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Abstract

In this paper, a safe and learning-based control framework for model predictive control (MPC) is proposed to optimize
nonlinear systems with a non-differentiable objective function under uncertain environmental disturbances. The control
framework integrates a learning-based MPC with an auxiliary controller in a way of minimal intervention. The
learning-based MPC augments the prior nominal model with incremental Gaussian Processes to learn the uncertain
disturbances. The cross-entropy method (CEM) is utilized as the sampling-based optimizer for the MPC with a non-
differentiable objective function. A minimal intervention controller is devised with a control Lyapunov function and
a control barrier function to guide the sampling process and endow the system with high probabilistic safety. The
proposed algorithm shows a safe and adaptive control performance on a simulated quadrotor in the tasks of trajectory
tracking and obstacle avoidance under uncertain wind disturbances.

Keywords: Model predictive control, learning-based control, cross-entropy method, minimal intervention controller

1. Introduction

Robots and autonomous systems are increasingly widely applied to solve complex tasks in highly uncertain and
dynamic environments [1]. Operating in such environments requires sophisticated control methods that can adapt
to the uncertain environmental disturbances, plan and execute trajectories utilizing the full dynamics and complete
the predefined tasks safely. Model predictive control (MPC) [2] provides a general framework to consider the system
constraints naturally, anticipate future events and take control actions accordingly to complete complex tasks which
are encoded in the objective function. However, designing differentiable objective functions corresponding to all
requirements of the task is non-trivial [3]. For example, it is challenging to design a differentiable objective function
accounting for simultaneously avoiding unexpectedly detected obstacles and aggressively tracking trajectory for a
safety-critical quadrotor in a clustered obstacle field. The trade-off between safety and tracking control performance
is hard to mediate using a simplified differentiable form. It is more convenient for the designer to compose multiple
high-level, simple but possibly non-differentiable terms in the objective function, but the resulting non-differentiable
objective function brings difficulties to the optimization [4]. Obtaining the solutions to the optimization problem
using regular gradient-based optimizers is difficult due to the nonlinear dynamics constraints and non-differentiable
objective function.

There are some optimization methods such as nonconvex alternating direction method of multipliers (ADMM)[5][6],
sequential quadratic programming, and interior point methods [7][8] for optimizing the system with nonconvex or even
sparse non-differentiable cost function. However, either linear system or derivative information is required, making
it difficult to directly apply to the optimization with nonlinear dynamics constraints and arbitrary non-differentiable
objective function. Sampling-based methods such as random shooting [9], path integral control [10], and cross-entropy
method (CEM) [11] are effective approaches to solve the optimization problem with a non-differentiable objective
function. The CEM is initially devised to estimate the probability of a rare event and later employed as a general
optimization framework. The optimal sampling distribution in CEM is recursively approximated to guide the sampled
trajectories toward lower cost regions until converging to a delta distribution[11]. As with most randomized methods,
there is no guarantee that this would be the global optimum but with high likelihood, the local optimum can be
approached if enough samples are generated. It has been demonstrated to effectively optimize complex nonlinear
systems with a non-differentiable objective function [12][13]. An adaptive sampling strategy is developed in [14] using
receding-horizon cross-entropy trajectory optimization with Gaussian Process upper confidence bound [15]. In [16],
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Figure 1: Diagram of the proposed control scheme for a nonlinear system under uncertain disturbances. Taking in the desired state xd

and current state x, the MPC optimizes the nonlinear system with a simple non-differentiable objective function using CEM. The output
uMPC of MPC is modified by an auxiliary controller in a way of minimal intervention, which guides the sampling process and preserves
system safety. The environmental uncertainties are learned using incremental GPs. The learned model is combined with a prior nominal
model to serve in both the CEMPC and the MI(Minimal Intervention) auxiliary controller.

the planning problem of high-dimensional systems is solved by interleaving CEM and gradient descent optimization.
Actually, as a local search method, the CEM is essentially prone to the model errors caused by unexpected disturbances,
which may make the sampling get stuck in a bad region of state space and even diverge, resulting in dangers to safety-
critical systems [4]. To address this problem, decent initialization and gradient signal are required in this case to lead
sampling distribution back to the low-cost region safely. To illustrate, it is common for robotics systems that the
actual next state is close to the predicted one in a high-frequency control scheme. Thus it is reasonable to initialize
the sampling distribution of next iteration with information from the last iteration as a type of warm start. On the
other hand, the accuracy of the predictive model under uncertain disturbances should be improved.

To guide the sampling distribution safely in case of external disturbances while keeping the control proactive,
a sampling-based Tube-MPC method is augmented in [4] with an iterative linear quadratic Gaussian controller for
sampling distribution guidance and disturbance rejection. Model predictive path integral control [10] is integrated
with L1 adaptive control in [17] to achieve both fast model predictive trajectory planning and robust trajectory
tracking. Besides, the minimum intervention principle has shown an increasing interest in the safe control domain of
semi-autonomous vehicles. A minimal intervention (MI) mechanism is designed in [18] to infuse reachability-based
safety assurance within the planning frameworks. It essentially projects the desired trajectory into a set of safety-
preserving controls whenever safety is threatened, so as to ensure safety and meanwhile keep the behavior as proactive
as possible. Similarly, the control barrier function (CBF) is utilized to design the safety barrier certificates in [19] [20] to
minimally modify an existing controller to formally satisfy collision avoidance constraints via a constrained quadratic
program (QP). Multiple obstacles situations can be handled based on CBF [21] [22]. While robust control under
bounded uncertainties achieves safety and meanwhile preserves the control performance of the existing controller,
the adaptation to disturbances is not considered in [19] [20]. The CBF and control Lyapunov function (CLF) are
integrated into a QP to achieve both safety and tracking stability in [23], but without a minimal intervention scheme.

On the other hand, the control performance of MPC depends on the accuracy of the predictive model [2]. However,
it is generally difficult to obtain precise system models for real-world nonlinear systems. This issue of model discrepancy
has been addressed through various adaptation approaches. Some of the existing adaptive MPC approaches assume a
structured system model with uncertain parameters that can be estimated online with an estimator such as extended
Kalman filter [24][25]. However, it is limited to treat all model errors as parameters to estimate, especially when the
system is subject to complex and external uncertain disturbances [26].

Considering model uncertainties resulting from uncertain disturbances, learning-based techniques can also be ap-
plied to learn the predictive model in MPC. In the model-based reinforcement learning (RL), the dynamics model is
learned from data using a deep neural network (NN) [9] or Gaussian Processes (GPs) [27][28]. The effectiveness of
CEM for model-based RL is demonstrated in [13] with Bayesian neural network ensemble as the predictive model.
While avoiding the need for manual controller design, these works do not well utilize the prior knowledge on systems
and control design [29], which can be used to improve the learning efficiency and provide safety for system design.
Taking advantage of prior knowledge of the system, semi-structured approaches augment a prior nominal model with
machine learning models to capture the model errors for MPC [30][26]. GPs are utilized to learn the model errors,
since they can simultaneously capture the uncertainty of the estimation due to the lack of data and the noises inherent
in the environment [27]. It is combined with a nominal model as the predictive model for MPC [31][32][33], as a kind
of robust or stochastic MPC[34], where the control performance is shown to greatly improve with a more accurate
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predictive model. While the safety regarding state constraints can be satisfied in the form of chance constraint [30],
the propagation of state variance along the prediction horizon brings much computation and the optimization of the
resulting nonlinear MPC requires gradient information of the objective function.

The limitations of the sampling-based MPC and the advantages of safe learning-based control techniques show an
urgent need for designing an adaptive, high-performance and safe control strategy for nonlinear system optimization
with a non-differentiable objective function. Safety should be enforced to the sampling-based optimization while the
proactive control ability should be maintained for the nonlinear system under environmental disturbances. To solve
this problem, we propose a safe and adaptive predictive control architecture as shown in Fig.1.

Our main contributions are summarized as follows.

• A novel learning-based CEM-based MPC (CEMPC) framework is proposed for system optimization with a non-
differentiable objective function. The CEM is utilized as the optimizer to solve the non-differentiable MPC based
on a prior predictive model and incremental GPs (IGPs) for additive state disturbance estimation.

• A minimal intervention (MI) auxiliary controller based on CBF and CLF is devised to intervene in the sampling-
based MPC, endowing the system with safety and guiding the sampling distribution to low-cost regions when
necessary.

• The proposed control methodology is validated on a quadrotor tracking aggressive trajectory and simultaneously
avoiding detected obstacles under uncertain time-varying wind disturbances in simulation.

The rest of this paper is organized as follows. The problem statement is presented in Section 2. The IGPs,
learning-based CEMPC and the MI auxiliary controller are described in Section 3. Numerical simulation of the
proposed algorithm on a quadrotor system is shown in Section 4. Finally, a conclusion is drawn in Section 5.

2. Problem Statement

Consider a nonlinear control affine system with dynamics

ẋ = f(x) +G(x)u, (1)

where x ∈ X ⊂ Rn denotes the system state and u ∈ U ⊂ Rm is the control input. A wide range of robots such as
quadrotors and car-like vehicles can be transformed into a control affine system in this form. Though our analysis
is restricted to this form, the results can be extended to the systems of higher relative degrees. Assume that the
function f : X → Rn is partially unknown but Lipschitz continuous and has a bounded reproducing kernel Hilbert
space (RKHS) norm under a known kernel, and the function G : X → Rn×m is known and Lipschitz continuous. The

partially unknown f(x) consists of a known nominal model f̂(x) and the uncertain disturbances d(x),

f(x) = f̂(x) + d(x). (2)

If there is no disturbance, then the nominal model matches the actual one and d(x) = 0. However, it is difficult to
get an accurate model in advance for practical nonlinear systems under uncertain disturbances, e.g. for a quadrotor
under uncertain wind disturbances.

The goal is to optimize the system (1) to accomplish specified complex tasks safely under uncertain environmental
disturbances. The specified tasks can be described with the cost function of the form:

L(x, u) = ι(x)TQι(x) +

N∑
i=1

wiICi
(x) + uTRuu, (3)

where ι(x) extracts features from the state, Q and Ru are a positive semidefinite and a positive definite weight matrix,
respectively. N is the number of simple encodings of task descriptions, wi is the corresponding weight coefficient, ICi

is an indicator function for the set Ci, which is 1 if x ∈ Ci and 0 otherwise.
The first portion of the cost function (3) is to encode the main task for the system, e.g. tracking a trajectory.

The second term encodes specific tasks, which could be sparse, non-differentiable and hard to rewrite into a typically
differentiable form like the first term, e.g. to avoid the unexpectedly detected obstacles for a quadrotor with a limited
sensing range. The last term regularizes the control inputs. With this form of the cost function, the tasks can be easily
encoded with several interpretable terms and weighted differently according to the importance of task requirements
in convenience.

Remark 1. Note that though the non-differentiable terms are technically soft constraints, the penalty is obtained
immediately once the state falls into the specified sets. Besides, they have the advantage that the importance of
different requirements can be delineated by setting different weight coefficients wi.
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3. Methodology

In this section, the proposed control scheme for the nonlinear system (1) is described, as shown in Fig. 1. With a
predefined objective function consisting of simple and non-differentiable encodings of task descriptions, the CEMPC
optimizes the nonlinear system with a predictive model. This predictive model is composed of a nominal model
from prior knowledge and a discrepancy model learned via GPs. To guide the sampling distribution back toward the
low-cost regions in case of disturbances and preserve system safety, the control inputs computed by the CEMPC are
modified with a designed MI auxiliary controller in an efficient QP framework.

The GPs for learning the uncertain disturbances (2) and the incremental implementation to reduce the computa-
tional complexity are first introduced in Section 3.1. With the prior and learned model, the CEMPC is then presented
in Section 3.2 and the MI auxiliary controller is described in the Section 3.3.

3.1. Increment Gaussian Processes for Disturbance Learning

A GP is an efficiently nonparametric regression method to estimate complex functions and their uncertain distribu-
tion [35]. It assumes that function values associated with different inputs are random variables, and any finite number
of them have a joint Gaussian distribution. The uncertain model errors d(x) resulted from uncertain disturbances in
(2) can be learned using GPs with the data collected from the system during operation. Similar to [32], we train n
separate GPs to model the disturbances d(x) with the output of n dimensions based on the following assumption.

Assumption 1. The unknown disturbances d(x) in (2) are uncorrelated.

The approximation of disturbances d(x) can be denoted by d̃. To make the problem tractable, similar to the
Assumption 1 in [36], the following assumption is considered.

Assumption 2. The unknown disturbances d(x) has a bounded norm in the associated Reproducing Kernel Hilbert
Space (RKHS) [37], corresponding to a continuously differentiable kernel k.

This assumption can be interpreted as a requirement for the smoothness of the disturbances d(x). Its boundedness
implies that d(x) is regular with respect to the kernel k [38]. It is common practice to use the squared-exponential kernel
k(x, x′) = σ2

f exp (− 1
2 (x− x′)TL−2(x− x′)) to estimate the similarity between states x and x′, which is characterized

by hyperparameters of the length scale diagonal matrix L and the prior variance σ2
f . Besides, we assume that the

training set D is available to the GPs for regression.

Assumption 3. The predefined state x and the function value d(x) can be measured with noises over a finite time
horizon to make up a training set with n data pairs

D =
{(
x(i), y(i)

)}n
i=1

, y(i) = d
(
x(i)
)

+ υi, (4)

where υi are i.i.d. noises υi ∼ N
(
0, σ2

noiseIn
)
, σ2

noise ∈ R.

Given the dataset D, the mean and variance of d̃(x∗) at the query state x∗ can be given by [35]

µ(x∗) = kTn (Kσ + σ2
noiseI)−1yn, (5)

σ2(x∗) = k(x∗, x∗)− kTn (Kσ + σ2
noiseI)−1kn, (6)

respectively, where yn = [y(x1), y(x2), ..., y(xn)]T is the observed vector, Kσ ∈ Rn×n is the covariance matrix with
entries [Kσ](i,j) = k(xi, xj), i, j ∈ {1, ..., n}, kn = [k(x1, x∗), k(x2, x∗), ..., k(xn, x∗)] is the vector with kernel function
k(xi, xj), In ∈ Rn×n is the identity matrix. The variance of noise σnoise can be selected and set according to the
actual noise level of the disturbances and the accuracy of measurements.

A high probability confidence interval D(x) on d̃(x) can then be obtained [36]

D(x) = {d̃ | µ(x)− cδσ(x) ≤ d̃ ≤ µ(x) + cδσ(x)}, (7)

where cδ is a parameter designed to get a confidence interval of (1 − δ), δ ∈ (0, 1). For instance, 95.5% and 99.7%
confidence of the uncertainty bound can be achieved at cδ = 2 and cδ = 3, respectively.

The computational complexity of GPs is O(n3) due to the matrix inverse of K, K = Kσ + σ2I. It brings non-
negligible challenges for practical applications. An incremental implementation of GPs is devised to reduce the time
of inference and learning by fixing the size of the dataset and recursively computing the matrix inverse. Specifically,
the IGP considers two stages as follows.

1) Adding New Data: Given a predefined size n of the dataset, a new data point is added into the dataset at each
time step until the size of the dataset reaches the predefined size. Assume there has been i data points in the dataset,
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0 < i < n. Denote the computed kernel matrix as Kold ∈ Ri×i and the corresponding matrix inverse as K−1
old based

on the old dataset. When a new data point (xi+1, yi+1) is added, the new kernel matrix Knew ∈ R(i+1)×(i+1) can be
computed based on Kold:

Knew =

[
Kold ki+1

kTi+1 ki+1 + σ2
noiseI

]
, (8)

where ki+1 = [k(x1, xi+1), k(x2, xi+1), · · · , k(xi, xi+1)]ᵀ and ki+1 = k(xi+1, xi+1). The incremental update of the
matrix inverse K−1

new can be computed by

K−1
new =

[
K−1
old + ξΓ · ΓT −ξΓ
−ξΓT ξ

]
(9)

where Γ = K−1
old · ki+1 and ξ = (ki+1 + σ2

noiseI − kTi+1 · Γ)−1 ∈ R1×1.

Remark 2. The inversion operation only needs to perform on a scalar ξ rather than on the entire matrix Knew ∈
R(i+1)×(i+1). Matrix multiplication in the method takes O(i2) complexity. Thus, this method can reduce the computa-
tion burden largely by saving and reusing the computed matrix inverse result, especially when the predefined size n of
the dataset is quite large.

2) Replacing Data: If the size of the dataset reaches the predefined size n, a new data point will be added to the
dataset at each timestep while the oldest one will be deleted. Denote the old kernel matrix in the form of a block
matrix as

Kold =

[
k0 kT0
k0 Υ

]
, (10)

where k0 and k0 are the covariance vector and variance value of the oldest data point in the dataset, and Υ ∈
R(n−1)×(n−1) are the sub-matrix at the right bottom corner. The inverse matrix of Kold can be computed as

K−1
old =

[
ρ qT

q Ξ

]
, (11)

where ρ, q and Ξ is the sub-matrices, Ξ ∈ R(n−1)×(n−1). With the obtained new data point, the oldest data point is
removed from the dataset, and variance ki+1 and covariance vector ki+1 are computed. The new kernel matrix can
be obtained based on the old kernel matrix Kold:

Knew =

[
Υ ki+1

kTi+1 ki+1 + σ2
noiseI

]
, (12)

and the inverse matrix can be computed by

K−1
new =

[
Λ + (Λki+1)(ΛkTi+1)l −(Λki+1)l

−(ΛkTi+1)l l

]
, (13)

where Λ = Ξ− q · qT ρ−1, l = (ki+1 + σ2
noiseI − kTi+1 · Λ · ki+1)−1.

Remark 3. Note that there are only 4 times of matrix multiplications in this method. Taking several matrix addition
and transposition into consideration, it takes O(n2) computational complexity.

3.2. Learning-based Model Predictive Control with Cross-Entropy Method (CEMPC)

With the learned disturbances d̃ via the IGPs, the predictive model for the MPC can be obtained based on the
prior model. Considering the non-differentiable objective function, a sampling-based MPC scheme is designed with
CEM to provide the nominal controls for the nonlinear systems (1). The MPC is based on the following open-loop
finite horizon optimal control problem given the measured state x(tk) at each sampling time tk = k·Ts with a control
period Ts, k ∈ N+.

u∗ = arg min
ū(t)∈PC([tk,tk+T ],U)

Φ(x̄(t+ T )) +

∫ tk+T

tk

L(x̄(τ), ū(τ))dτ., (14)

s.t. ˙̄x(t) = f̂(x̄(t)) + g(x̄(t))ū(t) + d̃(x̄(t)), (15)

x̄(tk) = x(tk), (16)

where PC([tk, tk + T ],U) represents the set of all piece-wise continuous functions ϕ : [tk, tk + T ] → U , x̄ denotes the
state predicted based on the system model (15) given candidate controls ū(t) over the prediction horizon T > 0, Φ
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is a terminal cost function, L is the non-differentiable running cost (3), and d̃ is the approximation to the actual
environmental uncertainties d(x). The equation (16) is the state initialization of the finite horizon optimal control
problem. The input constraints are taken into account by bounding the control input samples in the control space
and limiting the initial mean and variance of the sampling distribution.

Optimization and execution take place alternatively. With the current state x(tk) fedback at any sampling time
tk, the problem (14)-(16) is solved to obtain the optimal open-loop control inputs u∗(t),∀t ∈ [tk, tk + T ], and only
the first-step input uMPC(t) = u∗(t),∀t ∈ [tk, tk+Ts] is applied to the nonlinear system (1). The overall process is
repeated at the next sampling time tk+1.

Algorithm 1 Learning-based CEMPC

Require:
N : Number of iterations,
M : Sample numbers per iteration,
H: Predictive time steps of the MPC,
K: Size of the elite set,
Σmin: A minimum variance bound for optimization,
β: Update rate,

N (O
(0)
0:H−1,Σ

(0)
0:H−1): Initial sampling distribution, where O

(0)
0:H−1 and Σ

(0)
0:H−1 denotes the mean and covariance

matrix of H separate initial multivariate Gaussian distributions, respectively.
Ensure:

µ∗ : Optimized mean value of the control input sampling distribution,
1: while Task is not completed do
2: Measure current state xk.
3: i = 0.
4: while i < N and max(Σ0:H−1) > Σmin do

5: Sample {(u(i)
0 , ..., u

(i)
H−1)j}M−1

j=0 ∼ N (O
(i)
0:H−1,Σ

(i)
0:H−1).

6: Score the samples according to (18), (15) and (16).

7: Sort them in an ascending order, J (i)
0 ≤ ... ≤ J (i)

M−1.

8: Choose K sequences according to J (i)
0 ≤ ... ≤ J (i)

K−1.
9: Update sampling distribution using the elite set

O
(i+1)
0:H−1 ←Mean({(u(i)

0 , ..., u
(i)
H−1)j}K−1

j=0 ),

Σ
(i+1)
0:H−1 ← V ar({(u(i)

0 , ..., u
(i)
H−1)j}K−1

j=0 ).

10: (O
(i+1)
0:H−1,Σ

(i+1)
0:H−1)←(1− β)(O

(i+1)
0:H−1,Σ

(i+1)
0:H−1) + β(O

(i)
0:H−1,Σ

(i)
0:H−1)

11: i← i+ 1
12: end while
13: uMPC←{(u(N−1)

0 )j}j=0.
14: uk ← MIControlSheme(xk, uMPC) in Algorithm 2.
15: xk+1 ← Apply uk to the system (1).
16: Collect data point {xk, uk, xk+1} and Update GP in (5) and (6).

17: Reinitialize sampling distribution O
(0)
0:H−2 ← O

(N−1)
1:H , Σ

(0)
0:H−2 ← Σ

(N−1)
1:H .

18: end while

It is hard to obtain a closed-form solution or apply a gradient-based optimizer to the optimization problem (14)-
(16), since the dynamics (15) is nonlinear, and the objective function (14) is non-differentiable. The CEM is adopted
as an adaptive sampling-based method to solve the MPC, which is widely applied as a general optimization framework
to solve complex optimization problems[39][12][13]. It treats the optimization problem as an estimation problem of the
probability of a rare event, with the distribution parameters to be estimated. The control space is sampled repeatedly
and the sampling distributions of the controls are optimized via the importance sampling technique.

To ease the understanding, the optimization process with CEM for (14)-(16) is described in discrete control. Denote
the time variable (t + k·Ts) with the time step subscript k. At the i-th CEM iteration, multiple M random control
sequences with H time steps are sampled

{(u(i)
0 , ..., u

(i)
H−1)j}M−1

j=0 ∼ N (O
(i)
0:H−1,Σ

(i)
0:H−1), (17)

where N (O
(i)
0:H ,Σ

(i)
0:H) denotes H separate multivariate Gaussian distributions, from which control input sequences are

sampled. The mean and covariance matrix of the distributions are set initially O
(0)
0:H = {0}0:H and Σ

(0)
0:H = {Σinit}0:H ,

6



respectively, where Σinit = (umax−umin

2 )2. With these control sequences, the accumulated costs J (i)
j of the j-th control

sequences are evaluated based on the cost function L (3):

J (i)
j = Φ(xH) +

H−1∑
k=0

L(xk, uk),∀ j = 0, ...,M − 1. (18)

With the estimated costs {J (i)
j }

M−1
j=0 , an elite set of K control sequences with the K lowest costs are chosen out from

the M sequences (17). The elite set is used to update the sampling distribution N (O
(i+1)
0:H ,Σ

(i+1)
0:H ) for the next i + 1

iteration:

O
(i+1)
0:H ← (1− β)Mean({(u(i)

0 , ..., u
(i)
H−1)j}K−1

j=0 ) + βO
(i)
0:H , (19)

Σ
(i+1)
0:H ← (1− β)V ar({(u(i)

0 , ..., u
(i)
H−1)j}K−1

j=0 ) + βΣ
(i)
0:H . (20)

where β is a smoothness coefficient to adjust the update of the distribution parameters. The smaller it is, the more
we trust the new distribution parameters. We usually set its value by experience and test different values in practice.

The sampling distribution is updated towards the regions with lower cost, as the above process iterates for N
times or the maximum variance drops below a minimum variance bound Σmin. The remaining control sequence

{(u(N)
0 , ..., u

(N)
H−1)j}j=0 is returned with the lowest cost and the first-step control input uMPC = {(u(N)

0 )j}j=0 is
applied as the output of the CEMPC. Modified by the auxiliary controller when necessary, the control input is applied
to the system. The data of the system evolution is then collected in the dataset to update the GPs. Algorithm 1
details the proposed learning-based CEMPC.

Remark 4. Note that the prediction of mean in (5) takes O(n2H +MnH) computational complexity when predicting
M samples over H timesteps in (17). The calculation of the cost function in (18) is applied for M samples and H
timesteps for each sample, which takes O(MH) complexity.

3.3. Minimal Intervention (MI) Auxiliary Controller

In the learning-based CEMPC, task requirements and state constraints can be encoded in the cost functions
with different penalty weights. Though the design process is simplified in this way, system safety regarding state
constraints is not guaranteed. Besides, the sampling distribution should be guided to the low-cost regions in the
case of unexpected disturbances. To solve the problem, an auxiliary controller is designed in this part to minimally
intervene in the CEMPC.

3.3.1. Barrier-enforced Safety Scheme

Safety under environmental uncertainties should be considered carefully before the optimized control inputs are
applied to the system. It can be enforced with safety constraints via CBF, which can quantify the system safety
regarding state constraints [40].

The safety set S of the system (1) can be defined by

S := {x ∈ X |h(x) ≥ 0}, (21)

where h : Rn → R is a continuously differentiable function related to the state constraints.

Definition 1. The set S is called forward invariant, if for every x0 ∈ S, x(t, x0) ∈ S for all t ∈ R+
0 .

To ensure forward invariance of S, e.g. quadrotors stay in the collision-free safety set at all times, we consider the
following definition.

Definition 2. (Definition 5 of [41]) For the dynamical system (1), given a set S ⊂ Rn defined by (21) for a con-
tinuously differentiable function h : Rn → R, the function h is called a Zeroing Control Barrier Function (ZCBF )
defined on the set E with S ⊆ E ⊂ Rn, if there exists an extended class K function κ (κ(0) = 0 and strictly increasing)
such that

sup
u∈U

[Lfh(x) + Lgh(x)u+ κ(h(x))] ≥ 0,∀x ∈ E , (22)

where L represents the Lie derivatives.

To be more specific,
Lfh(x) =

∂h(x)

∂x
f(x), Lgh(x) =

∂h(x)

∂x
g(x). (23)

ZCBF is a special control barrier function that comes with asymptotic stability [42]. The existence of a ZCBF
implies the asymptotic stability and forward invariance of S as proved in [42].
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Based on the ZCBF defined in Definition 2, a safety barrier for safety-critical systems can be constructed.
Concretely, we aim to design a safety barrier for the uncertain system (1) to keep the state x in the forward invariant
safety set S, which requires to hold ḣ(x) ≥ −κ(h(x)).

With the learned disturbances d̃(x) via IGPs and the high confidence interval D (7) for the uncertain dynamical
system (1), the following safe control space Krzbf is formulated as shown in our previous work[23]

Krzbf (x) = {u ∈ U| inf
d∈D(x)

[ḣ(x) + κ(h(x))] ≥ 0}. (24)

where h(x) is a ZCBF, ḣ(x) = ∂h(x)
∂x ẋ = Lf̂h(x) + Lgh(x)u + Ld̃h(x), where the Lf̂h(x) and Ld̃h(x) denotes the Lie

derivative of h with respect to the known nominal model f̂ of f and the learned disturbances d̃(x), respectively.

Lemma 1. Given a set S ⊂ Rn defined by (21) with an associated ZCBF h(x), the control input u ∈ Krzbf has a
probability of at least (1− δ), δ ∈ (0, 1), to guarantee the forward invariance of the set S for the uncertain dynamical
system (1)

Proof. From (7), there is a probability of at least (1 − δ) such that the bounded model uncertainty d(x) ∈ D(x) for
all x ∈ X . Since the control input u ∈ U of the safe control space Krzbf satisfies the constraint in (24), the following
result holds with a probability of at least (1− δ):

ḣ(x) + κ(h(x)) ≥ 0,∀x ∈ S. (25)

As a result, the control input u ∈ U of the safe control space Krzbf has a probability of at least (1−δ) to guarantee
the forward invariance of the set S for the uncertain dynamical system (1) as proven in [41].

For convenience, with the estimated high confidence interval D (7) via GPs, the constraint in (24) can be equiva-
lently expressed as Lf̂h(x) + Lgh(x)u+ Lµh(x)− cδ|Lσh(x)| ≥ −κ(h(x)), (26)

where Lµh(x) and Lσh(x) denote the Lie derivatives of h(x) with respect to µ and σ, respectively.

Remark 5. Note that with more informative data collected, the bounded uncertainty σ (6) will gradually decrease.
The proof of such conclusion can be obtained using the partitioned matrix equations, see Appendix A. An alternative
information theoretic argument is given in [38][43]. Thus, the probability rendering S forward invariant is much higher
than (1− δ) in most cases.

3.3.2. Sampling Guidance Scheme

In this section, we develop a sampling guidance scheme for CEMPC under uncertain disturbances based on the
stability property. Sampling distribution could easily deviate from the low-cost regions in the case of external dis-
turbances. Based on a deviated distribution, the optimization may get stuck in the local minimums. The Lyapunov
methods have proven to be an efficient way to improve sampling performance for nonlinear systems in model-based RL
[36, 44]. To guide the sampling distribution of CEMPC to the low-cost region in the case of uncertain disturbances,
the stability constraints with regard to the main task, corresponding to the first term in the cost function (3), can be
constructed based on the CLF V (x): V̇ (x) ≤ −αV (x), α > 0 [45].

With learned disturbances d̃ estimated by the IGPs, CLF can be utilized to construct a stability control set Krclf

[23]

Krclf (x) = {u ∈ U| sup
d∈D(x)

[V̇ (x) + αV (x)] ≤ 0}, (27)

where V̇ (x) = ∂V (x)
∂x ẋ = Lf̂V (x) + LgV (x)u+ Ld̃V (x) and α > 0.

With the estimated high confidence interval D (7) via GPs, the constraint in (27) can be simplified as:

Lf̂V (x) + LgV (x)u+ LµV (x) + cδ|LσV (x)| ≤ −αV (x), (28)

where LµV (x) and LσV (x) denote the Lie derivatives of V (x) with respect to µ and σ, respectively.

3.3.3. Auxiliary Controller

Considering safety constraint (26) and stability constraint (28) with slack variables directly in the LB-CEMPC
controller, one needs to compute the variance of the predicted states and propagate the variances along the prediction
horizon. As a result, it can lead to a heavy computation burden.

We design a MI auxiliary controller to integrate constraints (26) and (28) to minimally modify the outputs of the
MPC and formally satisfy these constraints. The proposed control scheme decouples the requirements of predictive
and adaptive control performance in a way of minimal intervention. The safety requirements are considered as soft
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constraints in the non-differentiable objective function of LB-CEMPC, while they are enforced in a form of CBF in
the MI controller. The MI auxiliary controller considers the uncertainty of the disturbance and forms an efficient QP
controller to minimally modify the control outputs.

With conditions (26) and (28), a QP (29)-(32) can be constructed to modify the control inputs uMPC of the
learning-based CEMPC in a way of minimal intervention. The nonlinear system under environmental uncertainties
can be guaranteed safe and guided to a low-cost region of the main task in a high probability by solving the following
QP.

u∗(x) = arg min
(u,ε,η)∈Rm+1

||u− uMPC ||2 + λεε
2 + ληη

2 (29)

s.t. Acbfu+ bcbf ≤ ε, (30)

Aclfu+ bclf ≤ η, (31)

umin ≤ u ≤ umax, (32)

where umin, umax ∈ U are the lower and upper bound of the control inputs, respectively. λε, λη ∈ R+ are penalty
coefficients of the slack variables ε ∈ R and η ∈ R, respectively. Acbf = −Lgh(x), bcbf = −Lfh(x) − Lµh(x) +
cδ|Lσh(x)| − κ(h(x)), Aclf = LgV (x), bclf = LfV (x) + LµV (x) + cδ|LσV (x)| − αV (x). The feasibility of the QP
(29)-(32) can be ensured with the slack variables, while the violations of safety constraints can be heavily penalized
as long as the corresponding coefficients are large enough.

The designed MI auxiliary control scheme is shown in Algorithm 2. We can always directly apply the control
outputs uMPC of the learning-based CEMPC (Algorithm 1, line 10) if the uMPC satisfies the constraints (26) and
(28). Otherwise, it is modified by solving the QP (29)-(32).

Algorithm 2 MI Auxiliary Control Scheme

Require:
xk: Current state,
uMPC : Control inputs from learning-based CEMPC.

1: uk ← uMPC

2: if (26) and (28) Infeasible then
3: uk ← Solve QP (29)-(32) with xk and uMPC

4: end if

Remark 6. Note that the optimization (29) is not sensitive to the parameters λε and λη. The violation of the
safety (26) and stability constraints (28) can be heavily penalized as long as the λε and λη are large enough (e.g.
λε = 1030,λη = 1020). Besides, λε can be set extremely larger than λη to make the safety constraints much stricter.

4. Simulation Studies

In this section, the proposed control architecture is verified on a task of simultaneous trajectory tracking and
obstacle avoidance of a quadrotor. For a safety-critical quadrotor with a limited sensing range, avoiding an uncertain
number of detected obstacles around or on the trajectory can be conveniently encoded as some non-differentiable
running-cost terms into the objective function. It is difficult to describe such a complex task and trade off the tracking
and safety well with a simplified differentiable objective function. Besides, a quadrotor is prone to uncertain wind
disturbances, which are hard to be accurately modeled. Uncertain wind disturbances not only pose a critical challenge
to achieve accurate tracking, but also may cause the quadrotor to collide in a cluttered obstacle field.

4.1. Quadrotor Dynamics and Control

The quadrotor is a well-modeled dynamical system with torques and forces generated by four rotors and gravity.
The Euler angles (roll φ, pitch θ, and yaw ψ) are defined with the ZYX convention. The attitude rotation matrix
R ∈ SO(3) from the body frame B to the global frame W can be written as [46]:

R =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 , (33)

where s and c denote sin and cos, respectively.
The nonlinear quadrotor system can be modeled as following [47]:
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Table 1: Parameter Table For Simulation Setup

Parameter Value
The mass of quadrotor m 0.08kg
The arm length from the center of mass to each motor 0.11m
The maximum total thrust fTmax 1.3N
The maximum body rotational rates ωmax [3.49, 3.49, 5.24]ᵀ

The minimum body rotational rates ωmin [−3.49,−3.49,−5.24]ᵀ

The detection range for the obstacle 2m
The simulation time 20s
The control frequency 50HZ
The hyperparameters L of GP kernel 1
The hyperparameters σf of GP kernel 1
The max size of IGP dataset n 20
The confidence parameter cδ 3
The predictive time steps H of CEMPC per iteration 20
The number of the samples M for CEMPC per iteration 100
The size of the elite set K for CEMPC per iteration 10
The number of iterations N of CEMPC 5
The minimum variance bound for optimization Σmin 0.001
The update rate β 0.25
The slack variable λε in the QP 1030

The slack variable λη in the QP 1020

ṗ = v, (34)

mv̇ = mge3 +Rfu + dw, (35)

Ṙ = RS(ω), (36)

where m and g denote the mass and the gravity acceleration, respectively. e3 = [0, 0, 1]T is the unit vector, p =
[px, py, pz]

T and v = [vx, vy, vz]
T denote translational position and velocity in W, respectively. fu = [0, 0, fT ]T with

fT the total thrust generated from the four rotors in B, and S(·) is skew-symmetric mapping. The uncertain wind
disturbances acting on the quadrotor dynamics is represented as dw = Kdrag(vw− v), where vw ∈ R3 is the velocity of
wind disturbances inW and Kdrag ∈ R3×3 is the drag coefficient diagonal matrix. We define in the dynamics equation
(1) the state x = [px, py, pz, vx, vy, vz, φ, θ, ψ]T and the control input u = [fT , ω

T ]T , where ω = [ωx, ωy, ωz]
T is the the

body rotational rates. It is assumed that the body rotational rates are directly controllable through the fast response
onboard controller of commercial quadrotors.

For the task of simultaneous trajectory tracking and obstacle avoidance, the cost function L in the objective
function (18) can be defined as

L(x) = ι(x− xd)TQι(x− xd) +

N0∑
i

wi
ICi

ri
(37)

Ci = {x| ||ri|| < 0.8}, (38)

where ι = diag(1, 1, 1, 1, 1, 1, 0, 0, 0) extracts the position and velocity states from the state x, the weight coefficient
matrix Q = diag(8.5, 8.5, 8.5, 1.5, 1.5, 1.5), N0 denotes the number of the detected obstacles, and the weight coefficient
wi is a positive constant, ∀ i = 1, ..., N0. xd = [pTd , ṗ

T
d , φd, θd, ψd]

T is the desired state, where φd, θd, ψd ∈ R are the
desired attitudes, ri is the shortest Euler distance from the quadrotor to the i-th detected obstacle, and ICi is an
indicator function that will be turned on if the state is in the set Ci.

Remark 7. Note that the second term in (37) is designed to show the predictivity inherent in the CEMPC for obstacle
avoidance. The trade-off between the safety and tracking performance can be adjusted by the weight wi in (37).

Remark 8. Note that designing a differentiable cost function for this task would be nontrivial! Besides, composing a
cost function with different nonlinear cost terms may lead to local minima, which brings difficulties to the optimization.
In this case, specifying a non-differentiable cost function with several interpretable terms and different weights can be
convenient according to the importance of task requirements.

4.2. Simulation setup

A simulation platform is created using Python 3.6 on an Intel Xeon X5675 CPU with 3.07 GHz clock frequency.
A quadrotor model of Blade mQX quadrotor is used with the parameters set referred to [48]. The main simulation
parameter values are shown in Table 1.
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A wind model in [49] is utilized to evaluate the algorithm performance. Wind velocity consists of a constant
component vc and a turbulent component vt, i.e., vw = vc + vt. The turbulence wind uses the von Kármán velocity
model defined analytically in the specification MIL-F-8785C [50], with the specific low-altitude model for the model
parameters. The drag coefficient diagonal matrix Kdrag = diag(0.03, 0.03, 0.03)T . Four magnitudes of constant wind
components are used to validate the trajectory tracking performance, as shown in Table 2.

Three GPs are built to estimate the effects of the unknown wind disturbances dw. Each GP uses the same
squared-exponential kernel.

The quadrotor with a limited sensing range is required to track a reference trajectory while avoiding obstacles
under varying wind disturbances in three scenarios. The initial state of the quadrotor is set as the initial position
of the reference trajectory with zero velocity and attitude.
Scenario 1 is designed to validate the effectiveness of the proposed learning-based CEMPC method with the MI
controller. The reference trajectory is given as a spiral curve pd(t) = [2sin(0.5t), 2− 2cos(0.5t), 0.2t]T and ψd(t) = 0.
It lies in a dense cluttered obstacle field under time-varying wind disturbances, where a moving obstacle flies along the
reference trajectory to the quadrotor with a speed of 0.8m/s. The weight coefficients are set wi = 10,∀ i = 1, ..., N0

in (37).
Scenario 2 is studied to further validate the safety and tracking performance trade-off in the design of the non-
differentiable cost function (37), where the weight coefficient wi is set to different orders of magnitude, ∀ i = 1, ..., N0.
The difference to Scenario 1 is that there are only one static obstacle and one dynamic obstacle along the reference
trajectory. It is devised to clearly show the proactive ability inherent in the CEMPC framework for obstacle avoidance.
Scenario 3 is studied to illustrate the efficiency of LB-CEMPC with different prediction horizons and sample sizes. The
reference trajectory is an unsmooth trajectory made of three straight lines l1 = 30 m connected by two perpendicular
straight lines l2 = 30 m. There is no obstacle in Scenario 3 and the reference velocity is set 8m/s. A trade-off
between efficiency and tracking performance can be obtained from the simulation results of Scenario 3.

The barrier function h can be constructed with the distance from the quadrotor to the obstacles within its sensing
region. This distance can be obtained with the largest ellipsoidal region of obstacle-free space, which can be effi-
ciently computed using the IRIS algorithm [22] through semi-definite programming. Specifically, an ellipsoid can be
represented as an image of the unit ball:

E(C, ζ) = {Co+ ζ | ‖o‖ = 1}, (39)

where o ∈ R3×1, oT o = 1 denotes a unit ball, the mapping matrix C ∈ R3×3 and the offset vector ζ ∈ R3×1 can be

obtained using the IRIS algorithm. For the vector ε on the ellipsoid ε ∈ E, we have (ε− ζ)TC−1TC−1(ε− ζ) = 1. The
CBF can be constructed to enforce the quadrotor to stay within the safety ellipsoid region as

h(x) = 1− (ιpx− ζ)TC−1TC−1(ιpx− ζ). (40)

where ιp = diag(1, 1, 1, 0, 0, 0, 0, 0, 0) extracts the position from the state x.
For the main task of trajectory tracking, the CLF is designed as

V (x) = (ιpx− pd)TQp(ιpx− pd) + (ιvx− ṗd)TQv(ιvx− ṗd), (41)

where Qp = diag(0.8, 0.8, 0.8), Qv = diag(0.2, 0.2, 0.2) and ιv = diag(0, 0, 0, 1, 1, 1, 0, 0, 0) extracts the velocity from
the state x. The extended K class function κ is chosen as κ(h(x)) = 10h(x), and the positive constant α = 0.1. The
QP is solved with CVXOPT solver [51].

4.3. Results

To validate the effectiveness of the proposed control scheme, an ablation study is conducted to assess that the
proposed method is able to: 1) learn and adapt to the uncertain environmental disturbances, 2) handle the task with
a non-differentiable objective function, 3) achieve safe control with a low tracking error, and 4) provide a way to trade
off between safety and tracking performance. We compare the following four methods:

• CEMPC: A CEM-based MPC without the IGPs for learning the uncertain disturbances.

• LB-CEMPC: A learning-based CEMPC without the MI auxiliary controller.

• LB-CEMPC-CBF: The proposed learning-based CEMPC without the sampling guidance scheme (28) in the
MI auxiliary controller.

• LB-CEMPC-MI: The proposed learning-based CEMPC with the designed MI auxiliary controller.
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(a) (b)

Figure 2: (a) The time of learning, and (b) the time of inference of the IGP under the Wind-4.

Figure 3: The wind disturbances estimated by IGPs in three axes on the spiral trajectory under the Wind-4.

4.3.1. Learning Performance

Figures 2(a) and 2(b) show the time of learning and inference with the IGP at each iteration under Wind-4. The
learning time is less than 0.02s most of the time and the inference time keeps below 0.02s. It shows that the IGP can
be used as an online learning technique with fast learning and inference time. Note that the code in Python has not
been optimized for speed and can be accelerated in a C++ implementation.

The uncertain wind disturbances in three axes modeled by GPs are shown in Fig. 3. It can be seen that the IGPs
can estimate well the actual wind disturbances with turbulence. The actual disturbances lie within the uncertainty
bounds of the estimations.

4.3.2. Trajectory Tracking Performance

As shown in Table 2 and Fig. 4, the CEMPC with a longer horizon achieves smaller tracking RMS error under
mild Wind-1 or Wind-2, due to the robustness from the predictivity and receding horizon optimization inherent in
the MPC [2]. However, under larger wind disturbances, e.g. Wind-3 and Wind-4, the RMS error of the CEMPC
instead increases as the prediction horizon gets longer, since the accumulation of the model error along the multi-step
predictions degrades the control performance. The tracking errors of the CEMPC and LB-CEMPC with a prediction
horizon of Th = 0.6s under Wind-1 and Wind-4 are shown in Fig. 5. It can be seen that the tracking errors of the
CEMPC are similar to that of the LB-CEMPC under Wind-1, while the tracking errors of the CEMPC get quite high
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Table 2: Statistics of RMS Errors (in meter) with Different Control Schemes and Configurations.

Prediction Horizon Th High-level Scheme
Wind-1

vc = 5m/s

Wind-2

vc = 8m/s

Wind-3

vc = 10m/s

Wind-4

vc = 12m/s

0.2 s CEMPC — 0.704 0.818 1.164 1.872

0.2 s LBCEMPC — 0.630 0.631 0.636 0.644

0.2 s LBCEMPC CBF 0.632 0.638 0.640 0.636

0.2 s LB-CEMPC MI 0.354 0.195 0.246 0.388

0.4 s CEMPC — 0.662 0.765 1.257 1.950

0.4 s LBCEMPC — 0.593 0.608 0.601 0.636

0.4 s LBCEMPC CBF 0.578 0.625 0.601 0.618

0.4 s LB-CEMPC MI 0.215 0.124 0.214 0.349

0.6 s CEMPC — 0.631 0.737 1.260 2.077

0.6 s LBCEMPC — 0.582 0.566 0.596 0.579

0.6 s LBCEMPC CBF 0.556 0.583 0.604 0.625

0.6 s LB-CEMPC MI 0.170 0.178 0.271 0.341

Figure 4: The RMS errors of the quadrotor trajectory tracking using the LB-CEMPC and the CEMPC controllers with different prediction
horizons under wind disturbances. The proposed LB-CEMPC outperforms the baseline CEMPC in four settings of time-varying wind
disturbances.

(a) Wind-1. (b) Wind-4.
Figure 5: Evolution of trajectory tracking errors using the CEMPC and the LB-CEMPC under the mild Wind-1 and the strong Wind-4
disturbances.

without the IGPs under the stronger Wind-4. These results indicate that the LB-CEMPC benefits from the IGPs
learning and compensating the wind disturbances.

The proposed LB-CEMPC-MI controller achieves the lowest tracking errors among the four controllers under
different all four magnitudes of wind disturbances, as shown in Table 2. Figs. 6, 7 and 8 show the control performance
with our proposed LB-CEMPC-MI control framework on the quadrotor under the Wind-4. At about 4.3 and 7.5
seconds, the quadrotor deviates from the reference trajectory with increasing tracking errors. It has changed its
trajectory to safely avoid the collision with the grey static obstacle on the trajectory. Fig. 7(b) shows that the barrier
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(a) Tracking error. (b) Velocity

Figure 6: Safe trajectory tracking in Scenario 2. (a) Tracking error with different controllers, and (b) Tracking velocity with different
controllers under Wind-4 disturbances.

(a) (b)

Figure 7: Safe trajectory tracking in Scenario 2. (a) Position of the quadrotor with the proposed LB-CEM-MI control scheme, and (b)
values of CBF in the LB-CEMPC-CBF and the LB-CEMPC-MI under Wind-4 disturbances.

function keeps positive and safety is ensured when avoiding the obstacle. Besides, compared with the other three
baseline controllers, the LB-CEMPC-MI controller can achieve smoother obstacle avoidance behavior as shown in
Fig. 6(a). Moreover, Figs. 6(a) and 8 illustrate that the MI auxiliary controller can effectively help the main task of
trajectory tracking by guiding the sampling distribution. The quadrotor can be guided quickly back to the references
when deviating from the desired trajectories due to the unexpected obstacle avoidance. These results demonstrate that
the LB-CEMPC-MI control scheme can drive the system to track the reference trajectory stably when the trajectory
is safe and can relax the tracking to avoid obstacles safely when it is to collide with the detected obstacles.

4.3.3. Trade-off Between Safety and Tracking Performance

To validate the trade-off between safety and tracking performance, Scenario 2 with Wind-2 is fixed in this part.
To demonstrate the effects of predictivity inherent in the MPC and the CBF-enforced safety scheme, we only keep the
CBF (40) in the MI scheme without the CLF-based sampling guidance scheme and design the LB-CEMPC algorithm
with different coefficients wi in (37) for obstacle avoidance. Controllers without MI scheme are also compared with
controllers with CBF scheme, as shown in Table 3.

Statistic of the simulations is listed in Table 3 with the trajectories graphically shown in Fig. 9 and tracking errors
shown in Fig. 10(a). We highlight four key takeaways from these results. Firstly, the controllers with wi = 10
predict to avoid the unexpectedly gray static obstacle and the orange dynamic obstacle in advance at 3.28s and 11.01s
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(a) Snapshot at t = 6s. (b) Snapshot at t = 8s

(c) Snapshot at t = 12s (d) Snapshot at t = 20s
Figure 8: Numerical validation of the trajectory tracking in Scenario 1, where a quadrotor flies through a densely cluttered obstacle
field under uncertain Wind-4 disturbances. Snapshots of the simulation are shown in 8(a)-8(d). The black dashed line denotes the
reference trajectory. The irregular polyhedron in orange and gray denote the dynamic and static obstacles crossing the reference trajectory,
respectively.

Table 3: Trajectory Tracking Control and Safety Performance with Different Weight Coefficients.

wi MI Scheme

Time to avoid

obstacle 1

(in second)

Time to avoid

obstacle 2

(in second)

Minimum Barrier

Value (in meter)

Max tracking

error (in meter)

RMS error

(in meter)

Collide

or not

10 - 3.283 11.010 0.990 1.952 0.630 no

1 - - - - - - yes

0.1 - - - - - - yes

0.01 - - - - - - yes

0 - - - - - - yes

10 CBF 3.283 11.010 0.994 1.957 0.632 no

1 CBF 3.737 11.136 0.427 1.321 0.311 no

0.1 CBF 3.737 11.364 0.617 0.772 0.214 no

0.01 CBF 4.289 11.710 0.485 0.703 0.167 no

0 CBF 4.293 11.717 0.481 0.723 0.190 no

seconds, respectively, while the controllers with wi = 0 avoid these two obstacles at later 4.29s and 11.72s. It illustrates
the proposed method can keep the predictive ability for obstacle avoidance even under time-varying environmental
disturbances. Secondly, the RMS and maximum tracking errors increase with a larger positive weight wi, while the
time for obstacle avoidance decreases as observed in Table 3. This indicates that there is a trade-off between safety
margin and tracking performance, which can be adjusted with the weight coefficient wi in the cost function (37).
When we need a smaller wi for better tracking performance, the CBF scheme is necessary to avoid collisions. Thirdly,
when safety constraints are already satisfied, that is, ωi = 10, it can be seen from Table 3 that the time to avoid the
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(a) Snapshot at t = 6s. (b) Snapshot at t = 12s

(c) Snapshot at t = 16s (d) Snapshot at t = 20s

Figure 9: Numerical validation of the trajectory tracking in the Scenario 2, where a quadrotor tracks the reference spiral trajectory under
uncertain Wind-2 disturbances. Snapshots of the simulation are shown in 9(a)-9(d). The black dashed line denotes the reference trajectory
pd(t). The irregular polyhedron in orange and gray denote the dynamic and static obstacles crossing the reference trajectory, respectively.
The quadrotor tracks the reference trajectory and strictly guarantees non-collision with the obstacles.

static and dynamic obstacles are the same whether the CBF scheme exists or not. And the max tracking error and
RMS error are also similar. This reflects the minimal intervention of the MI scheme. Besides, to obtain an intuitive
view on the safety performance under disturbances, Fig. 10(b) shows the safety performance of the quadrotor with
CBF scheme tracking the reference trajectory. It can be seen that the values of the CBF keep positive, which indicates
that the position of the quadrotor always stays within the safe obstacle-free ellipsoid region.

4.3.4. Real-time Performance of CEMPC

The time consumption and tracking performance of CEMPC with different parameters are compared in Scenario
3, as shown in Table 4. The trajectories are graphically shown in Fig.11. As the iteration number is set the same, the
running time increases with larger sample size or prediction horizon, which corresponds with the theoretical analysis
of the algorithm complexity. From Table 4, it can be seen that increasing the number of samples helps less for
tracking performance than increasing the predictive horizon. In addition, the improvement of tracking performance
by increasing the predictive horizon is also limited, as increasing Th for 0.2s to 0.4s decreases the RMS errors much
more than increasing Th for 0.4s to 0.6s. Therefore, the predictive horizon is required to be chosen according to the
circumstances and the sample size can be fixed for better real-time performance. Note that the code and computation
are not been optimized for speed.
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(a) (b)

Figure 10: Simulation results in Scenario 2. The prediction horizon is Th = 0.6s. (a) The evolution of tracking errors with different
weight coefficients w1, where the dashed red line is used to distinguish the tracking error using the controller with w1 = 1e − 1; (b) The
values of the CBF.

Table 4: Running Time and Tracking Performance of CEMPC with Different Parameters

Predictive Number of CEMPC optimization RMS error
Horizon Th (s) Samples M Time (ms) (m)

0.2 100 38.960 1.808
0.2 200 47.607 1.783
0.2 300 52.106 1.714
0.4 100 73.575 1.165
0.4 200 88.966 1.007
0.4 300 103.984 0.950
0.6 100 114.629 0.968
0.6 200 127.892 0.792
0.6 300 151.410 0.722

4.4. Discussion

The predictive nature of the MPC brings proactivity to the control scheme, which improves the trajectory tracking
accuracy and introduces conservation in terms of safety to the system, as shown in Section 4.3. It results in safer
behaviors of the system but also degrades the control performance of the main task, e.g. trajectory tracking accuracy.
Such trade-off could be considered by adjusting the weight coefficients wi in the cost function (37) according to the
requirements of practical applications. For example, if larger weight coefficients wi are set to achieve better foresight
to avoid obstacles, there will be a larger tracking RMS error, given a determined prediction horizon Th. In contrast,
if we choose small weight coefficients wi to achieve low tracking RMS error, there will be poor foresight for obstacle
avoidance. Actually, it is flexible for the designer to set the weight coefficients wi according to their considerations.
The designed MI scheme reserves the safety and guides the optimization, which enables the customized and convenient
design of the cost function for high-level tasks.

5. Conclusion

In this paper, a safe learning-based MPC architecture is designed to optimize the nonlinear system with a non-
differentiable objective function under uncertain environmental uncertainties. Our proposed approach allows the
convenient design of objective function using simple but non-differentiable running-cost terms. The IGPs are utilized
to estimate model uncertainties with a low computational burden and augment the prior predictive model in the MPC.
Solved with the sampling-based CEM, the proposed CEMPC is augmented by an auxiliary controller based on the
control Lyapunov function and the CBF to guide the sampling process and theoretically endows the system with safety
in a way of minimal intervention. We provide numerical simulation results comparing the CEMPC, LB-CEMPC, LB-
CEMPC-CBF, and the LB-CEMPC-MI algorithms on a quadrotor trajectory tracking and obstacle avoidance task
under different wind disturbances in two different scenarios. The results show that the proposed LB-CEMPC-MI
algorithm can successfully and safely optimize the quadrotor system with a conveniently designed non-differentiable
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Figure 11: Numerical validation of the trajectory tracking in Scenario 3, where quadrotors with different MPC parameters track the
reference trajectory.

objective function, achieving accurate tracking performance and safe obstacle avoidance under uncertain wind distur-
bances. In future work, the proposed learning-based MPC framework will be verified in hardware platforms under
realistic conditions, and extended to solve a navigation problem considering uncertain environmental disturbances.
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A. Proof of remark 5

Let σ2
n+1(x∗) be the predictive variance of a Gaussian process regression model at x∗ given a dataset of size n+ 1.

The corresponding predictive variance using a dataset of only the first n training points is denoted σ2
n(x∗). Then

σ2
n+1(x∗) ≤ σ2

n(x∗).

Proof. Firstly we have

σ2
n(x∗) = k(x∗, x∗)− kᵀ

n,∗(Kσ,n + σ2
noiseI)−1kn,∗, (A.1)

σ2
n+1(x∗) = k(x∗, x∗)− kᵀ

n+1,∗(Kσ,n+1 + σ2
noiseI)−1kn+1,∗ (A.2)

where

Kσ,n+1 =

[
Kσ,n + σ2

noiseI γ
γᵀ k(xn+1, xn+1)

]
,

kᵀ
n,∗ = [k(x1, x∗), k(x1, x∗), . . . , k(xn, x∗)]

ᵀ,

kᵀ
n+1,∗ = [k(x1, x∗), k(x1, x∗), . . . , k(xn+1, x∗)]

ᵀ,

γᵀ = [k(x1, xn+1), k(x1, xn+1), . . . , k(xn+1, xn+1)]ᵀ.

For simplicity, let Kn = Kσ,n + σ2
noiseI, Kn+1 = Kσ,n+1 + σ2

noiseI, b = k(xn+1, xn+1) and e = k(xn+1, x∗). Then

we have Kn+1 =

[
Kn γ
γᵀ b

]
, kn+1,∗ =

[
kn,∗
e

]
and

σ2
n(x∗) = k(x∗, x∗)− kᵀ

n,∗K
−1
n kn,∗, (A.3)

σ2
n+1(x∗) = k(x∗, x∗)−

[
kᵀ
n,∗ e

] [Kn γ
γᵀ b

]−1 [
kn,∗
e

]
. (A.4)

Notice that K−1
n ,K−1

n+1 are symmetric as Kn and Kn+1 are symmetric, the inversion of the partitioned matrix in A.4
is

K−1
n+1 =

[
Kn γ
γᵀ b

]−1

=

[
K̃n γ̃

γ̃ᵀ b̃

]
=

[
K−1
n +K−1

n γb̃γᵀK−1
n −K−1

n γb̃

−b̃γᵀK−1
n b̃

]
, (A.5)

where b̃ = (b− γᵀK−1
n γ)−1. It is obvious that b̃ > 0 as

[
Kn γ
γᵀ b

]
and Kn are positive definite. Then

σ2
n(x∗)− σ2

n+1(x∗) =
[
kᵀ
n,∗ e

] [Kn γ
γᵀ b

]−1 [
kn,∗
e

]
− kᵀ

n,∗K
−1
n kn,∗

=
[
kᵀ
n,∗ e

] [K̃n γ̃

γ̃ᵀ b̃

] [
kn,∗
e

]
− kᵀ

n,∗K
−1
n kn,∗

= kᵀ
n,∗K̃nkn,∗ + kᵀ

n,∗γ̃e+ eγ̃ᵀkn,∗ + eb̃e− kᵀ
n,∗K

−1
n kn,∗

= kᵀ
n,∗(K

−1
n +K−1

n γb̃γᵀK−1
n )kn,∗ − kᵀ

n,∗K
−1
n γb̃e− eb̃γᵀK−1

n kn,∗ + eb̃e− kᵀ
n,∗K

−1
n kn,∗

= kᵀ
n,∗K

−1
n γb̃γᵀK−1

n kn,∗ − kᵀ
n,∗K

−1
n γb̃e− eb̃γᵀK−1

n kn,∗ + eb̃e

= b̃(kᵀ
n,∗K

−1
n γ − e)(γᵀK−1

n kn,∗ − e)

= b̃(kᵀ
n,∗K

−1
n γ − e)2

≥ 0. (A.6)

Then we have
σ2
n+1(x∗) ≤ σ2

n(x∗). (A.7)
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