝑚𝑎𝑥 (m) 𝑒𝜓𝑟𝑚𝑠 (rad) 𝑒𝜓𝑚𝑎𝑥 (rad)

Stanley 0.0750 0.2199 0.0166 0.0461
Stanley-EMRAN 0.0223 0.0554 0.0089 0.0263
Coupled-EMRAN 0.0272 0.0598 0.0085 0.0290

noticed in the heading performance since with a single control input,
both the lateral and heading errors cannot be significantly reduced si-
multaneously (Ji et al., 2018). In this study, we have focused primarily
on eliminating the lateral errors during the path-tracking maneuvers.
It was found through experiments that mitigating the lateral errors
while having reasonable errors in the heading, the vehicle is able to
perform the harsh maneuvers without losing its stability. Aggressive
heading correction also degrades the passenger comfort and increases
the chance of a rollover.

Also, because of varying longitudinal dynamics of the vehicle during
the lane changes, an increase in 𝑒𝑦𝑚𝑎𝑥 is noticed with the Coupled-
EMRAN controller. This increase is also evident in all the test cases
discussed earlier.
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Fig. 16. Tracking errors at high speed and in the presence of wind gust.
Table 12
Quantitative comparison with existing lateral controllers.

Controller 𝑒𝑦𝑟𝑚𝑠 (m) 𝑒𝑦𝑚𝑎𝑥 (m) 𝑒𝜓𝑟𝑚𝑠 (rad) 𝑒𝜓𝑚𝑎𝑥 (rad)

EKF-T2FNN (Taghavifar et al., 2020) 0.0587 0.0685 0.0050 0.0089
ADRC (Taghavifar et al., 2020) 0.2207 0.5593 0.0178 0.0363
Stanley-EMRAN 0.0218 0.0462 0.0089 0.0256
4.2.4. High speed and disturbance
A disturbance tolerance study of the conventional Stanley and

EMRAN-aided Stanley controllers is discussed in this case. DLC ma-
neuver at a constant vehicle speed of 20 m/s was simulated in the
occurrence of a wind gust (𝑉𝑤 = 25 m/s) at 𝑡 = 2 s.

It is seen from Table 9 and Fig. 16 that the conventional Stanley
ontroller has very poor tolerance to such an unexpected disturbance
nd completely diverges the vehicle from the reference path, leading to
arge tracking errors in both the lateral position and heading. On the
ther hand, the EMRAN-aided controllers were able to meet the lane
hange requirements and prevent the vehicle from veering off course.
Remark: This scenario was implemented to confirm the robustness

of the proposed EMRAN-aided controllers against extreme unforeseen
situations where other control approaches would fail, and should not
be used as a metric for comparison.

4.2.5. Parametric uncertainties and no disturbance
Finally, uncertainties in tire cornering stiffness (𝐶𝑓 and 𝐶𝑟) and load

(𝑚 and 𝐼𝑧) are considered at a constant speed of 10 m/s. Table 10
presents the minimum and maximum values of these parameters. The
RMS and maximum tracking errors with the parametric uncertainties
are shown in Table 11. Both the Coupled-EMRAN and Stanley-EMRAN
neuro-controllers exhibit the capacity to withstand the perturbations
of the internal vehicle parameters and have a better tracking accuracy
compared to the conventional Stanley control.

4.2.6. Comparison with other existing methods: Type-2 fuzzy PID and
active disturbance rejection schemes

The performance of the proposed EMRAN-aided path-tracking con-
troller is further evaluated against the results of a recently developed
type-2 fuzzy PID neural network coupled to an EKF-based neural ob-
server (EKF-T2FNN) (Taghavifar et al., 2020) by using the same set of
vehicle parameters and configurations. An active disturbance rejection
control (ADRC) with differential flatness (Xia et al., 2016) is also
compared with our approach.

Table 12 presents the comparison of the controllers for a DLC
maneuver at a constant speed of 10 m/s. The Stanley-EMRAN con-
troller outperforms the EKF-T2FNN method in terms of minimizing
the lateral 𝑒𝑦𝑚𝑎𝑥 and 𝑒𝑦𝑟𝑚𝑠 errors by 32.5% and 62.8% respectively.

s already stated, the primary objective of this work is to reduce the
ateral errors in path-tracking without degrading the yaw stability,
articularly at high speeds. This constraint leads to greater head-
ng errors than the EKF-T2FNN controller. However, in contrast to
he ADRC, the EMRAN-aided lateral controller have a better overall

racking performance.

11
Based on the above results, it is evident that utilizing the EMRAN
neural network as an aid to feedback controllers can significantly
improve the cruise control and path-tracking capabilities of an AV. Its
ability to learn and adapt online makes the proposed coupled controller
indispensable in achieving accurate and reliable tracking response,
even in harsh and extreme conditions.

5. Conclusions

In this paper, a novel coupled longitudinal and lateral controller
based on the online learning EMRAN neural network was presented for
improving the cruise control and path-tracking performances of AVs.
A feedback error learning mechanism was employed for learning the
inverse dynamics of the vehicle and eliminating the effects of external
disturbances and uncertainties. The performance of the controller is
compared with conventional PID and Stanley approaches, as well as
a fuzzy-based PID method and an active disturbance rejection control
system. Simulation results in terms of the RMS and maximum tracking
errors confirm the significant enhancements in control performance
with the proposed scheme. In addition to providing good robustness, it
is demonstrated that the EMRAN-aided controller can adapt itself under
extreme situations where other controllers could fail. A self-regulated
scheme integrated with the fast online learning algorithm also improves
the generalization ability of the controller and significantly reduces the
computational burden on the AV. There are, however, certain aspects
related to the presented work that can be further investigated such as
adaptive fault tolerance, actuator delays, and study of tire-road friction
estimation. Future studies will examine these aspects of AV control and
also include benchmarking with other neural network-based controllers
through actual hardware implementation.
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