
IoT Data Analytics in Dynamic Environments: From

An Automated Machine Learning Perspective

Li Yang, Abdallah Shami

Department of Electrical and Computer Engineering, University of Western Ontario,
1151 Richmond St, London, Ontario, Canada N6A 3K7

Abstract

With the wide spread of sensors and smart devices in recent years, the data
generation speed of the Internet of Things (IoT) systems has increased dra-
matically. In IoT systems, massive volumes of data must be processed, trans-
formed, and analyzed on a frequent basis to enable various IoT services and
functionalities. Machine Learning (ML) approaches have shown their ca-
pacity for IoT data analytics. However, applying ML models to IoT data
analytics tasks still faces many difficulties and challenges, specifically, ef-
fective model selection, design/tuning, and updating, which have brought
massive demand for experienced data scientists. Additionally, the dynamic
nature of IoT data may introduce concept drift issues, causing model perfor-
mance degradation. To reduce human efforts, Automated Machine Learning
(AutoML) has become a popular field that aims to automatically select,
construct, tune, and update machine learning models to achieve the best
performance on specified tasks. In this paper, we conduct a review of ex-
isting methods in the model selection, tuning, and updating procedures in
the area of AutoML in order to identify and summarize the optimal solu-
tions for every step of applying ML algorithms to IoT data analytics. To
justify our findings and help industrial users and researchers better imple-
ment AutoML approaches, a case study of applying AutoML to IoT anomaly
detection problems is conducted in this work. Lastly, we discuss and classify
the challenges and research directions for this domain.

Keywords: IoT data analytics, AutoML, Concept drift, Machine learning.

Email addresses: lyang339@uwo.ca (Li Yang), abdallah.shami@uwo.ca (Abdallah
Shami)

Preprint published in Engineering Applications of Artificial Intelligence

ar
X

iv
:2

20
9.

08
01

8v
1

 [
cs

.L
G

]
 1

6
Se

p
20

22

1. Introduction

1By leveraging rapidly evolving communications technologies, the Inter-
net of Things (IoT) systems permit the exchange of meaningful information
and knowledge across IoT devices and systems to create value for humans [1].
IoT is defined as a network of connected devices and end systems that in-
teract directly to collect, exchange, and analyze critical data through the
cloud. Typical IoT applications include smart grids, intelligent vehicles,
smart homes, smart agriculture, smart healthcare, and so on [2]. IoT nodes
and devices can form many subnets of IoT networks. For example, as a
common type of IoT network, a smart city network managed by a municipal
government usually consists of many subsets, such as smart homes, smart
grids, smart factories, intelligent transportation systems, smart healthcare
systems, etc. [2].

IoT is expanding at a rapid speed. According to the Cisco report, about
18.4 billion IoT sensors and devices were connected by 2018, and over 2.5
quintillion bytes of IoT data are generated daily [3] [4].Thus, each real-world
IoT device generates an average of approximately 135.9 million bytes of IoT
data every day, which is an extremely high volume and generation speed. It
is also estimated that more than 30 billion IoT devices would be connected
by 2023 [3]. For example, in intelligent transportation systems, as a critical
IoT application, a single connected vehicle generates about 1 gigabyte (GB)
of data per second, and Boeing 787 generates about 5 GB of data per second
[5] [6]. The massive number of IoT end devices that generate an enormous
volume of IoT data on a continuous basis, is posing challenges to IoT systems
in terms of providing reliable services and making trustworthy decisions [1].
This is because IoT services and functionalities often require fast and accurate
data analytics. Effective and efficient data analytics enables IoT systems
to make fast decisions, gain rapid insights, discover hidden patterns, and
interact with users and other systems [7].

For IoT data analytics, although human experts can effectively recog-
nize simple data patterns when data dimensionalities are smaller than 3, the

1DOI: https://doi.org/10.1016/j.engappai.2022.105366
Code Implementation and General AutoML Tutorials: https://github.com/

Western-OC2-Lab/AutoML-Implementation-for-Static-and-Dynamic-Data-Analytics

2

https://doi.org/10.1016/j.engappai.2022.105366
https://github.com/Western-OC2-Lab/AutoML-Implementation-for-Static-and-Dynamic-Data-Analytics
https://github.com/Western-OC2-Lab/AutoML-Implementation-for-Static-and-Dynamic-Data-Analytics

dimensions of most real-world IoT data are much larger than 3, making it
extremely difficult to analyze data manually [8]. According to comprehen-
sive research [9] that fairly compares machine analysis and human analysis
performance in a research abstract classification study, ML classifiers achieve
better classification performance than human classifiers overall. Specifically,
most ML classifiers achieve over 0.7 F1-scores, while only 3 out of 63 human
classifiers have F1-scores over 0.6. ML models are also robust to changes
and variations between the training and test data. Additionally, it requires
extensive time and resources for human classifiers to achieve a relatively high
F-score. Specifically, the ML classifiers classified 247 abstracts in less than 5
seconds, while the fastest human classifiers spent more than 2 hours classify-
ing them in this study. Additionally, ML models can achieve higher accuracy
when trained on larger datasets (e.g., hundreds of thousands of data samples),
while it is infeasible for humans to memorize many complex patterns in large
datasets. This is primarily due to the limited memory and sensing delays of
human brains [10]. To summarize, ML models outperform human classifiers
in terms of accuracy, time, and reliability [9]. Thus, Machine Learning (ML)
algorithms have become critical contributors to IoT data analytics, enabling
the rapid and accurate processing of massive volumes of data produced by
IoT systems to identify patterns required by IoT services [11] [12].

Although ML techniques have been widely applied to IoT data analyt-
ics applications, deploying ML algorithms often requires intensive domain
knowledge and human efforts [13]. Therefore, many data analysts and ML
researchers have been conducting research on Automated Machine Learning
(AutoML) technology, which aims to complete data analytics tasks using
ML algorithms with minimal human intervention. AutoML techniques are
state-of-the-art solutions to automate IoT data analytics processes and re-
duce human efforts [13]. AutoML enables people to save valuable resources,
including time, financial, and human resources, by automatically making
accurate decisions.

Combined Algorithm Selection and Hyperparameter tuning (CASH) is
the essential procedure of general AutoML solutions and data analytics pipelines
because the suitable ML algorithms and their hyperparameter configurations
have a substantial impact on the data learning performance [14]. Other
components in AutoML pipelines, like data pre-processing and feature en-
gineering, also significantly affect the outcomes of data analytics, but their
automation still faces many challenges and usually requires human inter-
vention. On the other hand, since certain IoT data generated in dynamic

3

IoT environments is dynamic streaming data that changes over time, con-
cept drift issues often occur in IoT data analytics [15]. Effective AutoML
solutions for IoT dynamic data analytics should also incorporate automated
model updating and concept drift-adaptive learning techniques.

To leverage human expertise and knowledge, Human-In-The-Loop (HITL)
is introduced to develop ML models by combining machine intelligence with
human intelligence [8]. HITL indicates the process that human experts su-
pervise the ML process and help reduce prediction errors. Thus, human ex-
perts can still participate in ML pipelines to make creative decisions, while
AutoML techniques can help with tedious, repetitive, and laborious data
analytics tasks with higher precision and less human effort [8] [14]. In the
application of AutoML in IoT data analytics, certain procedures in AutoML
pipelines, like data sampling and feature extraction, can be interfered with by
HITL to deal with the high volumes of IoT data and make creative decisions.
Human experts can also help determine the ML model candidates and their
hyperparameter ranges for initial model selection and faster hyperparameter
tuning to prevent AutoML techniques from doing many unnecessary evalu-
ations, thus enabling more efficient analytics of IoT data with high-volume
and high-velocity. Additionally, human experts can help with data analytics
result validation and data labeling for model updating and model effective-
ness maintenance in high variability data analytics tasks [8]. Despite that
certain ML procedures require HITL, most ML procedures can be completely
automated by machines to allow human experts to intervene in creative ML
procedures.

In this paper, we discuss how AutoML techniques can be applied to IoT
data analytics problems to address the existing challenges. To apply ML
models to IoT data analytics tasks, there are several major difficulties and
challenges [13] [14]:

1. It is usually difficult to select the most appropriate ML algorithm
among a large number of existing ML models for each specific task.

2. It is usually time-consuming and requires expert knowledge to manually
tune ML models to fit each specific task.

3. Many IoT data streams have concept drift issues, causing ML model
performance degradation.

4. The community lacks public and comprehensive benchmarks or practi-
cal examples in the AutoML field for IoT data analytics.

To overcome the above difficulties/challenges, the primary achievements

4

and contributions of this paper are as follows:

1. Review common ML algorithms, summarizes their pros and cons, and
discuss their important hyperparameters for better selection in IoT
data analytics.

2. Review existing optimization or AutoML methods for automated model
selection and hyperparameter tuning, summarizes their pros and cons,
and recommends the most appropriate method for specific situations.

3. Provide a comprehensive review of automated model updating, a novel
AutoML procedure, by discussing concept drift detection and adapta-
tion methods.

4. Conduct a comprehensive case study analysis by applying AutoML to
practical IoT data analytics tasks; the implementation code is publicly
available on GitHub2.

Moreover, this paper makes the following secondary contributions:

1. Define the overall framework and tasks for IoT data analytics.

2. Review existing techniques for other important procedures of general
AutoML pipelines, including data pre-processing, feature engineering,
and performance metric selection.

3. Introduce many existing tools and libraries designed for AutoML and
IoT data analytics.

4. Discuss the open challenges and research directions in the field of IoT
data analytics and AutoML.

Additionally, as a state-of-the-art research topic, the review on the ap-
plication of AutoML techniques in IoT data analytics has brought out the
following novelties:

1. Deploying AutoML techniques at both edge and cloud servers can ef-
fectively perform different types of data analytics tasks on IoT data
with high volume and high velocity. This is discussed in Section 2.

2. Different AutoML methods have different suitabilities and performance
when applied to specific use cases according to theoretical analysis and
practical experiments. This is discussed in Sections 3, 4, and 10.

2Code for this paper is available at: https://github.com/Western-OC2-Lab/AutoML-
Implementation-for-Static-and-Dynamic-Data-Analytics

5

3. Concept drift is a distinctive issue in certain IoT data analytics tasks
due to the high variability of certain IoT data streams. The occur-
rence of concept drift will cause ML model performance degradation,
which can be addressed by automated model updating and concept
drift adaptation techniques. This is discussed in detail in Sections 7
and 10.

Compared with other earlier review papers [1] [13] [14] [16] [17] [18] [19]
on the IoT data analytics or AutoML research topic, this paper has the
following differences and improvements:

1. This paper is the first paper that discusses the AutoML application in
the IoT data analytics field. Other existing review or survey papers
only discuss either AutoML techniques or IoT data analytics methods.

2. This paper is the first paper that includes the automated model updat-
ing process in the review of AutoML techniques. Other existing review
papers ignore automated model updating as they focus on batch/static
learning.

3. This paper is the first paper that conducts a comprehensive case study
of applying AutoML to practical IoT data analytics tasks with code
available. To the best of our knowledge, there is no other paper that
publishes a comprehensive sample code for IoT data analytics using
multiple AutoML techniques.

Lastly, compared with our previously published review paper in the hyper-
parameter optimization and AutoML field [20], this paper further discusses
the hyperparameters of common ML algorithms and their suitable optimiza-
tion methods in Sections 3 & 4. Despite that, there are still many differences
and improvements in this paper. In this paper, besides hyperparameter tun-
ing, we have discussed all other procedures of general AutoML pipelines,
including data pre-processing, feature engineering, automated model selec-
tion, and automated model updating.

This paper is organized as follows: Section 2 presents the properties of
IoT time-series data, as well as the layers and tasks of IoT data analyt-
ics. Section 3 reviews the ML algorithms that are usually used for IoT data
analytics. Section 4 provides an overview of the AutoML pipeline and dis-
cusses the optimization methods available for AutoML systems. Sections
5 & 6 discuss the automated data pre-processing and feature engineering
procedures, respectively. Section 7 discusses the automated model updat-
ing process by introducing concept drift detection and adaptation methods.

6

Section 8 describes the selection of appropriate performance metrics and val-
idation methods for ML tasks. Section 9 introduces the tools and libraries
for AutoML and time-series analytics. Section 10 presents a case study of
applying AutoML to IoT data analytics problems and discusses the experi-
mental results. Section 11 discusses the challenges and research directions of
AutoML and IoT data analytics. Section 12 concludes the paper.

2. IoT Data Analytics

2.1. IoT Data Characteristics

Although IoT data is similar to data from many other fields, there are
several factors affecting the efficacy of IoT data analytics, such as dynamic
IoT environments and time series characteristics. Overall, IoT data has the
following characteristics [21]:

1. High volume: With the development of large-scale IoT systems, a
massive amount of data is continuously generated from a large num-
ber of IoT devices. As described in Section 1, real-world IoT devices
generate an average of approximately 135.9 million bytes of IoT data
daily [3] [4]. Both real-time and historical IoT data must be saved and
processed to analyze previous patterns and future trends, resulting in
a large volume of IoT data requiring analytics.

2. High velocity: IoT data is often generated at high speed by a large
number of IoT devices. To achieve real-time analytics, the processing
speed of IoT data should be higher than the generation speed of the
data. Thus, efficient data analytics techniques should be developed to
process the IoT data with high generation speed.

3. High variability: Due to the dynamic nature of IoT environments,
IoT data is often dynamic data with varying distributions over time.
For example, when specific events occur, such as the occurrence of
Coronavirus Disease 2019 (COVID-19), the generated IoT data would
significantly change.

4. Time-series/Temporal correlation: As IoT devices collect data
over time, the IoT data is often created with timestamps or time-related
information. Due to environmental factors, IoT data is often time-series
data with strong temporal correlations. Thus, time-series analysis is
often beneficial for IoT data analytics.

7

In IoT systems, the majority of data is created in the form of time-series
data that has temporal correlations (i.e., the sample collected at time t is
related to the data samples collected at previous times [t−1 to t−n]) [22]. A
time-series dataset is a collection of measurements or observations collected
in chronological order. In time-series data, time is a dependent variable
of the target variable. Time-series prediction is the process of predicting
future trends using past observations. Global temperature prediction, energy
consumption prediction, and IoT device failure detection are typical examples
of IoT time-series data analytics tasks.

On the other hand, real-world IoT data is often non-stationary time-
series data with varying mean, variance, or autocorrelation [22]. Due to
the dynamic nature of IoT settings and environments, IoT streaming data
is subject to a range of data distribution adjustments. For instance, the
physical events observed by IoT sensors may evolve over time, rendering
sensing components outdated or necessitating periodic updates. As such,
changes in the distribution of IoT data over time, referred to as concept
drift, are often inevitable [15].

Concept drift may hamper the decision-making capabilities of IoT data
analytics models, which might have a negative impact on IoT systems [15].
For example, the misleading decision-making process performed by an IoT
anomaly detection model with concept drift issues may significantly impair
detection accuracy, leaving the IoT system vulnerable to a range of hostile
cyber-attacks. When a concept or distribution in IoT data changes, it should
be properly handled. Thus, proper analytics approaches should be used to
address concept drift issues in dynamic or online IoT data analytics tasks.

2.2. IoT Data Analytics Layers

Typical IoT systems consist of three major layers: data collection, trans-
mission, and analytics layers, as shown in Fig. 1 [21]. The data collection
layer is comprised of IoT end devices that are used to detect, collect, and
store sensor data. IoT devices can form sub-systems, like smart homes and
Intelligent Transportation Systems (ITSs). IoT end devices and sub-systems
are the basic and core components of IoT systems, which directly interact
with their physical IoT environments through sensors and actuators. The
transmission layer is enabled by gateways to transmit data between IoT end
devices and edge/cloud servers. Common transmission strategies include cel-
lular networks, Wireless Fidelity (WiFi), Bluetooth, Zigbee, and so on [15].

8

Figure 1: An overview of IoT data analytics architecture.

The analytics layer is responsible for processing and analyzing data from IoT
devices, which can be completed in both cloud and edge servers.

Edge and cloud computing are modern computing and storage paradigms
for intelligent IoT data analytics [11]. Firstly, IoT data can be processed
locally on IoT end devices or edge servers through edge computing. Edge
computing enables fundamental IoT data analytics inside the local network
of the data source to avoid long-distance transmissions and return real-time
processing responses. However, to reduce IoT system costs, IoT end devices
are usually constructed with limited computational power and resources.
This is because financial costs are critical factors that are considered by IoT
manufacturers and designers. Low cost is a core requirement of real-world
IoT end devices, and they can collaborate with cloud servers to complete
complex tasks [1]. Hence, IoT end devices or edge servers can only perform
basic and initial data processing due to their limited resources. It is usually
difficult for these resource-constrained IoT devices to perform computational-
intensive data analytics tasks. For example, due to the lack of a Graphics
Processing Unit (GPU), it is challenging to train Deep Learning (DL) on
many IoT end devices; hence, they may have to use simple ML models that

9

may cause under-fitting.
On the other hand, cloud servers can be used to handle large-scale IoT

data and perform complex data analytics tasks. Cloud computing is a
paradigm in which data is stored, gathered, managed, and processed on
remotely placed computing servers connected over the Internet [1]. Cloud
computing support many services, including Software as a Service (SaaS),
Infrastructure as a Service (IaaS), and Platform as a Service (PaaS). As IoT
systems can generate a massive amount of data, cloud servers are required
for the storage and analytics of large and complex IoT data. One major lim-
itation of cloud computing is the high overhead of processing huge amounts
of data, since transmitting IoT data streams between cloud and edge devices
would require additional costs, bandwidth, and power. Thus, it is usually
difficult to achieve real-time analytics by only using cloud servers.

Thus, collaborative computing, including both edge and cloud comput-
ing, is often used in modern IoT systems for large IoT data analytics tasks
[23]. AutoML methods can be operated at both central servers and local edge
servers for IoT data analytics applications to improve learning performance
and reduce human effort. In IoT systems, any device with computational,
communication, and storage capabilities can be used as edge computing de-
vices, such as smart gateways and lightweight base stations. AutoML meth-
ods can be implemented in these edge computing devices to perform funda-
mental and preliminary analytics on the local sensor data. Many preliminary
data analytics procedures, such as data pre-processing, feature engineering,
storage, and initial analytics, can be conducted at edge devices, which re-
duces the burden of communication and resource consumption on the cloud
servers.

Although many IoT edge devices enable local processing of IoT data, only
basic functionalities are feasible in local processing due to the limited com-
puting capability of many IoT end devices [1]. Therefore, large IoT data is
often transmitted to the cloud server for comprehensive analytics. AutoML
methods can be implemented in central machines with strong computational
power on the cloud. After receiving the pre-processed data transferred from
the edge devices, the central machines on the cloud servers will comprehen-
sively process and analyze the data using AutoML techniques and return the
analytics results to IoT end devices. Although certain IoT systems have a
large number of nodes and each node has limited data, it is still necessary to
integrate data from multiple data sources or IoT nodes to provide a compre-
hensive analysis of important events for reliable functionalities and services

10

[1] [24]. Cloud servers can process data faster and more accurately than edge
devices due to their powerful computational capabilities, but they can incur
additional latency owing to the data transmission process [23]. Thus, it is
required to strike a balance between the data analytics time and transmission
time.

To summarize, cloud computing is suitable for complicated, large-scale,
and delay-tolerant data analytics tasks due to its high computational power,
while edge computing is suitable for low-latency and real-time data analytics
tasks owing to its ability to process data locally. For example, in IoT anomaly
detection applications, if multiple edge devices or nodes are under different
types of attacks, each edge server can collect and analyze local IoT traffic
data using AutoML methods to detect the type of attack that it suffered
as a fundamental attack detection, while the cloud server can collect the
attack data transmitted from multiple edge servers using AutoML methods
to detect various types of attacks as a comprehensive attack detection. The
local and fundamental attack detection results can protect each local device
from the types of attacks it has suffered, while the comprehensive attack
detection results from the cloud server can prevent each local device from
both the old and new types of attacks. Deploying AutoML techniques using
collaborative computing can provide IoT devices and users with rapid and
reliable services.

2.3. IoT Data Analytics Tasks

In the analytics layers of the IoT architecture, many IoT data analyt-
ics tasks can be completed to provide reliable services and functionalities.
IoT data analytics tasks can be classified into four categories: classification,
regression, clustering, and anomaly detection [25].

1. Classification: Given a collection of labeled time-series data, the ob-
jective of a classification task is to train a classifier capable of assigning
correct labels to new time-series data samples. Training on labeled
samples enables a classifier to identify distinctive characteristics that
can be used to distinguish different classes.

2. Regression: Regression tasks aim to determine the relationship be-
tween a series of input features and a continuous target variable. For
IoT time-series data analytics, regression tasks are often prediction
tasks that aim to predict future trends and measurements using histor-
ical data samples with temporal dependencies.

11

3. Clustering: Clustering is the process of dividing data samples into a
number of groups according to their natural characteristics and pat-
terns. The purpose of clustering is to group similar data samples into
the same group and separate the different data samples into different
groups.

4. Anomaly detection: In IoT time-series analytics, anomaly detection
is the process of detecting abnormal sequences in a time series to an-
alyze abnormal events. The conventional anomaly detection process
is to model normal patterns and then identify sequences that deviate
from them.

Moreover, IoT data analytics algorithms can also be classified as batch
learning and online learning algorithms, depending on the type of IoT data
to be processed [15].

1. Batch learning: Batch learning methods analyze static IoT data in
batches and often need access to the entire dataset prior to model
training. Traditional ML algorithms can effectively solve batch learn-
ing tasks [26]. Although batch learning models often achieve high per-
formance due to their ability to learn diverse data patterns, it is often
difficult to update these models once created. Therefore, batch learning
faces two significant challenges: model degradation and data unavail-
ability.

2. Online learning: Online learning techniques are able to train models
using continuously incoming online IoT data streams in dynamic IoT
environments [27]. By learning a single data sample at a time, online
learning models can reduce memory requirements for data storage and
learn new data patterns. Additionally, online learning models can often
achieve real-time processing and address concept drift issues. Thus,
when applied to dynamic data streams or when inadequate data is
available, online learning is often more effective than batch learning.

3. Model Learning

ML algorithms have been widely employed in IoT data analytics ap-
plications to analyze IoT data and make decisions [28]. This Section dis-
cusses the commonly used ML algorithms for IoT data analytics in detail.
Firstly, it discusses six basic ML algorithms, including K-Nearest Neigh-
bors (KNN), Näıve Bayes (NB), Support Vector Machine (SVM), K-means,

12

Density-Based Spatial Clustering of Applications with Noise (DBSCAN),
and Principal Component Analysis (PCA). Secondly, two popular and ro-
bust sets of ML algorithms, Decision Tree (DT) based algorithms and Deep
Learning (DL) algorithms, are discussed in detail. Tree-based algorithms in-
clude DT, Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and
Light Gradient Boosting Machine (LightGBM), while DL algorithms include
Multi-Layer Perceptron (MLP), Vanilla Recurrent Neural Networks (RNNs),
Long Short Term Memory (LSTM) Convolution Neural Networks (CNNs),
and Autoencoders (AEs). Lastly, Reinforcement Learning (RL) techniques,
as an advanced type of ML algorithms, are discussed.

3.1. K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a basic ML algorithm that can be used
to solve both classification and regression problems [28]. KNNs identify the
nearest k data points to each test sample in order to estimate its value or
category. The average distances between a test sample and its neighbor sam-
ples are calculated using a distance metric, such as Euclidean or Mahalanobis
distance [28]. The majority label or the average observation value of nearby
samples will be assigned to each test sample [29].

The key hyperparameter for KNN is k, the number of nearest neighbors,
since it has a direct effect on the performance of KNN models [20]. To prevent
both under-fitting and over-fitting, an appropriate k should be determined.

While KNN is simple to implement, it often under-performs on complex
datasets due to its simplexity [29]. Nevertheless, KNN models have been
utilized in a variety of IoT applications, such as smart healthcare for disease
diagnosis [30] and elderly behavior detection [31], as well as Botnet detection
in IoT networks [32].

3.2. Näıve Bayes (NB)

Näıve Bayes (NB) is a ML algorithm that can be used to solve binary
and multi-class classification problems [33]. The Bayes Theorem is the core
premise of NB; it assumes that there is no statistical relationship between
the data points and utilizes the notion of conditional probability to learn
data patterns. NB classifiers predict the class label ŷ of each observation xi
with n features by [20]:

ŷ = arg max
y
P (y)

n∏
i=1

P (xi|y) , (1)

13

where P (y) is the probability of a target variable y, and P (xi|y) is the
posterior probability.

Traditional NB models do not have any hyperparameter that requires
tuning, but multinomial NB [34] and complement NB [35] are two special
types of NB models that add the additive smoothing parameter α to smooth
the maximum likelihood. The smoothing parameter α is a continuous hyper-
parameter that needs to be tuned.

NB is highly interpretable and computationally efficient. Additionally,
when compared to other ML algorithms, the primary benefit of NB is that
it does not need a large number of training samples [28]. However, a major
limitation of NB is that it requires prior knowledge to calculate Bayesian
probabilities and make predictions. Additionally, as NB treats all features
as independent, certain important correlations and dependencies among dif-
ferent features and observations may be lost [36].

NB is used in a variety of IoT data analytics applications, such as intrusion
detection [37] and medical diagnosis [38].

3.3. Support Vector Machine (SVM)

SVM is a non-probabilistic supervised learning technique that can be used
for classification and regression problems [39]. It was initially developed for
binary classification problems by establishing a proper hyperplane as the de-
cision boundary that can clearly separate and classify the data. Despite the
fact that there are many potential hyperplanes, SVM aims to identify the
hyperplane that maximizes the margin between samples of different classes
while minimizing the error rate [36]. In addition to being able to perform
linear classification, SVM can process nonlinear data by identifying a non-
linear hyperplane using kernel functions, which transform the input variable
into higher-dimensional feature spaces. A critical hyperparameter of SVM is
the kernel function type, including linear, polynomial, Gaussian, and sigmoid
kernels. SVM models can also be utilized to solve multi-class classification
and regression problems.

SVM is a powerful algorithm that is capable of handling nonlinear and
high-dimensional data with effective regularization and generalization. It is
also excessively efficient in terms of memory consumption [28]. One signifi-
cant drawback of SVM is that it does not use explicit probability estimations,
making it challenging to interpret the model.

SVM is well-performing in many IoT data analysis applications, including
anomaly detection, localization, traffic data classification, and IoT intrusion

14

detection [28] [29].

3.4. Tree-Based Algorithms

3.4.1. Decision Tree (DT)

Decision Tree (DT) [40] is a tree-structured ML model that uses a series of
if-then conditions to construct a tree and make decisions. A DT is built with
multiple decision nodes and leaf nodes that denote a decision test over one of
the characteristics and the outcome classes, respectively. The Classification
And Regression Trees (CART) model is a common type of DT in which the
Gini impurity is used as the split measure function. Assuming S denotes the
sub-trees, CART aims to minimize [40]:

C(S) = L̂n(S) + α|S|, (2)

where α is a constant, |S| is the cardinality of the sub-trees, and L̂n(S)
denotes the empirical risk of using the tree S. The complexity of CART
mainly depends on the tree depth, a crucial hyperparameter of CART. If the
tree depth is too high, over-fitting issues will occur. Overfitting issues can
also be addressed via the use of stopping criteria or pruning methods [28].

The primary strengths of DT include its interpretability, capacity for
large-scale data processing, and high efficiency [28]. However, single DTs’
learning performance is often insufficient, as they may get stuck in a local
minimum.

For IoT applications, DTs have shown to be effective in smart citizen
behavior classification [28] and IoT anomaly detection [41] problems.

3.4.2. Random Forest (RF)

Random Forest (RF) [42] is an ensemble learning technique that con-
structs multiple DTs rather than a single DT to improve prediction accuracy.
By integrating multiple decision trees during model learning, RF has become
a competent method for both classification and regression tasks. The output
of a RF model is the majority class for classification problems, whereas for
regression problems, the model output is the average prediction value of base
DTs [28]. RFs are regarded as resilient and reliable ML algorithms capable of
handling non-linear and complex datasets. However, they are more prone to
overfitting than DTs and have a lower degree of human interpretability. RFs
have a broad range of applications in IoT smart cities, such as healthcare
monitoring systems and intrusion detection systems [28] [29].

15

3.4.3. XGBoost

The eXtreme Gradient Boosting (XGBoost) model is a strong ensemble
ML model based on DTs [43]. In XGBoost, a tree ensemble model with k
additive functions is constructed for a data set of n instances and m features.
Each function corresponds to an independent tree structure. The decision or
regression trees are used, depending on the type of the target variable. For
time-series forecasting, the leaves of regression trees are summed up to predict
the output. A regularised object is also utilized to learn the functions, which
selects a model with simple and predictive functions. Due to the inability
of standard approaches to optimize the functions, the model is trained in an
additive greedy way. This approach is also known as gradient tree boosting.
Apart from the regularized objective, two additional strategies are utilized
to minimize overfitting. The first technique is shrinkage, which reduces the
influence of each individual tree to make room for new ones. The second
technique is feature subsampling, which reduces the impact of noisy features.

XGBoost is a strong tree-based ML model that often achieves high perfor-
mance in many tasks. Additionally, it works well with high-dimensional data.
However, due to the model complexity, XGBoost may encounter over-fitting
issues. XGBoost has shown effectiveness in many IoT analytics applications,
such as IoT intrusion detection [43], smart home monitoring [44], and human
gesture recognition [45].

3.4.4. LightGBM

Light Gradient Boosting Machine (LightGBM) [15] is a high-performance
tree-based model that is constructed from an ensemble of DTs. In comparison
to other ML techniques, the primary strength of LightGBM is its ability to
deal with large-scale and high-dimensional data. It is achieved via the use
of two strategies: gradient-based one-side sampling (GOSS) and exclusive
feature bundling (EFB). GOSS is a downsampling technique that maintains
only data samples with high gradients during model training to save time and
memory. By combining mutually exclusive characteristics, the EFB approach
significantly reduces training time without compromising crucial information.
By including GOSS and EFB, LightGBM’s time and space complexity has
been significantly lowered from O(NF) to O(N ′F ′), where N and N ′ denote
the original and the reduced number of instances, respectively; and F and
F ′ denote the original and bundled number of features, respectively [15].

LightGBM outperforms many other ML approaches in terms of general-
izability and robustness [15]. Additionally, LightGBM allows multithreading

16

for parallel execution, which significantly increases model efficiency.
Due to its high performance and high efficiency, LightGBM has been

applied to many IoT data analytics tasks, such as cyber-attack and malware
detection for IoT systems [15] [46].

3.5. K-means

In unsupervised learning tasks, there is no ground-truth label for the
given input data. Thus, learning models need to discover meaningful pat-
terns within the provided dataset. Clustering algorithms are an important
set of unsupervised models that aim to group data samples based on their
similarities [36].

K-means is a common clustering technique that divides an unlabeled
dataset into k divisions or clusters depending on the degree of similarity
between data points. Typically, the similarity metric is stated in terms of
the distance between data points. The objective of k-means is to minimize
the sum of squared errors [47]:

nk∑
i=0

min
uj∈Ck

(xi − uj)2 , (3)

where xi denotes the input data samples, uj represents the centroid of each
cluster Ck, and nk denotes the total number of instances in each cluster Ck.

K-means is a scalable, flexible, and efficient unsupervised algorithm. How-
ever, it is prone to outliers and ineffective at processing clusters of non-convex
shapes.

K-means has been employed in many IoT applications, especially for IoT
data that is difficult to label. For example, k-means is used in smart city
applications to find suitable living areas [36].

3.6. DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
[48] is another popular clustering algorithm that groups data using the con-
cept of density. In DBSCAN, clusters are defined as dense areas of data
points that are separated from low-density regions in the data space. Unlike
k-means, which requires configuring the number of clusters, DBSCAN has
two hyperparameters to be tuned: the scan radius and the minimum included
points. They jointly define the density of clusters [49].

17

DBSCAN is robust to outliers and works well on huge datasets. It is,
however, often slower than k-means. DBSCAN is a frequently used clustering
method that has been used in a variety of real-world IoT applications, such
as fraud detection and data labeling [28].

3.7. PCA

Principal Component Analysis (PCA) [50] is a popular unsupervised
learning algorithm for dimensionality reduction. PCA is built on the no-
tion of mapping the original n-dimensional characteristics to k-dimensional
orthogonal features (n > k), referred to as the principal components. PCA
works by computing the covariance matrix of the data matrix in order to
acquire the covariance matrix’s eigenvectors. The matrix contains the eigen-
vectors of the k greatest eigenvalued features (i.e., the largest variance). As a
result, the data matrix may be translated into a reduced-dimensional space.
Singular Value Decomposition (SVD) is a widely used technique for obtaining
the eigenvalues and eigenvectors of a PCA covariance matrix.

PCA has been utilized for feature extraction in a variety of IoT applica-
tions, such as IoT anomaly detection [51] and data fault detection [52].

3.8. Deep Learning (DL) Algorithms

In recent years, Deep Learning (DL) models have received more attention
than traditional ML models, owing to their ability to solve non-linear and
difficult data analytics problems [21]. The use of DL models in IoT data ana-
lytics overcomes the limitation of traditional ML models, which are incapable
of retaining temporal correlations. DL models are constructed based on Ar-
tificial Neural Networks (ANNs) with multiple hidden layers. An ANN is a
network of artificial neurons that mimics biological neurons by linking layers
of neurons [29]. The neurons in ANNs map input data to an appropriate
output to predict target values. Many DL models have shown success in IoT
applications, including Multi-Layer Perceptrons (MLPs), Recurrent Neural
Networks (RNNs), Convolution Neural Networks (CNNs), and AutoEncoders
(AEs) [21].

3.8.1. Multi-Layer Perceptron (MLP)

An ANN consists of an input layer, multiple hidden layers, and an output
layer [21]. The number of hidden layers determines the depth and complexity
of a DL model. Each layer is composed of a set of neurons connected through
parameterized parameters. ANN models alter the weights of the neuron

18

connections to map the relationship between the input and output. The most
fundamental type of ANN is MLP. A MLP is a Feed-Forward Neural Network
(FFNN) in which all connections between neurons are forward connections
[53].

MLPs have shown competent performance in many basic classification
and regression problems, comparable to that of other well-performing ML al-
gorithms, such as SVM and RF. However, they are often under-performing in
time-series data processing since they treat each observation independently
and cannot capture the temporal sequence of datasets [53]. Therefore, other
DL models, such as RNNs and CNNs, have been used more for IoT time-
series data analytics, since they can convert time-series tasks into a spatial
architecture capable of encoding the time dimension and capturing the dy-
namical patterns of time-series data. Nevertheless, MLP can still be used in
many non-time series data analytics problems, like temperature distribution
estimation [54].

3.8.2. Vanilla Recurrent Neural Networks (RNNs)

RNNs are another set of DL models that can be used to analyze and
discover patterns in time-series and sequential data [55]. In many real-world
applications, only processing individual instances is insufficient, and input
sequences must be analyzed to provide reliable predictions [21]. In contrast
to MLPs, which ignore temporal correlations within the data, RNNs link
each time step to previous steps in order to capture temporal correlations
for time-series analysis. Each neuron in RNNs has a feedback loop that uses
the current output as an input for the next time step, allowing the RNN to
maintain an internal memory for previous calculations.

However, RNNs suffer from two major issues: exploding gradient and
vanishing gradient [53]. The exploding gradient problem occurs when the
weights start to oscillate, while the vanishing gradient occurs when it takes
an excessive amount of time to update the model for long-term pattern learn-
ing. Additionally, RNN is designed to tackle short-term correlations and is
incapable of capturing long-term dependence accurately [56].

3.8.3. Long Short Term Memory (LSTM)

LSTM is an upgraded version of traditional RNNs. It is effective at
solving a broad range of problems and is currently extensively utilized for
time-series analysis. LSTMs are capable of modeling long-term temporal cor-
relations without discarding short-term trends [53]. In contrast to traditional

19

RNNs, LSTMs have memory units that are controlled by a multiplicative
input gate, preventing them from being altered by irrelevant disturbances.
Additionally, forget gates are included in LSTMs to learn to delete unneces-
sary memory contents. Through the use of memory units and forget gates,
LSTM can overcome the exploding gradient and vanishing gradient issues of
traditional RNNs.

LSTM models often outperform RNN models when input data has a long
temporal dependence, but they require a large amount of fixed-sized input
data for training. Moreover, similar to other DL models, LSTMs have high
computational complexity [57].

RNN and LSTM models have been used in many IoT applications, like
weather forecasting [58], due to their strong capacity for dealing with time-
series data. Liu et al. [59] proposed a water quality monitoring system based
on LSTM as an IoT application. The proposed system can effectively process
water quality data for time-series prediction. Wu et al. [60] proposed an
LSTM and Gaussian Bayes-based model for anomaly detection in industrial
IoT systems.

3.8.4. Convolution Neural Networks (CNNs)

CNNs are a set of DL models that are initially developed for computer
vision applications. CNNs are capable of automatically extracting features
from high-dimensional input, such as picture pixels, without the need for ad-
ditional feature engineering [53]. This automatic feature extraction is imple-
mented by performing convolutional operations, which is a sliding filter that
generates feature maps to capture repeated characteristics throughout the
data. Convolutional processes provide distortion invariance on CNNs, which
means that features are retrieved regardless of their locations in the input
data. Thus, CNNs are well-suited for sequence data, such as IoT time-series
data. One-dimensional CNN (1D-CNN) models are used to process time-
series datasets by treating them as one-dimensional images and extracting
features with temporal correlations [53].

While CNNs are often more efficient than RNNs due to their local con-
nectivity feature, their prediction performance is often lower than that of
RNN models, particularly LSTMs, for time series analysis [53]. Another
disadvantage of CNNs is that many IoT devices are low-cost and have lim-
ited resources, while CNNs require high computational power to achieve high
accuracy [55].

Although CNNs are mainly used for image-related tasks, such as traffic

20

sign detection and visibility estimation in ITS applications [39] [61], as well
as fish species identification in smart agriculture [62], they can also be used
for time-series analysis through data transformation [21]. Ullah et al. [63]
utilized a CNN model to identify malware and infected files on IoT devices
by analyzing source code. Roopak et al. [64] proposed a hybrid CNN and
LSTM model to detect Distributed Denial-of-Service (DDoS) attacks in IoT
systems through IoT data analytics. Yang et al. [65] proposed an optimized
CNN and transfer learning-based intrusion detection model in ITS systems
to protect autonomous vehicles.

3.8.5. Autoencoders (AEs)

AEs are a set of powerful unsupervised DL models for extracting patterns
from unlabeled input data [55]. AE is primarily composed of an encoder, a
decoder, and hidden layers in between [56]. The encoder compresses data by
translating it to a specified hidden layer, and the decoder reconstructs the
approximate input information when the input data needs to be transformed
into higher dimensional data. Additionally, the encoder is capable of recon-
structing the approximation in relation to the input data. When the input
data is non-linear, it is necessary to add more hidden layers to create a more
sophisticated AE. After that, the decoder can transform the encoded data
into a dataset with fewer dimensions but more meaningful features.

The primary advantage of AEs for IoT applications is their ability to
decrease the dimensionality of input datasets and learn the features of unla-
beled datasets [56]. Additionally, AE can enhance the security of IoT data by
encoding it. As a consequence, AE is an effective IoT data analytics model
for security applications. AEs have been utilized to address unsupervised
anomaly detection problems in IoT systems [55]. Moreover, AEs can be in-
tegrated with other DL models to improve prediction performance. Hwang
et al. [66] proposed an unsupervised DL model for cyber-attack detection in
IoT systems by integrating AE and CNN models.

3.8.6. DL Conclusion

DL models have shown promising performance in a variety of IoT data
analytics applications due to their strong prediction power and time-series
analysis capabilities [67]. However, DL methods have two serious draw-
backs: 1) Large-scale DL models are computationally expensive and energy-
intensive; 2) Designing an optimal DL architecture is time-consuming and
labor-intensive. For the first drawback, DL models must strike a balance

21

between prediction accuracy and computational costs, especially in low-cost
IoT devices. For the second drawback, AutoML technologies are potential
solutions to automate the DL model architecture design process and reduce
human efforts [55].

3.9. Reinforcement Learning

Reinforcement Learning (RL) techniques have been widely used to solve
problems that lack prior knowledge about outputs and inputs [29]. Due to
the lack of defined outcomes in RL, agents must learn from feedback obtained
after interacting with the environment [68]. Rewards are given to the agent
based on its previous actions to assist it in determining future actions. The
agents perform actions and make decisions based on their earned rewards.
Through trial and error, agents in RL models can identify the best actions
that can gain the highest accumulated reward based on their experience [36].
Selecting an appropriate reward function is a critical stage in RL, since it
has a direct impact on the learning performance.

Q-learning is a widely used RL paradigm. The main procedures of Q-
learning are as follows [29]:

1. Initialize a Q table.

2. Perform a random action and measure the corresponding reward.

3. Update the Q table using the reward information.

4. Repeat steps 2-3 until the complete Q-table is constructed.

5. Learn the action-value function Q(S, a) based on the Q-table to deter-
mine the optimal action a at a state S.

RL models have been used in many IoT applications, such as routing pro-
tocol design and network performance enhancement [29]. Q-learning strate-
gies have mainly been used in IoT security applications, such as authenti-
cation and malware detection [36]. Additionally, many IoT devices, such
as sensors and smart appliances, have used RL models to adapt to their
environments automatically [69].

On the other hand, the Deep Reinforcement Learning (DRL) technique,
which combines RL with DL models, has also been proposed to process high-
dimensional data in non-stationary environments [68]. Its objective is to de-
velop self-learning software agents that are capable of establishing effective
rules for maximizing long-term benefits. In DRL models, the RL algorithm
finds the best policy of actions in an environment based on the output of a

22

DL model. RL’s strong capacity to automatically learn from the environment
without requiring feature construction also assists DL in performing effective
predictions. In the field of IoT, DRL has been used in semi-supervised learn-
ing tasks, such as localization problems in smart campuses [21]. DL models
enable RL models to gain more rewards and produce more accurate predic-
tions.

3.10. Model Selection Conclusion

The important hyperparameters, advantages and limitations, as well as
the suitable IoT tasks for each ML algorithm, are summarized in Tables 1
and 2. The hyperparameter names in Tables 1 and 2 are defined based on the
Scikit-learn library [70]. Different ML algorithms have their own suitabilities
for specific IoT tasks. Specifically, KNN, NB, SVM, and DT are suitable for
small and simple IoT data analytics tasks, as they are easy to implement
and have less over-fitting risks than other complex ML algorithms. Among
them, DT has high learning efficiency, so it is suitable for simple IoT data
analytics tasks with high-efficiency requirements.

K-means, DBSCAN, and PCA are suitable for unsupervised or unlabeled
IoT data analytics tasks, as they are unsupervised learning algorithms and
are able to process unlabeled datasets. Among them, K-means is suitable for
edge computing and simple IoT tasks due to its low computational complex-
ity, DBSCAN is suitable for cloud computing and complex IoT tasks due to
its capacity for processing various types of data distributions, and PCA is
mainly used for feature extraction or dimensionality reduction problems.

Tree-based ensemble ML algorithms, including RF, XGBoost, and Light-
GBM, are suitable for high-dimensional, complex, and imbalanced IoT data
analytics tasks, especially IoT anomaly detection tasks. This is primarily
due to their strong prediction power and generalization ability. Among them,
LightGBM is more suitable for IoT data analytics tasks with high-efficiency
requirements due to its low computational complexity.

For DL and RL algorithms, owing to their high computational power,
they are suitable for complex IoT data analytics tasks. However, they are
usually only suitable for IoT cloud computing tasks due to their high com-
putational complexity and Graphics Processing Unit (GPU) requirements.
There are two special types of DL algorithms. RNNs are suitable for time-
series problems due to their time-series support, while CNNs are designed
for image-based IoT data analytics tasks.

23

Table 1: A comprehensive overview of traditional ML algorithms, their hyperparameters,
their advantages and limitations, and suitable IoT tasks.

ML Algo-
rithm

Main Hyperpa-
rameters

Advantages and Limitations IoT Task Suitability

KNN n neighbors · Easy to implement.

· Slow on large or high-dimensional
datasets.

· Sensitive to noise.

Simple IoT data analytics
tasks with little noise.

NB alpha · Can only be used in classification
problems.

· Treat features independently.

· Work better with discrete
datasets than continuous datasets.

Classification IoT data an-
alytics tasks with only dis-
crete features.

SVM C,

kernel

· Can work with non-linear
datasets through kernel functions.

· Robust against noise.

· Unsuitable for large datasets.

Small IoT data analytics
tasks.

DT criterion,

max depth,

min samples split,

min samples leaf,

max features

· Have good interpretability.

· Can handle non-linear data.

· High efficiency.

· Single DTs have limited predic-
tion power.

Simple IoT data analytics
tasks with high-efficiency
requirements.

RF n estimators

max depth,

criterion,

min samples split,

min samples leaf

max features

· Work well with high-dimensional
datasets.

· Can handle imbalanced datasets.

High-dimensional, com-
plex, and imbalanced
IoT data analytics tasks,
especially IoT anomaly
detection.

XGBoost n estimators,

max depth,

learning rate,

subsample,

colsample bytree,

· Work well with high-dimensional
datasets.

· Strong prediction power.

· High computational complexity.

· May have over-fitting issues.

High-dimensional, com-
plex, and imbalanced
IoT data analytics tasks,
especially IoT anomaly
detection.

LightGBM n estimators,

max depth,

learning rate,

num leaves

· Work well with high-dimensional
datasets.

· Strong prediction power.

· Low computational complexity.

High-dimensional, com-
plex, and imbalanced
IoT data analytics tasks
with high-efficiency re-
quirements, especially IoT
anomaly detection.

K-means n clusters · Easy to implement.

· Low computational complexity.

· Only work well with globular-
shape data.

Simple unsupervised IoT
data analytics tasks with
high-efficiency require-
ments.

DBSCAN eps,

min samples

· Suitable for density-based
datasets.

· Work well with more types of data
distributions than k-means.

· Low convergence speed.

Complex unsupervised IoT
data analytics tasks with-
out high-efficiency require-
ments.

PCA n components · Effective for feature extraction.

· May lose important feature pat-
terns.

Feature extraction or
dimensionality reduc-
tion tasks for IoT data
analytics.

24

Table 2: A comprehensive overview of DL and RL models, their hyperparameters, their
advantages and limitations, and suitable IoT tasks.

ML Algo-
rithm

Main Hyperpa-
rameters

Advantages and Limitations IoT Task Suitability

General Deep
Learning
(e.g., MLP)

number of hidden
layers,

‘units’ per layer,

loss,

optimizer,

activation,

learning rate,

dropout rate,

epochs,

batch size,

early stop patience

· Can work with non-linear and
complex datasets.

· Work well with various types of
datasets and tasks.

· Not require feature engineering.

· Prone to over-fitting.

· Require a large number of data
samples.

· Require high computational
power.

Complex IoT data an-
alytics tasks without
high-efficiency require-
ments, preferably on cloud
servers.

RNN · Can learn complex time-series
patterns.

· Have exploding gradient and van-
ishing gradient problems.

Complex time-series IoT
data analytics tasks with-
out high-efficiency require-
ments, preferably on cloud
servers.

LSTM · Can learn complex time-series
patterns.

· Can keep long-term dependencies
and address gradient and vanishing
gradient problems.

Complex time-series IoT
data analytics tasks with-
out high-efficiency require-
ments, preferably on cloud
servers.

CNN · Can learn sequence patterns by
data transformation.

· Have many transfer learning mod-
els for efficiency and accuracy im-
provement.

· Require complex computations
for convolution and pooling oper-
ations.

Image-based IoT data ana-
lytics tasks.

AE · Can work with unlabeled data.

· Can preserve only useful patterns
and eliminate irrelevant patterns.

· Have low complexity.

· May have a sparse illustration
and layer-by-layer errors.

Complex unsupervised IoT
data analytics tasks with-
out high-efficiency require-
ments.

RL number of epochs,

batch size

learning rate,

decay rate,

gamma,

· Suitable when there is no train-
ing set available, as learning can
be completed through interaction
with the environment.

· Can be used with DL models to
construct effective DRL models.

· Suffer from the curse of dimen-
sionality.

· Have high computational com-
plexity.

Complex IoT data an-
alytics tasks without
high-efficiency require-
ments, preferably on cloud
servers.

25

In conclusion, different ML algorithms have their own advantages and
limitations, and should be selected based on specific types of IoT data ana-
lytics tasks. For automated model selection, as described in Section 1, human
experts can also help determine the optimal ML model by providing an initial
list of potential candidate models based on their knowledge and experience,
which is a common HITL process. This can significantly reduce the AutoML
execution time. On the other hand, using AutoML enables human experts to
get rid of manually evaluating, tuning, and selecting from multiple candidate
models, as this can be automatically completed by machines.

4. AutoML Overview & Optimization Techniques

4.1. AutoML Overview

Although there are many existing ML algorithms that are commonly used
in IoT data analytics applications to analyze IoT data and make decisions,
as described in Section 3, a randomly-selected ML model with default archi-
tecture or hyperparameter configuration usually cannot achieve the optimal
analytics results and make accurate decisions. Thus, experienced data scien-
tists are required in many procedures of ML pipelines, including preparing
appropriate and clean data, selecting the most suitable ML algorithm, tuning
hyperparameters, and determining whether the model needs to be updated.
Data scientists often conduct experiments using a variety of ML algorithms
and hyperparameter values in order to determine the most efficient combi-
nation. These procedures are labor-intensive, time-demanding, and require
specialized expertise in ML and data analysis [71]. The process of automating
this ML design and tuning process is referred to as AutoML. Thus, AutoML
refers to the fully automated process of applying machine learning to real-
world and practical applications. AutoML can be used by both beginners and
experts to apply ML models efficiently. It has the potential to significantly
improve the performance and effectiveness of ML models by shortening work
cycles, enhancing model performance, and even possibly eliminating the ne-
cessity for data scientists. Hence, AutoML is a promising solution to data
scientist shortage and high labor costs. In this Section, the basic concept
and common optimization techniques of AutoML technology are discussed
to automatically optimize the ML learning models introduced in Section 3.

There are three significant benefits of using AutoML:

1. It increases efficiency and reduces computational costs by automating
repetitive ML processes.

26

2. It assists in avoiding mistakes caused by human labor.
3. It lowers the threshold of implementing ML models by requiring less

ML expertise and experience.

Moreover, manually selecting, designing, and tuning ML algorithms for
IoT data analytics is usually more time-consuming than AutoML [72]. The
objective of AutoML is to enable the automation of the tedious and time-
consuming ML model selecting, designing, and tuning procedures by ma-
chines instead of humans. Compared with manually crafted ML models,
AutoML-based models can achieve higher performance in terms of both ac-
curacy and efficiency/execution speed. This has been stated and proved in
many scientific papers, such as [73] - [74]. Thus, using AutoML techniques
will not increase the IoT data analytics time compared with using tradi-
tional ML models, as they automate and simplify the selecting, designing,
and tuning procedures of traditional data analytics models.

An overview of the AutoML pipeline for IoT time-series data analytics
is illustrated in Fig. 2. It consists of four stages: automated data pre-
processing, automated feature engineering, automated model learning, and
automated model updating [14]. Automated model learning can be further
divided into automated model selection and Hyper-Parameter Optimization
(HPO). AutoML begins with data pre-processing, which aims to transform
the original data into a sanitized version. It is a time-consuming and impor-
tant procedure that has a significant effect on learning performance. The next
step is feature engineering, which includes feature extraction and selection.
This stage preserves important patterns of datasets while enhancing learning
generalization. The following step is model selection, which uses an optimiza-
tion technique to identify the optimal ML algorithm that produces the most
accurate predictions. The process of tuning hyperparameters, referred to as
hyper-parameter optimization, aims to further enhance the model learning
performance. AutoML systems often need to use a range of optimization
algorithms to carry out these phases in the pipeline. This Section discusses
the process of automated model learning using optimization techniques. The
following subsections and Sections 5-8 will explain the remaining steps of the
AutoML pipeline in depth.

4.2. Combined Algorithm Selection and Hyperparameter Optimization
(CASH)

To apply ML algorithms to real-world problems, the primary challenge is
selecting and configuring ML. In a prediction task, the accuracy of different

27

Figure 2: The overview of an AutoML pipeline for IoT data analytics.

28

models with different configurations might vary significantly [17]. Therefore,
it is critical to determine the most appropriate ML model with the optimal
hyperparameter configuration.

Hyperparameters are the parameters of ML algorithms that determine
the architecture of ML models and must be specified prior to model learn-
ing [20]. Hyperparameters can be classified into three types based on their
domains: continuous hyperparameters (e.g., the learning rate of neural net-
works), discrete hyperparameters (e.g., the number of clusters in k-means),
and categorical hyperparameters (e.g., the kernel type in support vector ma-
chines). Additionally, certain hyperparameter configurations have condition-
ality. For example, the two important hyperparameters in DBSCAN, the
scan radius and the minimum included points, have strong correlations to
determine the data density together [20]. Conditional hyperparameters must
be tuned together in order to identify the optimal configuration.

In ML model learning, selecting appropriate ML algorithms and hyper-
parameter values can be seen as a search problem. All the potential ML
models and their hyperparameter combinations define a search space, and a
single model with a hyperparameter configuration can be seen as a point in
the search space. Detecting the optimal point in the search space is a global
optimization problem.

Therefore, using optimization techniques to automatically detect the best
ML algorithm with the optimal hyperparameter configuration is defined as
a Combined Algorithm Selection and Hyperparameter (CASH) optimization
problem [75]. CASH is a core component of current AutoML systems. CASH
systems are divided into two stages: model selection and HPO. At the first
stage, suitable ML models are selected with their default hyperparameters.
At the second stage, model-specific hyperparameters are tuned to obtain the
optimal final model [17].

In general, the CASH problem is defined as finding the ML algorithm
and hyperparameter configuration that minimizes the loss function. It can
be described as follows [75]:

A?,λ? ∈ argmin
A(j)∈A,λ∈Λ(j)

1

K

K∑
i=1

L
(
A

(j)
λ , D

(i)
train, D

(i)
valid

)
(4)

where A? ∈ A is the algorithm to be chosen, λ is the hyperparameters of the
algorithms to be tuned, Dtrain and Dvalid denote the training and validation
sets, K denotes k-fold cross-validation.

29

To summarize, CASH is the process of applying optimization methods to
select ML models and tune their hyperparameters in order to achieve optimal
or near-optimal performance based on defined metrics within a certain time
budget [18]. The existing optimization techniques for CASH problems is
discussed in Section 4.4.

4.3. Neural Architecture Search (NAS)
Over the past several years, DL models have achieved remarkable progress

on a variety of tasks, including IoT data analytics. Due to the success of many
DL models, their architecture design has become a popular research topic.
To ensure that a DL model performs well on a particular task, its network
architecture must be well designed [76]. Given that manually designing neu-
ral architectures requires deep domain knowledge and a significant amount
of time, it is crucial to automate this process, named Neural Architecture
Search (NAS) [13]. With NAS, ML engineers can avoid the time-consuming
process of designing neural architectures.

NAS is the process of automating the design of DL architectures. NAS
approaches are designed to automatically discover the best architecture and
related hyperparameters for a given task. Given a search space for a neural
architecture S, an input dataset D segmented into Dtrain and Dval, and a cost
function C, the NAS technique aims to identify the optimal neural network
f with the lowest cost on the dataset D [77]:{

f ∗ = argmin Cost (f (θ∗) , Dval) , f ∈ F
θ∗ = argminL (f (θ∗) , Dtrain) , θ

(5)

where Cost denotes the evaluation metric, such as accuracy or mean squared
error, and θ denotes the hyperparameters. The search space F encompasses
all possible neural architectures derivable from the initial structures.

The computational complexity of NAS is often described as O(nt), where
n is the number of architecture designs to be evaluated, and t denotes the
average evaluation time for each architecture. Additionally, since DL models
are trained using gradient-based optimization methods, their training pro-
cess is computationally expensive. Hence, an effective NAS algorithm should
return a high-performing architecture without increasing the task’s complex-
ity.

4.4. Optimization Methods
In this subsection, existing optimization methods for solving CASH and

NAS problems are discussed, including Grid Search (GS), Random Search

30

(RS), Bayesian Optimization (BO), gradient-based algorithms, Hyperband,
Genetic Algorithm (GA), and Particle Swarm Optimization (PSO).

4.4.1. Grid Search (GS)

Grid search (GS) is a fundamental HPO method that uses a brute-force
search strategy to detect the optimal CASH or NAS configurations [18]. GS
explores all candidate models and hyperparameter settings exhaustively and
identifies the one with the best performance. The time complexity of GS is
O(nk), where k is the number of CASH configurations, and n denotes the
number of distinct values for each configuration [78].

GS is easy to implement and can benefit from parallelization. However,
GS is computationally expensive and subject to the curse of dimensional-
ity, since the number of evaluations rises exponentially with the number of
hyperparameters [17].

4.4.2. Random Search (RS)

To reduce inefficient exhaustive evaluations, Random Search (RS) [79]
was proposed. RS randomly selects configurations from the given CASH or
NAS search space until a specified budget is exhausted [18]. Thus, when a
limited budget is given, RS often outperforms GS.

RS is often much more efficient than GS through random searches, par-
ticularly when the search space is large. This is because RS can significantly
reduce the amount of time spent on configurations that are unimportant.
On the other hand, RS is capable of discovering the global or near-global
optimum when given sufficient resources. RS and GS, on the other hand,
also suffer from the curse of dimensionality, as the time complexity of RS
is also O(nk) [20]. Additionally, there are still a significant number of un-
necessary evaluations when using RS since it does not determine the next
evaluations based on prior experience. Hence, much effort still needs to be
spent evaluating underperforming configurations.

4.4.3. Bayesian Optimization (BO)

To overcome the limitation of GS and RS in that they do many unneces-
sary evaluations, BO [80] models have been developed for AutoML problems.
BO is a state-of-the-art CASH approach that is well-suited for cost-sensitive
objective functions. BO is composed of two primary components: surrogate
models for modeling the objective function and an acquisition function for
quantifying the value produced by the objective function’s assessment at a

31

new point [18]. BO models aim to strike a balance between exploration and
exploitation, with exploration referring to the process of traversing previously
undiscovered regions, while exploitation to the process of examining samples
in the present region where the global optimum is most likely to occur [20].

The Gaussian Process (GP) and the Tree Parzen Estimator (TPE) are
common models used as BO surrogate models [81] [82]. BO models can be
classified into BO-GP and BO-TPE models based on the surrogate model
utilized [83].

GP has become a popular surrogate model for BO, as they can model
non-convex functions effectively. Predictions in a GP follow Gaussian distri-
butions [84]:

p(y|x,D) = N
(
y|µ̂, σ̂2

)
, (6)

where D is the CASH configuration search space, and y = f(x) is the pre-
diction for input data x, modeled by a function f with a mean of µ and a
covariance of σ2.

After evaluating each new data point, the current GP will be updated
based on new evaluation results. Then, the next points to evaluate are chosen
according to the confidence intervals produced by the GP. This process can
be repeated to identify the global optimum.

One of the primary drawbacks of BO-GP is its cubic computational com-
plexity, O(n3), which restricts its parallelizability. Moreover, GP was initially
designed to process continuous variables, so it is often less effective for other
types of variables.

Tree-structured Parzen Estimator (TPE) [82] is another popular BO sur-
rogate model. Instead of defining a predictive distribution for the objective
function, BO-TPE generates two density functions, l(x) and g(x), that serve
as generative models for all processed observations. In BO-TPE, the input
data is partitioned into two sets (good and bad observations) based on a
predefined threshold ∗, which is modeled using basic Parzen windows:

p(x|y,D) =

{
l(x), if y < y∗

g(x), if y > y∗
. (7)

The ratio of the two density functions represents the anticipated im-
provement in the acquisition function and is used to determine new po-
tential hyperparameter configurations. BO-TPE has shown superior per-
formance when used in a variety of AutoML tasks, owing to its ability to op-
timize complicated CASH configurations with low computational complexity

32

of O(nlogn) [18] [20]. Additionally, TPE is capable of properly handling
conditional variables, since it makes use of a tree structure to maintain con-
ditional dependencies.

BO approaches are effective for AutoML applications, due to their ability
to handle stochastic, non-convex, and non-continuous functions. Moreover,
BO models are more efficient than GS and RS since they select future con-
figurations based on the outcomes of previous evaluations. One limitation
of BO models is that they are often difficult to parallelize, as they use a se-
quential process to identify optimums. Nevertheless, they can often discover
well-performing solutions within a few iterations.

4.4.4. Gradient-based Algorithms

Gradient descent [85] is a conventional optimization method that utilizes
gradient descent of variables to find the optimum direction and identify mini-
mum values. Gradient descent begins at a random point and progresses in the
opposite direction of the largest gradient to the next point until convergence
occurs, signifying the detection of a local optimum. The local optimum is also
the global optimum for convex functions. The time complexity of gradient
descent is O(n) [86].

Gradient-based methods are faster than many other optimization meth-
ods for local minimum identification since they have a fast convergence
speed for continuous variables. However, the local optimums detected by
gradient-based methods are often not the global optimums for non-convex
functions [19]. As most real-world applications and ML models are non-
convex, gradient-based methods often under-perform in AutoML problems.

4.4.5. Hyperband

High computational cost is a major issue for CASH problems, especially
with large datasets [20]. Multi-fidelity optimization is a technique for reduc-
ing the computational cost of evaluations using inexpensive low-fidelity eval-
uations and costly high-fidelity evaluations. While high-fidelity evaluations
provide reliable answers throughout the full dataset, low-fidelity evaluations
focus on small-sized subsets to reduce evaluation time. Using multi-fidelity
optimization can greatly reduce the evaluation cost while still detecting the
optimal solution [18].

Hyperband [87] is a powerful multi-fidelity and bandit-based method that
improves search space by choosing from randomly sampled configurations.
The objective of Hyperband is to strike a balance between the evaluation cost

33

and accuracy. Firstly, it divides a budget B according to the number of con-
figurations n, so that the budget allocated to each configuration is b = B/n.
After that, for each configuration, the successive halving method is used for
configuration selection. Successive halving is a multi-fidelity method that
eliminates half of the possible configurations in each iteration until the ideal
solution is found. Thus, by using successive halving, many poor-performing
configurations can be eliminated, significantly reducing execution time. Hy-
perband has low computational complexity of O(nlogn) [20]. Hyperband
outperforms several other optimization approaches, such as GS and RS, in
AutoML applications, due to their high efficiency [18].

4.4.6. Genetic Algorithm (GA)

GA is a popular population-based algorithm that is based on the evolu-
tionary theory that individuals with better survival capacity and adaptability
are more likely to survive and pass on their genes to the next generations
[13]. To use GA in AutoML problems, each individual represents a CASH
configuration, and the population includes all possible configurations in the
CASH search space. Additionally, a fitness function is used as the evaluation
metric of CASH configurations [88].

The fundamental concept behind GA is to apply numerous genetic op-
erations on a population of configurations to identify optimal solutions [18].
Selection, crossover, and mutation are three important operations in GA
[14]. Selection is the process of selecting a subset of the population with
the objective of maintaining high-performing individuals while eliminating
the poor ones. After selection, each pair of individuals is chosen to create a
new child that receives half of each parent’s genes, called crossover. Muta-
tion randomly selects a chromosome and alters one or more of its genes or
parameters, resulting in a completely new chromosome [14]. Through these
three operations, the best individual can eventually survive and be identified
as the optimal solution.

GA is easy to implement and can handle complex CASH configurations.
Additionally, GA can usually identify global optimums through random ini-
tialization, so it does not require much ML expertise. However, GA itself has
several hyperparameters to be set, such as the population size, the type of
fitness function, and the crossover and mutation rates. The time complexity
of GA is O(n2), which is higher than many other methods, like hyperband
and BO-TPE [89]. Moreover, GA is often difficult to parallelize due to its
sequential nature.

34

4.4.7. Particle Swarm Optimization (PSO)

PSO [90] is an optimization technique inspired by bird and fish social
behaviors. PSO aims to detect the optimal solution by fostering collaboration
and information exchange among members of a population.

PSO begins with a population of randomly produced candidates or par-
ticles. Each particle’s fitness value or score is computed using an optimal fit-
ness function in each generation. The population is updated at each iteration
by migrating toward the particles with the highest performance and search-
ing for their neighbors. Each particle has two properties: velocity, which
indicates its speed, and position, which indicates its direction of movement.
Each particle separately searches the search space for the optimal solution
and stores it as its current individual optimum. Additionally, information
about the optimal individual optimum is shared with other particles in the
whole particle swarm in order to identify the optimal individual optimum,
which results in the global optimum. Each particle in the particle group ad-
justs its speed and location in line with its current individual optimal solution
and the particle swarm’s current global optimum.

It is easier to implement PSO than GA, as PSO does not have addi-
tional hyperparameters to tune. PSO has a low time complexity of O(nlogn)
[91]. Additionally, PSO can be easily parallelized, as individuals in PSO can
perform actions independently of one another and simply need to share in-
formation. However, PSO requires proper population initialization, as it has
a direct impact on the performance of PSO; otherwise, PSO may get trapped
in local optimums rather than the global optimum.

4.4.8. Optimization Method Conclusion

The strengths and limitations of the optimization and CASH methods
involved in this paper are summarized in Table 3. GS and RS are simple
to implement, but they are computationally expensive because they do not
consider previous results, which causes many unnecessary evaluations [20].
BO-GP and gradient-based models are suitable for ML algorithms with con-
tinuous hyperparameters, like NB with the hyperparameter alpha. However,
they are unable to optimize other types of hyperparameters, like categorical
hyperparameters. Hyperband is a fast optimization method with parallel
execution support, but it requires the randomly-generated subsets of data to
be representative because it evaluates ML models on those subsets instead
of the original large dataset to improve efficiency. Thus, it is unsuitable for
certain IoT datasets, like time-series datasets whose subsets may lose time

35

correlations. GA is a robust optimization method, but is often slow due to its
poor capacity for parallelization. Lastly, BO-TPE and PSO are two robust
optimizations that are efficient with all types of hyperparameters. However,
BO-TPE’s capacity for parallelization is limited, and PSO requires good ini-
tialization to identify the global optimum. Nevertheless, BO-TPE and PSO
are still the two most recommended optimization methods due to their strong
capacity. Taking their limitations into account, BO-TPE is more suitable for
IoT tasks or systems with high-performance requirements, and PSO is more
suitable for IoT tasks or systems with high-efficiency requirements due to its
parallelization ability [20].

Table 3: The comparison of common optimization methods for CASH and HPO problems.
AutoML
Method

Strengths Limitations Time
Com-
plexity

GS · Simple.
· Computationally expensive.

· Only efficient with categorical
hyperparameters.

O(nk)

RS
· Faster than GS.

· Support parallel execution.

· Not consider previous results.

· Not efficient with conditional hy-
perparameters.

O(n)

BO-GP
· Fast convergence speed for con-
tinuous hyperparameters.

· Not efficient with conditional
HPs.

O(n3)

BO-TPE
· Efficient with all types of hy-
perparameters.

· Keep conditional dependencies.

· Limited capacity for paralleliza-
tion.

O(nlogn)

Gradient-
based
models

· Fast convergence speed for con-
tinuous hyperparameters.

· Only work with continuous con-
tinuous hyperparameters.

· May only detect local optimums.

O(nk)

Hyperband · Support parallel execution.

· Not efficient with conditional hy-
perparameters.

· Need subsets with small budgets
to be representative.

O(nlogn)

GA
· Efficient with all types of hy-
perparameters.

· Not need good initialization.

· Poor capacity for parallelization. O(n2)

PSO
· Efficient with all types of hy-
perparameters.

· Enable parallel execution.

· Need proper initialization. O(nlogn)

5. Data Pre-Processing

5.1. Overview

Data pre-processing aims to improve the quality of data for ML model
development. Common data quality issues include outliers, missing values,

36

and class imbalance [17]. Data pre-processing procedures guarantee that
ML models can learn meaningful patterns from the quality data, but they
are time-consuming and tedious. Therefore, Automated Data Pre-processing
(AutoDP) is a critical component of AutoML [17].

Data pre-processing tasks can be divided into the following four categories
[92]:

1. Transformation: The process of transforming categorical features
into continuous features using encoding techniques, or transforming
continuous features into categorical features using discretization tech-
niques.

2. Imputation: The process of handling missing values using imputation
methods.

3. Balancing: The process of balancing a dataset’s class distribution
through over-sampling or under-sampling methods.

4. Normalization: The process of converting continuous characteristics
to a comparable or same range of values.

5.2. Data Transformation

Data transformation indicates the transformation between numerical fea-
tures and categorical features. Firstly, in real-world applications, many data
values are generated as words or strings to make them human-readable. Data
encoding is the process of converting string features to numerical features
that machine learning models can understand and process [17]. Common
encoding techniques include label encoding, one-hot encoding, and target
encoding. For better interpretation in ML models, label coding and one-hot
encoding assign incremental values or a new column to each string value of
categorical features, respectively. However, the transformed values only rep-
resent a unique label instead of containing meaning information [93]. Target
encoding is to replace categorical values with the mean or median of the
target variable. Target encoding can generate meaningful values, like the
fraction of the samples in different classes, to replace string values [17].

Many AutoML tools have data transformation functionalities. For exam-
ple, Auto-Sklearn [94] uses one-hot encoding, and H2O.AI [95] uses target
encoding to encode data [17].

On the other hand, data discretization is the process of converting numer-
ical features to categorical features by setting multiple intervals [96]. Data
discretization can better handle outliers and simplify the calculations.

37

5.3. Data Imputation

Real-world datasets often have missing values as a result of data inacces-
sibility or collecting difficulties. Null values, whitespace, NaNs, and incorrect
data types are all examples of missing values. Most ML models are incapable
of directly handling missing values or are adversely affected by them in the
learning process [17].

While dropping the related features or observations with missing values
is the easiest solution, it may result in the loss of significant information. As
a result, missing values are often resolved using imputation techniques. The
purpose of data imputation is to replace missing information with reasonable
values. Several basic imputation methods replace missing values with the
same value. For numerical features, basic imputation methods replace all
missing values in this column with zero, the mean, or the median value of
each column [17]. For categorical features, the basic method is called mode
imputation, which involves replacing missing values with the most common
category in each feature.

However, since the sequential values in IoT time-series data often have
strong correlations, basic imputation methods, such as zero, mean, and me-
dian imputation methods, are often ineffective in dealing with missing values
of IoT time-series data [97]. Thus, many advanced imputation methods for
time-series data have been proposed, such as backward/forward filling and
the moving window [98]. Backward and forward filling methods replace each
missing value with its most recent or next observation, respectively. As a
result, they enable missing values to be distributed according to time se-
ries distributions. However, imputed values may be misleading for sudden
changes in observations. The moving window is another time-series imputa-
tion method that replaces each missing value with the average of its previous
n observations, indicating a moving window with size n. The primary diffi-
culty with the moving window is determining the window size n.

Model-based imputation techniques, like linear regression, KNN, and XG-
Boost imputation, can estimate the missing values as the target variable by
learning other feature values [17]. XGboost imputation method is used in
several AutoML tools, such as Auto-WEKA [75] and TPOT [99]. Addition-
ally, Datawig [100], a DL-based method, is developed for data imputation.
Model-based imputation techniques often outperform model-free methods as
imputed values estimated by ML models are often closer to actual values.
However, implementing machine learning models often takes much longer

38

than other methods. Moreover, DL-based methods also require high compu-
tational power and a relatively large-sized dataset for accurate imputation.
The pros and cons of common imputation methods are summarized in Table
4.

Table 4: The comparison of common imputation methods.
Type Imputation

Method
Pros Cons

Model-free
methods

Dropping · Easy to implement · May lose important informa-
tion

Basic imputa-
tion methods
(zero, mode,
mean, median
imputation)

· Easy to implement

· Work well with small datasets

· May generate misleading val-
ues

· Not consider feature correla-
tions

Forward/ back-
ward filling

· Work well with time-series
datasets

· Not effective for consecutive
nulls and sudden changes

Moving window · Work well on time-series
datasets

· Not effective for a large num-
ber of nulls

· Need to determine the win-
dow size

Model-based
methods

Model-based im-
putation (linear
regression, KNN,
XGBoost, etc.)

· Perform better than basic
methods

· Time-consuming on large
datasets

· Need to tune hyperparame-
ters

Datawig (DL im-
putation)

· Perform better than basic
methods

· Require high computational
power

· Not work well with small
datasets

The main procedures for automating the imputation process are as fol-
lows:

1. Calculate the total number of missing values and their percentage in a
given dataset to evaluate whether data imputation is necessary;

2. Select a suitable imputation method to handle missing data according
to the requirements of specific tasks. If execution speed is the top prior-
ity, model-free imputation methods are the most efficient choices. If the
model performance is more important than the execution speed, model-
based imputation methods can provide more accurate imputed data.
On the other hand, if the given dataset is a time-series dataset, time-
series imputation methods (e.g., forward/backward filling and moving
window methods) are better choices.

39

3. Optimize the parameters of imputation methods if it is necessary (e.g.,
the window size in the moving window method and the hyperparame-
ters of ML algorithms in model-based imputation).

5.4. Data Balancing

With the growth of IoT data streams, it is becoming more difficult to
maintain uniform distributions of all classes for classification problems, re-
sulting in class imbalance. Class imbalance indicates that the distributions
of classes in a dataset are highly imbalanced, causing ML model degrada-
tion. Severe class imbalance occurs when certain classes have an extremely
small number of instances. Many ML algorithms, including SVM, DT-based
algorithms, and neural network models, are very sensitive to class imbalance
[26]. Learning imbalanced datasets often causes unjustified bias in majority
classes, which has an adverse effect on the prediction accuracy of minority
classes [17]. Class imbalance problems can be solved by resampling tech-
niques, including over-sampling and under-sampling [101].

5.4.1. Under-Sampling Methods

Under-sampling methods solve class imbalance by reducing the number
of samples in the majority classes. Random Under-Sampling (RUS) is a basic
under-sampling method for data balancing by randomly discarding samples
from the majority classes [102]. By reducing the size of the data, under-
sampling techniques can increase model learning efficiency. However, by
removing a fraction of data samples, critical information contained in the
majority classes may be lost [102].

5.4.2. Over-Sampling Methods

Since under-sampling algorithms may ignore certain critical instances in
the majority class, resulting in model performance degradation [103], over-
sampling methods are often utilized to resolve class imbalance. Random Over
Sampling (ROS) and Synthetic Minority Oversampling TEchnique (SMOTE)
[104] are the two common over-sampling methods used to create new in-
stances in the minority classes. Unlike ROS, which simply replicates the
instances, SMOTE analyzes the original instances and synthesizes new in-
stances using the principle of KNN. For each instance X in the minority class,
assuming its k nearest neighbors are X1, X2, · · · , Xk, and Xi is a randomly
selected sample from the k nearest neighbors, the new synthetic instance is

40

denoted by [105],

Xn = X + rand(0, 1) ∗ (Xi −X) , i = 1, 2, · · · , k, (8)

where rand(0, 1) denotes a random number in the range of 0 to 1.
As SMOTE can solve the majority of class imbalance problems, it can be

used as the default method on imbalanced datasets [106].

5.5. Data Normalization

ML models often treat features with larger values as more important. If
the scales of features are significantly different, data normalization should be
used to prevent creating biased models. This is especially important for ML
algorithms that use distance calculations, such as k-means, KNN, PCA, and
SVM. Z-score and min-max normalization are two of the most often used
normalization approaches in ML model learning.

In Z-score normalization, the normalized value of each data point, xn, is
denoted by [107],

xn =
x− µ
σ

, (9)

where x is the original value, µ and σ are the mean and standard deviation
of the data points.

In min-max normalization, the normalized value of each data point, xn,
is denoted by [107],

xn =
x−min

max−min
, (10)

where x is the original feature value, min and max are the minimum and
maximum values of each original feature.

Min-max normalization ensures that all features have the same scale of
0-1, but it does not handle outliers well. In contrast, Z-score normalization
can handle outliers, although the feature ranges may be slightly different.
Thus, these two techniques can be automatically chosen depending on the
occurrence and the percentage of outliers.

6. Feature Engineering

6.1. Overview

Although research into the automated model selection and HPO has made
significant progress, Feature Engineering (FE), as a vital component of the

41

Figure 3: An automated feature engineering framework.

ML pipeline, has been ignored in many AutoML applications. Using original
feature values to train ML models often cannot obtain the best prediction
results. In this case, new features need to be created, and misleading fea-
tures should be removed to fit specific tasks [17]. The objective of feature
engineering is to provide data with optimal input features for ML models.
The upper limit of ML applications is determined by FE [14].

Manual feature engineering is tedious and time-consuming, and often re-
quires domain knowledge. Automated Feature Engineering (AutoFE) en-
ables the automation of feature engineering by automatically generating and
selecting relevant features using a generic framework applicable to different
problems. AutoFE is more efficient and reproducible than manual feature
engineering, enabling faster development of more accurate learning models.

FE methods can be classified into three categories: feature generation,
feature selection, and feature extraction. Feature generation is the process of
creating new features through the combination or transformation of original
features to expand the feature spaces. Feature selection is used to reduce
feature redundancy by selecting relevant and significant features. Similar
to feature generation, feature extraction can create new features, but its
primary purpose is to reduce the dimensionality of original features through
mapping functions. AutoFE is essentially a dynamic combination of these
three components.

Most state-of-the-art AutoFE approaches, like AutoFeat, use the generate-

42

and-select strategy. In this strategy, an exhaustive feature pool is generated,
and then valuable features are selected from it [108]. Certain procedures,
like feature selection and extraction, may require the use of optimization
techniques to identify appropriate parameters that can return the optimal
model. As shown in Fig. 3, the main procedures for the AutoFE framework
with the generate-and-select strategy are as follows:

1. Generate a variety of candidate features using common operations;

2. Select important features using feature selection methods;

3. Determine the optimal number of features using optimization tech-
niques;

4. Further extract features and reduce the data dimensionality if it is still
high or the learning performance still needs to be further improved.

6.2. Feature Generation

Feature generation is the process of generating new features by trans-
forming or combining existing features to improve the generalizability and
robustness of a ML model [14]. In real-world IoT systems, data is often
scattered over many devices and files and must be combined into a single
database with rows for observations and columns for features [17]. Although
the feature generation step often requires domain knowledge from experts,
certain features can still be created automatically to extract useful informa-
tion.

Common feature generation operations can be classified as follows [19]:

1. Unary operations: Numerical feature discretization or normaliza-
tion, time expansion, or mathematical operations like a logarithm.

2. Binary operations: The combination of two features using feature
correlations or mathematical operations (e.g., addition, subtraction,
multiplication, division, etc.).

3. High-order operations: The calculation of multiple records for one
feature, like the maximum, minimum, average, or median values.

It is challenging to manually produce all meaningful and useful features.
The process of generating valuable features usually requires human expertise.
For automated feature generation, the general process is to automatically
generate a large number of features using various operations and use feature
selection techniques to select the relevant and useful features. Although
generating numerous features is often time-consuming, automated feature

43

generation can largely reduce human efforts and overhead by getting rid
of the dependence on human expertise. Decision tree-based and GA-based
methods described in [109] can be used to simplify the feature generation
process by defining and exploring the feature space.

6.3. Feature Selection

While feature generation may create a large number of features, some
of them may be irrelevant or redundant. For specific tasks, certain features
have a great impact on the target variable prediction, while other features
may have a minimal or negative effect on the prediction [17]. Therefore, Fea-
ture Selection (FS) should be implemented to identify the most appropriate
features for use in constructing a more efficient and accurate learning model
[26]. FS is a time-consuming and challenging procedure in ML pipelines,
especially for high-dimensional datasets.

Automated feature selection is the process of automatically selecting a
subset of the original feature set to improve ML model performance and
training speed by removing irrelevant and redundant features [19]. To achieve
AutoFS, the FS problem can be framed as an optimization problem [110].
For a small number of input features, all combinations of the features can be
evaluated to detect the best-performing feature set. On the other hand, for a
large number of features, optimization techniques can be utilized to explore
the feature search space and identify the optimal feature set.

Existing FS methods can be divided into three categories: filter methods,
wrapper methods, and embedded methods.

Filter methods assign a score to each feature by calculating its impor-
tance, and then select a subset of features based on a given threshold (e.g.,
the number of selected features or the accumulated importance). Each fea-
ture’s score can be estimated using a variety of measures, including Informa-
tion Gain (IG), the chi-square test, Pearson correlation coefficient, variance,
etc. For example, the Fast Correlation Based Filter (FCBF) is a popular
filter method that measures the correlation of features and selects features
by calculating the symmetrical uncertainty (SU) [106].

Wrapper methods make predictions based on a selected subset of features,
and then evaluate the feature set according to prediction accuracy. Recursive
Feature Elimination (RFE) is a wrapper method that recursively evaluates
subsets of features to remove irrelevant features until a desired number of
features are selected [111].

44

Embedded methods indicate the FS process included in the learning pro-
cess of ML models, like Lasso regularization, DT-based algorithms, and DL
models. Thus, using those ML algorithms with embedded FS functionality
often does not need additional FS procedures.

These three types of FS methods have different advantages and limita-
tions. The major advantage of filter methods is that they can be completed
prior to model training, which results in a relatively fast execution time [111].
However, since filter approaches derive their features only via statistical mea-
surements, they may not be optimal for all ML models. Embedded methods
can select the relevant features for a specific ML model in its construction
process [111]. Thus, it can often achieve optimal performance on this spe-
cific ML model. However, the selected features are often only beneficial for
the same type of model. Additionally, applying embedded methods to select
features for another ML model is often time-consuming. Therefore, using an
embedded method in the ML model where it is embedded is often the most
appropriate choice. Wrapper techniques can be used for various ML models
to select the most relevant features [111]. However, wrapper methods are
often more time-intensive than filter and embedded methods, as they need
to continually train a ML algorithm on different subsets of features until the
termination conditions are met.

In conclusion, when choosing feature selection approaches, a trade-off
between the time complexity and learning performance must be made. Dif-
ferent FS approaches should be selected in different situations or tasks. Filter
methods are often utilized in tasks with strict time constraints, while wrap-
per techniques often work better for tasks that demand great performance.
Embedded methods are often used in certain ML algorithms that already
have these embedded FS functionalities.

6.4. Feature Extraction

Feature extraction is the process of reducing dimensionality using map-
ping functions. Unlike feature generation, which preserves the original fea-
tures, feature extraction alters the original features to extract more infor-
mative features that can replace the original features [26]. Through feature
extraction, a more concise representation of the original dataset can be ob-
tained. Additionally, model learning efficiency may be increased by dimen-
sionality reduction [109]. Common feature extraction methods include PCA,
Linear Discriminant Analysis (LDA), and AE [14]. Feature extraction is not
a required procedure in the general feature engineering process. It is often

45

utilized only when the feature set produced after feature generation and se-
lection is still high dimensional or under-performing, since feature extraction
can further reduce dimensionality and misleading feature components.

7. Automated Model Updating by Handling Concept Drift

7.1. Model Drift in IoT Systems

Because of the dynamic IoT environments, IoT online data analysis often
encounters concept drift issues when data distributions shift over time. Con-
cept drift often impairs the performance of IoT data analytics models, posing
significant threats to IoT services. To deal with concept drift, a successful
data analytics model must reliably identify and respond to detected drifts in
order to retain high prediction accuracy.

Concept drift refers to the conceptual and unpredictable changes in data
streams [112]. The presence of concept drift has brought significant chal-
lenges to the development of ML models. As the majority of ML models
are built with the premise that the data is collected in a static environment,
they lack the adaptability to learn streaming data with concept drift [113].
Thus, in an ever-changing environment with concept drift issues, ML mod-
els’ performance may gradually degrade. When concept drift occurs, it is
necessary to upgrade the current ML model in order to preserve or enhance
model performance [114]. This process is also referred to as automated model
updating. To ensure high performance in a non-stationary environment, an
IoT data analytics model should be updated automatically when concept
drift occurs.

7.2. Concept Drift Definition

In non-stationary and dynamically changing environments, the distribu-
tion of input data often changes over time, causing concept drift. Given an
instance (X, y) with the input features X and the target variable y, concept
drift that occurs between the time points t0 and t1 can be denoted by [115]:

∃X : Pt0(X, y) 6= Pt1(X, y) (11)

where Pt0 represents the joint distribution between X and y at time t0.
The joint probability Pt(X, y) can be calculated by [112]:

Pt(X, y) = Pt(X)× Pt(y |X) (12)

46

Figure 4: Concept drift types.

where Pt(X) denotes the marginal probability and Pt(y | X) represents the
posterior probability.

Although changes in different probabilities can result in concept drift,
only the distribution changes that affect the performance of learning models
should be dealt with for data learning purposes [115]. Thus, the changes
in the posterior probability, Pt(y | X), are referred to as real concept drift
because they cause model decision boundary changes and model performance
degradation; other types of drift, like changes in Pt(X), are referred to as
virtual concept drift and are not taken into account in the learning system
adaptation procedures [112].

As illustrated in Fig. 4, there are three major types of data distribution
changes that can cause concept drift: sudden, gradual, and recurring drift.

1. Sudden drift is the term used to describe the rapid and irreversible
changes that occur in a short period of time.

2. Gradual drift occurs when a new data distribution gradually replaces
an older one over time.

3. Recurring drift is a temporary change in the distribution of data. The
distribution will return to its previous state within a certain period of
time.

Due to the occurrence of concept drift, the learning system must detect
drift in time and update itself by adapting to the detected drift; hence, ac-
curate predictions can be made on the continuously arriving data streams.
Therefore, in addition to the training and prediction procedures in tradi-
tional ML models, there are two additional procedures for analyzing stream-
ing data with concept drift: drift detection (detect the occurrence and the
time of drift) and drift adaptation (handle the detected drift) [112]. In this
Section, the state-of-the-art drift detection and adaptation methods are de-

47

scribed. Additionally, the strengths and limitations of the drift detection and
adaptation methods discussed in this paper are summarized in Table 5.

7.3. Drift Detection

To design a model capable of dealing with concept drift, it should be
able to effectively detect drift nodes and address the drift rapidly. Thus,
drift detection is critical functionality for adaptive ML models capable of
resolving concept drift problems.

Drift detection methods are generally classified into two main categories:
distribution-based methods and performance-based methods. Distribution-
based methods identify concept drift by detecting the changes in data dis-
tributions. Statistical variables, such as the mean, variance, and class im-
balance, can be used to quantify data distribution changes. In model-based
methods, concept drift is measured based on the changes in the metrics used
to assess model performance. For example, accuracy degradation and error
rate increase are common indicators of concept drift. The severity of concept
drift can be measured by the degree of model performance degradation.

7.3.1. Distribution-based methods

Distribution-based drift detection techniques are developed by measuring
and comparing the data distributions of old and new data in time windows.
Significant data distribution changes often cause concept drift and trigger
model updates [112]. There are several approaches to measure the data
distributions of different time windows, like mean, variance, information en-
tropy, Kullback-Leibler (KL) divergence, etc.

ADaptive WINdowing (ADWIN) [116] is a distribution-based approach
for detecting concept drift using variable-size sliding windows and charac-
teristic values (e.g., mean, variance). If no noticeable drift or distribution
change is identified when the streaming data enters the model, the window
size is dynamically enlarged, whereas the window size is reduced when con-
cept drift is identified [114]. The main procedures of ADWIN are as follows:

1. For a sliding window W, the characteristic values (e.g., mean, variance)
between its two sub-windows, W1 and W2, is computed and compared.
W1 and W2 represent earlier and more recent data, respectively.

2. A concept drift alarm will be triggered if the characteristic values of
W1 and W2 diverge significantly enough (i.e., the difference exceeds a
specific threshold).

48

Table 5: The comparison of concept drift methods for automated model updating.
Task Category Methods Strengths Limitations

Drift
Detection

Distribution
-based
Methods

ADWIN
· Work well with gradual
drifts.

· Good interpretability.

· A single ADWIN model is
limited to one-dimensional
data.

· Characteristic values used
by ADWIN are not always
effective.

IE, KL
Diver-
gence

· Good interpretability.

· Can work with unlabeled
data.

· High computational cost.

· May detect virtual drifts.

· Require pre-defined time
periods.

Performance
-based
Methods

DDM

· Work well with sudden
drifts.

· Can ensure all detected
drifts are real drifts.

· Slow reaction time.

· Ineffective for gradual
drifts.

· Need to tune the drift and
warning thresholds.

EDDM · Work better with gradual
drifts than DDM.

· Sensitive to noise.

· Need to tune the drift and
warning thresholds.

Drift
Adaptation

Model
Retraining

Full Re-
training

· Easy to understand and
implement.

· Can retain all the existing
concepts.

· Time-consuming due to
unnecessary retrainings.

· May become extremely
slow as data increases.

Partial
Retrain-
ing

· Easy to understand and
implement.

· Can remove outdated sam-
ples.

· Faster than full retraining.

· May lose historical pat-
terns.

· Unnecessary retrainings.

Instance
Weight-
ing

· Can retain all the existing
concepts.

· Can better adapt to drifts
than full and partical re-
trainings.

· Time-consuming due to
unnecessary retrainings.

· Need to choose an up-
datable learner capable of
weighted learning.

Incremental
Learning

HT,
VFDT,
CVFDT

· Can be continuously up-
dated.

· Fast training speed due to
partial updating.

· Incapable of directly ad-
dressing concept drift.

· Limited ML algorithms
support incremental learn-
ing.

AONN · Strong adaptability to
drifts.

· Ineffective for sudden
drifts.

· Time-consuming.

Ensemble
Learning

SEA,
AWE,
ACE

· Can retain historical con-
cepts.

· Strong adaptability to
drifts.

· Good generalizability.

· Need to determine a
proper chunk size.

· Time and memory con-
suming.

· Outdated concepts may be
misleading.

ARF,
SRP, LB,
PWPAE

· Strong adaptability to
drifts.

· Good generalizability.

· Time-consuming.

· Require high memory
space.

49

3. Once a drift has been detected, the sliding window size is adjusted to
the newer sub-window, W2, while the older subwindow, W1, is dropped.

ADWIN is well-suited for data streams with gradual drift because the
sliding window can be enlarged to a large size window for detecting long-
term changes. On the other hand, a single ADWIN model can only handle
one-dimensional data. As a result, multiple ADWIN base models with dis-
crete windows for each dimension are required for multi-dimensional data
[22]. Furthermore, the mean value is not always a suitable method to define
changes.

Distribution-based approaches can be used to detect concept drift using
other metrics. The Information Entropy (IE) [117] is a widely-used distance
metric to quantify how much information is included in a data distribution.
The entropy of a data distribution X can be calculated by:

H(X) = −
∑
x∈X

p(x) log p(x) (13)

Assuming the two probability distributions are p and q, the IE-based
method calculates their distance based on the difference between their en-
tropy values:

DIE(p‖q) = |H(p)−H(q)| (14)

KL divergence [118] is another common distant metric to compute the
distance between two distributions.

For the two probability distributions p and q, KL divergence estimates
the distance by:

DKL(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)
(15)

In IE or KL divergence-based methods, concept drift occurs whenDIE(p‖q)
or DKL(p‖q) is greater than a threshold α.

Distribution-based methods are often used in systems with limited mem-
ory, like IoT devices, since they need only the most recent samples to be
stored. Additionally, distribution-based approaches can provide a high level
of interpretability by illustrating how the data distribution varies over time.
They can also generally specify the exact time and place of the drift, which
is beneficial for drift adaptation. However, distribution-based approaches
often incur higher computational costs than performance-based approaches
and often require the use of predefined historical and new time periods.

50

7.3.2. Performance-based methods

Model performance-based methods track changes in learners’ prediction
error rates to identify concept drift [119]. If the data distribution is stationary
and without drift, the error rate of a learner should gradually decrease or
remain constant as more data samples are learned. Conversely, if a learner’s
error rate rises dramatically as more data is processed, this often reveals the
occurrence of concept drift.

Drift Detection Method (DDM) is a popular performance-based method
that measures model error rate and standard deviation changes using two
pre-defined thresholds, the warning threshold and the drift threshold [120].
With an estimating error rate at time t is pt, the standard deviation at time
t can be calculated based on the Binomial distribution:

St =
√
pt (1− pt) /t (16)

The error rate and standard deviation can be used to determine whether
the warning level or drift level has been exceeded:{

if pt + st ≥ pmin + 2 ∗ smin → Warning Level
if pt + st ≥ pmin + 3 ∗ smin → Drift Level

(17)

where pmin and smin are the current error rate’s minimum and standard de-
viation’s minimum, respectively. If the warning threshold is exceeded, newly
arrived samples will be archived for potential drift adaption. If the drift level
is exceeded, the learning model will be updated with the newly collected
data.

DDM often performs well on data streams with sudden drift, but its
reaction time is often too slow for detecting gradual drift [121].

Early Drift Detection Method (EDDM) is an improved version of DDM
that uses the same warning and drift mechanism as DDM to identify concept
drift [122]. Unlike DDM, EDDM detects drift by calculating the change rate
of the learner’s error rate, rather than the error rate itself. Although EDDM
often outperforms DDM, it is still inferior to distribution-based approaches on
the gradual drift. Additionally, since it is sensitive to noise, it may misclassify
noise as drift, resulting in false alarms.

Both DDM and EDDM have three primary hyperparameters that have a
direct impact on the accuracy of drift detection: 1) the warning threshold;
2) the drift threshold; 3) the minimum number of incoming samples before
detecting the first drift [123].

51

7.4. Drift Adaptation

After detecting concept drift, it is necessary to update or reconstruct the
existing models to handle the drift using proper drift adaptation methods.
Drift adaptation techniques can be classified into three categories: 1) Model
retraining; 2) Incremental learning methods; 3) Ensemble learning methods.

7.4.1. Model Retraining

Model retraining is a simple and straightforward method for reacting to
concept drift [112]. Owing to the fact that pre-trained or offline models
cannot always precisely predict the future incoming streaming data due to
concept drift, they can be retrained on the newly arrived data streams to
maintain high performance. A conventional online learning strategy for ana-
lyzing data streams without concept drift detection is to update the learner
regularly to fit the most recent data. However, using this method can re-
sult in unnecessary model retrainings or drift adaptation delays. Therefore,
an appropriate drift detection method should be used together with learn-
ing models to determine when to retrain the learning model for timely and
necessary updates.

Model retraining strategies include full retraining, partial retraining, and
instant weighting. Full retraining is the process of retraining the learning
model on the entire dataset involving all available samples. Full retraining
is easy to implement but often time-consuming.

Partial retraining is developed by retraining the model on only certain
parts of data to improve model updating efficiency. Using window-based
strategies that retain the model only on the recent data can reduce the train-
ing time but may result in the loss of historical data patterns. Thus, it is
critical to choose a proper window size. ADWIN [116] is a well-performing
drift detection method for model retraining since it uses a dynamic window
to fit new data. Optimized Adaptive and Sliding Windowing (OASW) [15]
is another partial retraining model for IoT data stream analytics. It uses
adaptive and sliding windows to detect concept drift and collect samples of
a new concept. Thus, the learning model can be partially retrained on only
the new concept samples to save training time.

Instead of directly retraining the learning model on new data, the instance
weighting method is another popular model retraining technique [113] [124].
It adjusts the weights of data samples according to their timestamp or reten-
tion time. Recent samples will be assigned a higher weight, while old data
samples will be assigned a reduced weight or even deleted from the training

52

set. This method is based on the assumption that as time passes, outdated
data samples become less relevant, and new data samples become more crit-
ical. As a result, an existing learning model can adjust to concept drift by
retraining on weighted samples. For weighted model retraining, an updatable
learner capable of weighted learning should be used.

7.4.2. Incremental Learning methods

In data stream analytics, new data samples are continuously being added
to the learning system. Rather than learning offline on static data, an ef-
fective model needs to be continuously updated to adapt to the changing
data distributions. Therefore, incremental learning has become a widely-used
strategy in data stream analytics research. Incremental learning is the pro-
cess of learning data samples sequentially and updating the learning model
with each instance is processed [125].

When new samples arrive, incremental learning approaches often par-
tially update the learning model to fit the new samples [126]. Due to the
progressive learning ability of incremental learning approaches, they do not
need a sufficient amount of data prior to the training process. However, only
a small number of ML algorithms enable partial updates, including MLP,
multinomial NB, etc. Thus, several new incremental learning methods for
concept drift adaptation, such as Hoeffding Trees (HT) [127] based meth-
ods and Adaptive Online Neural Network (AONN) [128], were proposed.
HT algorithms based on Hoeffding’s inequality are one of the most com-
mon incremental learning methods for data stream analytics. By using the
Hoeffding bound to calculate the number of samples required to determine
the split node, the nodes in HTs can be partially updated as new samples
arrive [119]. There are several variants of HTs, including the Very Fast De-
cision Tree (VFDT), Concept-adapting Very Fast Decision Tree (CVFDT),
Extremely Fast Decision Tree (EFDT), etc. [115].

VFDT is a technique for creating classification decision trees in a data
stream mining environment by using Hoeffding inequality [129]. It is con-
structed by continuously replacing leaf nodes with branch nodes to preserve
an essential statistic at each decision node, and the splitting test is performed
when the statistic of the node reaches a certain threshold. VFDT is an effi-
cient method since it only has to process the data stream once. Additionally,
it can often achieve high performance comparable to typical ML techniques.
The primary drawback is that it is incapable of effectively addressing the
concept drift issue.

53

CVFDT extends VFDT to rapidly tackle the concept drift issue asso-
ciated with data streams [127]. CVFDT’s basic principle is to replace the
historical subtree with a new subtree that has a lower error rate. It uses a
sliding window to choose test data samples and updates the resulting decision
tree as data flows into and out of the time frame.

EFDT [130], also known as the Hoeffding Anytime Tree (HATT), is a
modified version of the HT that divides nodes as soon as the confidence level
is reached, rather than identifying the optimal split in the HT. This splitting
method enables the EFDT to adjust more precisely to concept drifts than
the HT, although its performance still has much room for improvement.

AONN is another incremental learning method based on neural network
models [128]. In AONN, a model update is triggered when the model’s error
increases. The AONN network is updated by either increasing the number
of neurons in the output layers or by changing the weights of neurons using
a batch of online data samples. Incremental methods can often adapt to
new data patterns by continually learning from newly received data samples.
However, they are not specifically designed to address concept drift, as the old
concepts and model components are still retained. Thus, they are ineffective
in addressing certain types of drifts, like sudden drifts, which often need a
completely new learner.

7.4.3. Ensemble Learning methods

Ensemble learning techniques have been developed to generate power-
ful learners for data stream analytics in order to achieve greater concept
drift adaptation. Ensemble learning is a ML technique that combines mul-
tiple base learners to tackle the same problem [126]. In ensemble learning,
base learners can be constructed using different algorithms, different hyper-
parameter configurations, or different subsets. As ensemble learning models
aggregate the outputs of multiple base learners, they often have better gener-
alizability than single models. For concept drift adaptation, reusing existing
models in an ensemble is much more efficient than training new models on
data streams with recurring concept drift [112]. Ensemble methods for data
stream analytics can be further classified as block-based ensembles and online
ensembles [131].

Block-based ensembles divide the data streams into discrete blocks with
defined sizes and train a base learner on each block. When a new block is
added, the existing base learners are evaluated and upgraded. Many block-
based ensemble learning methods have been designed for concept drift adap-

54

tation, including Streaming Ensemble Algorithm (SEA), Accuracy Weighted
Ensemble (AWE), Adaptive Classifier Ensemble (ACE), Learn++.NSE, Dy-
namic Weighted Majority (DWM), Diversity and Transfer-based Ensemble
Learning (DTEL), etc.

SEA [132] is an ensemble learning model that adapts to concept changes
by changing its structure. It constructs an ensemble of N base learners,
each trained on a batch of data samples. The final result is computed using
the majority voting technique, which combines the prediction outcomes of
base learners with the same weight. SEA limits the maximum number of
base learners by the use of a threshold. Once the threshold is reached, the
newly trained base learner will replace the worst-performing base learner
according to the error rate and diversity. Experimental studies show that
SEA is effective when the ensemble has no more than 25 base learners [121].

AWE [133] is another ensemble learning approach that trains a base
learner on each data chunk and combines the base learners, but it improves
the technique of base learner replacement. Each incoming data chunk will
be used to train a new base learner and evaluate the other existing base
learners. The top n best-performing base learners will be chosen to create
a new ensemble model. Thus, the outdated base learners will be removed
from the ensemble, leaving only those capable of effectively predicting the
data with the new concept. The AWE method outperforms other methods
when dealing with streaming data that contains recurring concept drift, and
its performance on large streaming data will continue to improve [121]. How-
ever, AWE’s chunk-size selection remains a concern. Additionally, a noisy
new data block may result in a biased ensemble [134].

ACE [135] is a variant of AWE that is designed to deal with gradual
drift. It continuously monitors the error rate change of each base learner in
response to new input data, and removes the base models with degrading
performance. ACE is effective at handling gradual drift, but struggles with
sudden and recurring concept drifts.

DWM [136] is another ensemble model that trains multiple base learners
but weights them differently based on their prediction performance. When
a base learner makes an inaccurate prediction, its weight is slightly reduced.
Additionally, if the ensemble model makes an incorrect prediction, a new base
learner will be trained and given the highest weight among the base learners.
The primary advantage of DWM is that it is capable of preserving historical
models built on existing concepts. However, it may be resource-intensive,
particularly when dealing with huge volumes of streaming data [134].

55

Learn++.NSE [137] is an ensemble learning model that consists of multi-
ple incrementally trained neural network models. Each base learner is trained
on a single batch of incoming data. The Learn++.NSE model dynamically
weights base neural network models depending on their error rates on the
most recent batch of data. Additionally, the incorrectly predicted instances
will be assigned a higher weight, allowing learners to concentrate on the chal-
lenging instances. When the ensemble model’s prediction error rate exceeds
a predefined threshold, a new base learner is trained and added to the ensem-
ble [134]. Learn++.NSE can handle sudden, gradual, and recurring drifts,
because the base learners can be deactivated and reactivated by adjusting
their weights [112].

DTEL [125] is an ensemble learning model that trains and stores each
historical model from the initial models and then uses a transfer learning
strategy to transfer the initial or historical models to new incoming data.
To maintain model diversity in DTEL, it is crucial to train base models on
a number of diverse data distributions or concepts. DTEL works effectively
in the presence of recurring drift because historical models can be preserved
and directly transferred to a new drift. On the other hand, owing to the
utilization of transfer learning, DTEL often has a high learning efficiency
and a quick response time to drift.

Paired Learner (PL) technique [138] is an effective drift adapter that pairs
a steady online learner with a reactive one to deal with concept drift. A sta-
ble learner makes predictions based on its entire experience, while an active
learner makes predictions based on its most recent experience. Thus, the
proper learner can be chosen for different scenarios. Comparative studies
have revealed that the PL approach outperformed a wide variety of other
ensemble methods or achieved equivalent performance at a much lower com-
putational cost.

Online ensembles can enhance learning performance by integrating mul-
tiple incremental learning models, such as HTs. Gomes et al. [139] intro-
duced the Adaptive Random Forest (ARF) technique, which makes use of
HTs as base learners and ADWIN as the default drift detector for each tree.
The drift detection process substitutes new trees that fit the new concept
for underperforming base trees. ARF often outperforms a wide variety of
other techniques, since the random forest method is also a well-performing
ML technique. Additionally, ARF makes optimal use of resampling and is
adaptable to a wide range of drift types.

Gomes et al. [140] have presented a unique adaptive ensemble approach

56

for streaming data analytics called Streaming Random Patches (SRP). SRP
makes predictions using a combination of random subspace and online bag-
ging techniques. SRP is similar to ARF in principle but employs a global
subspace randomization mechanism rather than ARF’s local subspace ran-
domization. Global subspace randomization is a more flexible method of
boosting the diversity of base learners. While SRP’s prediction accuracy is
often slightly higher than that of ARF, its execution time is frequently longer.
The number of base learners and the embedded drift detector (e.g., ADWIN,
DDM, EDDM, etc.) are the two significant hyperparameters of SRP and
ARF models.

Leverage bagging (LB) [141] is another popular online ensemble that uses
bootstrap samples to construct base learners. It employs the Poisson distri-
bution to increase the diversity of input data and maximize bagging perfor-
mance. While LB is simple to build, it often performs worse than SRP and
ARF.

Performance Weighted Probability Averaging Ensemble (PWPAE) [119]
is a novel online ensemble framework for concept drift adaptation. It uses
the weighted prediction probabilities to integrate four base online learners:
ARF-ADWIN, ARF-DDM, SRP-ADWIN, and SRP-DDM. PWPAE outper-
forms other compared drift adaptation methods as it uses dynamic weights to
take advantage of other online learning models. However, the computational
complexity of PWPAE is also higher than other methods.

Although ensemble learning models often perform well when dealing with
gradual and recurring drifts, they are incapable of coping with abrupt drifts
owing to the ensemble learner’s limited impact on a new base learner. In
comparison to a single learner, however, using an ensemble learning model
often increases computing complexity and costs. Thus, ensemble models
that use the local learning strategy to train each base learner on a small
local subset are more efficient in streaming data analytics [126].

8. Selection of Evaluation Metrics and Validation Methods

8.1. Evaluation Metrics Selection

To evaluate the learning model on a given IoT dataset, appropriate met-
rics should be selected in the AutoML pipeline, as they have a significant
impact on model selection and HPO procedures.

The performance metrics are mainly chosen according to the types of
problems (e.g., accuracy, precision, recall, and F1-score for classification

57

problems; Mean Squared Error (MSE), Mean Absolute Error (MAE), and
Root Mean Squared Error (RMSE) for regression problems) [106] [142] [143].

8.1.1. Classification Metrics

Accuracy is the most basic metric, defined as the proportion of correctly
categorized test instances to the total number of test instances [144]. It is
applicable to the majority of classification problems but is less useful when
dealing with imbalanced datasets. Accuracy can be calculated by using True
Positives (TPs), True Negatives (TNs), False Positives (FPs), and False Neg-
atives (FNs):

Acc =
TP + TN

TP + TN + FP + FN
(18)

Precision is the metric used to quantify the correctness of classification.
Precision indicates the ratio of correct positive classifications to expected
positive classifications. The larger the proportion, the more accurate the
model, indicating that it is more capable of correctly identifying the positive
class.

Precision =
TP

TP + FP
(19)

Recall is a measure of the percentage of accurately recognized positive
instances to the total number of positive instances.

Recall =
TP

TP + FN
(20)

The F1 score is calculated as the harmonic mean of the Recall and Pre-
cision scores, therefore balancing their respective strengths.

F1 =
2× TP

2× TP + FP + FN
(21)

The Receiver Operating Characteristic curve (ROC curve) plots the true
positive rate against the false positive rate. AUC-ROC stands for Area Un-
der Receiver Operating Characteristics, and a larger area indicates a more
accurate model.

If class imbalance occurs, the F1-score or AUC-ROC should be used in-
stead of accuracy to determine the optimal solution. Otherwise, a biased
model may be returned.

58

8.1.2. Regression Metrics

In contrast to classification models, which produce discrete output vari-
ables, regression models aim to predict continuous output variables [143]. As
a result, relevant measures for evaluating regression models are appropriately
established.

MSE is a straightforward measure that computes the difference between
the actual and anticipated values (error), squares it, and then delivers the
mean of all errors. MSE is very sensitive to outliers and will display a very
large error rate even if a few outliers exist in otherwise well-fitted model
predictions. Assuming y is the real value and ŷ is the estimated value, the
MSE for a dataset of size n can be denoted by:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (22)

RMSE is the root of MSE. The advantage of RMSE is that it assists in
reducing the magnitude of the mistakes to more interpretable numbers.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (23)

MAE is the average of the absolute error numbers (actuals – expecta-
tions).

MAE =
1

n

n∑
i=1

|yi − ŷi| (24)

MAE is the preferred method when outlier values need to be ignored,
since it considerably reduces the penalty associated with outliers by deleting
the square terms.

8.1.3. Unsupervised Learning Metrics

The Silhouette Coefficient quantifies how close or distant each point in
one cluster is to each point in the other clusters [145]. Higher Silhouette
values (closer to +1) indicate a strong separation of sample points from two
different clusters. While a value of 0 indicates that the points are close
to the decision boundary, values closer to −1 indicate that the points were
incorrectly assigned to the cluster.

59

8.1.4. Execution Time & Memory

Due to the fact that IoT systems often face strict time and memory limits,
the execution time and memory usage of the AutoML model should also be
considered [129]. The execution time comprises the time spent training and
updating the model, as well as the time spent testing each instance. This
can be used to determine if the learning model meets the requirements for
real-time processing. Memory consumption can be used to determine if the
size of the learning model and the memory used by it are smaller than the
system memory on the IoT device, which is often used for edge computing;
otherwise, the model must be implemented on a cloud server to ensure enough
computational power and resources.

8.2. Validation Method Selection

8.2.1. Hold-out Evaluation

Hold-out evaluation is a frequently used evaluation method for ML algo-
rithms [115]. In hold-out evaluation, a hold-out subset is separated from the
original dataset before the model training process. After training a model,
its generalizability on the previously unseen dataset will be validated using
the hold-out subset. For streaming data with concept drift, a hold-out eval-
uation will assess a learner at time t by generating a hold-out subset that
has the same concept at t. The current learning model is evaluated on the
test sets at regular time intervals. Thus, for dynamic IoT data stream ana-
lytics, hold-out evaluation is only able to evaluate the learner’s performance
on synthetic data with predefined drift times [112].

8.2.2. Cross-Validation

Cross-validation is an effective and popular evaluation method [146]. It
uses a resampling strategy to evaluate ML models and assess how a model
performs on different partitions of a given dataset. The k-fold cross-validation
method is conducted by dividing the original dataset into k equal subsets for
k different experiments; in each experiment, each of the subsets is selected as
the validation set, while the other (k−1) subsets are used as the training set.
The average performance of the learning model in k experiments is calculated
as the final prediction performance. Unlike hold-out validation, which only
assesses ML models on a subset of data and may produce biassed models that
only perform well on a subset of data, using cross-validation can evaluate ML
models on all subsets of data to avoid over-fitting. Cross-validation in IoT

60

time-series data enables the evaluation of a learner on different time periods,
assisting in the development of a complete and robust online learning model.

The order of the data is critical for time-series-related problems. For time-
related datasets, random split or k-fold split of data into train and validation
may not yield good results. For the time-series dataset, the split of data
into train and validation sets is according to the time, also referred to as
the forwarding chaining method or rolling cross-validation. For a particular
iteration, the future instances of train data can be treated as validation data.

8.2.3. Prequential Evaluation

Prequential evaluation, also named test-and-train validation, is one of
the most appropriate methods to evaluate model learning performance on
data streams generated in dynamic environments [144] [147]. In prequential
evaluation, each incoming instance is firstly predicted by the learning model
to update the metrics, and then learned by the model for model updating
[112]. The prequential error E can be calculated by the sum of a loss function:

E =
n∑

t=1

f (yt, ŷt) (25)

where n is the total number of incoming samples, yt and ŷt are the true and
predicted values of the tth sample, the loss function f can be selected from
the metrics introduced in Section 8.1, based on the problem type.

The prequential error is dynamically updated as new data samples arrive.
Thus, using prequential evaluation can monitor the real-time performance of
a learning model using metrics that change dynamically with each new data
sample. Prequential evaluation can often be used to evaluate real-time model
performance and take the most advantage of streaming data.

9. Tools and Libraries

9.1. AutoML Tools

Auto-Weka [75] is recognized as the first framework for AutoML. It is built
on top of Weka, a well-known Java library package that contains a large num-
ber of ML methods. Bayesian optimization methods are the core strategies
of Auto-Weka, including Sequential Model-based Algorithm Configuration
(SMAC) and BO-TPEs, for both model selection and HPO procedures.

61

Auto-Sklearn [94] is a Python package for AutoML and CASH that is
developed on top of Scikit-Learn. Auto-Sklearn introduced the concept of
meta-learning for the model selection and HPO procedures. BO and ensemble
approaches are employed in Auto-Sklearn to optimize the output models’
performance. Both meta-learning and ensemble approaches can enhance the
performance of model optimization.

Hyperopt-Sklearn [148] is AutoML framework built on the Scikit-learn
library. Hyperopt-Sklearn utilizes Hyperopt to establish the search space
for possible Scikit-Learn core components, such as the HPO and preprocess-
ing approaches. Hyperopt supports a variety of optimization techniques for
CASH, including random search and Bayesian optimization, for exploring
search spaces of different types of variables.

Auto-Keras [149] is an open-source AutoML library. It is developed on
top of Keras, a well-known DL library. Auto-Keras implements NAS and
HPO methods to design optimal DL models.

TPOT [99] is a tree-based optimization framework for AutoML appli-
cations built on top of Scikit-Learn. It uses genetic algorithms to explore
potential configurations by feature engineering and CASH procedures, thus
finding the best solution.

H2O [95] is an AutoML platform that supports both Python and R lan-
guages. H2O is capable of automating a wide variety of complex ML tasks,
including feature engineering, model selection, model tuning, model visual-
ization, and model validation.

Amazon SageMaker [150] is an AutoML tool built on Amazon Web Ser-
vices (AWS). It involves automated model tuning as a major module. In
Amazon SageMaker, RS and BO methods are used to optimize ML mod-
els. It enables large-scale parallel optimization of complicated models and
datasets.

9.2. Online Learning and Concept Drift Adaptation Tools

Several tools and frameworks are available for analyzing streaming data
and resolving concept drift issues.

Massive Online Analysis (MOA) [151] is an open-source tool for stream-
ing data analysis. It is developed in Java and is based on the Waikato
Environment for Knowledge Analysis (WEKA) platform. MOA is capable of
detecting and adapting to concept drift using a number of strategies, includ-
ing DDM, EDDM, and Hoeffding tree. Additionally, MOA contains various

62

classes for creating streaming data, such as those for the Agrawal, Hyper-
plane, and Waveform datasets.

Scikit-multiflow (Skmultiflow) [152] is a Python package for streaming
data learning and concept drift adaptation. It provides many state-of-the-
art streaming data learning algorithms, data generators, concept drift de-
tection methods, and algorithms. The included drift detection methods are
ADWIN, DDM, EDDM, and Page Hinkley. Streaming data learners for con-
cept drift adaptation include KNN+ADWIN, Hoeffding adaptive tree, ARF,
Oze bagging, etc. Stream data generators include Agrawal, Hyperplane, Led,
Mixed, Random Tree, Waveform, etc. Skmultiflow supports both prequential
and hold-out evaluations of models and all regularly used machine learning
measures, such as accuracy, Kappa, and MSE.

River [153] is a Python library for data stream analytics and addressing
concept drift through online ML models. All accessible learning models in
River can be updated with a single incoming instance, allowing these methods
to learn from data streams. It also includes a variety of streaming datasets,
such as AirlinePassengers, Bananas, Bikes, ChickWeights, CreditCard, and
Elec2. Additionally, it incorporates several well-known ML algorithms that
support incremental learning, such as KNN, NB, and MLP.

Scikit-learn (Sklearn) [70] is a popular ML library written in Python.
Although Sklearn is primarily used for batch learning problems, it also pro-
vides several incremental learning methods for online learning and streaming
data analytics, including multinomial NB, stochastic gradient descent (SGD),
MLP, incremental PCA, etc.

10. Case Study

With the introduction of IoT data analytics and AutoML techniques,
a case study is presented in this Section to illustrate the capabilities and
advantages of AutoML techniques. A comprehensive AutoML pipeline is
used in this case study to solve IoT anomaly detection problems.

This Section provides the experimental results of applying the complete
AutoML pipeline to an IoT anomaly detection use case using real-world IoT
datasets. The first subsection discusses the use case. In the second part
of this section, the experimental setup of the AutoML pipeline is described.
In the last part, the results of offline IoT data analytics using traditional
ML algorithms and dynamic IoT data analytics utilizing online adaptive
algorithms are presented and analyzed.

63

10.1. Use Case

IoT anomaly detection problems are selected as the case study for Au-
toML framework evaluation. Other alternative IoT data analytics use cases
include smart healthcare medical diagnosis [30] [38], smart citizen behavior
classification [28], smart home monitoring [44], human gesture recognition
[45], smart city analysis [36], intelligent transportation systems [39] [61],
smart agriculture [62], and Twitter sentiment analysis [154]. The reasons for
choosing the IoT anomaly detection problems as the use case are as follows:

1. Compared with other IoT data analytics applications, IoT anomaly
detection is a use case with many existing publications: [15] [32] [37]
[41] [43] [46] [51] [60] [64] [65] [66]. Thus, IoT anomaly detection is one
of the most popular and representative use cases for IoT data analytics.

2. Unlike many other IoT data analytics use cases, IoT anomaly detec-
tion problems usually have concept drift issues. This is because IoT
anomaly detection tasks usually aim to identify cyber-attacks with var-
ious patterns, and zero-day or previously-unseen types of attack data
samples often have essentially different patterns, causing concept drift.
The occurrence of concept drift enables the evaluation of the proposed
AutoML framework in terms of online learning and automated model
updating. It is difficult to evaluate the AutoML frameworks on other
use cases without concept drift issues, because the performance of the
ML models with or without automated updating would make little dif-
ference.

With the rapid development of IoT systems, numerous cyber-threats have
extended from the Internet to people’s everyday devices. Current IoT sys-
tems are vulnerable to most existing cyber-threats, due to the limited IoT
device capability, gigantic scale, and vulnerable environments [155]. Due to
the paucity of IoT security mechanisms capable of dealing with IoT threats,
it is critical for IoT system protection to develop advanced approaches for de-
tecting and identifying abnormal IoT devices and events. Thus, IoT anomaly
detection has become an important use case in recent IoT systems for de-
tecting compromised IoT devices and malicious IoT attacks [156].

For the purpose of enhancing IoT security, supervised ML algorithms
can be used as effective mechanisms to distinguish malicious attack traffic
from normal traffic. As discussed in Section 2.3, IoT anomaly detection
problems can be classified into batch learning problems and online learning
problems based on whether their environment is static or dynamic. In static

64

IoT environments, traditional ML algorithms can be used to construct a
conventional AutoML pipeline for static IoT data analytics. In dynamic IoT
environments, online learning techniques can be used to construct a drift-
adaptive AutoML pipeline for IoT streaming data analytics.

Two public IoT anomaly detection datasets are used in this work to eval-
uate the proposed AutoML pipeline. The first dataset is the IoT Intrusion
Dataset 2020 (IoTID20) dataset proposed in [157]. This dataset was created
by using normal and attack virtual machines as network platforms, simulating
IoT services with the node-red tool, and extracting features with the Infor-
mation Security Center of Excellence (ISCX) flow meter program. A typical
smart home environment was established for generating this dataset using
five IoT devices or services: a smart fridge, a smart thermostat, motion-
activated lights, a weather station, and a remotely-activated garage door.
Thus, the traffic data samples of normal and abnormal IoT devices are col-
lected in Pcap files.

The second dataset utilized in this paper is the Canadian Institute for
Cybersecurity Intrusion Detection System 2017 (CICIDS2017) dataset [158],
which has the most updated network threats. The CICIDS2017 dataset is
close to real-world network data since it has a large amount of network traffic
data, a variety of network features (80), various types of attacks (14), and
highly imbalanced classes.

IoTID20 and CICIDS2017 datasets are both generic IoT network traffic
datasets in a tabular format. They include various types of data, such as
numerical, discrete, and string/text data. Thus, they are also representative
IoT datasets for IoT applications. Other IoT anomaly detection datasets
include KDD-99 [159], Kyoto 2006+ [160], NSL-KDD [161], ISCXIDS2012
[162], and Bot-IoT [163] datasets. The reasons for selecting CICIDS2017 and
IoTID20 datasets are as follows:

1. Compared with other feasible alternative datasets, such as KDD-99
(proposed in 1999), Kyoto 2006+ (proposed in 2006), NSL-KDD (pro-
posed in 2009), and ISCXIDS2012 (proposed in 2012), the two se-
lected datasets are the most recent benchmark IoT anomaly detection
datasets proposed in 2017 and 2020. Thus, CICIDS2017 and IoTID20
have state-of-the-art cyber-attack scenarios, which enables the case
study to make more contributions to the IoT anomaly detection field.

2. Compared with other IoT anomaly detection datasets, such as Bot-IoT,
in which the percentage of attack data is much higher than the normal

65

data, the two selected datasets are more representative and closer to
real-world IoT traffic datasets, because only a small percentage of data
samples are attack or abnormal data in the two datasets and real-world
IoT systems usually maintain the normal state most of the time.

3. The two selected datasets, especially the CICIDS2017 dataset, were cre-
ated by launching many new types of attacks on different days. These
zero-day attacks made changes in the data distributions and patterns
over time and caused concept drift issues, which enables the evaluation
of the drift-adaptive online learning models in the proposed AutoML
framework.

To conclude, selecting the CICIDS2017 and IoTID20 datasets can make
the experimental results closer to the results of real-world IoT anomaly de-
tection tasks, as they have the most updated attack scenarios and concept
drift issues.

The proposed AutoML pipeline is evaluated using a reduced IoTID20
dataset with 62,578 entries and a reduced CICIDS2017 dataset with 28,307
records for the purpose of this work.

10.2. Experimental Setup

The studies use a comprehensive AutoML pipeline to solve the IoT anomaly
detection problem, including AutoDP, AutoFE, automated model selection,
and HPO procedures. The specifications of each procedure in the AutoML
pipeline are presented in Table 6.

AutoDP involves automated encoding, imputation, normalization, and
balancing procedures. The automated encoding procedure identifies and
converts string features to numerical features to make the data more un-
derstandable for ML models. The automated imputation procedure includes
detecting missing values and imputing missing values using the mean im-
putation method introduced in Section 5.3. The automated normalization
process automatically chooses an appropriate normalization method from Z-
score and min-max normalization methods based on their performance in
anomaly detection.

As the CICIDS2017 and IoTID20 datasets are both highly-imbalanced
datasets, with an abnormal/normal ratio of 19%/81% and 6%/94%, respec-
tively, an automated data balancing technique is also implemented in the
proposed AutoML pipeline to balance the datasets. The system will evalu-
ate whether the incoming dataset is imbalanced (the abnormal/normal ratio

66

Table 6: The specifications of the proposed AutoML pipeline.
Category Procedure Method Aim/Operation

AutoDP

Encoding Label Encoding Identify and transform string features into nu-
merical features to make the data more read-
able by ML models

Imputation Mean Imputa-
tion

Detect and impute missing values to improve
data quality

Normalization Z-Score or Min-
Max Normaliza-
tion

Normalize the range of features to a similar
scale to improve data quality

Balancing SMOTE Generate minority class samples to solve class-
imbalance and improve data quality

AutoFE Feature Selection
IG Remove irrelevant features to improve model

efficiency

Pearson Correla-
tion

Remove redundant features to improve model
efficiency and accuracy

Automated
Model
Learning

Model Selection

NB

Select the best-performing model among five
common ML models by evaluating their
learning performance

MLP

KNN

RF

LightGBM

Hyperparameter
Optimization

BO-TPE Tune the hyperparameters of the learning
models to obtain the optimized models

Automated
Model
Updating

Adaptive Model
Selection

HT Select the best-performing model among four
online adaptive models to adapt to dynamic
data streams with concept drift issues for
learning performance enhancement

EFDT

ARF

SRP

67

is smaller than a threshold (e.g., 50%)); and if it is, the SMOTE technique
introduced in Section 5.4.2 will be automatically implemented to synthesize
new samples for the minority class to balance the data. As described in
Section 5.4.2, apart from SMOTE, there are other data balancing methods,
such as Random Under-Sampling (RUS) and Random Over-Sampling (ROS).
SMOTE is selected over other data balancing methods in the proposed Au-
toML framework due to the following reasons:

1. Unlike RUS, which may cause the loss of critical information by using
the under-sampling strategy to remove majority class samples, SMOTE
is an over-sampling method that synthesizes new samples for the mi-
nority class to balance data without discarding any existing samples.

2. Compared with other over-sampling methods, like ROS, which simply
replicates the instances, SMOTE uses the principle of KNN to create
high-quality new samples.

Thus, using SMOTE can balance the datasets without losing critical sam-
ples or adding high-quality samples, which can improve data quality and
avoid obtaining biased models.

As both datasets used in the experiments have a large number of fea-
tures totaling more than 80, the AutoFE technique in the proposed AutoML
pipeline focuses primarily on feature selection in order to obtain a sanitized
and optimal feature subset. In the first step of AutoFE, an IG-based method
is used to remove irrelevant or unimportant features by measuring the impor-
tance of each feature. It is selected in the proposed AutoML pipeline mainly
due to the following reasons:

1. Compared with certain wrapper FS methods, like RFE, which recur-
sively evaluates subsets of features to remove irrelevant features, the
IG-based method has better interpretability because it can generate
importance scores for each feature from the dataset.

2. Compared with embedded FS methods, like Lasso regularization and
DT-based algorithms, which train ML models to calculate feature im-
portance scores, the IG-based method works directly on the correlations
between the target variable and input features without additional ML
model training. It has a fast speed due to its low computational com-
plexity of O(n) [164].

Using the IG-based FS method can remove irrelevant features and reduce
data complexity, thus improving model training and testing efficiency.

68

In the second step of AutoFE, a Pearson correlation-based method is
used to remove redundant and noising features by calculating the correlation
between different features. By removing unnecessary and redundant informa-
tion using AutoFE, the learning model becomes more efficient and accurate
at detecting anomalies. Among correlation-based FS methods introduced
in Section 6.3, such as the chi-square test, Pearson correlation coefficient,
and variance, the Pearson correlation-based method is selected as the second
FS method to remove redundant and noising features, mainly due to the
following reasons:

1. Pearson correlation-based FS method can determine the exact degree
in the range of 0 to 1 to which every two features are correlated using
its Pearson formula.

2. This method can determine the direction of the correlations accord-
ing to whether the correlation values between features are positive or
negative.

3. This method is a fast FS method with low computational complexity
of O(nlogn) [165].

Using the Pearson correlation-based FS method can remove redundant
and noisy features to avoid using disturbing data and biased models, thus
improving model learning efficiency and accuracy.

Automated model selection is an essential procedure in the development of
AutoML pipelines. The experiments are divided into two parts, one for batch
learning in static IoT environments and the other one for online learning in
dynamic IoT environments.

For batch learning in static IoT environments, the learning models are
chosen from five representative candidate ML algorithms (NB [37], MLP
[53], KNN [32], RF [29], and LightGBM [46]). ML algorithms have proven
to be the most effective solution for general data analytics problems [12].
For IoT data analytics problems, all regular ML algorithms demonstrated in
Section 3 are other feasible alternatives, including Support Vector Machine
(SVM), Decision Tree (DT), XGBoost, LightGBM, MLP, CNN, RNN, etc.
The reasons for selecting the NB, MLP, KNN, RF, and LightGBM algorithms
for batch learning in static IoT environments are as follows:

1. NB, MLP, KNN, RF, and LightGBM are all popular IoT data analytics
algorithms that have been widely used in many IoT applications, such
as IoT anomaly detection [15] [32] [37] [46], medical diagnosis [30] [38],
smart citizen behavior classification [28], etc.

69

2. NB and KNN are two basic and representative ML algorithms with
low complexity. Thus, they can usually learn simple datasets without
over-fitting at a fast speed. They are selected for low-complexity IoT
data analytics.

3. As Deep Learning (DL) is an essential type of ML algorithm, MLP, a
basic and representative DL algorithm for IoT anomaly detection use
cases, is selected in the proposed AutoML framework. Other DL algo-
rithms, like CNNs and RNNs, are primarily used for image processing
and Natural Language Processing (NLP) applications.

4. RF and LightGBM are two robust ensemble ML models built on multi-
ple DTs. They have shown success in many data analytics tasks because
they have great generalizability. Thus, they are selected as representa-
tive ensemble ML models for complex IoT data analytics. Moreover, as
they have a large number of hyperparameters that require tuning, they
often benefit more from HPO and AutoML than other ML algorithms.
In conclusion, we selected two representative low-complexity ML al-
gorithms (NB and KNN), a representative DL algorithm (MLP), and
two representative robust ensemble algorithms (RF and LightGBM) to
represent common ML algorithms for IoT data analytics.

For online learning in dynamic IoT environments, the learning model is
chosen from four drift-adaptive online learning algorithms (HT [127], EFDT
[130], ARF [139], and SRP [140]), as it needs to be updated automatically
based on data distribution changes (concept drift). As described in Section
7.4, incremental learning and ensemble learning are two primary types of
drift-adaptive online learning algorithms. Other feasible alternative incre-
mental learning methods include VFDT, CVFDT, EFDT, etc., and other
alternative ensemble methods include SEA, AWE, ACE, LB, PWPAE, etc.
The reasons for selecting HT, EFDT, ARF, and SRP, for online learning are
as follows:

1. HT and EFDT are two representative incremental learning methods
for drift adaptation. HT is selected because it is the most basic incre-
mental online learning method that is the base model of many other
online learning methods, such as VFDT, CVFDT, EFDT, LB, ARF,
and SRP. It is used as the baseline model for comparison with other
advanced models. EFDT is selected because it is the most state-of-
the-art and stable tree-based incremental learning method that often

70

achieves better performance than other incremental learning methods
[130].

2. ARF and SRP are selected because they are the most state-of-the-art
and stable ensemble learning methods. They have strong data stream
analysis capability and often outperform other drift adaptation meth-
ods [139] [140]. Additionally, unlike block-based ensemble methods
(e.g., SEA, AWE, ACE) that require the formation of data chunks,
ARF and SRP can work directly on individual data samples to avoid
result delays.

3. Using these four online learning algorithms allows us to comprehen-
sively compare incremental learning and ensemble learning methods,
the two primary types of drift-adaptive online learning algorithms.

After evaluating the performance of each learning model based on ac-
curacy and F1-scores, the best-performing and the second best-performing
models using default hyperparameters are selected for further evaluations
using HPO. By selecting not only the best-performing model but also the
second-best-performing model, the probability of missing the real optimal
model can be decreased.

After selecting the top-two learning models, their hyperparameters are
tuned by the HPO technique to obtain the two optimized models and then
select the final optimal model. As shown in Tables 7 - 11, the two best-
performing batch learning algorithms on both datasets are RF and Light-
GBM, while the two best-performing online learning methods are ARF and
SRP. Thus, the hyperparameters of these four algorithms are optimized. Ta-
ble 7 illustrates the search space and the detected optimal values for the
hyperparameters of these learning algorithms. Continuous hyperparameters
are assigned a search range, while categorical hyperparameters are assigned
all possible values/choices.

BO-TPE is used as the optimization method for automated model se-
lection and HPO. As discussed in Section 4.4, other optimization methods
include GS, RS, BO-GP, BO-TPE, gradient-based models, hyperband, PSO,
and RL. BO-TPE is selected for ML model optimization due to the following
reasons:

1. It works well with large hyperparameter space and all types of hy-
perparameters. As the proposed AutoML framework uses several ML
models with a large number of hyperparameters, such as RF, Light-
GBM, and MLP, certain other optimization methods that do not work

71

well with large hyperparameter space and different types of hyperpa-
rameters, like GS, RS, BO-GP, Hyperband, and gradient-based models,
are unsuitable for the proposed work.

2. Compared with other complex optimization methods, like GA and RL,
BO-TPE has a low time complexity of O(nlogn) [20].

To conclude, using BO-TPE enables the proposed AutoML framework to
return the optimized models with the best performance at a fast speed.

Table 7: The HPO configuration of well-performing learning models.
Model Hyperparameter

Name
Configuration
Space

Optimal Value
on CICIDS2017

Optimal Value
on IoTID20

LightGBM

n estimators [50,500] 360 440

max depth [5,50] 36 38

learning rate (0, 1) 0.957 0.456

num leaves [100,2000] 1100 1200

min child samples [10,50] 50 25

RF

n estimators [50,500] 460 220

max depth [5,50] 26 14

min samples split [2,11] 8 2

min samples leaf [1,11] 1 4

criterion [’gini’, ’entropy’] ’entropy’ ’entropy’

ARF
n models [3, 20] 18 15

drift detector [‘ADWIN’,
‘DDM’]

‘DDM’ ‘DDM’

SRP
n models [3, 20] 14 10

drift detector [‘ADWIN’,
‘DDM’]

‘DDM’ ‘DDM’

The evaluation method for the learning models is determined by the tasks
and environments. For offline learning in static environments, 5-fold cross-
validation is used in the experiments since it can help develop a generic
and robust learning model. As described in Section 8.2, hold-out valida-
tion and cross-validation are the two commonly used validation methods for
offline/static learning. Compared with hold-out validation, which only eval-
uates ML models on a certain part of data and may obtain biased models
that only perform well on a specific area of the data, 5-fold cross-validation
splits the dataset into five equal-sized folds and evaluates the ML models
on each fold to evaluate their generalization capabilities. Obtaining the ML
models with optimal cross-validation performance can prevent them from
over-fitting the dataset. The number of folds, five, is selected by balancing
the evaluation time and model generalizability [166]. If the number of folds
is too large, it will take much additional time; if it is too small, it would

72

be insufficient to evaluate the model’s generalizability. For online learning
in dynamic environments, prequential evaluation introduced in Section 8.2.3
is used in the experiments to evaluate the long-term learning performance
of the drift-adaptive models on IoT time-series data, as it is the standard
evaluation method for online learning.

Lastly, the four common classification metrics, accuracy, precision, recall,
and F1-scores, as well as a model efficiency metric, model learning time,
are adopted to evaluate the AutoML framework’s performance. The selected
four classification performance metrics are the most common metrics that are
used in most papers and can reflect the ML model performance sufficiently
[142] [167]. As the IoT anomaly detection datasets are usually imbalanced
datasets, many individual performance metrics, such as accuracy, precision,
and recall, cannot reflect the model performance on imbalanced datasets
alone. Thus, the four common classification metrics, accuracy, precision,
recall, and F1-scores, are considered together to comprehensively compare
the ML models and avoid biased evaluation results. The F1-score considers
data distributions and uses the harmonic mean of the Recall and Precision
scores to give a fair view of anomaly detection results and minimize bias.
This is because, in F1-scores, both false negatives (measured by recall) and
false positives (measured by precision) are taken into account [167]. Thus,
it is chosen as the primary performance metric for evaluating the proposed
AutoML pipeline.

On the other hand, due to the processing time and efficiency requirements
of IoT systems, the model learning time is also calculated to compare the
learning speed of different ML models. The final ML model that is suitable for
IoT data analytics should strike a balance between the model’s effectiveness
and efficiency.

The experiments were conducted on a machine with an i7-8700 processor
and 16 GB of memory, representing an IoT server machine that supports
large IoT data analytics. The techniques and methods utilized in the studies
are implemented using the Python packages: Auto-Sklearn [94], Hyperopt
[148], Skmultiflow [152], and River [153].

10.3. Experimental Results and Analysis

In this work, two series of experiments were conducted to validate the
effectiveness of the AutoML framework. The first series of experiments were
conducted to assess an offline AutoML pipeline in static IoT environments,
while the second series of experiments were conducted to evaluate an online

73

AutoML pipeline in dynamic IoT environments. The primary difference be-
tween the offline and online AutoML pipelines is the learning models used in
the framework (traditional ML models versus adaptive online models).

To assess the AutoML framework’s performance, we evaluated the accu-
racy, precision, recall, F1-score, and model learning time when using AutoML
versus when not using AutoML in both offline and online learning tests. The
experimental results for offline learning on the CICIDS2017 and IoTID20
datasets are shown in Tables 8 and 9, while the experimental results for
online learning on the CICIDS2017 and IoTID20 datasets are presented in
Tables 10 and 11.

Specifically, in each Table, three different sets of results are shown to
demonstrate the performance of the proposed AutoML pipeline. The first
set of results compares the performance of original ML algorithms with de-
fault hyperparameter configurations (without AutoML) as baseline models
for comparison purposes. The second set of results shows the performance of
ML algorithms after implementing the proposed AutoDP & AutoFE proce-
dures to illustrate the impact of data quality improvement by using AutoML.
The third set of results presents the performance of a complete AutoML
pipeline, which comprises AutoDP, AutoFE, automated model selection of
the top-2 ML algorithms, and HPO. The proposed AutoML pipeline starts
by implementing AutoDP and AutoFE, and then automatically selects the
two best-performing learning models based on their F1-scores shown in the
second set of results as the automated model selection procedure. After
that, the hyperparameters of the two selected models are optimized to ob-
tain a final optimal model with the best F1-score, as shown in the third set
of results. The well-performing configurations in each set experiment are
highlighted with boldface in Tables 8 - 11.

Table 8 summarizes the experimental results from the first series of ex-
periments on offline learning using the CICIDS2017 dataset. For original ML
models without using AutoML, five ML models (NB, MLP, KNN, RF, and
LightGBM) demonstrate largely different performances. The F1-scores of NB
and MLP models are at a low level (47.896% and 58.830%), because they
are simple models and under-fitting on the complex CICIDS2017 dataset, as
discussed in Table 1. RF and LightGBM models achieve high F1-scores of
99.248% and 99.525% due to their strong capacity to process complex and
imbalanced datasets. After implementing the proposed AutoDP and AutoFE
procedures, the RF and LightGBM models are still the two best-performing
models. Their F1-scores are more than 6% higher than those of the other

74

Table 8: The experimental results of offline learning on the CICIDS2017 dataset using
5-fold cross-validation.

AutoML
Proce-
dures

Learning
Algorithm

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 (%) Model
Learning
Time (s)

No

NB [37] 72.545 37.837 62.253 47.896 0.2

MLP [53] 88.536 94.277 43.701 58.830 63.5

KNN [32] 97.238 92.081 93.782 92.923 9.1

RF [29] 99.703 99.577 98.830 99.248 17.2

LightGBM
[46]

99.816 99.543 99.506 99.525 1.4

AutoDP &
AutoFE

NB 73.316 39.690 73.080 51.435 0.1

MLP 85.968 92.069 26.563 44.831 55.2

KNN 97.058 92.024 92.831 92.423 9.1

RF 99.735 99.632 99.012 99.294 13.3

LightGBM 99.844 99.616 99.579 99.598 0.9

All
RF 99.760 99.578 99.141 99.368 62.3

LightGBM 99.866 99.670 99.634 99.653 1.0

Table 9: The experimental results of offline learning on the IoTID20 dataset using 5-fold
cross-validation.

AutoML
Proce-
dures

Learning
Algorithm

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 (%) Model
Learning
Time (s)

No

NB [37] 89.603 95.886 92.882 94.359 0.5

MLP [53] 99.202 96.800 98.319 97.742 125.7

KNN [32] 97.445 98.258 99.027 98.641 43.3

RF [29] 99.920 99.913 100.0 99.953 25.5

LightGBM
[46]

99.984 99.985 99.998 99.991 2.5

AutoDP &
AutoFE

NB 93.628 93.629 99.998 96.709 0.2

MLP 95.009 95.099 98.943 97.781 113.6

KNN 97.865 98.534 99.196 98.864 44.3

RF 99.976 99.973 100.0 99.989 16.3

LightGBM 99.986 99.986 99.998 99.992 1.2

All
RF 99.984 99.980 100.0 99.991 29.5

LightGBM 99.992 99.993 99.998 99.996 2.3

75

three compared ML models. Compared with the ML models without AutoDP
and AutoFE, the F1-scores of the RF and LightGBM models have improved
from 99.248% to 99.294% and from 99.525% to 99.598%, respectively. This is
because the data quality has been improved by using SMOTE to balance the
dataset and using FS methods to remove noisy features. Additionally, the
learning time for RF and LightGBM has been reduced from 17.2s to 13.3s
and from 1.4s to 0.9s, respectively. This is because the number of features of
the CICIDS2017 dataset has been reduced from 80 to 19 after implementing
the AutoFE technique. Furthermore, after implementing the HPO procedure
to optimize the RF and LightGBM models to complete the entire AutoML
pipeline, the performance of the learning models has been further improved,
and the optimal LightGBM model with the highest F1-score of 99.653% is
returned as the final model.

Similarly, as shown in Table 9, the RF and LightGBM models outper-
form the other three compared ML models on the IoTID20 dataset due
to their ability to analyze complex and imbalanced IoT anomaly detec-
tion data. Their F1-scores have slightly improved from 99.953% to 99.989%
and 99.991% to 99.992% after implementing AutoDP and AutoFE, as the
SMOTE method has been implemented to balance the dataset and the FS
methods have been implemented to remove irrelevant and noisy features. As
the number of features has been reduced from 83 to 31, the learning time
has also been reduced for each ML model. After conducting the HPO proce-
dures on the two best-performing models, RF and LightGBM, the optimized
LightGBM model achieves the highest F1-score of 99.996% on the IoTID20
dataset and is selected as the final optimal model.

To summarize, implementing the AutoML pipeline can obtain a better
offline learning model with 0.128% and 0.005% F1-score improvement as well
as 28.6% and 8.0% reduction in learning time, when compared to the best-
performing learning model obtained without AutoML on the CICIDS2017
and IoTID20 datasets, respectively.

In the second series of experiments for online learning, the results on
the CICIDS2017 and IoTID20 datasets are shown in Tables 10 and 11, re-
spectively. To justify the necessity of online adaptive learning, the best-
performing static ML model in the offline learning experiments, offline Light-
GBM, is also evaluated for comparison purposes. As shown in Table 10, the
offline LightGBM model shows the worst F1-scores of 50.510% among the
five evaluated models (offline LightGBM, HT, EFDT, ARF, and SRP) on
the CICIDS2017 dataset. This is because many new or zero-day attacks were

76

Table 10: The experimental results of online learning on the CICIDS2017 dataset using
prequential evaluation.

AutoML
Proce-
dures

Learning
Algorithm

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 (%) Model
Learning
Time (s)

No

Offline
LightGBM
[46]

88.033 90.538 36.794 50.510 7.4

HT [127] 88.676 95.266 43.451 59.681 17.1

EFDT [130] 95.132 86.438 88.674 87.541 17.4

ARF [139] 96.228 92.784 87.228 89.920 30.8

SRP [140] 95.772 92.204 85.292 88.614 231.7

AutoDP &
AutoFE

Offline
LightGBM

85.023 76.967 18.323 29.599 6.2

HT 88.496 76.749 57.894 66.001 7.7

EFDT 94.181 84.880 84.966 84.923 7.9

ARF 94.912 89.045 83.948 86.421 26.6

SRP 94.547 90.314 80.342 85.037 101.8

All
ARF 98.593 96.259 96.455 96.357 29.3

SRP 98.990 97.801 96.944 97.371 139.4

Table 11: The experimental results of online learning on the IoTID20 dataset using pre-
quential evaluation.

AutoML
Proce-
dures

Learning
Algorithm

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 (%) Model
Learning
Time (s)

No

Offline
LightGBM
[46]

98.500 98.793 99.618 99.204 11.6

HT [127] 98.220 98.981 99.120 99.051 37.2

EFDT [130] 99.478 99.571 99.873 99.722 37.3

ARF [139] 98.195 98.434 99.659 99.043 65.3

SRP [140] 99.208 99.367 99.790 99.578 492.1

AutoDP &
AutoFE

Offline
LightGBM

99.037 99.005 99.983 99.492 9.4

HT 98.922 99.092 99.763 99.426 12.1

EFDT 99.280 99.359 99.877 99.617 12.2

ARF 99.501 99.541 99.928 99.734 51.1

SRP 99.494 99.539 99.922 99.730 159.2

All
ARF 99.664 99.658 99.985 99.821 58.5

SRP 99.705 99.726 99.960 99.843 199.7

77

launched in the creation process of the CICIDS2017 dataset, causing several
concept drift points. As offline LightGBM cannot adapt to concept drift and
can only detect existing types of attacks, its performance has been gradually
degrading over time. On the other hand, the four online learning methods
(HT, EFDT, ARF, and SRP), especially ARF and SRP, can adapt to con-
cept drift and maintain high performance. Among the four online learning
algorithms, ARF and SRP are the two best-performing learning models, with
F1-scores of 86.421% and 85.037% after implementing the AutoDP and Aut-
oFE procedures. This is because they are strong online ensemble models with
high drift adaptability, as discussed in Section 7.4.3. The two incremental
learning methods, HT and EFDT, are not as robust as ensemble models due
to their relatively low model complexity.

Compared with the learning models without using AutoDP and AutoFE,
although F1-scores of the learning models with AutoDP and AutoFE are
slightly lower, their model learning time has largely reduced from 30.8s to
26.6s and from 231.7s to 101.8s, respectively. The F1-scores are slightly
lower because the number of features of the CICIDS2017 dataset has been
largely reduced from 80 to 19 after implementing the AutoFE method, which
eliminates many less important features. As online learning usually starts
with a small number of samples, the features have a more significant impact
on online learning performance than offline learning. Although removing less
important features may ignore certain data patterns and slightly reduce the
learning performance, it can largely reduce the model learning time as the
complexity and size of the dataset have been significantly reduced. To achieve
real-time online learning in IoT data analytics, it is crucial to take learning
speed into account. Moreover, after implementing the HPO procedure to
complete the entire AutoML pipeline, the F1-scores of the ARF and SRP
models have significantly improved to 96.357% and 97.371%, respectively.
Thus, the proposed AutoML pipeline can return the optimal SRP model
with the highest F1-score of 97.371%. This justifies that the overall AutoML
procedures can still improve both model learning effectiveness and efficiency.

For the IoTID20 dataset, as shown in Table 11, the ARF and SRP models
have also achieved higher F1-scores than the other two learning models after
executing the AutoDP and AutoFE procedures, of 99.734% and 99.730%,
respectively, although the best-performing original learning model without
AutoML is EFDT (99.722%). This shows that different online learning mod-
els will perform differently in specific IoT data analytics tasks. Additionally,
the offline LightGBM still achieves a relatively low F1-score of 99.204% on

78

the IoTID20 dataset, which is much lower than the F1-scores of most online
learning methods.

After implementing AutoDP and AutoFE, the F1-scores of ARF and SRP
have increased by 0.691% and 0.152%, while their model learning time has
reduced by 21.8% and 67.7%, respectively. This is because the dataset re-
mains balanced during the learning process after implementing the SMOTE
method, and the feature size has been largely reduced from 83 to 31 after
implementing the IG and Pearson-based FS methods. Finally, after imple-
menting the HPO procedure, the optimal SRP model with the highest F1-
score of 99.843% can be returned. Therefore, implementing the AutoML
pipeline can obtain a better online learning model with 8.757% and 0.265%
F1-score improvement as well as 39.8% and 59.4% learning time reduction
than the same learning model obtained without AutoML on the CICIDS2017
and IoTID20 datasets, respectively.

In conclusion, the proposed AutoML pipeline enables us to obtain an
optimal learning model with high effectiveness and efficiency for IoT anomaly
detection tasks in both offline and online environments using the IoTID20
and CICIDS2017 datasets. Furthermore, the experimental results in Tables
8 and 11 have justified the following assumptions and theoretical analysis in
previous Sections:

1. Different ML methods have different performances in specific tasks, as
demonstrated by the performance of the five offline ML models and
four online learning models in the experimental results. This supports
the necessity of selecting appropriate models.

2. Hyperparameter tuning and optimization have a direct impact on the
model performance, as shown in the third set of results in each of Tables
8 - 11. The performance of learning models has been improved signif-
icantly by implementing the HPO method (“All” versus “AutoDP &
AutoFE”). This supports the necessity of hyperparameter optimization
or automated model tuning.

3. Data pre-processing and feature engineering methods affect learning
performance. The performance of most learning models has been im-
proved significantly by implementing AutoDP and AutoFE (“AutoDP
& AutoFE” versus “No”). This supports the necessity of AutoDP and
AutoFE.

4. Concept drift issues will cause model performance degradation, but
automated model updating and concept drift adaptation methods can

79

address model performance degradation. As shown in Tables 10 and
11, the best-performing offline models (offline LightGBM) still perform
the worst when compared to other online adaptive learning models
due to the occurrence of concept drift. This supports the necessity of
automated model updating and concept drift adaptation.

11. Open Challenges and Research Directions

To effectively apply AutoML methods to IoT streaming data analytics
problems, many challenges need to be addressed. In this Section, we discuss
the open challenges and research directions in this domain. These challenges
are classified into three major categories: IoT data analytics challenges, Au-
toML application challenges, and concept drift challenges, as summarized in
Table 12.

11.1. IoT Data Analytics Challenges

Although data analytics contributes significantly to IoT applications, it
is still in its early stages [7]. Numerous challenges must be addressed before
IoT data can be properly used in IoT applications [16], such as the quality,
privacy, and analytics speed of IoT data.

11.1.1. IoT Data Quality

Firstly, the quality of data has a direct effect on the performance of
data analytics models. Thus, it is critical to have high-quality data [16].
However, as IoT data is often collected from different data sources and is
highly variable, maintaining data quality is usually challenging. The high
generation speed and volume of IoT data are also significant problems [7].
Effective data integration has also become a challenge for creating high-
quality datasets from different IoT devices.

11.1.2. IoT Data Analytics Speed

Due to the massive amount of data generated by IoT devices, time con-
straints are a primary challenge of IoT data analytics. Many IoT applications
have real-time requirements, such as autonomous vehicles and e-health sys-
tems [68]. In these applications, real-time feedback on environmental changes
is required. However, many factors, like transmission delays and model learn-
ing time, have increased the reaction time of IoT systems. Therefore, it is
essential for data analytics methods to achieve real-time analytics on large

80

Table 12: The challenges and research directions of applying AutoML to IoT data analytics
Category Challenge Brief Description

IoT Data
Analytics

Challenges

IoT Data Quality Data quality has a direct effect on data analytics per-
formance. However, IoT data is often collected from
different data sources, it is often challenging to ensure
data quality.

IoT Data Privacy The collection process of IoT data streams often faces
privacy issues, as they are often from different IoT
devices/systems. Federated Learning (FL) techniques
can be used to protect data privacy.

IoT Data Analytics
Speed

IoT data analytics models often require fast processing
speed to achieve real-time processing in IoT systems.

AutoML
Challenges

Automated Model Up-
dating

The automated model updating process is often ig-
nored in many AutoML systems. This step is impor-
tant in real-world IoT data analytics applications, as
IoT data is often dynamic streaming data.

Data Pre-Processing
and Feature Engineer-
ing

Most AutoML systems only focus on automated model
selection and HPO procedures. Thus, data pre-
processing and feature engineering need more atten-
tion, as they also have a significant effect on model
performance.

Large Scale AutoML It is challenging to apply AutoML models on large-
scale data, such as ImageNet, as the learning models
often need to be trained many times to identify the
optimal solution.

Explainability AutoML solutions are often black boxes, so their ex-
plainability needs more research.

Transfer Learning in
AutoML

High complexity is a common issue in AutoML sys-
tems. Transfer learning techniques can be used to save
model learning time.

Benchmarking and
Comparability

A benchmark should be agreed upon by the commu-
nity for a fair comparison of different AutoML tech-
niques.

Concept Drift

Challenges

Unsupervised Learning More research should be conducted on unsupervised
or semi-supervised drift detection and adaptation, as
most existing methods are developed for supervised
learning.

Drift Analysis A comprehensive analysis should be conducted on the
detected drifts, such as the timing and severity of each
drift.

ML Model Integration Appropriate drift methods should be selected and inte-
grated with specific ML algorithms to develop effective
automated drift adaptation functionality.

Accurate Drift Detec-
tion

Drift detection methods should be capable of accu-
rately detecting different types of drift (e.g., abrupt
and gradual drift.)

81

amounts of IoT data generated at high speeds [16]. Real-time analytics allows
IoT devices to make real-time decisions and provide services. As described
in Section 2.2, edge computing and collaborative computing techniques are
promising solutions to achieve real-time analytics, but better architecture
should be designed to balance data analytics efficiency and accuracy.

On the other hand, to avoid unfeasible IoT data analytics due to time
or memory constraints, distributed ML is a promising solution that allocates
the learning process over multiple workstations [168]. Critical methods of
distributed ML include data parallelism, model parallelism, task parallelism,
and hybrid parallelism [169].

In data parallelism, the training dataset is partitioned into multiple sub-
sets and then distributed to multiple computing entities. On the computing
entities, each subset is trained by the same model in parallel. Data paral-
lelism can adapt to increasing volumes of training data, but it is difficult to
handle complex ML models (e.g., DL models with large numbers of layers)
due to their high memory footprints and transmission delays. To handle
complex ML models that are difficult to be loaded into single computing
entities, model parallelism is another distributed ML method that splits a
ML model into multiple parts and then places them in different computing
entities. Model parallelism can address the memory constraints of computing
devices and improve data processing speed. Task parallelism is the process of
executing computing tasks or programs on different processors on the same
or multiple computing devices. For example, multiple threads can be created
for a specific task to enable parallel execution, and each thread is in charge
of carrying out a different action. Apache Storm is a popular task paral-
lelism framework for big data analytics [169]. Hybrid parallelism refers to
the combination of different parallelism techniques. For example, data and
model parallelism methods can be implemented simultaneously to save both
execution time and memory. Task parallelism can also be combined with
data parallelism to make use of both multi-threading and subsets.

Unlike traditional data processing systems that collect data from multiple
sources for central processing, in distributed ML, every IoT end device or
edge server can store and process its own data in itself or only share data
with trusted devices to avoid the leakage of private and sensitive data. The
above distributed ML methods enable each computing device to process data
locally without leakage. Distributed ML can also improve data analytics
speed by enabling parallel execution and reducing data transmission time.
This is because the computational time of analyzing a large central database

82

is much higher than dividing it into multiple sub-tasks that analyze data
in parallel [168]. Thus, both data security and processing efficiency can be
improved by using distributed ML techniques.

11.1.3. IoT Data Security and Privacy

With the advent of data analytics techniques for IoT data, data security
has emerged as a critical concern [7]. As a comprehensive IoT dataset is often
generated from different data sources, certain personal or sensitive business
data may be derived during the data collection process [16]. Thus, it is
crucial for IoT systems to solve data privacy issues.

Cybersecurity mechanisms, like data encryption and device authentica-
tion, can improve the privacy of IoT data. However, these techniques intro-
duce additional overhead to IoT systems. On the other hand, distributed ML
and Federated Learning (FL) techniques can be a potential solution for IoT
data privacy [170]. By distributed ML approaches, the data is stored only
in local IoT devices to make data unavailable to unauthorized devices, thus
maintaining data security and privacy. FL techniques can train ML models
without direct access to local data by exchanging model parameter values
between edge and central servers [171]. Thus, by the employment of FL ap-
proaches, the privacy of IoT data can be protected without compromising
learning performance.

11.1.4. IoT Data Analytics Application Benchmarks

11.2. AutoML Challenges

AutoML has made considerable strides in the previous decade in automat-
ing model construction and development, especially for supervised learning
tasks. However, to be widely applied to real-world IoT applications, AutoML
still faces many challenges [172].

11.2.1. Automated Model Updating

Despite the development of AutoML, most AutoML solutions are offline
models designed for static datasets. However, many real-world applications,
like IoT systems, face concept drift issues throughout the data analytics
process, and most existing AutoML solutions only update models using new
data samples [15]. Therefore, this paper considers automated model updates
by addressing concept drift issues in the AutoML pipeline, which is a novel
contribution to AutoML applications. Considering automated model updates

83

can help construct robust AutoML models that maintain effectiveness over
time.

11.2.2. Data Pre-Processing and Feature Engineering

Although there are many existing AutoML solutions, the majority of them
focus on automated model selection and HPO. Researchers have paid little
attention to automated data pre-processing and feature engineering [172].
However, data pre-processing and feature engineering are critical components
of the AutoML pipeline and have a direct influence on system performance.
It is often challenging to generalize and automate the feature engineering
process because it is very task- and dataset-dependent [19]. Appropriate fea-
ture engineering often requires specialized domain knowledge or a significant
amount of effort. Therefore, automated feature engineering is a critical but
challenging subject that needs further research.

11.2.3. Large Scale AutoML

Applying AutoML to large-scale data is still an unsolved issue. Due to
the fact that AutoML pipelines often need a significant number of model
trainings to identify the optimum final learner, the majority of AutoML
solutions are developed on small datasets, with just a few capable of large-
scale data learning. For instance, research on AutoML solutions for the
ImageNet problem is currently rather limited, owing to the dataset’s massive
size [20].

11.2.4. Explainability

In general, AutoML solutions are black boxes that attempt to explore
the space of possible models and discover the optimal solution. Despite
AutoML’s advances, the community has not explored the prospect of trans-
parent AutoML systems. AutoML models should have mechanisms for ex-
plaining and understanding them, since this would considerably improve Au-
toML’s accessibility. On the other hand, data visualization techniques can
also be considered in HITL-based applications. Through effective data visual-
ization, humans can better interpret and analyze intermediate data analytics
results to further enhance prediction performance.

11.2.5. Transfer Learning in AutoML

Due to the high complexity of existing AutoML solutions in terms of time
and space, transfer learning methods can be utilized to increase AutoML’s

84

efficiency. This is because transfer learning enables the reduction of unneces-
sary model retrainings via the usage of existing models. While meta-learning
processes are a subtype of transfer learning, transfer learning can also refer to
the transfer of knowledge about the optimization process (e.g., transferring
information on the dynamics of the optimization process from task to task)
[65].

11.2.6. Benchmarking and Comparability

As various AutoML systems have distinct benefits and drawbacks in dif-
ferent IoT applications, the community should agree on a set of common
benchmarks that allow a fair comparison of different techniques [20]. Sim-
ilarly, code sharing and processes that facilitate the replication of AutoML
discoveries may have a substantial impact on the field’s maturity.

12. Conclusion

Machine Learning (ML) and Deep Learning (DL) algorithms have achieved
great success in data analytics tasks for IoT applications, such as intelligent
transportation systems, smart homes, e-health, and IoT security. However,
developing effective ML models for specific IoT tasks requires a high level of
human expertise, which limits their applicability. Thus, Automated ML (Au-
toML) has become a promising solution for constructing ML models without
or with minimal human intervention. In this paper, we have comprehensively
discussed the procedures of the standard AutoML pipeline, including auto-
mated data pre-processing, automated feature engineering, automated model
selection, Hyper-Parameter Optimization (HPO), and automated model up-
dating with concept drift adaptation. Moreover, we have explored the IoT
data analytics tasks, as well as the ML and DL models that are often em-
ployed in IoT data analytics. Existing tools and libraries for implementing
AutoML and IoT data analytics are also presented in this paper. Addition-
ally, a case study of IoT anomaly detection is conducted in this work to
demonstrate the procedures of AutoML applications. Experimental results
have shown the benefits of using AutoML frameworks in IoT data analytics
problems. Finally, we discuss the open challenges and research directions
related to the existing AutoML and IoT data analytics tasks. Although this
paper provides a comprehensive discussion and a case study of applying Au-
toML technology to IoT data analytics, due to time and resource constraints,
a more comprehensive and fair benchmark of AutoML techniques should be

85

developed for the community in the future. Additionally, the automation
of data pre-processing and feature engineering still has much room for im-
provement, so advanced automation techniques should be proposed to better
automate these two ML procedures. In future work, we will explore the appli-
cation of AutoML in other areas like sentiment analysis and conduct research
on other techniques to further improve IoT data analytics performance, like
distributed ML.

References

[1] T. Yu, X. Wang, Real-Time Data Analytics in Internet of
Things Systems, in: Y.-C. Tian, D.C. Levy (Eds.), Handb. Real-
Time Comput., Springer Singapore, Singapore, 2020: pp. 1–28.
https://doi.org/10.1007/978-981-4585-87-3 38-1.

[2] J. Lloret, S. Sendra, P.L. González, L. Parra, An IoT Group-Based Pro-
tocol for Smart City Interconnection, in: S. Nesmachnow, L. Hernández
Callejo (Eds.), Smart Cities, Springer International Publishing, Cham,
2019: pp. 164–178.

[3] Cisco Annual Internet Report (2018–2023) White Paper, [online] Avail-
able: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html.

[4] S.S. Goel, A. Goel, M. Kumar, G. Moltó, A review of Internet of Things:
qualifying technologies and boundless horizon, J. Reliab. Intell. Environ.
7 (2021) 23–33. https://doi.org/10.1007/s40860-020-00127-w.

[5] D. Liu, H. Zhen, D. Kong, X. Chen, L. Zhang, M. Yuan, H. Wang,
Sensors Anomaly Detection of Industrial Internet of Things Based on
Isolated Forest Algorithm and Data Compression, Sci. Program. 2021
(2021). https://doi.org/10.1155/2021/6699313.

[6] G. PANDIAN, M. PECHT, E. ZIO, M. HODKIEWICZ,
Data-driven reliability analysis of Boeing 787 Dream-
liner, Chinese J. Aeronaut. 33 (2020) 1969–1979.
https://doi.org/https://doi.org/10.1016/j.cja.2020.02.003.

86

[7] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I.A.T. Hashem, A.
Siddiqa, I. Yaqoob, Big IoT Data Analytics: Architecture, Opportuni-
ties, and Open Research Challenges, IEEE Access. 5 (2017) 5247–5261.
https://doi.org/10.1109/ACCESS.2017.2689040.

[8] A. Holzinger, Interactive machine learning for health informatics: when
do we need the human-in-the-loop?, Brain Informatics. 3 (2016) 119–131.

[9] Y.C. Goh, X.Q. Cai, W. Theseira, G. Ko, K.A. Khor, Evaluating human
versus machine learning performance in classifying research abstracts,
Scientometrics. 125 (2020) 1197–1212. https://doi.org/10.1007/s11192-
020-03614-2.

[10] L. Robertsson, B. Iliev, R. Palm, P. Wide, Per-
ception modeling for human-like artificial sensor sys-
tems, Int. J. Hum. Comput. Stud. 65 (2007) 446–459.
https://doi.org/https://doi.org/10.1016/j.ijhcs.2006.11.003.

[11] E. Adi, A. Anwar, Z. Baig, S. Zeadally, Machine learning and data
analytics for the IoT, Neural Comput. Appl. 32 (2020) 16205–16233.
https://doi.org/10.1007/s00521-020-04874-y.

[12] M. Injadat, A. Moubayed, A.B. Nassif, A. Shami, Machine learning
towards intelligent systems: applications, challenges, and opportunities,
Artif. Intell. Rev. (2021). https://doi.org/10.1007/s10462-020-09948-w.

[13] Q. Yao, M. Wang, Y. Chen, W. Dai, H. Yi-Qi, L. Yu-Feng, T.
Wei-Wei, Y. Qiang, Y. Yang, Taking Human out of Learning Ap-
plications: A Survey on Automated Machine Learning, (2018) 1–26.
http://arxiv.org/abs/1810.13306.

[14] X. He, K. Zhao, X. Chu, AutoML: A survey of the
state-of-the-art, Knowledge-Based Syst. 212 (2021) 106622.
https://doi.org/10.1016/j.knosys.2020.106622.

[15] L. Yang, A. Shami, A Lightweight Concept Drift Detection and Adap-
tation Framework for IoT Data Streams, IEEE Internet Things Mag. 4
(2021) 96–101. https://doi.org/10.1109/IOTM.0001.2100012.

[16] M.S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Bar-
naghi, A.P. Sheth, Machine learning for internet of things data

87

http://arxiv.org/abs/1810.13306

analysis: a survey, Digit. Commun. Networks. 4 (2018) 161–175.
https://doi.org/https://doi.org/10.1016/j.dcan.2017.10.002

[17] K. Chauhan, S. Jani, D. Thakkar, R. Dave, J. Bhatia, S.
Tanwar, M.S. Obaidat, Automated Machine Learning: The
New Wave of Machine Learning, 2nd Int. Conf. Innov.
Mech. Ind. Appl. ICIMIA 2020 - Conf. Proc. (2020) 205–212.
https://doi.org/10.1109/ICIMIA48430.2020.9074859.

[18] R. Elshawi, S. Sakr, Automated Machine Learning: Techniques and
Frameworks, in: R.-D. Kutsche, E. Zimányi (Eds.), Big Data Manag.
Anal., Springer International Publishing, Cham, 2020: pp. 40–69.

[19] M.A. Zöller, M.F. Huber, Benchmark and Survey of Automated Ma-
chine Learning Frameworks, J. Artif. Intell. Res. 70 (2021) 409–472.
https://doi.org/10.1613/JAIR.1.11854.

[20] L. Yang, A. Shami, On hyperparameter optimization of machine learning
algorithms: Theory and practice, Neurocomputing. 415 (2020) 295–316.
https://doi.org/https://doi.org/10.1016/j.neucom.2020.07.061.

[21] M. Mohammadi, A. Al-Fuqaha, S. Sorour, M. Guizani, Deep
learning for IoT big data and streaming analytics: A sur-
vey, IEEE Commun. Surv. Tutorials. 20 (2018) 2923–2960.
https://doi.org/10.1109/COMST.2018.2844341.

[22] A.A. Cook, G. Mısırlı, Z. Fan, Anomaly Detection for IoT Time-
Series Data: A Survey, IEEE Internet Things J. 7 (2020) 6481–6494.
https://doi.org/10.1109/JIOT.2019.2958185.

[23] S.K. Sharma, X. Wang, Live Data Analytics With Collaborative Edge
and Cloud Processing in Wireless IoT Networks, IEEE Access. 5 (2017)
4621–4635. https://doi.org/10.1109/ACCESS.2017.2682640.

[24] Y. Wu, X. Gao, S. Zhou, W. Yang, Y. Polyanskiy, G. Caire, Massive
Access for Future Wireless Communication Systems, IEEE Wirel. Com-
mun. 27 (2020) 148–156. https://doi.org/10.1109/MWC.001.1900494.

[25] C. Yin, S. Zhang, J. Wang, N.N. Xiong, Anomaly Detection
Based on Convolutional Recurrent Autoencoder for IoT Time

88

Series, IEEE Trans. Syst. Man, Cybern. Syst. (2020) 1–11.
https://doi.org/10.1109/tsmc.2020.2968516.

[26] A. L’Heureux, K. Grolinger, H.F. Elyamany, M.A.M. Capretz, Machine
Learning with Big Data: Challenges and Approaches, IEEE Access. 5
(2017) 7776–7797. https://doi.org/10.1109/ACCESS.2017.2696365.

[27] B.I.F. Maciel, J.I.G. Hidalgo, R.S.M. de Barros, An Ultimately
Simple Concept Drift Detector for Data Streams, in: 2021
IEEE Int. Conf. Syst. Man, Cybern., 2021: pp. 625–630.
https://doi.org/10.1109/SMC52423.2021.9659127.

[28] N. Afshan, R.K. Rout, Machine Learning Techniques for IoT
Data Analytics, Big Data Anal. Internet Things. (2021) 89–113.
https://doi.org/10.1002/9781119740780.ch3.

[29] A. Khattab, N. Youssry, Machine Learning for IoT Systems, in:
M. Alam, K.A. Shakil, S. Khan (Eds.), Internet Things Concepts
Appl., Springer International Publishing, Cham, 2020: pp. 105–127.
https://doi.org/10.1007/978-3-030-37468-6 6.

[30] A. Ray, A.K. Chaudhuri, Smart healthcare disease diagno-
sis and patient management: Innovation, improvement and
skill development, Mach. Learn. with Appl. 3 (2021) 100011.
https://doi.org/https://doi.org/10.1016/j.mlwa.2020.100011.

[31] Y.M. Galvão, V.A. Albuquerque, B.J.T. Fernandes, M.J.S. Valença,
Anomaly detection in smart houses: Monitoring elderly daily behav-
ior for fall detecting, in: 2017 IEEE Lat. Am. Conf. Comput. Intell.,
2017: pp. 1–6. https://doi.org/10.1109/LA-CCI.2017.8285701.

[32] P. Bhatt, B. Thakker, A Novel Forecastive Anomaly Based
Botnet Revelation Framework for Competing Concerns in In-
ternet of Things, J. Appl. Secur. Res. 16 (2021) 258–278.
https://doi.org/10.1080/19361610.2020.1745594.

[33] I. Rish, An empirical study of the naive Bayes classifier, IJ-
CAI 2001 Work. Empir. Methods Artif. Intell. 22230 (2001) 41–46.
https://doi.org/10.1039/b104835j.

89

[34] A.M. Kibriya, E. Frank, B. Pfahringer, G. Holmes, Multinomial naive
bayes for text categorization revisited, Lect. Notes Artif. Intell. (Sub-
series Lect. Notes Comput. Sci. 3339 (2004) 488–499.

[35] J.D.M. Rennie, L. Shih, J. Teevan, The Poor Assumptions of Naive
Bayes Classifiers, Proc. Twent. Int. Conf. Mach. Learn. (ICML). (2003).
https://people.csail.mit.edu/jrennie/papers/icml03-nb.pdf.

[36] S.M. Tahsien, H. Karimipour, P. Spachos, Machine learn-
ing based solutions for security of Internet of Things (IoT):
A survey, J. Netw. Comput. Appl. 161 (2020) 102630.
https://doi.org/https://doi.org/10.1016/j.jnca.2020.102630.

[37] A. Mehmood, M. Mukherjee, S.H. Ahmed, H. Song, K.M. Malik, NBC-
MAIDS: Näıve Bayesian classification technique in multi-agent system-
enriched IDS for securing IoT against DDoS attacks, J. Supercomput.
74 (2018) 5156–5170. https://doi.org/10.1007/s11227-018-2413-7.

[38] S. Satpathy, P. Mohan, S. Das, S. Debbarma, A new healthcare diagnosis
system using an IoT-based fuzzy classifier with FPGA, J. Supercomput.
76 (2020) 5849–5861. https://doi.org/10.1007/s11227-019-03013-2.

[39] L. Yang, R. Muresan, A. Al-Dweik, L.J. Hadjileontiadis,
Image-Based Visibility Estimation Algorithm for Intelligent
Transportation Systems, IEEE Access. 6 (2018) 76728–76740.
https://doi.org/10.1109/ACCESS.2018.2884225.

[40] Y. Ping, Hybrid fuzzy SVM model using CART and MARS for credit
scoring, 2009 Int. Conf. Intell. Human-Machine Syst. Cybern. IHMSC
2009. 2 (2009) 392–395. https://doi.org/10.1109/IHMSC.2009.221.

[41] M. Injadat, A. Moubayed, A. Shami, Detecting Botnet At-
tacks in IoT Environments: An Optimized Machine Learning Ap-
proach, in: 2020 32nd Int. Conf. Microelectron., 2020: pp. 1–4.
https://doi.org/10.1109/ICM50269.2020.9331794.

[42] M. Injadat, F. Salo, A.B. Nassif, A. Essex, A. Shami, Bayesian
Optimization with Machine Learning Algorithms Towards
Anomaly Detection, 2018 IEEE Glob. Commun. Conf. (2019) 1–6.
https://doi.org/10.1109/glocom.2018.8647714.

90

[43] L. Yang, A. Moubayed, I. Hamieh, A. Shami, Tree-Based
Intelligent Intrusion Detection System in Internet of Vehi-
cles, in: 2019 IEEE Glob. Commun. Conf., 2019: pp. 1–6.
https://doi.org/10.1109/GLOBECOM38437.2019.9013892.

[44] G. Premalatha, V.T. Bai, Design and implementation of intelligent pa-
tient in-house monitoring system based on efficient XGBoost-CNN ap-
proach, Cogn. Neurodyn. (2022). https://doi.org/10.1007/s11571-021-
09754-2.

[45] X. Ding, T. Jiang, W. Xue, Z. Li, Y. Zhong, A New Method of Human
Gesture Recognition Using Wi-Fi Signals Based on XGBoost, in: 2020
IEEE/CIC Int. Conf. Commun. China (ICCC Work., 2020: pp. 237–241.
https://doi.org/10.1109/ICCCWorkshops49972.2020.9209953.

[46] P.P. Kundu, L. Anatharaman, T. Truong-Huu, An Empirical Eval-
uation of Automated Machine Learning Techniques for Malware De-
tection, in: Proc. 2021 ACM Work. Secur. Priv. Anal., Association
for Computing Machinery, New York, NY, USA, 2021: pp. 75–81.
https://doi.org/10.1145/3445970.3451155.

[47] C. Ding, X. He, K-means clustering via principal component analysis,
Proceedings, Twenty-First Int. Conf. Mach. Learn. ICML 2004. (2004)
225–232.

[48] K. Khan, S.U. Rehman, K. Aziz, S. Fong, S. Sarasvady, A.
Vishwa, DBSCAN: Past, present and future, 5th Int. Conf.
Appl. Digit. Inf. Web Technol. ICADIWT 2014. (2014) 232–238.
https://doi.org/10.1109/ICADIWT.2014.6814687.

[49] H. Zhou, P. Wang, H. Li, Research on adaptive parameters determina-
tion in DBSCAN algorithm, J. Inf. Comput. Sci. 9 (2012) 1967–1973.

[50] J. Shlens, A Tutorial on Principal Component Analysis, (2014).
http://arxiv.org/abs/1404.1100.

[51] Sharipuddin, B. Purnama, Kurniabudi, E.A. Winanto, D. Stiawan, D.
Hanapi, M.Y. bin Idris, R. Budiarto, Features Extraction on IoT In-
trusion Detection System Using Principal Components Analysis (PCA),
in: 2020 7th Int. Conf. Electr. Eng. Comput. Sci. Informatics, 2020: pp.
114–118. https://doi.org/10.23919/EECSI50503.2020.9251292.

91

http://arxiv.org/abs/1404.1100

[52] T.-B. Dang, M.-H. Tran, D.-T. Le, V. V Zalyubovskiy, H. Ahn, H.
Choo, Trend-adaptive multi-scale PCA for data fault detection in
IoT networks, in: 2018 Int. Conf. Inf. Netw., 2018: pp. 744–749.
https://doi.org/10.1109/ICOIN.2018.8343217.

[53] P. Lara-Beńıtez, M. Carranza-Garćıa, J.C. Riquelme, An Ex-
perimental Review on Deep Learning Architectures for Time
Series Forecasting, Int. J. Neural Syst. 31 (2021) 2130001.
https://doi.org/10.1142/S0129065721300011.

[54] Y. Fan, K. Xu, H. Wu, Y. Zheng, B. Tao, Spatiotemporal Modeling for
Nonlinear Distributed Thermal Processes Based on KL Decomposition,
MLP and LSTM Network, IEEE Access. 8 (2020) 25111–25121.

[55] R. Ahmad, I. Alsmadi, Machine learning approaches to IoT security:
A systematic literature review, Internet of Things. 14 (2021) 100365.
https://doi.org/https://doi.org/10.1016/j.iot.2021.100365.

[56] R.A. Khalil, N. Saeed, M. Masood, Y.M. Fard, M.-S. Alouini, T.Y. Al-
Naffouri, Deep Learning in the Industrial Internet of Things: Potentials,
Challenges, and Emerging Applications, IEEE Internet Things J. (2021)
1. https://doi.org/10.1109/JIOT.2021.3051414.

[57] S. Jadon, J.K. Milczek, A. Patankar, Challenges and approaches to
time-series forecasting in data center telemetry: A Survey, (2021).
http://arxiv.org/abs/2101.04224.

[58] C. Chen, Q. Zhang, M.H. Kashani, C. Jun, S.M. Bateni, S.S. Band, S.S.
Dash, K.W. Chau, Forecast of rainfall distribution based on fixed sliding
window long short-term memory, Eng. Appl. Comput. Fluid Mech. 16
(2022) 248–261.

[59] P. Liu, J. Wang, A.K. Sangaiah, Y. Xie, X. Yin, Analysis and Prediction
of Water Quality Using LSTM Deep Neural Networks in IoT Environ-
ment, Sustainability. 11 (2019). https://doi.org/10.3390/su11072058.

[60] D. Wu, Z. Jiang, X. Xie, X. Wei, W. Yu, R. Li, LSTM Learning
With Bayesian and Gaussian Processing for Anomaly Detection in
Industrial IoT, IEEE Trans. Ind. Informatics. 16 (2020) 5244–5253.
https://doi.org/10.1109/TII.2019.2952917.

92

http://arxiv.org/abs/2101.04224

[61] L. Yang, Comprehensive Visibility Indicator Algorithm for Adaptable
Speed Limit Control in Intelligent Transportation Systems, University
of Guelph, 2018.

[62] A. Banan, A. Nasiri, A. Taheri-Garavand, Deep learning-based ap-
pearance features extraction for automated carp species identification,
Aquac. Eng. 89 (2020) 102053.

[63] M. Roopak, G.Y. Tian, J. Chambers, An Intrusion Detec-
tion System Against DDoS Attacks in IoT Networks, in: 2020
10th Annu. Comput. Commun. Work. Conf., 2020: pp. 562–567.
https://doi.org/10.1109/CCWC47524.2020.9031206.

[64] F. Ullah, H. Naeem, S. Jabbar, S. Khalid, M.A. Latif, F. Al-turjman,
L. Mostarda, Cyber Security Threats Detection in Internet of Things
Using Deep Learning Approach, IEEE Access. 7 (2019) 124379–124389.
https://doi.org/10.1109/ACCESS.2019.2937347.

[65] L. Yang and A. Shami, A Transfer Learning and Optimized CNN Based
Intrusion Detection System for Internet of Vehicles, in: 2022 IEEE Int.
Conf. Commun., 2022: pp. 1–6.

[66] R.-H. Hwang, M.-C. Peng, V.-L. Nguyen, Y.-L. Chang, An LSTM-Based
Deep Learning Approach for Classifying Malicious Traffic at the Packet
Level, Appl. Sci. 9 (2019). https://doi.org/10.3390/app9163414.

[67] S. Shamshirband, T. Rabczuk, K.-W. Chau, A Survey of Deep Learning
Techniques: Application in Wind and Solar Energy Resources, IEEE
Access. 7 (2019) 164650–164666.

[68] F. Hussain, R. Hussain, S.A. Hassan, E. Hossain, Machine
Learning in IoT Security: Current Solutions and Future Chal-
lenges, IEEE Commun. Surv. Tutorials. 22 (2020) 1686–1721.
https://doi.org/10.1109/COMST.2020.2986444.

[69] W. Chen, X. Qiu, T. Cai, H.-N. Dai, Z. Zheng, Y. Zhang, Deep
Reinforcement Learning for Internet of Things: A Comprehen-
sive Survey, IEEE Commun. Surv. Tutorials. 23 (2021) 1659–1692.
https://doi.org/10.1109/COMST.2021.3073036.

93

[70] F. Pedregosa, et al., Scikit-learn: Machine Learning in Python, J. Mach.
Learn. Res. 12 (2011) 2825–2830.

[71] A. Mustafa, M. Rahimi Azghadi, Automated Machine Learning
for Healthcare and Clinical Notes Analysis, Computers. 10 (2021).
https://doi.org/10.3390/computers10020024.

[72] S. Abreu, Automated Architecture Design for Deep Neural Networks,
arXiv preprint arXiv:1908.10714, (2019).

[73] D. Xin, E.Y. Wu, D.J.-L. Lee, N. Salehi, A. Parameswaran, Whither
AutoML? Understanding the Role of Automation in Machine Learn-
ing Workflows, in: Proc. 2021 CHI Conf. Hum. Factors Comput. Syst.,
Association for Computing Machinery, New York, NY, USA, 2021.
https://doi.org/10.1145/3411764.3445306.

[74] M. Garouani, K. Zaysa, Leveraging the Automated Machine Learning
for Arabic Opinion Mining: A Preliminary Study on AutoML Tools
and Comparison to Human Performance, in: S. Motahhir, B. Bossoufi
(Eds.), Digit. Technol. Appl., Springer International Publishing, Cham,
2022: pp. 163–171.

[75] C. Thornton, F. Hutter, H.H. Hoos, K. Leyton-Brown, Auto-WEKA:
Combined selection and hyperparameter optimization of classification
algorithms, Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
Part F1288 (2013) 847–855. https://doi.org/10.1145/2487575.2487629.

[76] S. Lee, J. Kim, H. Kang, D.-Y. Kang, J. Park, Genetic Algorithm Based
Deep Learning Neural Network Structure and Hyperparameter Opti-
mization, Appl. Sci. 11 (2021). https://doi.org/10.3390/app11020744.

[77] T. Han, F.N.B. Gois, R. Oliveira, L.R. Prates, M.M. de A. Porto, Mod-
eling the progression of COVID-19 deaths using Kalman Filter and
AutoML, Soft Comput. 5 (2021). https://doi.org/10.1007/s00500-020-
05503-5.

[78] P.R. Lorenzo, J. Nalepa, et al., Particle swarm optimization for hyper-
parameter selection in deep neural networks, arXiv (2017) 481–488.

94

http://arxiv.org/abs/1908.10714

[79] B. James, B. Yoshua, Random Search for Hyper-Parameter
Optimization, J. Mach. Learn. Res. 13 (2012) 281–305.
https://doi.org/10.1162/153244303322533223.

[80] J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian Optimization
of Machine Learning Algorithms, arXiv (2012) 1–9.

[81] M. Seeger, Gaussian Processes for Machine Learning University of Cal-
ifornia at Berkeley, Int. J. Neural Syst. 14 (2004) 69–109.

[82] J. Bergstra, Algorithms for Hyper-Parameter Optimization Algorithms
for Hyper-Parameter Optimization, (2011).

[83] M. Injadat, A. Moubayed, A.B. Nassif, A. Shami, Multi-Stage
Optimized Machine Learning Framework for Network Intrusion
Detection, IEEE Trans. Netw. Serv. Manag. 4537 (2020) 1–14.
https://doi.org/10.1109/tnsm.2020.3014929.

[84] I. Dewancker, M. McCourt, S. Clark, Bayesian Optimization Primer,
(2015) 2–5. https://doi.org/10.1016/j.jss.2013.05.010.

[85] Y. Bengio, Gradient-based optimization of hyper-
parameters, Neural Comput. 12 (2000) 1889–1900.
https://doi.org/10.1162/089976600300015187.

[86] H.H. Yang, S.I. Amari, Complexity Issues in Natural Gradient Descent
Method for Training Multilayer Perceptrons, Neural Comput. 10 (1998)
2137–2157. https://doi.org/10.1162/089976698300017007.

[87] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
Hyperband: A novel bandit-based approach to hyperparameter opti-
mization, J. Mach. Learn. Res. 18 (2012) 1–52.

[88] K.Y. Chen, C.H. Wang, Support vector regression with genetic algo-
rithms in forecasting tourism demand, Tour. Manag. 28 (2007) 215–226.
https://doi.org/10.1016/j.tourman.2005.12.018.

[89] F.G. Lobo, D.E. Goldberg, M. Pelikan, Time complexity of genetic al-
gorithms on exponentially scaled problems, Proc. Genet. Evol. Comput.
Conf. (2000) 151– 158.

95

[90] E. Engineering, M. St, Parameter Selection in Particle Swarm Opti-
mization Department of Electrical Engineering lndiana University Pur-
due University Indianapolis, Evol. Program. VII. 1447 (1998) 591–600.
http://link.springer.com/chapter/10.1007/BFb0040810#page-1.

[91] P.S. Oliveto, J. He, X. Yao, Time complexity of evolutionary algorithms
for combinatorial optimization: A decade of results, Int. J. Autom. Com-
put. 4 (2007) 281–293. https://doi.org/10.1007/s11633-007-0281-3.

[92] J. Giovanelli, B. Bilalli, A. Abelló, Effective data pre-processing for
AutoML, CEUR Workshop Proc. 2840 (2021) 1–10.

[93] E. Jackson, R. Agrawal, Performance Evaluation of Different Feature
Encoding Schemes on Cybersecurity Logs, in: 2019 SoutheastCon, 2019:
pp. 1–9. https://doi.org/10.1109/SoutheastCon42311.2019.9020560.

[94] M. Feurer, A. Klein, K. Eggensperger, J.T. Springenberg, M. Blum,
F. Hutter, Auto-sklearn: Efficient and Robust Automated Machine
Learning, in: F. Hutter, L. Kotthoff, J. Vanschoren (Eds.), Autom.
Mach. Learn. Methods, Syst. Challenges, Springer International Pub-
lishing, Cham, 2019: pp. 113–134. https://doi.org/10.1007/978-3-030-
05318-5 6.

[95] A. Candel, V. Parmar, E. LeDell, A. Arora, Deep learning with H2O,
H2O. Ai Inc. (2016) 1–21.

[96] C.-F. Tsai, Y.-C. Chen, The optimal combination of feature selection
and data discretization: An empirical study, Inf. Sci. (Ny). 505 (2019)
282–293. https://doi.org/https://doi.org/10.1016/j.ins.2019.07.091.

[97] Y. Ma, J. Jin, Q. Huang, F. Dan, Data Preprocessing of Agricultural
IoT Based on Time Series Analysis, in: D.-S. Huang, V. Bevilacqua, P.
Premaratne, P. Gupta (Eds.), Intell. Comput. Theor. Appl., Springer
International Publishing, Cham, 2018: pp. 219–230.

[98] E. Law, Impyute Documentation, (2017) [online] Available:
https://buildmedia.readthedocs.org/media/pdf/impyute/latest/impyute.pdf.

[99] R.S. Olson, J.H. Moore, TPOT: A Tree-Based Pipeline Opti-
mization Tool for Automating Machine Learning, (2019) 151–160.
https://doi.org/10.1007/978-3-030-05318-5 8.

96

http://link.springer.com/chapter/10.1007/BFb0040810#page-1

[100] F. Bießmann, T. Rukat, P. Schmidt, P. Naidu, S. Schelter, A. Tap-
tunov, D. Lange, D. Salinas, DataWig: Missing value imputation for
tables, J. Mach. Learn. Res. 20 (2019) 1–6.

[101] Z. Chen, Q. Yan, H. Han, S. Wang, L. Peng, L. Wang, B. Yang,
Machine learning based mobile malware detection using highly im-
balanced network traffic, Inf. Sci. (Ny). 433–434 (2018) 346–364.
https://doi.org/10.1016/j.ins.2017.04.044.

[102] P. Kaur, A. Gosain, Comparing the Behavior of Oversampling and
Undersampling Approach of Class Imbalance Learning by Combining
Class Imbalance Problem with Noise, in: A.K. Saini, A.K. Nayak, R.K.
Vyas (Eds.), ICT Based Innov., Springer Singapore, Singapore, 2018:
pp. 23–30.

[103] Q. Kang, X.S. Chen, S.S. Li, M.C. Zhou, A Noise-Filtered Under-
Sampling Scheme for Imbalanced Classification, IEEE Trans. Cybern.
47 (2017) 4263–4274. https://doi.org/10.1109/TCYB.2016.2606104.

[104] Check, SMOTE: Synthetic Minority Over-sampling Technique, Adv.
Turbulence IX. 16 (2002) 732–735. https://doi.org/10.1613/jair.953.

[105] X. Tan, S. Su, Z. Huang, X. Guo, Z. Zuo, X. Sun, L. Li,
Wireless sensor networks intrusion detection based on SMOTE and
the random forest algorithm, Sensors (Switzerland). 19 (2019).
https://doi.org/10.3390/s19010203.

[106] L. Yang, A. Moubayed, A. Shami, MTH-IDS: A Multitiered Hybrid In-
trusion Detection System for Internet of Vehicles, IEEE Internet Things
J. 9 (2022) 616–632. https://doi.org/10.1109/JIOT.2021.3084796.

[107] A. Pandey, A. Jain, Comparative Analysis of KNN Algorithm using
Various Normalization Techniques, Int. J. Comput. Netw. Inf. Secur. 9
(2017) 36–42. https://doi.org/10.5815/ijcnis.2017.11.04.

[108] H. Eldeeb, S. Amashukeli, R. El Shawi, An Empirical Analysis of In-
tegrating Feature Extraction to Automated Machine Learning Pipeline,
in: A. Del Bimbo, R. Cucchiara, S. Sclaroff, G.M. Farinella, T. Mei, M.
Bertini, H.J. Escalante, R. Vezzani (Eds.), Pattern Recognition. ICPR
Int. Work. Challenges, Springer International Publishing, Cham, 2021:
pp. 336–344.

97

[109] P. Sondhi, Feature construction methods: a survey, Sifaka. Cs. Uiuc.
Edu. 69 (2010) 70–71.

[110] T. Thaher, M. Mafarja, H. Turabieh, P.A. Castillo, H. Faris, I. Aljarah,
Teaching Learning-Based Optimization With Evolutionary Binarization
Schemes for Tackling Feature Selection Problems, IEEE Access. 9 (2021)
41082–41103. https://doi.org/10.1109/ACCESS.2021.3064799.

[111] A. Bauer, M. Züfle, N. Herbst, A. Zehe, A. Hotho, S. Kounev, Time
Series Forecasting for Self-Aware Systems, Proc. IEEE. 108 (2020)
1068–1093. https://doi.org/10.1109/JPROC.2020.2983857.

[112] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, G. Zhang, Learning under
Concept Drift: A Review, IEEE Trans. Knowl. Data Eng. 31 (2019)
2346–2363. https://doi.org/10.1109/TKDE.2018.2876857.

[113] A.S. Iwashita, J.P. Papa, An Overview on Con-
cept Drift Learning, IEEE Access. 7 (2019) 1532–1547.
https://doi.org/10.1109/ACCESS.2018.2886026.

[114] K. Wadewale, S. Desai, M. Tennant, et al., Survey on Method of Drift
Detection and Classification for time varying data set, Comput. Biol.
Med. 32 (2016) 1–7.

[115] J. Gama, I. Žliobaitundefined, A. Bifet, M. Pechenizkiy, A. Bouchachia,
A Survey on Concept Drift Adaptation, ACM Comput. Surv. 46 (2014).
https://doi.org/10.1145/2523813.

[116] A. Bifet, R. Gavaldà, Learning from time-changing data with adap-
tive windowing, Proc. 7th SIAM Int. Conf. Data Min. (2007) 443–448.
https://doi.org/10.1137/1.9781611972771.42.

[117] P. Vorburger, A. Bernstein, Entropy-based concept shift detection,
Proc. - IEEE Int. Conf. Data Mining, ICDM. (2006) 1113–1118.
https://doi.org/10.1109/ICDM.2006.66.

[118] L.I. Kuncheva, Change detection in streaming multivariate data us-
ing likelihood detectors, IEEE Trans. Knowl. Data Eng. 25 (2013)
1175–1180. https://doi.org/10.1109/TKDE.2011.226.

98

[119] L. Yang, D.M. Manias, A. Shami, PWPAE: An Ensemble Framework
for Concept Drift Adaptation in IoT Data Streams, in: IEEE Glob.
Commun. Conf., 2021: pp. 1–6.

[120] J. Gama, P. Medas, G. Castillo, P. Rodrigues, Learning with
drift detection, Lect. Notes Comput. Sci. (Including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics). 3171 (2004) 286–295.
https://doi.org/10.1007/978-3-540-28645-5 29.

[121] P.B. Dongre, L.G. Malik, A review on real time data stream clas-
sification and adapting to various concept drift scenarios, Souvenir
2014 IEEE Int. Adv. Comput. Conf. IACC 2014. (2014) 533–537.
https://doi.org/10.1109/IAdCC.2014.6779381.

[122] M. Baena-Garćıa, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R.
Gavaldà, R. Morales-Bueno, Early Drift Detection Method, 4th ECML
PKDD Int. Work. Knowl. Discov. from Data Streams. 6 (2006) 77–86.
https://doi.org/10.1.1.61.6101.

[123] S.G.T.C. Santos, R.S.M. Barros, P.M. Gonçalves, Optimizing the pa-
rameters of drift detection methods using a genetic algorithm, Proc. -
Int. Conf. Tools with Artif. Intell. ICTAI. 2016-Janua (2016) 1077–1084.
https://doi.org/10.1109/ICTAI.2015.153.

[124] I. Žliobaitė, Learning under Concept Drift: an Overview, (2010) 1–36.
http://arxiv.org/abs/1010.4784.

[125] Y. Sun, K. Tang, Z. Zhu, X. Yao, Concept drift adaptation by exploit-
ing historical knowledge, IEEE Trans. Neural Networks Learn. Syst. 29
(2017) 4822–4832.

[126] R. Seraj, M. Ahmed, Concept Drift for Big Data, in: Z.M. Fadlullah,
A.-S. Khan Pathan (Eds.), Combat. Secur. Challenges Age Big Data
Powered by State-of-the-Art Artif. Intell. Tech., Springer International
Publishing, Cham, 2020: pp. 29–43. https://doi.org/10.1007/978-3-030-
35642-2 2.

[127] G. Hulten, L. Spencer, P. Domingos, Mining time-changing data
streams, Proc. Seventh ACM SIGKDD Int. Conf. Knowl. Discov. Data
Min. 18 (2001) 97–106. https://doi.org/10.1145/502512.502529.

99

http://arxiv.org/abs/1010.4784

[128] M. Żarkowski, Adaptive online neural network for face identification
with concept drift, Adv. Intell. Syst. Comput. 323 (2015) 703–712.
https://doi.org/10.1007/978-3-319-11310-4 61.

[129] M.M. Yacoub, A. Rezk, M.B. Senousy, Adaptive classification in data
stream mining, J. Theor. Appl. Inf. Technol. 98 (2020) 2637–2645.

[130] C. Manapragada, G.I. Webb, M. Salehi, Extremely fast decision tree,
Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (2018)
1953–1962. https://doi.org/10.1145/3219819.3220005.

[131] Y. Sun, Z. Wang, H. Liu, C. Du, J. Yuan, Online En-
semble Using Adaptive Windowing for Data Streams with Con-
cept Drift, Int. J. Distrib. Sens. Networks. 12 (2016) 4218973.
https://doi.org/10.1155/2016/4218973.

[132] W. Nick Street, Y.S. Kim, A streaming ensemble algo-
rithm (SEA) for large-scale classification, Proc. Seventh ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min. (2001) 377–382.
https://doi.org/10.1145/502512.502568.

[133] H. Wang, W. Fan, P.S. Yu, J. Han, Mining concept-
drifting data streams using ensemble classifiers, Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min. (2003) 226–235.
https://doi.org/10.1145/956750.956778.

[134] S. Wares, J. Isaacs, E. Elyan, Data stream mining: methods and
challenges for handling concept drift, SN Appl. Sci. 1 (2019) 1–19.
https://doi.org/10.1007/s42452-019-1433-0.

[135] K. Nishida, K. Yamauchi, T. Omori, ACE: Adaptive Classifiers-
Ensemble System for Concept-Drifting Environments, in: N.C. Oza, R.
Polikar, J. Kittler, F. Roli (Eds.), Mult. Classif. Syst., Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005: pp. 176–185.

[136] J.Z. Kolter, M.A. Maloof, Dynamic weighted majority: A new ensemble
method for tracking concept drift, Proc. - IEEE Int. Conf. Data Mining,
ICDM. (2003) 123–130. https://doi.org/10.1109/icdm.2003.1250911.

[137] R. Polikar, L. Udpa, S.S. Udpa, V. Honavar, Learn++: An in-
cremental learning algorithm for supervised neural networks, IEEE

100

Trans. Syst. Man Cybern. Part C Appl. Rev. 31 (2001) 497–508.
https://doi.org/10.1109/5326.983933.

[138] S.H. Bach, M.A. Maloof, Paired learners for concept drift,
Proc. - IEEE Int. Conf. Data Mining, ICDM. (2008) 23–32.
https://doi.org/10.1109/ICDM.2008.119.

[139] H.M. Gomes, A. Bifet, J. Read, J.P. Barddal, F. Enembreck, B.
Pfharinger, G. Holmes, T. Abdessalem, Adaptive random forests for
evolving data stream classification, Mach. Learn. 106 (2017) 1469–1495.
https://doi.org/10.1007/s10994-017-5642-8.

[140] H.M. Gomes, J. Read, A. Bifet, Streaming random patches
for evolving data stream classification, Proc. - IEEE Int.
Conf. Data Mining, ICDM. 2019-Novem (2019) 240–249.
https://doi.org/10.1109/ICDM.2019.00034.

[141] A. Bifet, G. Holmes, B. Pfahringer, Leveraging bagging for evolving
data streams, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics). 6321 LNAI (2010) 135–150.
https://doi.org/10.1007/978-3-642-15880-3 15.

[142] F. Salo, M. Injadat, A.B. Nassif, A. Shami, A. Essex, Data
Mining Techniques in Intrusion Detection Systems: A System-
atic Literature Review, IEEE Access. 6 (2018) 56046–56058.
https://doi.org/10.1109/ACCESS.2018.2872784.

[143] D. Chicco, M.J. Warrens, G. Jurman, The coefficient of determination
R-squared is more informative than SMAPE, MAE, MAPE, MSE and
RMSE in regression analysis evaluation, PeerJ Comput. Sci. 7 (2021)
e623. https://doi.org/10.7717/peerj-cs.623.

[144] B. Krawczyk, L.L. Minku, J. Gama, J. Stefanowski, M. Woźniak, En-
semble learning for data stream analysis: A survey, Inf. Fusion. 37 (2017)
132–156. https://doi.org/https://doi.org/10.1016/j.inffus.2017.02.004.

[145] A. Moubayed, M. Injadat, A. Shami, H. Lutfiyya, Stu-
dent Engagement Level in e-Learning Environment: Cluster-
ing Using K-means, Am. J. Distance Educ. 34 (2020) 1–20.
https://doi.org/10.1080/08923647.2020.1696140.

101

[146] C. Bergmeir, J.M. Beńıtez, On the use of cross-validation for
time series predictor evaluation, Inf. Sci. (Ny). 191 (2012) 192–213.
https://doi.org/https://doi.org/10.1016/j.ins.2011.12.028.

[147] J.I.G. Hidalgo, B.I.F. Maciel, R.S.M. Barros, Experimenting with pre-
quential variations for data stream learning evaluation, Comput. Intell.
35 (2019) 670–692. https://doi.org/10.1111/coin.12208.

[148] B. Komer, J. Bergstra, C. Eliasmith, Hyperopt-Sklearn: Automatic
Hyperparameter Configuration for Scikit-Learn, Proc. 13th Python Sci.
Conf. (2014) 32–37. https://doi.org/10.25080/majora-14bd3278-006.

[149] H. Jin, Q. Song, X. Hu, Auto-Keras: An Efficient Neural Architecture
Search System, in: Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov.
& Data Min., 2019: pp. 1946–1956.

[150] V. Perrone, H. Shen, A. Zolic, I. Shcherbatyi, A. Ahmed, T. Bansal,
M. Donini, F. Winkelmolen, R. Jenatton, J.B. Faddoul, B. Pogorzelska,
M. Miladinovic, K. Kenthapadi, M. Seeger, C. Archambeau, Amazon
SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimiza-
tion, Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (2021)
3463–3471. https://doi.org/10.1145/3447548.3467098.

[151] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, MOA: Massive Online
Analysis, J. Mach. Learn. Res. 11 (2010) 1601–1604.

[152] J. Montiel, J. Read, A. Bifet, T. Abdessalem, Scikit-multiflow: A
Multi-output Streaming Framework, J. Mach. Learn. Res. 19 (2018)
1–5. https://doi.org/10.5555/3291125.3309634.

[153] J. Montiel, M. Halford, S.M. Mastelini, G. Bolmier, R. Sourty, R.
Vaysse, A. Zouitine, H.M. Gomes, J. Read, T. Abdessalem, A. Bifet,
River: machine learning for streaming data in Python, (2020).

[154] S.M. Alzahrani, Development of IoT mining machine for Twit-
ter sentiment analysis: Mining in the cloud and results on the
mirror, in: 2018 15th Learn. Technol. Conf., 2018: pp. 86–95.
https://doi.org/10.1109/LT.2018.8368490.

102

[155] C. Wheelus, X. Zhu, IoT Network Security: Threats, Risks,
and a Data-Driven Defense Framework, IoT. 1 (2020) 259–285.
https://doi.org/10.3390/iot1020016.

[156] L. Yang, A. Moubayed, A. Shami, P. Heidari, A. Boukhtouta, A.
Larabi, R. Brunner, S. Preda, D. Migault, Multi-Perspective Con-
tent Delivery Networks Security Framework Using Optimized Unsu-
pervised Anomaly Detection, IEEE Trans. Netw. Serv. Manag. (2021).
https://doi.org/10.1109/TNSM.2021.3100308.

[157] I. Ullah, Q.H. Mahmoud, A Scheme for Generating a Dataset for
Anomalous Activity Detection in IoT Networks, Lect. Notes Comput.
Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinfor-
matics). 12109 LNAI (2020) 508–520. https://doi.org/10.1007/978-3-
030-47358-7 52.

[158] I. Sharafaldin, A. Habibi Lashkari, A.A. Ghorbani, Toward Generating
a New Intrusion Detection Dataset and Intrusion Traffic Characteriza-
tion, (2018) 108–116. https://doi.org/10.5220/0006639801080116.

[159] C. Elkan, Results of the KDD’99 Classifier Learning, SIGKDD Explor.
Newsl. 1 (2000) 63–64. https://doi.org/10.1145/846183.846199.

[160] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, K. Nakao, Statisti-
cal Analysis of Honeypot Data and Building of Kyoto 2006+ Dataset for
NIDS Evaluation, in: Proc. First Work. Build. Anal. Datasets Gather.
Exp. Returns Secur., Association for Computing Machinery, New York,
NY, USA, 2011: pp. 29–36. https://doi.org/10.1145/1978672.1978676.

[161] M. Tavallaee, E. Bagheri, W. Lu, A.A. Ghorbani, A de-
tailed analysis of the KDD CUP 99 data set, in: 2009
IEEE Symp. Comput. Intell. Secur. Def. Appl., 2009: pp. 1–6.
https://doi.org/10.1109/CISDA.2009.5356528.

[162] A. Shiravi, H. Shiravi, M. Tavallaee, A.A. Ghorbani, To-
ward developing a systematic approach to generate benchmark
datasets for intrusion detection, Comput. Secur. 31 (2012) 357–374.
https://doi.org/https://doi.org/10.1016/j.cose.2011.12.012.

103

[163] N. Koroniotis, N. Moustafa, E. Sitnikova, B. Turnbull, To-
wards the development of realistic botnet dataset in the In-
ternet of Things for network forensic analytics: Bot-IoT
dataset, Futur. Gener. Comput. Syst. 100 (2019) 779–796.
https://doi.org/https://doi.org/10.1016/j.future.2019.05.041.

[164] L. Yu, H. Liu, Efficiently handling feature redundancy in high-
dimensional data, Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Min. (2003) 685–690.

[165] A. Chaudhuri, W. Hu, A fast algorithm for computing distance corre-
lation, Comput. Stat. Data Anal. 135 (2019) 15–24.

[166] S. Yadav, S. Shukla, Analysis of k-Fold Cross-Validation over Hold-
Out Validation on Colossal Datasets for Quality Classification, in: 2016
IEEE 6th Int. Conf. Adv. Comput., 2016: pp. 78–83.

[167] J. Chen, J. Lalor, W. Liu, E. Druhl, E. Granillo, V.G. Vimalananda,
H. Yu, Detecting Hypoglycemia Incidents Reported in Patients’ Secure
Messages: Using Cost-Sensitive Learning and Oversampling to Reduce
Data Imbalance, J. Med. Internet Res. 21 (2019).

[168] D. Peteiro-Barral, B. Guijarro-Berdiñas, A survey of methods for dis-
tributed machine learning, Prog. Artif. Intell. 2 (2013) 1–11.

[169] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, H. Yu, Distributed
Machine Learning, in: Fed. Learn., Springer International Publishing,
Cham, 2020: pp. 33–48. https://doi.org/10.1007/978-3-031-01585-4 3.

[170] D.M. Manias, A. Shami, Making a Case for Federated Learning in the
Internet of Vehicles and Intelligent Transportation Systems, IEEE Netw.
35 (2021) 88–94. https://doi.org/10.1109/MNET.011.2000552.

[171] D.M. Manias, I. Shaer, L. Yang, A. Shami, Concept Drift Detection in
Federated Networked Systems, in: IEEE Glob. Commun. Conf., 2021:
pp. 1–6.

[172] H.J. Escalante, Automated Machine Learning – a brief review at the
end of the early years, (2020) 1–17. http://arxiv.org/abs/2008.08516.

104

http://arxiv.org/abs/2008.08516

Li Yang received his Ph.D. in Electrical and Com-
puter Engineering from Western University, London,
Canada, in August 2022, his MASc. degree in Engineer-
ing from the University of Guelph, Guelph, Canada, 2018,
and his B.E. degree in Computer Science from Wuhan Uni-
versity of Science and Technology, Wuhan, China, in 2016.
Currently, he is a Postdoctoral Associate in the Optimized
Computing and Communications (OC2) Lab at Western
University. His research interests include cybersecurity,

machine learning, AutoML, deep learning, network data analytics, Internet
of Things (IoT), anomaly detection, online learning, concept drift, and time
series data analytics.

Abdallah Shami is currently a Professor in the Elec-
trical and Computer Engineering Department and the
Acting Associate Dean (Research) of the Faculty of Engi-
neering, Western University, London, ON, Canada, where
he is also the Director of the Optimized Computing and
Communications Laboratory. Dr. Shami has chaired key
symposia for the IEEE GLOBECOM, IEEE International
Conference on Communications, and IEEE International
Conference on Computing, Networking and Communica-
tions. He was the elected Chair for the IEEE Communica-

tions Society Technical Committee on Communications Software from 2016
to 2017 and the IEEE London Ontario Section Chair from 2016 to 2018. He
is currently an Associate Editor of the IEEE Transactions on Mobile Com-
puting, IEEE Network, and IEEE Communications Surveys and Tutorials.

105

	1 Introduction
	2 IoT Data Analytics
	2.1 IoT Data Characteristics
	2.2 IoT Data Analytics Layers
	2.3 IoT Data Analytics Tasks

	3 Model Learning
	3.1 K-Nearest Neighbors (KNN)
	3.2 Naïve Bayes (NB)
	3.3 Support Vector Machine (SVM)
	3.4 Tree-Based Algorithms
	3.4.1 Decision Tree (DT)
	3.4.2 Random Forest (RF)
	3.4.3 XGBoost
	3.4.4 LightGBM

	3.5 K-means
	3.6 DBSCAN
	3.7 PCA
	3.8 Deep Learning (DL) Algorithms
	3.8.1 Multi-Layer Perceptron (MLP)
	3.8.2 Vanilla Recurrent Neural Networks (RNNs)
	3.8.3 Long Short Term Memory (LSTM)
	3.8.4 Convolution Neural Networks (CNNs)
	3.8.5 Autoencoders (AEs)
	3.8.6 DL Conclusion

	3.9 Reinforcement Learning
	3.10 Model Selection Conclusion

	4 AutoML Overview & Optimization Techniques
	4.1 AutoML Overview
	4.2 Combined Algorithm Selection and Hyperparameter Optimization (CASH)
	4.3 Neural Architecture Search (NAS)
	4.4 Optimization Methods
	4.4.1 Grid Search (GS)
	4.4.2 Random Search (RS)
	4.4.3 Bayesian Optimization (BO)
	4.4.4 Gradient-based Algorithms
	4.4.5 Hyperband
	4.4.6 Genetic Algorithm (GA)
	4.4.7 Particle Swarm Optimization (PSO)
	4.4.8 Optimization Method Conclusion

	5 Data Pre-Processing
	5.1 Overview
	5.2 Data Transformation
	5.3 Data Imputation
	5.4 Data Balancing
	5.4.1 Under-Sampling Methods
	5.4.2 Over-Sampling Methods

	5.5 Data Normalization

	6 Feature Engineering
	6.1 Overview
	6.2 Feature Generation
	6.3 Feature Selection
	6.4 Feature Extraction

	7 Automated Model Updating by Handling Concept Drift
	7.1 Model Drift in IoT Systems
	7.2 Concept Drift Definition
	7.3 Drift Detection
	7.3.1 Distribution-based methods
	7.3.2 Performance-based methods

	7.4 Drift Adaptation
	7.4.1 Model Retraining
	7.4.2 Incremental Learning methods
	7.4.3 Ensemble Learning methods

	8 Selection of Evaluation Metrics and Validation Methods
	8.1 Evaluation Metrics Selection
	8.1.1 Classification Metrics
	8.1.2 Regression Metrics
	8.1.3 Unsupervised Learning Metrics
	8.1.4 Execution Time & Memory

	8.2 Validation Method Selection
	8.2.1 Hold-out Evaluation
	8.2.2 Cross-Validation
	8.2.3 Prequential Evaluation

	9 Tools and Libraries
	9.1 AutoML Tools
	9.2 Online Learning and Concept Drift Adaptation Tools

	10 Case Study
	10.1 Use Case
	10.2 Experimental Setup
	10.3 Experimental Results and Analysis

	11 Open Challenges and Research Directions
	11.1 IoT Data Analytics Challenges
	11.1.1 IoT Data Quality
	11.1.2 IoT Data Analytics Speed
	11.1.3 IoT Data Security and Privacy
	11.1.4 IoT Data Analytics Application Benchmarks

	11.2 AutoML Challenges
	11.2.1 Automated Model Updating
	11.2.2 Data Pre-Processing and Feature Engineering
	11.2.3 Large Scale AutoML
	11.2.4 Explainability
	11.2.5 Transfer Learning in AutoML
	11.2.6 Benchmarking and Comparability

	12 Conclusion

