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A B S T R A C T

Helicopters need adequate monitoring to prevent dynamic failures from excessively affecting components’
health status, increase the level of safety, and reduce operative costs. Health and Usage Monitoring Systems
have been developed to monitor helicopters during their lifetime in the last few decades. Recent works
demonstrated that despite analyzing physical components’ behavior over time, tracking the regimes performed
during each flight contributes to estimating the aircraft’s health and usage status, paving the way for designing
accurate prognostics algorithms. However, today, most regime recognition systems rely on data recorded
during certification flights. It follows that the training regimes differ from the ones proposed in the prediction
phase, which are acquired during helicopter actual operating conditions. This affects these recognition system
performances. Aiming at overcoming this limitation, in this work, we proposed an unsupervised regimes
recognition system capable of better handling the actual helicopter usage spectrum. In detail, we proposed
a system based on an unsupervised learning paradigm, which leverages a soft-membership classification
technique to account even for mixed regimes and transitions. In addition, the system represents data according
to functional data analysis theory, which allows for considering the temporal relationship between samples in
the classification process, often neglected in state-of-the-art approaches. The proposed system was tested on
experimental data, collected by Leonardo Helicopter Division, assessing outstanding capabilities in recognizing
correctly standard and mixed regimes and transients. Also, the presented results demonstrate the approach
capabilities in paving the way for the definition of new regimes, more consistent with the actual helicopter
usage spectrum.
. Introduction

Helicopters need adequate monitoring to prevent dynamic failures
rom excessively affecting components’ health status, increase the level
f safety, and reduce operative costs. Due to dynamic loads and vibra-
ions, mechanical parts may fail if not adequately maintained. In order
o prevent mechanical failures, the manufacturers provide an estimate
f the component’s design life, and, based on this value, maintenance
perations are scheduled to ensure flight safety. This estimate is, how-
ver, formulated using an assumed helicopter usage spectrum, which
ay not reflect the actual operating conditions (Lombardo, 1998).
hus, different scenarios can be outlined depending on the actual
otorcraft usage, as shown in Fig. 1, retrieved from Romero (1996).

When the helicopter is used more severely than the manufacturers
nticipated at design time, a potential safety risk arises due to fatigue.
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Also, helicopters are often used in contexts different from those as-
sumed at design time (Şenipek and Kalkan, 2019). It follows that aging
and fatigue may compromise the helicopter.

To help this situation, during the North Sea operations conducted
in the second half of the ’80s, the UK Government started promoting
the development of Health and Usage Monitoring Systems (HUMS). The
first generation of these systems was designed to detect mechanical
faults, preventing early accidents. Through sophisticated signal process-
ing techniques, these systems primarily focus on the analysis of the
components’ vibration signature acquired through a set of accelerome-
ters. Although the introduction of these systems more than halved the
number of accidents caused by structural failures, disasters such as the
crashes in Scotland in 2009 and Norway in 2016 demonstrate that there
is still room for HUMS improvement (Branch, 2009).

In this sense, one of the main directions undertaken foresees to
integrate the dynamic components usage with information related to
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Fig. 1. Component Design and Actual Life. This figure illustrates the current service life trend for a component respect to the one estimated at design time, based on the actual
elicopter usage.
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he actual helicopter usage. Aware of this necessity, the Federal Avi-
tion Administration, in a 2007 document, pointed out that a high
riority is to be attributed to the development of a robust method for
egime recognition (Le and Cuevas, 2007). An accurate method would
llow attributing a damage factor to each component relative to the
dentified severity of the flight regime, resulting in a more precise
stimation of the actual state of fatigue usage. Besides improving the
iagnostic capabilities of HUMS, this method paves the way for the de-
elopment of the second generation of systems, also capable of precise
rognostics (He et al., 2010). In this sense, monitoring and tracking
atigue accumulation would allow managing another interesting case
epicted in Fig. 1, i.e., when the helicopter’s actual usage is milder than
hat was assumed at design time, delaying the need for components

eplacement. Consequently, it would be possible to achieve the long-
tanding goal of switching from a time-based to a condition-based
aintenance scheduling, allowing both a considerable operating costs

eduction and a flight safety increase (Berry et al., 2006).
Since the late 1990s, several regime recognition methods have

een presented in the literature. To help the reader outline a general
ramework, two main approaches can be distinguished: threshold-based
nd machine-learning-based. For both categories, the most relevant
orks are reported in Table 1.

The first category reflects an approach commonly shared in the
vionics field, i.e., combining the analysis of the collected data with
priori domain knowledge to define a set of thresholds suitable for

he intended purpose (Berry et al., 2006; Teal et al., 1997). The main
imitation of these methods is that criteria overlap in the distinction
etween two or more regimes can lead to improper recognition. Ad-
itionally, this approach is not easily scalable with the number of
nalyzed signals and detectable regimes due to the increasing number
f rules required for more advanced recognition.

On the other hand, machine-learning-based approaches aim to im-
rove flight regime recognition by training a classifier to automatically
dentify underlying patterns in the provided signals that characterize
ach regime. Several supervised methods have been proposed in the
iterature. In He et al. (2010), Hidden Markov Models are used to
ecognize 50 of the Army UH-60L flight card dataset regimes, obtain-
ng an accuracy of 99%. In Şenipek and Kalkan (2019), the authors
valuated the effectiveness of different techniques in recognizing 57
ifferent regimes. The supervised approach obtained a 69.2% accuracy
sing Neural Networks.

In addition, recently, deep-learning approaches overcome the per-
ormance of machine-learning algorithms, relying on neural networks
2

with increasingly complex architectures. As an example, in Wu et al.
(2022), an LSTM is proposed to recognize 6 different maneuvers,
assessing 94.50% accuracy with a signal-to-noise ratio of 20. More-
over, in HanYang et al. (2020) the authors present a deep-variational
autoencoder architecture, capable of recognizing 16 maneuvers with
an accuracy of 99.94% and 91.03% on the two examined case studies,
respectively. However, although there is no standard definition for
the regimes, some of the 16 classes predicted are easily recognized
by analyzing a single signal, e.g., the low-speed state class. Also, deep-
earning-based approaches rely on decision-making processes that lack
uman interpretability, affecting their compliance with in-flight safety
equirements.

Regardless their undoubted performances, these supervised learning
ethods can only be trained using labeled flight conditions, which

re usually recorded during load survey flights. Indeed, in order for a
elicopter to be marketed, a certification phase is mandatory. Standard
egimes are performed and recorded on the flight card, while on-
oard sensors record a set of parameters. On-ground, the measured
ata are analyzed to verify, for each regime, their compliance with
he a priori requirements defined by the certification institution. How-
ver, the regimes performed in this context are executed according
o precise instruction (regarding the duration of the regime, angles,
peeds, altitudes), unlike during the actual rotorcraft usage, character-
zed by mixed regimes and frequent transitions. Despite the attempts to
athematically define each flight regime, as in Thomson and Bradley

1990), a standard definition was never provided. This compromises
hese methods’ effectiveness, affecting their generalization capabili-
ies (Warner and Rogers, 2019). Therefore, even today, the proposed
egime recognition methods’ main problem is that of suffering from
n overreliance on the training data. Indeed, the difference between
oad survey conditions and actual operating conditions renders them
nreliable when handling actual regimes that do not exactly match the
earned ones.

Aware of these limitations, the most recent methods, including those
entioned above, abandoned hard classification approaches, which at-

ribute to each sample a single label, in favor of soft classification ones,
which return the probability of a sample to belong to each possible cat-
egory. However, as reported in Table 1, these approaches are affected
by poor accuracy. We believe that even better performances may be
achieved by separating the learning process from the labels, i.e.,moving
to unsupervised approaches. This would allow obtaining a more robust
method for handling the actual regime spectrum, even when this does
not precisely match the load survey data.
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Table 1
State of the Art. This table depicts the major achievements in flight regimes recognition considering both threshold-based and machine-learning-based approaches.

Ref Supervised Algorithm # Regimes Accuracy Data Mixed regimes

Teal et al. (1997) ✓ Logical Not 90.0% Real ✗

Threshold Specified

Lombardo (1998) ✓ K-Nearest 5 94.4% Real ✗

Neighbors

Gene et al. (2007) ✓ Logical Not Not Real ✓

Threshold Specified Specified

Berry et al. (2006) ✓ Artificial 11 76.2% Real ✓

Neural Networks

He et al. (2010) ✓ Hidden 50 99.0% Real ✗

Markov Models

Şenipek and Kalkan (2019) ✗ Gaussian 21 98.2% Simulated ✗

Mixture Models 57 91.5%

Musso and Rogers (2020) ✓ Interacting 10 84.1% Simulated ✓

Multiple Models

Wu et al. (2022) ✓ Convolutional 6 99.94% Simulated ✗

Neural Networks

Wu et al. (2022) ✓ Variational 16 94.50% Simulated ✗

Autoencoders
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Therefore, in this paper, we propose a method capable of per-
orming regime recognition based on hidden patterns in the collected
ignals. The labels will not be used in the training phase but will be
mployed only afterward in the clustering process to interpret and eval-
ate the obtained results. To the best of the author’s knowledge, this
s one of the first attempts to use an unsupervised approach for regime
ecognition purposes. Indeed, the only work proposing an unsupervised
pproach leverages Gaussian Mixture Models to identify 57 regimes,
laiming a 91.5% accuracy (Sheridan et al., 2020). However, it seems
hat every sample of the collected time-series is treated independently,
hus losing the temporal relationship between consecutive samples.

In our approach, instead for first time the temporal relationship
etween consecutive samples is considered in the classification process,
hanks to the multivariate functional data representation of the signals
f interest. This allows to better represent complex maneuvers, and to
anage their spread both in terms of patterns and of duration.

In detail, we propose the combination of Functional Data Analysis
FDA) and Fuzzy C-Means Clustering, an approach capable of perform-
ng regime recognition accurately and robustly. FDA representation
llows considering each signal as a continuum, emphasizing temporal
ependencies among samples. This is a relatively recent technique,
hich has proved effective in several applications (Ullah and Finch,
013). This work is the first application of FDA to regime recogni-
ion, despite it being particularly suitable. Indeed, using the functional
epresentation allows us to entirely retain the signals’ dynamic infor-
ation, which would be (at least partially) lost by collapsing them into

tatistical feature vectors (e.g., mean, variance).
Regarding the clustering algorithm, Fuzzy C-Means’ was chosen

nstead of the classic K-Means due to the advantage of soft classifica-
ion techniques compared to hard ones. By investigating the obtained
lusters’, we can often match them to existing flight regimes. Perhaps
ven more valuable is the possibility of discovering new regimes, more
ompatible with the actual helicopter usage. Moreover, we define a
uitable similarity metric between clusters to investigate the positions
ssumed in the multidimensional space by standard regimes and their
espective transitions, to investigate the similarity between regimes.

The proposed method was tested on a real dataset, collected on a
elected helicopter model from Leonardo Helicopters Division (LHD).
he dataset structure was fundamental to demonstrate the effectiveness
f our method in handling mixed regimes and transitions since, in ad-
ition to standard regimes, it contains data acquired during transitions

etween several regime pairs. a

3

The rest of this article is structured as follows: Section 2 depicts
he structure of the dataset employed as a case study, along with the
esigned pre-processing phase. Then, the proposed method is illus-
rated in Section 3, dedicated to the FDA representation description,
nd in Section 4, which details the actual regime recognition process.
ection 5 defines the considered evaluation metrics, respect to which
eports and discusses the obtained results. Finally, Section 6 exposes the
inal remarks of the produced work and the future perspectives that it
aves the way for.

. Data pre-processing and selection

.1. Dataset description

The HUMS installed on the selected helicopter acquires 30 signals
ith a sampling frequency in the order of ten Hertz. Such signals
rovide an extensive description of the helicopter’s dynamics during
light time, including information on the aircraft’s position, motion,
ttitude, and environmental conditions.

We analyzed more than a hundred load survey flights, for a total
mount of 30 h flight. The available data referred to two fully instru-
ented prototypes of a specific LHD helicopter model. It is important

o remember that only the regimes that the pilot was tasked to carry
ut are reported (everything in between is unknown a priori), while
ther flight spans are unlabeled. For our purposes, we only analyzed
he labeled sections of each flight, considering each contiguous section
f the flight with the same label as a single regime occurrence. The
elected portion corresponds to more than 30% of the initial data,
epresenting therefore a total duration of 10 h flight. The flights contain
9 different types of labeled flight regimes. The regimes were executed
everal times, based on the intrinsic characteristic of the flights: for
xample, takeoff, landings, and ground operations were executed fewer
imes compared to forward level flight — which can be executed more
han once within the same flight. Details on the occurrence numerosity
s available in Table 2.

For a better comprehension of the regimes labels, the meaning of
he employed acronyms is reported in Table 3. The available data
ere divided in training data, employed in the training phase of the

egime recognition algorithms, and test data exploited to evaluate
erformances of the proposed algorithm. The dataset division was
alanced devoting, for each regime, 75% of the instances for training

nd 25% for testing.
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Table 2
Regimes Representation. This table reports for each provided regime, the number of times that it was performed in all the flights considered
in the original, in the cleaned and in the reduced dataset.
Regime Original dataset Cleaned dataset Reduced dataset

Acceleration From OGE to 50K/VMAX Fwd 54 52 39
Autorotation 1.0 VNE Steady 82 82 39
Bank Turn Right 45 DEG 0.6 VNE 86 81 39
Climb VY Top 87 83 39
Deceleration From 0.9 VNE to VY 81 74 39
Deceleration From 50K/VMAX Fwd to OGE 54 53 39
Forward Flight 0.4 VNE 99 90 39
Forward Flight 0.6 VNE 105 102 39
Forward Flight 1.0 VNE 113 108 39
Forward Flight 1.1 VNE 106 95 39
Normal Landing (from VY to Ground) 41 39 39
Normal Mpog 47 42 39
Sideways Flt Port 50K/VMAX Rec IGE/OGE 61 55 39
Sideways Flt Port 50K/VMAX Stdy IGE/OGE 58 55 39
Spot Turn 30 Deg/s RH (360) Ent-St-Rec 63 59 39
Transition From Hige to VY Top 49 47 39
Transition From VY Level to VY Climb MCP 73 69 39
Transition From VY Level to VY Descent 1500FPM 63 63 39
Vertical Take Off to H. IGE 47 44 39
Table 3
Acronyms Explanation. This table shows the meaning of the acronyms
employed in the regime labels.
Acronym Explanation

VNE Velocity Never-exceed
VY Best Rate Of Climb Speed
MPOG Minimum Pitch On Ground
FLT Flight
FWD Forward
MCP Maximum Continuous Power
(H)IGE (Hover) In Ground Effect
(H)OGE (Hover) Out Ground Effect
Ent-St-Rec Entry, Steady and Recovery
RH Right Hand
LH Left Hand
FPM Feet Per Minutes

2.2. Explorative analysis

The first mandatory phase that precedes any data manipulation
is the Exploratory Data Analysis (EDA). It allows the data analyst to
explore the dataset provided, investigating individual signals’ prop-
erties and their associations, leveraging univariate and multivariate
techniques, respectively (Jebb et al., 2017).

The analyzed dataset contains instances related to different flight
regimes. For each regime, more than one instance was recorded. The
start and end instants for each instance are defined by the flight test
engineer, who on-board starts and stops signal acquisition so that each
corresponds to a regime performed by the pilot.

Therefore, a first analysis may focus on the similarity that charac-
terizes different instances of the same flight regime. Indeed, time-series
referred to the same regime may differ consistently from one repetition
to another. The causes are various: undoubtedly, the environmental
conditions and the piloting style have a crucial impact. Fig. 2 shows
some of the signals referred to pilot commands, engine behavior, and
flight dynamics angles, acquired during four different instances of the
same regime, i.e., transition VY Level to VY Climb. Very different
trends characterize the instances. Similar differences can be found by
monitoring multiple instances of all flight regimes, demonstrating that
the same regime may not be univocally defined.

This variability represents one of the leading causes affecting the
performances of the supervised classification methods (Bradley, 2015;
Musso and Rogers, 2020). An unsupervised classification method, on
the contrary, is less affected since it is not bound to the regime label in
grouping the signals.
4

2.3. Correlation analysis

We also investigated the overall correlation between the signals
provided in the EDA phase, considering all regimes. This information
can be further employed during the features selection phase since
highly correlated signals provide redundant information, which allows
keeping one of them, discarding the others. In statistics, several meth-
ods are presented to calculate the correlation between two variables.
Among the parametric methods, the best known is the Pearson’s co-
efficient, while among the non-parametric ones, the most commonly
used are Spearman’s and Kendall’s coefficients. Since we cannot make
any a priori assumptions about the distribution of the given signals, we
decided to employ a non-parametric method. In this work, we chose to
use the correlation based on the Kendall 𝜏 coefficient, which, compared
to Spearman, is more robust to the presence of outliers (Chok, 2010).
This correlation coefficient is computed as:

𝜏 =
𝑛𝑐 − 𝑛𝑑
1
2 𝑛(𝑛 − 1)

(1)

where 𝑛 is the total number of samples pair, and 𝑛𝑐 and 𝑛𝑑 are the
number of concordant and discordant sample pairs, respectively.

The result obtained is shown in Fig. 3. The heatmap was used to
help the reader understand the correlation degree. The intensity of
the color is proportional to the degree of correlation; an intense red
corresponds to a solid direct correlation, blue inverse. It is possible to
notice the strong correlation between the signals measured on the two
engines (>0.90), which means that they mostly work synchronously.
There is also a high correlation between the engine variables and the
main rotor speed (>0.85), which are also physically correlated. The
other correlations highlighted are less than 0.75; therefore were not
considered significant enough to justify a feature discharge.

2.4. Data cleaning and pre-processing

As already mentioned, the process of labeling the flight regimes is
entirely manual and, as such, prone to human error. It is not uncommon
for a right-hand bankturn to be labeled as a left-hand one or for a
takeoff to be mixed up for a landing. For this reason, a thorough
visual inspection of the data was carried out to identify the mislabeled
occurrences, which might result in lower performance metrics.

Furthermore, Fig. 4 reports the boxplots of the each instance du-
ration for each regime. Observing the reported distributions, several
outliers can be noticed (which might be due, for example, to an
inaccurate regimes termination flagging), that need to be removed.

As a result of this process, 76 regime occurrences were removed. The
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Fig. 2. Transition VY Level to VT Climb: Signals Trend. This figure illustrate the time trends for some of the provided signals during four different instances of transition between
VY Level to VY climb.
final result of this data cleaning is visible in Table 2. However, as
mentioned in Section 2.1, the dataset is intrinsically unbalanced. We
performed a random undersampling by class to prevent the classifier
performances from being affected by the dataset composition, keeping
only 39 occurrences for each one (see Table 2), i.e., those available
for the least represented regime in the dataset. This step is necessary
to prevent the learned model from being affected by the regime’s
representativeness difference. Indeed, it is well known in the literature
that class unbalance may lead to biased classifiers (Abd Elrahman and
Abraham, 2013). Finally, all the signals were filtered with a 1st order
low-pass filter to avoid sudden signal variations and spikes caused by
acquisition errors.
5

2.5. Features engineering and selection

As the set of acquired signals was already informative, it was unnec-
essary to carry out extensive feature extraction or engineering. The only
necessary adjustment was transforming the measured ground speeds
(which refer to the magnetic north) into more meaningful speed and
acceleration estimates. Then, an ad hoc features selection was carried
out. Especially when dealing with unsupervised learning approaches,
this phase is crucial. Indeed, the algorithm cannot automatically eval-
uate each feature’s importance autonomously, contrary to the case of
supervised learning. Supervised approaches can weigh features accord-
ing to their explanatory power by using the target labels. However,

in unsupervised learning, we do not leverage the label information
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Fig. 3. Provided Signals Correlation Matrix. This figure provides the correlation estimated according to Kendall method between each provided signal pair.
Fig. 4. Boxplot of maneuver durations, highlighting the outliers.
during the learning process. The inclusion of irrelevant features in the
unsupervised learning procedure is problematic since the insignificant
variables are as equally weighted as the important ones, leading to mis-
leading distance computations and erroneous results. First, redundant
6

information is discarded. Indeed, as shown in Fig. 3 many of the signals
included in the original dataset are strongly correlated. For example,
the set of features measured on the two engines is redundant, allowing
for discharging engine 2 variables without any information loss. Then
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Table 4
Dataset Features. This table shows the features categories provided and the ones
considered after features engineering and selection phases.

Feature category # Variables Original dataset Cleaned dataset

Pilot Commands 4 ✓ ✗

Engine 1 3 ✓ ✓

Engine 2 3 ✓ ✗

Measured Ground Speed 2 ✓ ✗

Flight Dynamics Angles 6 ✓ ✓

Heading 1 ✓ ✗

True speed 2 ✓ ✓

Estimated Acceleration and Speed 6 ✗ ✓

Environmental Conditions 3 ✓ ✗

Altitude 1 ✓ ✓

Problem dimensionality 25 18

a further selection was carried out, with the supervision of domain
experts. This way, we discarded features such as the environmental
variables, which may be misleading for flight recognition purposes. At
the end of this phase, the problem dimensionality was reduced from
25 to 18. The final result of the feature engineering and selection is
reported in Table 4

3. Functional data representation

The problem under study can be included in the mathematical
framework of Functional Data Analysis (FDA), firstly defined by Ram-
say in 1982 (Ramsay, 1982). Thanks to the data collection technology,
the available data are densely sampled over time, so it is reasonable
to assume that the continuous underlying processes can be adequately
estimated from the discrete observations. This kind of data, defined in a
continuous domain such as a time interval, can be efficiently analyzed
with FDA methods.

In our scenario, we assume that each instance, namely each regime
in the dataset, can be represented by multiple continuous signals evolv-
ing in a time interval 𝑇 = [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥]. Data are considered regular
enough to be embedded in the Hilbert space of 𝐿2 functions. Therefore
we assume that each instance 𝑥 is a realization of a functional random
ariable from a probability space to 𝐿2 and so can be described as:

(𝑡) ∶ 𝑇 → R𝑑 (2)

here 𝑑 is the total number of signals considered, namely the multiple
ttributes of each instance in the dataset.

.1. Smoothing

Since signals are recorded at regular time samples in the interval T,
he resulting available observations are actually discrete. Each instance
𝑖(𝑡) ∀𝑖 = 1,… , 𝑁 consists indeed of a set of 𝑛𝑖 pairs (𝑡𝑖,𝑗 , 𝒚𝑖,𝑗 ) with
= 1,… , 𝑛𝑖, 𝑡𝑖,𝑗 ∈ 𝑇 , 𝒚𝑖,𝑗 ∈ R𝑑 .

The continuous process and the discrete observations can be related
hrough an error term 𝜖𝑖,𝑗 by the following expression:

𝑖,𝑗 = 𝑥𝑖(𝑡𝑗 ) + 𝜖𝑖,𝑗 (3)

A smoothing procedure is thus required to estimate the underlying
ontinuous functional process 𝑥𝑖(𝑡) from the discrete available observa-
ions. For this purpose, different smoothing methods could be applied.
uch methods can be divided into two macro-categories: kernel and
asis smoothers. The firsts compute the approximation 𝑥𝑖(𝑡) at each
oint 𝑡 by considering the influence of surrounding points, while basis
moothers calculate the continuous data representation by expanding
ases with truncation to a defined order.

In our application, the K-Nearest Neighbors estimator was adopted.
t is a non-parametric linear kernel smoothing method that estimates
he function value at each point in the time interval 𝑇 as the average

f the 𝑚 nearest observations.

7

Given the set of 𝑛𝑖 observations for the instance 𝑖, the value of the
unction 𝑥̂𝑖(𝑡0) estimating the process 𝑥 in the point 𝑡0 ∈ 𝑇 is given by:

̂ 𝑖(𝑡0) =

∑𝑛𝑖
𝑗=1 𝐾𝑚(𝑡0, 𝑡𝑗 )𝑥𝑖(𝑡𝑗 )
∑𝑛𝑖

𝑗=1 𝐾𝑚(𝑡0, 𝑡𝑗 )
(4)

where 𝐾𝑚(𝑡0, 𝑡𝑗 ) is the kernel function assigning a weight to 𝑡𝑗 based
on its distance from 𝑡0. The parameter 𝑚 defines the width of the
neighborhood. The kernel function for the nearest neighbors smoothing
method is given by:

𝐾𝑚(𝑡0, 𝑡𝑗 ) =

⎧

⎪

⎨

⎪

⎩

1
𝑚 if ‖𝑡𝑗−𝑡0‖

‖𝑡[𝑚]−𝑡0‖
≤ 1

0 otherwise
(5)

where 𝑡[𝑚] is the 𝑚-𝑡ℎ time sample closest to 𝑡0.
Besides the relative simplicity of this smoothing method, it showed

to work well in our application and thus preferred over other kernel or
basis smoothers.

For a more immediate and intuitive understanding, the smoothing
procedure is presented in Fig. 5 for a fictitious set of data in one
dimension.

3.2. Registration

The procedure adopted to collect the available data is strongly hu-
man dependent; therefore, shifts between the first observed sample and
the regime’s start are frequent. Such shifts, variable between different
instances, do not provide any information about the regime itself, but
instead they could negatively affect subsequent data analysis.

Therefore, the registration procedure is necessary to align the
smoothed data and thus make the analysis robust to shift in phase.

In our application, a shift in the domain, i.e., a shift registration,
was performed to align peaks in the recorded signals. The procedure
was applied, after smoothing, for the 19 labeled regimes separately.
Since registration requires data to have equal length, all the available
signals were padded to the length of the regime’s instance with longer
duration and then registration was performed.

The registered function for the instance 𝑖 is indeed given by:

𝑥∗𝑖 (𝑡) = 𝑥𝑖(𝑡 + 𝛿𝑖) (6)

where the time shift 𝛿𝑖 is the one minimizing a least squared expression,
i.e., the Registered Sum of Squared Errors:

𝑅𝐸𝐺𝑆𝑆𝐸 =
𝑁
∑

𝑖=1
∫𝑇

[𝑥𝑖(𝑡 + 𝛿𝑖) − 𝜇̂(𝑡)]2𝑑𝑠 (7)

Here 𝜇̂(𝑡) is the mean of the registered functions.
The minimization problem is solved iteratively using the Newton–

Raphson algorithm (Ramsay and Silverman, 2008).
For a better understanding, the effect of registration on a fictitious

set of data in one dimension is presented in Fig. 6.

4. Flight regimes recognition

As already mentioned, flight regime recognition is fundamental to
monitoring a helicopter’s actual usage and thus enabling a condition-
based maintenance scheduling considered more efficient than a time-
based one in terms of costs and safety. Here, for this purpose, an
unsupervised approach is proposed. Unsupervised clustering, indeed,
released from regime’s labels defined during the certification phase,
allows to identify, in addition to standard regimes, mixed regimes and
transitions which are frequent in actual flight conditions although not
included in certification flights.

A soft classification technique was adopted to cluster the available
functional data in this perspective. Specifically, the fuzzy C-Means clus-
tering algorithm was chosen for our application, ad-hoc reformulated
to handle functional data (Tokushige et al., 2007). Fuzzy C-Means
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Fig. 5. Smoothing. The figures report an example of Smoothing procedure on one dimensional fictitious data.
Fig. 6. Registration. The figure report an example of Registration procedure on one dimensional fictitious data.
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llows each instance to belong to more than one cluster by assigning a
embership grade for each of the available classes. This membership

rade denotes the confidence level with which the algorithm associates
he instance to the specific cluster. In other words, a membership grade
lose to 1 denotes a high similarity between that instance and the given
luster, while a membership grade close to 0 implies little similarity. A
uitable distance metric was employed to measure such similarity in a
unctional space.

Therefore, the soft clustering algorithm adopted for the current
pplication, preventing a hard data partition, accounts for possible
imilarities between different regimes, leading to higher overall perfor-
ance compared with other clustering procedures. Indeed, as reported

n Section 1, one important aspect related to certification and real
lights is that often the latter re-characterized by new regimes, not
epresented in certification flights, but typically obtained by the mix-
ure of known regimes performed in certification flights. The adoption

soft classification technique has the main advantage to offer the
ossibility to identify in real flights such new regimes determined by
he mixture of two (or potentially more) known regimes, which will be
hose associated with higher predicted probabilities.

.1. Fuzzy C-means algorithm

Given the set of functional observations 𝑋 = 𝑥1, 𝑥2,… , 𝑥𝑁 soft
cluster analysis consists in identifying a fuzzy partition of the data,
namely in assigning to each datum 𝑖 = 1,… , 𝑁 the membership grades
𝑢𝑖,𝑗 to class 𝑗 = 1,… , 𝐶. The grades 𝑢𝑖,𝑗 must satisfy the following
conditions:
𝐶
∑

𝑗=1
𝑢𝑖𝑗 = 1 ∀𝑖 = 1,… , 𝑁,

𝑁
∑

𝑖=1
𝑢𝑖𝑗 > 0 ∀𝑗 = 1,… , 𝐶 (8)

The algorithm finds the optimal fuzzy partition of the data by
minimizing the following cost function:

𝐽 =
𝑁
∑

𝑖=1

𝐶
∑

𝑗=1
𝑢𝑚𝑖𝑗

‖

‖

‖

𝑥𝑖 − 𝑣𝑗
‖

‖

‖

2

∗
(9)

where 𝑣𝑗 is the center of cluster 𝑗, 𝑚 is a weighting exponent determin-
ing the degree of fuzziness and ‖⋅‖∗ denotes any norm well defined in

the embedding functional space.

8

With regard to the fuzziness parameter 𝑚 it can be proven that with
𝑚 = 1 the algorithm leads to hard clustering where 𝑣𝑗 are the geometric
centroids of each class, while as 𝑚 tends to infinity the membership
grades will tend to be equally distributed over the 𝐶 clusters providing
no information about any possible data grouping.

In our application, after fine-tuning of this parameter, the degree
of fuzziness was set equal to 2. This choice, indeed, appears to offer
a good compromise between hard clustering and the non informative
equal probability distribution over the regimes.

The norm adopted in this case study was the 𝐿1 norm given by

‖

‖

‖

𝑥𝑖 − 𝑣𝑗
‖

‖

‖

2

𝐿1 = ∫𝑇
|𝑥𝑖(𝑡) − 𝑣𝑗 (𝑡)|𝑑𝑡 (10)

hich showed a better performance with respect to the 𝐿2 norm, both
ell defined in the embedding 𝐿2 space.

The algorithm solves the minimization problem iteratively and, at
ach iteration, the cluster centroids and the membership degrees are
pdate as follows:

𝑖,𝑗 =

[ 𝐶
∑

𝑘=1

(
‖

‖

‖

𝑥𝑖 − 𝑣𝑗
‖

‖

‖

2

𝐿1

‖

‖

𝑥𝑖 − 𝑣𝑘‖‖
2
𝐿1

)
2

𝑚−1
]−1

(11)

𝑣𝑗 =

∑𝑁
𝑖=1 𝑢

𝑚
𝑖𝑗𝑥𝑖

∑𝑁
𝑖=1 𝑢

𝑚
𝑖𝑗

(12)

The iterative process stops when the fuzzy partition do not change
between consecutive iterations, namely when, given a threshold 𝜖, at
iteration step 𝑘 + 1 we have:

max
𝑗

‖

‖

‖

𝑣(𝑘+1)𝑗 − 𝑣(𝑘)𝑗
‖

‖

‖𝐿1 < 𝜖 (13)

The described algorithm was applied on the available data, after
smoothing and registration procedure.

Since the clustering algorithm works on data with fixed length, all
the regimes’ instances were sliced in windows of equal size set to 350,
after fine tuning. Fig. 8 shows the results of functional clustering for
a fictitious set of smoothed and aligned data, highlighting that the
prediction is assigned to the entire maneuver instance, accounting for

temporal relationship between samples.
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Fig. 7. Methodology Pipeline Architecture. The reported figure shows the phases composing the proposed regimes recognition approach.
Fig. 8. Functional Clustering. The figures report an example of Functional Clustering on one dimensional fictitious data.
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To help the reader to better understand the proposed methodology,
ts architecture is depicted in Fig. 7.

The results obtained applying it to the provided data are presented
n Section 5.

.2. Cluster-regime mapping

Fuzzy C-Means returns the probability of belonging to each cluster
or each instance. However, to carry out the subsequent lifetime mon-
toring tasks, i.e., estimate the usage status, it is necessary to associate
ach regime with a cluster. To this end, downstream of the training
rocess, we mapped each cluster identified by Fuzzy C-Means to the
orresponding regime. Accordingly, each instance was considered as
elonging to the cluster predicted with maximum likelihood. At this
oint, we analyzed the frequency of true regime labels in each cluster.
his was possible as, despite never being leveraged during the training
rocess, the actual labels were available in the provided dataset. Also,
e noticed that one true regime label was predominant in each cluster,
nd no regime label was the most represented in two or more clusters.
his allowed us to define a 1:1 correspondence between identified
lusters and true regimes, which was crucial for handling the usage
onitoring task associated with new instances.

As reported in Section 1, leveraging an unsupervised method al-
ows our flight regime recognition approach to be reliable even when
onsidering a real usage spectrum, including transitions and mixed
aneuvers, which combine different categories. It follows that a un-

upervised analysis could also assist the revision process of the regimes
omposing the true helicopter usage spectrum. In addition, leveraging
n unsupervised approach is also valuable in the military sector, where
t can provide useful insights about combat maneuvers, regardless the
ow regimes repeatability and the unclear segmentation criteria respect
o the civil scenario.

. Experimental results and discussion

This Section first defines the metrics used to evaluate clustering

erformance on test data, pre-processed and selected according to the l

9

methods presented in Section 2. According to them, obtained results
are then reported and discussed.

5.1. Evaluation metrics

The total Sum of Squared Error within-cluster (SSE) was employed
to infer the optimal clusters’ number. This metric measures the disper-
sion for each of the 𝑁𝑘 points belonging to a cluster 𝑥𝑖𝑘 with respect to
its centroid 𝑣𝑘, and is defined as:

𝑆𝐸 =
𝑁𝐶
∑

𝑘=1

𝑁𝑘
∑

𝑖=1
(𝑥𝑖𝑘 − 𝑣𝑘)2 (14)

here 𝑁𝐶 is the number of classes, i.e., of the considered regimes.
The lower the SSE, the better the clustering produced, characterized

y cohesive groups. However, as the number of clusters increases, fewer
nstances will fall within each group, resulting in a total SSE decrease,
ot resulting in a better clustering. The Elbow method provides precise
nstructions to identify the point that optimizes the trade-off between
SE and the number of clusters, preventing overfitting (Thorndike,
953). The clustering was repeated according to its specifications,
arying the number of clusters and calculating SSE each time. The
esults obtained were then plotted in a SSE vs. Number of Clusters
lane. The optimal clusters number corresponds to the bend’s location,
.e., the knee of the obtained curve. Adding clusters would not lead to
significant decrease in total SSE from this value.

Considering the clustering output and each instance regime label,
eglected in the clustering process, additional metrics can be computed.
lease notice that Fuzzy C-Means assigns a probability of belonging to
ach cluster to each instance. Therefore, each instance was attributed
o the high probability cluster to evaluate the produced results. The
ost commonly used is the Rand Index (RI), which corresponds to an

ccuracy measured between pairs of clustering instances (Rand, 1971).
iven the clustering outcome, RI is calculated as the ratio of the number
f instances pairs having the same label and cluster, denoted by the

etter 𝑎, and of those having different labels and clusters, denoted by
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Fig. 9. Elbow Plot. The figure illustrates the total SSE within clusters’ trend varying the clusters’ number.
a

𝑝

c
a
i
m

𝐹

w
i
a
c

p
f
t
A
c
A

S

c
c
s

5

p
e
r

t
s
s
3
r
2
P
t

he letter 𝑏, over the total number of possible pairs, i.e., the binomial
oefficient

(𝑁
2

)

. 𝑁 indicates the total instances number.

𝐼(𝐶) = 𝑎 + 𝑏
(𝑁
2

)
(15)

RI value ranges from 0, i.e., no correspondence between Fuzzy
C-Means clustering and the one obtained by grouping the instances
according to their label, to 1, i.e., the two clusterings coincide.

The Adjusted Rand Index (ARI) is a for chance adjustment of RI,
and is defined as:

𝐴𝑅𝐼(𝐶) =
𝑅𝐼(𝐶) − 𝑅𝐼(𝐶)

𝑚𝑎𝑥(𝑅𝐼(𝐶)) − 𝑅𝐼(𝐶)
(16)

where 𝑅𝐼(𝐶) is the expected 𝑅𝐼 for each cluster.
Another useful metric is the Mutual Information (MI) (Shannon,

948).
This metric considers the consistency between the clustering output

and the true labels 𝐿. To this extent, the label attributed by Fuzzy
-Means to each cluster, indicated as 𝑐𝑘, is compared to true value 𝑙𝑗

or each sample of belonging. In detail, considering a dataset composed
f 𝑁 instances, the MI is defined as:

𝐼(𝐶,𝐿) =
𝑁𝐶
∑

𝑘=1

𝑁𝑘
∑

𝑗=1

|𝑐𝑘 ∩ 𝑙𝑗 |
𝑁

𝑙𝑜𝑔
(𝑁|𝑐𝑘 ∩ 𝑙𝑗 |

|𝑐𝑘||𝑙𝑗 |

)

(17)

where 𝑁𝐶 is the number of clusters, i.e., of the regimes, and 𝑁𝑘 is the
umber of samples attributed to each one.

Also in this case, it is possible to adjust the metric by chance,
roducing the Adjusted Mutual Index (AMI):

𝑀𝐼(𝐶, 𝑌 ) =
𝑀𝐼(𝐶, 𝑌 ) −𝑀𝐼(𝐶, 𝑌 )

𝑚𝑎𝑥(𝑀𝐼(𝐶, 𝑌 )) −𝑀𝐼(𝐶, 𝑌 )
(18)

where 𝑀𝐼(𝐶) is the expected 𝑀𝐼 for each cluster.
Both RI and MI, as their adjusted values ARI and AMI, are indepen-

ent of the mapping between labels and clusters. However, performing
his mapping is essential to produce a confusion matrix, and thus to
ompute all the metrics commonly used to evaluate a supervised algo-
ithm’s performance (Hay, 1988). Unlike ARI and AMI, these metrics
ary as the mapping established between labels and clusters varies. In
his work, we associated each cluster to the label most represented by
ts belonging instances. Once the mapping is performed, the confusion
atrix quantities can be estimated, namely True Positives (TP), True
egatives (TN), False Positives (FP), and False Negatives (FN).

Among the metrics that can be computed considering the produced
onfusion matrix, the most commonly used is undoubtedly the accu-
acy, i.e., the ratio of correct predictions over the total number of

produced ones.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

(19)

Besides, precision and recall are also necessary. In detail, the pre-
ision quantifies the number of instances of a regime correctly at-
ributed to the corresponding cluster over the total number of instances
 n

10
ttributed to that cluster.

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(20)

On the other hand, the recall measures the number of instances of
a regime correctly attributed to the corresponding cluster over of the
total number of instances belonging to that regime.

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(21)

When the classes considered are not equally balanced, as in multi-
lass classification problems, the F1 Score is a more robust metric than
ccuracy. Indeed, F1 Score allows also for considering the number of
nstances not correctly classified, since it is defined as the harmonic
ean between accuracy and recall.

1𝑆𝑐𝑜𝑟𝑒 =
2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(22)

Also, macro and micro-averages of precision, recall and F1 Score
ere considered. Macro-average is estimated computing the metric

ndependently for each regime, and taking the overall average; Micro-
verage is obtained aggregating the contributions of all regimes to
ompute the average metric.

Last, to measure the similarity between clusters, a novel metric is
roposed. Second cluster label, 𝑦2, is defined as the vector containing
or each instance the ID of the second most probable cluster, according
o Fuzzy C-Means predictions. The similarity between clusters’ pair,

and B, is then defined as the ratio of A’s instances whose second
luster label is B, indicated as |𝑥𝐴(𝑦2 == 𝐵)| over the total number of
’s instances, indicated as |𝐴|.

(A,B) =
|𝑥𝐴(𝑦2 == 𝐵)|

|𝐴|
(23)

This metric ranges from 0, i.e., clusters are very dissimilar, to 1, i.e.,
lusters are very similar. Leveraging the mapping between regimes and
lusters, it is possible to interpret the similarity between clusters as a
imilarity between regimes.

.2. Experimental results

As previously mentioned, the total SSE within clusters was em-
loyed to estimate the optimal clusters’ number. In detail, SSE was
valuated by varying the number of clusters between 1 and 30. The
esults obtained are shown in Fig. 9.

The knee of the curve corresponds to the point that optimize the
rade-off between the two considered variables. Accordingly, it is pos-
ible to notice that the maximum clusters’ number that provides a
ignificant SSE reduction ranges from 16 to 20. Passing from 2 to

clusters decreases the SSE by 30.92%, and this gain progressively
educes as the clusters’ number increases. In the range between 16 and
0 clusters, adding one cluster reduce the SSE by 6.42%, on average.
assing from 20 to 21 clusters, instead, reduces the SSE by 3.65%, and
he gain is dramatically reduced for further increases. Since the actual

umber of regimes collected in the considered dataset is 19, which also
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Table 5
Clustering Evaluation. This table aims at evaluating the outcomes of Fuzzy C-Means clustering when mapping each cluster to
a regime. In detail, precision, recall, and F1 Score are reported for each regime.
Regime Precision Recall F1 Score

Acceleration From OGE to 50K/VMAX Fwd 0.93 0.95 0.94
Autorotation 1.0 VNE Steady 1.00 1.00 1.00
Bank Turn Right 45 DEG 0.6 VNE 1.00 1.00 1.00
Climb VY Top 0.95 1.00 0.97
Deceleration From 0.9 VNE to VY 1.00 1.00 1.00
Deceleration From 50K/VMAX Fwd to OGE 0.78 0.97 0.86
Forward Flight 0.4 VNE 0.90 0.97 0.94
Forward Flight 0.6 VNE 0.97 1.00 0.99
Forward Flight 1.0 VNE 0.79 0.95 0.86
Forward Flight 1.1 VNE 0.93 0.72 0.81
Normal Landing (from VY to Ground) 1.00 0.97 0.99
Normal Mpog 0.91 0.82 0.86
Sideways Flt Port 50K/VMAX Rec IGE/OGE 0.95 0.97 0.96
Sideways Flt Port 50K/VMAX Stdy IGE/OGE 1.00 1.00 1.00
Spot Turn 30 Deg/s RH (360) Ent-St-Rec 1.00 1.00 1.00
Transition From Hige to VY Top 0.91 1.00 0.95
Transition From VY Level to VY Climb MCP 1.00 0.90 0.95
Transition From VY Lebel to VY Descent 1500FPM 0.97 0.90 0.93
Vertical Take Off to H. IGE 1.00 0.77 0.87

Weighted Average 0.95 0.94 0.94
falls in the optimal elbow range, we set the clusters’ number to this
value. Considering the clustering produced by Fuzzy C-Means when the
clusters’ number is set to 19, the ARI and AMI metrics assess to 0.843
and 0.903, respectively.

Each cluster is then mapped to the regime most represented by its
belonging instances. This allows for computing a confusion matrix for
each regime and estimating precision, recall, and F1-Score.

The results obtained are reported in Table 5. For each performance
metric, the weighted average is computed weighting each score by the
number of samples actually belonging to the respective regime.

Besides, the heatmap obtained from the mapping produced is shown
in Fig. 10. Each cell is colored according to the percentage of samples
belonging to the corresponding row cluster whose label is the one of
the corresponding column.

It can be noticed that most of the regimes correspond perfectly to
one of the clusters produced by Fuzzy C-Means (each of the classes
produces a single and distinct cluster). Considering the F1 Score, 14
of the 19 regimes map to a cluster with more than 90.0%, and 18 to
more than 85.0%. A lower F1 Score is obtained for Forward Flight 1.1
VNE, with an F1 Score of 81.0%. Analyzing Fig. 10 helps understand
the reasons behind this lower performance: a portion of the instances
collected in this cluster belong to the Forward Flight 1.0 VNE class. The
two classes have similar characteristics, and our algorithm has helped
identify the regimes labeled as Forward Flight 1.0 VNE that have been
flown at higher speeds. Considering precision and recall, 14 out of
19 regimes map to their respective clusters more than 90.0%. These
results are consistent with the global estimate of the macro and micro
averages, which for the precision are 0.95, while for recall and F1 Score
are 0.94. It is important to note that the F1 Score, the precision, and
the recall of the three transitions’ regimes are greater than 90.0%. This
shows that our method can distinguish and recognize them correctly.

Another interesting evaluation considers actual and predicted labels
for the same flight regimes, obtaining the so called mission profile.

Indeed, as reported in Section 4 the predicted cluster can be as-
sociated to the corresponding regime label considering the mapping
produced at the end of the training process. Fig. 11 shows the labeled
part of a whole mission profile for one of the collected flights.

The result obtained shows that the proposed method is perfectly
able to recognize the helicopter flight regime, estimated considering
the estimated cluster-regime mapping.

Finally, we define a new metric to estimate the similarity between
clusters and, consequently, between regimes. The produced results are
reported in Fig. 12.
11
Fig. 10. Clusters-Regimes Heatmap. This Figure highlights for each cluster the percent-
age of samples belonging to each possible regime. Red squares correspond to a perfect
cluster-regime correspondence.

In detail, it shows the similarity degree for each clusters pair accord-
ing to the reported colorbar; indeed, the darker the square, the closer
the clusters, i.e., the regimes.

The results obtained are consistent with the expert a priori knowl-
edge. For example, it is shown that the regime most similar to Forward
Flight 1.1 VNE is Forward Flight 1.0 VNE. Also, Sideways Flt Port
50K/VMAX Stdy IGE/OGE, and Spot Turn 30DEG/S RH(360)Ent-St-
Rec are most similar to Sideways Flt Port 50K/VMAX Rec IGE/OGE.
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Fig. 11. Mission Profile. This figure reports for a given flight the actual recorded regimes (top), and the ones predicted by our method (bottom).

Fig. 12. Clusters Similarity. Considering the results of clusters-regimes matching, we map each cluster to a regime. In this figure, leveraging this information, the similarity between
clusters is estimated.

12
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Another significant similarity is between Climb VY Top and Transition
From VY Level to VY Climb MCP. Besides, Acceleration from OGE
to 50K/VMAX Fwd is most similar to Transition from Hige− >VY
Top. The similarity between Normal Landing (from VY to Ground) and
Deceleration From 50K/VMAX Fwd to OGE is also relevant since the
two regimes are often causally related. The same occurs considering
the causality that links Vertical Take Off to H.Ige to Normal Mpog.
In addition to demonstrating that the clustering produced is consistent
with actual helicopter operating conditions, the results obtained pave
the way to the possibility of identifying new flight regimes, which
can, however, be related to the known ones thanks to the introduced
similarity measure.

6. Concluding remarks

This paper proposes an approach for flight regime recognition that
leverages the FDA for instances’ representation and Fuzzy C-Means as
the clustering algorithm. To the best of the authors’ knowledge, this is
the first time these two techniques have been applied for regime recog-
nition purposes. The FDA representation allows for considering the
temporal dependence between the samples in the recognition process,
improving the clustering algorithm’s performance. Besides, employing
an unsupervised algorithm prevents the identification process from af-
fecting the provided flight regime labels. Indeed, the datasets available
for the training of regime recognition algorithms are often collected
during certification test flights, where the regimes are performed ac-
cording to standard procedure, unlike during helicopter’s actual usage.
Supervised learning approaches force the algorithm only to identify
those regimes collected during test flights, producing inconsistent re-
sults when the behavior is different from such classes. Instead, our
approach is unconstrained by such limitations and can potentially deal
with any usage. The efficacy of our approach was validated on actual
flights, obtaining an average F1 score of 92.0% over 19 flight regimes.

Also, we proposed an ad hoc similarity metric between regimes in
this paper. This metric proves to be effective in considering similar
regimes comparable from a physical point of view or related by a
causal relationship. This result is significant in defining new regimes,
more consistent with the actual helicopter usage. According to this
perspective, future developments foresee applying this method on data
collected during actual civil and military operations to analyze their po-
sitioning concerning the clusters identified here. The proposed method
would recognize new clusters referred to existing regimes and charac-
terize them based on their similarity with the standard ones already
defined.

Therefore, the results obtained pave the way for more effective
usage monitoring systems. Collecting precise flight reports would allow
HUMS systems to be more accurate in their diagnostics and increase
their prognostic capabilities. This last achievement is fundamental to
move from time-based to condition-based maintenance, which would
lead to a significant operating cost reduction and safety gain.
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