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ABSTRACT

Clinical microbiology is one of the critical topics of this century. Identification
and discrimination of microorganisms is considered a global public health

threat by the main international health organisations, such as World Health
Organisation (WHO) or the European Centre for Disease Prevention and Control
(ECDC). Rapid spread, high morbidity and mortality, as well as the economic
burden associated with their treatment and control are the main causes of their
impact. Discrimination of microorganisms is crucial for clinical applications, for
instance, Clostridium difficile (C. diff ) increases the mortality and morbidity of
healthcare-related infections. Furthermore, in the past two decades, other bacteria,
including Klebsiella pneumoniae (K. pneumonia), have demonstrated a significant
propensity to acquire antibiotic resistance mechanisms. Consequently, the use of
an ineffective antibiotic may result in mortality. Machine Learning (ML) has the
potential to be applied in the clinical microbiology field to automatise current
methodologies and provide more efficient guided personalised treatments.

However, microbiological data are challenging to exploit owing to the presence
of a heterogeneous mix of data types, such as real-valued high-dimensional data,
categorical indicators, multilabel epidemiological data, binary targets, or even
time-series data representations. This problem, which in the field of ML is known
as multi-view or multi-modal representation learning, has been studied in other
application fields such as mental health monitoring or haematology. Multi-view
learning combines different modalities or views representing the same data to extract
richer insights and improve understanding. Each modality or view corresponds
to a distinct encoding mechanism for the data, and this dissertation specifically
addresses the issue of heterogeneity across multiple views.

In the probabilistic ML field, the exploitation of multi-view learning is also
known as Bayesian Factor Analysis (FA). Current solutions face limitations when
handling high-dimensional data and non-linear associations. Recent research
proposes deep probabilistic methods to learn hierarchical representations of the data,
which can capture intricate non-linear relationships between features. However,
some Deep Learning (DL) techniques rely on complicated representations, which
can hinder the interpretation of the outcomes. In addition, some inference methods
used in DL approaches can be computationally burdensome, which can hinder their
practical application in real-world situations. Therefore, there is a demand for
more interpretable, explainable, and computationally efficient techniques for high-
dimensional data. By combining multiple views representing the same information,
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such as genomic, proteomic, and epidemiologic data, multi-modal representation
learning could provide a better understanding of the microbial world. Hence,
in this dissertation, the development of two deep probabilistic models, that can
handle current limitations in state-of-the-art of clinical microbiology, are proposed.
Moreover, both models are also tested in two real scenarios regarding antibiotic
resistance prediction in K. pneumoniae and automatic ribotyping of C. diff in
collaboration with the Instituto de Investigación Sanitaria Gregorio Marañón
(IISGM) and the Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS).

The first presented algorithm is the Kernelised Sparse Semi-supervised Hetero-
geneous Interbattery Bayesian Analysis (SSHIBA). This algorithm uses a kernelised
formulation to handle non-linear data relationships while providing compact rep-
resentations through the automatic selection of relevant vectors. Additionally, it
uses an Automatic Relevance Determination (ARD) over the kernel to determine
the input feature relevance functionality. Then, it is tailored and applied to the
microbiological laboratories of the IISGM and IRyCIS to predict antibiotic resis-
tance in K. pneumoniae. To do so, specific kernels that handle Matrix-Assisted
Laser Desorption Ionization (MALDI)-Time-Of-Flight (TOF) mass spectrometry
of bacteria are used. Moreover, by exploiting the multi-modal learning between
the spectra and epidemiological information, it outperforms other state-of-the-art
algorithms. Presented results demonstrate the importance of heterogeneous models
that can analyse epidemiological information and can automatically be adjusted for
different data distributions. The implementation of this method in microbiological
laboratories could significantly reduce the time required to obtain resistance results
in 24-72 hours and, moreover, improve patient outcomes.

The second algorithm is a hierarchical Variational AutoEncoder (VAE) for
heterogeneous data using an explainable FA latent space, called FA-VAE. The
FA-VAE model is built on the foundation of the successful KSSHIBA approach for
dealing with semi-supervised heterogeneous multi-view problems. This approach
further expands the range of data domains it can handle. With the ability to
work with a wide range of data types, including multilabel, continuous, binary,
categorical, and even image data, the FA-VAE model offers a versatile and powerful
solution for real-world data sets, depending on the VAE architecture. Additionally,
this model is adapted and used in the microbiological laboratory of IISGM, resulting
in an innovative technique for automatic ribotyping of C. diff, using MALDI-TOF
data. To the best of our knowledge, this is the first demonstration of using any
kind of ML for C. diff ribotyping. Experiments have been conducted on strains
of Hospital General Universitario Gregorio Marañón (HGUGM) to evaluate the
viability of the proposed approach. The results have demonstrated high accuracy
rates where KSSHIBA even achieved perfect accuracy in the first data collection.
These models have also been tested in a real-life outbreak scenario at the HGUGM,
where successful classification of all outbreak samples has been achieved by FA-
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VAE. The presented results have not only shown high accuracy in predicting
each strain’s ribotype but also revealed an explainable latent space. Furthermore,
traditional ribotyping methods, which rely on PCR, required 7 days while FA-VAE
has predicted equal results on the same day. This improvement has significantly
reduced the time response by helping in the decision-making of isolating patients
with hyper-virulent ribotypes of C. diff on the same day of infection. The promising
results, obtained in a real outbreak, have provided a solid foundation for further
advancements in the field. This study has been a crucial stepping stone towards
realising the full potential of MALDI-TOF for bacterial ribotyping and advancing
our ability to tackle bacterial outbreaks.

In conclusion, this doctoral thesis has significantly contributed to the field of
Bayesian FA by addressing its drawbacks in handling various data types through
the creation of novel models, namely KSSHIBA and FA-VAE. Additionally, a
comprehensive analysis of the limitations of automating laboratory procedures in
the microbiology field has been carried out. The shown effectiveness of the newly
developed models has been demonstrated through their successful implementation in
critical problems, such as predicting antibiotic resistance and automating ribotyping.
As a result, KSSHIBA and FA-VAE, both in terms of their technical and practical
contributions, signify noteworthy progress both in the clinical and the Bayesian
statistics fields. This dissertation opens up possibilities for future advancements in
automating microbiological laboratories.
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RESUMEN

La microbiología clínica es uno de los temas críticos de este siglo. La identifi-
cación y discriminación de microorganismos se considera una amenaza mundial

para la salud pública por parte de las principales organizaciones internacionales de
salud, como la Organización Mundial de la Salud (OMS) o el Centro Europeo para
la Prevención y Control de Enfermedades (ECDC). La rápida propagación, alta
morbilidad y mortalidad, así como la carga económica asociada con su tratamiento
y control, son las principales causas de su impacto. La discriminación de microor-
ganismos es crucial para aplicaciones clínicas, como el caso de Clostridium difficile
(C. diff ), el cual aumenta la mortalidad y morbilidad de las infecciones relacionadas
con la atención médica. Además, en las últimas dos décadas, otros tipos de bac-
terias, incluyendo Klebsiella pneumoniae (K. pneumonia), han demostrado una
propensión significativa a adquirir mecanismos de resistencia a los antibióticos. En
consecuencia, el uso de un antibiótico ineficaz puede resultar en un aumento de la
mortalidad. El aprendizaje automático (ML) tiene el potencial de ser aplicado en
el campo de la microbiología clínica para automatizar las metodologías actuales y
proporcionar tratamientos personalizados más eficientes y guiados.

Sin embargo, los datos microbiológicos son difíciles de explotar debido a la
presencia de una mezcla heterogénea de tipos de datos, tales como datos reales de
alta dimensionalidad, indicadores categóricos, datos epidemiológicos multietiqueta,
objetivos binarios o incluso series temporales. Este problema, conocido en el campo
del aprendizaje automático (ML) como aprendizaje multimodal o multivista, ha
sido estudiado en otras áreas de aplicación, como en el monitoreo de la salud mental
o la hematología. El aprendizaje multivista combina diferentes modalidades o vistas
que representan los mismos datos para extraer conocimientos más ricos y mejorar la
comprensión. Cada vista corresponde a un mecanismo de codificación distinto para
los datos, y esta tesis aborda particularmente el problema de la heterogeneidad
multivista.

En el campo del aprendizaje automático probabilístico, la explotación del apren-
dizaje multivista también se conoce como Análisis de Factores (FA) Bayesianos.
Las soluciones actuales enfrentan limitaciones al manejar datos de alta dimen-
sionalidad y correlaciones no lineales. Investigaciones recientes proponen métodos
probabilísticos profundos para aprender representaciones jerárquicas de los datos,
que pueden capturar relaciones no lineales intrincadas entre características. Sin
embargo, algunas técnicas de aprendizaje profundo (DL) se basan en representa-
ciones complejas, dificultando así la interpretación de los resultados. Además,
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algunos métodos de inferencia utilizados en DL pueden ser computacionalmente
costosos, obstaculizando su aplicación práctica. Por lo tanto, existe una demanda de
técnicas más interpretables, explicables y computacionalmente eficientes para datos
de alta dimensionalidad. Al combinar múltiples vistas que representan la misma
información, como datos genómicos, proteómicos y epidemiológicos, el aprendizaje
multimodal podría proporcionar una mejor comprensión del mundo microbiano.
Dicho lo cual, en esta tesis se proponen el desarrollo de dos modelos probabilísticos
profundos que pueden manejar las limitaciones actuales en el estado del arte de la
microbiología clínica. Además, ambos modelos también se someten a prueba en
dos escenarios reales relacionados con la predicción de resistencia a los antibióticos
en K. pneumoniae y el ribotipado automático de C. diff en colaboración con el
IISGM y el IRyCIS.

El primer algoritmo presentado es Kernelised Sparse Semi-supervised Hetero-
geneous Interbattery Bayesian Analysis (SSHIBA). Este algoritmo utiliza una
formulación kernelizada para manejar correlaciones no lineales proporcionando rep-
resentaciones compactas a través de la selección automática de vectores relevantes.
Además, utiliza un Automatic Relevance Determination (ARD) sobre el kernel
para determinar la relevancia de las características de entrada. Luego, se adapta
y aplica a los laboratorios microbiológicos del IISGM y IRyCIS para predecir la
resistencia a antibióticos en K. pneumoniae. Para ello, se utilizan kernels especí-
ficos que manejan la espectrometría de masas Matrix-Assisted Laser Desorption
Ionization (MALDI)-Time-Of-Flight (TOF) de bacterias. Además, al aprovechar el
aprendizaje multimodal entre los espectros y la información epidemiológica, supera
a otros algoritmos de última generación. Los resultados presentados demuestran la
importancia de los modelos heterogéneos ya que pueden analizar la información
epidemiológica y ajustarse automáticamente para diferentes distribuciones de datos.
La implementación de este método en laboratorios microbiológicos podría reducir
significativamente el tiempo requerido para obtener resultados de resistencia en
24-72 horas y, además, mejorar los resultados para los pacientes.

El segundo algoritmo es un modelo jerárquico de Variational AutoEncoder
(VAE) para datos heterogéneos que utiliza un espacio latente con un FA explicativo,
llamado FA-VAE. El modelo FA-VAE se construye sobre la base del enfoque de
KSSHIBA para tratar problemas semi-supervisados multivista. Esta propuesta
amplía aún más el rango de dominios que puede manejar incluyendo multietiqueta,
continuos, binarios, categóricos e incluso imágenes. De esta forma, el modelo
FA-VAE ofrece una solución versátil y potente para conjuntos de datos realistas,
dependiendo de la arquitectura del VAE. Además, este modelo es adaptado y
utilizado en el laboratorio microbiológico del IISGM, lo que resulta en una técnica
innovadora para el ribotipado automático de C. diff utilizando datos MALDI-TOF.
Hasta donde sabemos, esta es la primera demostración del uso de cualquier tipo
de ML para el ribotipado de C. diff. Se han realizado experimentos en cepas



del Hospital General Universitario Gregorio Marañón (HGUGM) para evaluar la
viabilidad de la técnica propuesta. Los resultados han demostrado altas tasas de
precisión donde KSSHIBA incluso logró una clasificación perfecta en la primera
colección de datos. Estos modelos también se han probado en un brote real
en el HGUGM, donde FA-VAE logró clasificar con éxito todas las muestras del
mismo. Los resultados presentados no solo han demostrado una alta precisión
en la predicción del ribotipo de cada cepa, sino que también han revelado un
espacio latente explicativo. Además, los métodos tradicionales de ribotipado, que
dependen de PCR, requieren 7 días para obtener resultados mientras que FA-VAE
ha predicho resultados correctos el mismo día del brote. Esta mejora ha reducido
significativamente el tiempo de respuesta ayudando así en la toma de decisiones
para aislar a los pacientes con ribotipos hipervirulentos de C. diff el mismo día
de la infección. Los resultados prometedores, obtenidos en un brote real, han
sentado las bases para nuevos avances en el campo. Este estudio ha sido un paso
crucial hacia el despliegue del pleno potencial de MALDI-TOF para el ribotipado
bacteriana avanzado así nuestra capacidad para abordar brotes bacterianos.

En conclusión, esta tesis doctoral ha contribuido significativamente al campo
del FA Bayesiano al abordar sus limitaciones en el manejo de tipos de datos
heterogéneos a través de la creación de modelos noveles, concretamente, KSSHIBA
y FA-VAE. Además, se ha llevado a cabo un análisis exhaustivo de las limitaciones de
la automatización de procedimientos de laboratorio en el campo de la microbiología.
La efectividad de los nuevos modelos, en este campo, se ha demostrado a través de su
implementación exitosa en problemas críticos, como la predicción de resistencia a los
antibióticos y la automatización del ribotipado. Como resultado, KSSHIBA y FA-
VAE, tanto en términos de sus contribuciones técnicas como prácticas, representan
un progreso notable tanto en los campos clínicos como en la estadística Bayesiana.
Esta disertación abre posibilidades para futuros avances en la automatización de
laboratorios microbiológicos.
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CHAPTER 1

INTRODUCTION

Machine Learning (ML) and Deep Learning (DL) are widely used to solve real-
world problems in a variety of applications. For example, DL models can be used
to perform weather forecasting using temporal models such as Long Short-Term
Memory (LSTM) networks [12]. In finance, ML approaches have been proposed for
dealing with high-dimensional data, where the number of features often exceeds the
number of available samples. For instance, a Random Forest (RF) regressor is used
to predict monetary policies and macroeconomic risks in Chinese financial data
[13]. In recent years, several major research organisations have made significant
contributions to the DL community. DeepMind’s AlphaFold [14] is a DL model
that accurately predicts 3D protein structures, while researchers at OpenAI have
developed transformer-based DL models such as Codex [15], which is based on
the Generative Pretrained Transformer (GPT) model [16] and trained on all open
source code on GitHub, providing a tool to help developers write code more easily.
Another well-known GPT-based model is ChatGPT, which has been trained using
reinforcement learning from human feedback and has become a chatbot that can
easily handle a wide range of prompts, including literature generation [17], medical
exam questions [18], and treatment options [19].

Both ML and DL, are scientific disciplines focused on analysing data by building
models that can understand their distribution and predict their future behaviour.
DL involves the use of artificial neural networks, which are algorithms designed
to recognise patterns and relationships in data. DL algorithms consist of multiple
layers of artificial neurones, or nodes, that process and transform input data through
a series of computations. Each layer processes the input data in a different way,
and the output of one layer becomes the input for the next layer. This hierarchical
structure allows DL algorithms to learn and extract features from data in a more
powerful manner and flexible than traditional ML algorithms.

Real-world data are often heterogeneous and contain a mix of data types, such
as real-valued, categorical, multilabel, binary, or time-series data, which can make
it challenging to exploit. These types of data can be found in various domains, such
as finance [20], weather [21], and health [22]. In the 1990s, it was proposed that
more information could be extracted to better understand the world by combining
multiple modalities, or views, representing the same information [23]. Thus, in
humans, using multiple sensors makes it easier to understand the world, such
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as combining the ability to read lips with the ability to hear voices to improve
communication [24]. In the ML field, this technique is also known as multi-view or
multi-modal representation learning [25]. The terms modality or view refer to a
particular encoding mechanism of the same information. For example, to describe
a car, we could have an image of the car (a 2D real-valued matrix), technical
specifications such as the engine power (a real-valued scalar), colour (a categorical
value), price (a positive real-valued scalar), and year (an ordinal value). Each of
these is a different view of the same data point, hence a multi-modal heterogeneous
approach to describe the same object. This dissertation is focused on this concept
of multi-modal heterogeneity.

In the medical field, multi-modal learning is a key component to correctly
generalising knowledge. For instance, in mental health monitoring, learning from
multiple input sources has helped stress detection; as in [26], the authors combine
data from video cameras, accelerometers and pressure-sensitive touchscreens to
detect stress in patients; whereas other authors [27] propose mixing data from
electrodermal activity, photoplethysmograph, microphone and accelerometers to
detect it. Other works [28] combine written information from ecological momentary
assessment and electronic health records to predict suicidal ideation. In addition, in
neuroimaging, multi-modal learning has also helped the state-of-the-art to improve
learning. In particular, for brain tumour segmentation, learning from Magnetic
Resonance Images (MRI) and combining them with first-order statistics, shape
features, and texture features improves survival prediction [29]. Other studies, such
as [30], fuse different types of MRI, such as T1, Fractional Anisotropy, and Positron
Emission Tomography (PET) images to predict standard dose PET (S-PET) which
allows for reduced radiation risk for patients. Furthermore, multi-modal information
fusion has also helped classify patients according to disease risk. In [31] they propose
to combine a large number of different sources of information, such as Computed
Tomography scans, clinical laboratory measurements, genetic data, metabolome
data, magnetic resonances, and microbiomes of the same patient. In conclusion,
to effectively address the problems today, specifically in the clinical field, models
capable of correctly combining heterogeneous and multiple data types are needed.

1.1 Clinical microbiology

Clinical microbiology is one of the urgent topics of the present century [32, 33, 34, 35].
The identification and discrimination of microorganisms are considered global public
health threats by the main international health organisations, such as World Health
Organisation (WHO) [36] or the European Centre for Disease Prevention and
Control (ECDC) [37], due to their rapid spread, high morbidity and mortality,
as well as the economic burden associated with their treatment and control [38].
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Discrimination of microorganisms is crucial for clinical applications, e.g., the
Cryptosporidium parvum protozoan parasite contaminates water and produces
diarrhoea in animals and humans; therefore, rapid detection of these types of
pathogens is critical [39]. In the food industry, spoilage microorganisms such as
Bacillus subtilis or Escherichia coli are a great concern [40], and their rapid detection
and discrimination are mandatory. Another bacterium, such as Clostridium difficile
contributes to the mortality and morbidity of healthcare-related infections in the
United States [41, 42]. Furthermore, in the past two decades, another bacterium
such as K. pneumoniae has shown a great ability to acquire antibiotic-resistant
mechanisms, mainly beta-lactamases and carbapenemases [43, 38, 44] which implies
that the administration of an inefficient antibiotic could lead to the death of the
patient.

1.1.1 The clinical microbiology workflow

Regarding the K. pneumoniae example commented in the above section, Fig. 1.1
shows the workflow in a real hospital situation when a patient presents a possible
infection. Given a patient with potential pneumonia, a doctor determines to collect
samples from them, which can be, such as urine or blood. The samples are then anal-
ysed by the hospital’s technical consultant in the laboratory. The common pipeline
to analyse this sample is to incubate them for 12-24h to grow bacteria colonies.
After this time, technicians compute mass spectrometry using the Matrix-Assisted
Laser Desorption Ionization Time-Of-Flight (MALDI-TOF) technique, which is
detailed in Section 1.1.2 of this dissertation. Currently, MALDI-TOF automatically
discriminates microorganisms by consulting private databases provided by Vitek
MS 1 (bioMérieux, France) or MALDI Biotyper2 (Bruker Daltonics, Germany),
depending on the MALDI-TOF MS machine the laboratory has. These commercial
platforms present reference spectra for the most common microorganisms in the
clinic and update their database periodically. This MALDI-TOF directly identifies
species, genera, and family, thus revealing that a K. pneumoniae is causing the
infection.

However, as mentioned above, K. pneumoniae usually acquires antibiotic resis-
tance mechanisms [43, 38, 44], and the antibiotic administered by the doctor when
the patient came to the hospital may not be effective. Therefore, it is necessary to
perform an Antimicrobial Susceptibility Testing (AST) to know which antimicrobial
treatment actually works, which requires about 24-72 additional hours. Once AST
is performed, a personalised decision is made for the current patient. Unfortunately,
from the first time the patient is hospitalised, 96 hours, that is, 4 days, have passed

1https://www.biomerieux.es/diagnostico-clinico/productos/vitekr-ms
2https://www.bruker.com/en/products-and-solutions/microbiology-and-

diagnostics/microbial-identification.html
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Figure 1.1: Infection identification and treatment determination workflow in a real
hospital.

until the exact antimicrobial treatment is applied. Hence, the main limitation of
the current method is the time consumption that requires to administrate a proper
antibiotic.

The current MALDI-TOF MS solutions fall short in discriminating subspecies,
contagious or virulent isolates, or antibiotic resistance, limiting the accuracy of
diagnoses and the development of appropriate treatment plans. To overcome this
challenge, researchers are turning to ML techniques to analyse the information
contained in the spectra at a deeper level. While some studies claim to automatically
perform the AST [45, 11, 46], their limited dataset sizes and lack of multi-modal
data hinder their generalisation power, highlighting a gap in the current literature.
Addressing this gap requires the development of multi-modal models capable of
leveraging heterogeneous data to improve accuracy and generalisation power. The
implementation of such models in microbiological laboratories has the potential
to enhance the detection of multi-drug resistant isolates, optimise therapeutic
decisions, and significantly reduce the time needed to obtain results on resistance
mechanisms compared to current manual methods. The widespread adoption
of these models could reduce costs by avoiding the administration of inefficient
antibiotics and, most importantly, save lives by enabling personalised and timely
treatment.

1.1.2 Microorganism identification through mass spectrometry
Mass Spectrometry (MS) is a technology that has been widely used in laboratories
for the analysis of bio-molecules since the 1970s [47, 48] to nowadays [49, 50, 51, 52].
This technique ionises the molecules to a gas state with a positive charge and then
differentiates them by their mass-to-charge ratio (m/z) using a detector. Therefore,
an MS has three elements, as seen in Figure 1.2: an ioniser, a mass analyser and a
detector, all contained in a void atmosphere to work in absolute values [53].

The ioniser electrically charges molecules that are generated by the excess
or loss of electrons [54]. The most common ionisation uses a desorption process.
This means that each sample is transformed into gas ions, which are intended for
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Figure 1.2: Mass Spectrometry scheme. Source: [1]

non-volatile and thermally unstable samples with molecular weights greater than
105 Dalton (Da). This kind of ionisation is called Matrix-Assisted Laser Desorption
Ionization (MALDI).

When MALDI technique is used, the sample is placed in a conductive material
and then 1µl matrix solution is added to each spot. The matrix is a substance
capable of absorbing energy when irradiated with a laser of varying wavelengths.
Nitrogen lasers, which emit at a wavelength of 337 nm, are generally used. The
interaction between the matrix molecules and the laser photons triggers gas phase
sublimation of the matrix, which is immediately followed by the ionisation of the
sample [55, 56]. Specifically, the most suitable matrix to identify microorganisms
and proteins is α-cyano-4-hydroxy-transcinnamic acid [57, 58]. Later, the ions are
accelerated by an electrical field directed to the mass analyser and detector.

The mass analyser has two objectives: first, to discriminate the ions with
respect to their mass/charge (m/z) ratio and then to direct them to the detector.
In the case of MALDI, the most common mass analyser used is the Time-Of-Flight
(TOF) analyser. In the TOF mass analyser (see Figure 1.3), the ions go through a
void flight tube due to the acceleration provided by the electrical field previously
mentioned. Regarding the m/z ratio, since the MALDI charges are positive and
their kinetic energy is constant, the time of flight depends only on the mass of
the peptides present. Hence, lighter particles reach the detector earlier [56, 53, 59]
which introduces a temporal component to the m/z axis, as it records the time of
detection.

Finally, the ions impact the detector, as seen in Figure 1.3. From this detector,
a mass spectrogram is created called MALDI-TOF Mass Spectrometry (MS), as
shown in Figure 1.4. The Y axis shows the number of ions detected in an arbitrary
unity called intensity. The X axis presents their mass/charge ratio (m/z). MALDI-
TOF MS usually are composed of 20, 000 m/z elements with a specific intensity
for each one, thus a high-dimensional data vector. Then, each ion appears as
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Figure 1.3: TOF mass analyser. Source: [1]

several peaks grouped around the same m/z position representing the statistical
distribution of the different isotopes of the ion [53, 60].

Clinicians benefit from the advantages offered by this technique, which include
high specificity in molecular weight determination, versatility in detecting different
compounds like proteins, peptides, toxins, or nucleic acids, and flexibility to analyse
various sample types, including volatile, non-volatile, polar, apolar, solids, liquids,
and gases.

1.1.3 Machine Learning in clinical microbiology
In the field of microbiology, various techniques are used to identify and study bacte-
ria. One such method is the use of MALDI-TOF for the determination of bacterial
species by comparing spectra against proprietary databases provided by companies
such as MALDI Biotyper (MBT), ASTA MicroIDys, or Vitek MS. However, this
approach is limited to species-level identification and does not facilitate subspecies
determination. Additionally, conventional methods for determining antibiotic resis-
tance mechanisms in bacteria can take up to 96 hours. Furthermore, traditional
approaches for automatic ribotyping of hypervirulent strains, Polymerase Chain
Reaction (PCR), can take more than 7 days to yield results. Hence, in the current
century, ML has been applied to solve such problems.

MALDI-TOF MS is commonly known to be called fat data meaning that in real-
world problems the datasets are usually smaller than 500 samples and each MALDI-
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Figure 1.4: An example of a MALDI-TOF MS representing a Clostridium difficile
isolate. In case of C. difficile only the first 18K m/z position are relevant for its
determination.

TOF MS has 20, 000 features, i.e., D >> N . In [61], they identified different clonal
lineages of methicillin-resistant S. aureus by using ClinProTools [62] black-box
private software. The same software was used in [63] to discriminate between
contagious and environmental strains of Streptococcus uberis. However, prior
studies preferred to use open-source models. For example, in [64] the discrimination
between B. anthracis, E. coli, S. pneumoniae 18C-A, and S.pyogenes based on their
MALDI-TOF was perfectly performed by a RF. Other authors, such as [65], used
both an RF and a Support Vector Machine (SVM) to classify different serotypes of
Group B Streptococcus (GBS). Other works, such as [66], also used an RF, a SVM,
and a multi-Logistic Regressor (LR) to perform strain typing of S. haemolyticus.
Other approaches, intended for high-dimensional data, such as [67], proposed using
sparse SVMs to classify the intestinal bacterial composition. Posterior research,
such as [68], used an RF to identify subspecies of Mycobacterium abscessus based
on their MALDI-TOFs. However, other authors have proposed using different
spectroscopy methods to identify pathogenic bacteria. In [69] the authors used
Raman spectroscopy images combined with a Convolutional Neural Network (CNN)
for the rapid identification of pathogenic bacteria at the single-cell level. Following
the same idea, in [70] they also used Raman spectroscopy, combined with LSTMs
and CNNs models, to identify Urechis unicinctus. Other authors [71] have identified
bacteria phenotypes also using Raman spectroscopy and a Transformer model.

Our first collaboration3 with the group led by Belén Rodríguez started with
3This work is accepted for publication in Journal of Clinical Microbiology from the American
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the work presented in Candela-Guerrero et al. [72]. During this international
project, the viability of applying ML techniques to MALDI-TOF MS data for the
detection of bacterial subspecies within the Enterobacter cloacae complex (EEC)
was studied. The EEC is a group of closely related Gram-negative bacteria that
belong to the genus Enterobacter. They are commonly found in the environment
and human gut [73] and can cause a variety of infections, particularly in people with
compromised immune systems [74, 75]. They can be difficult to distinguish from
other members of the genus Enterobacter [76, 77] and can be antibiotic-resistant
[78]. A total of 357 isolates were employed and different models were attempted.
The models were first trained using 90 bacterial isolates from the Ramón y Cajal
University Hospital (UHRyC), and were subsequently tested on a national scale
using 126 different UHRC bacterial isolates, as well as on an international scale
using 141 samples from the University Hospital of Basel (UHB), Switzerland. As a
result, poor performance was observed with linear methods, such as Partial Least
Squares-Discriminant Analysis (PLS-DA); however, non-linear approaches, such
as SVM with RBF kernel or RF, yielded superior results by correctly classifying
122 out of 126 (96.8%) isolates from UHRC and 136 out of 141 (96.4%) isolates
from UHB. These results demonstrate the effectiveness of MALDI-TOF MS in
identifying different species within a large cluster of similar bacteria. Furthermore,
these promising results have served as the foundation for the ongoing collaboration
between both departments, TSC at UC3M and Microbiology at IISGM.

During this collaboration, two main projects have been developed. Firstly, prob-
abilistic ML methods have been applied for the prediction of antibiotic resistance
in K. pneumoniae. Additionally, automatic ribotyping of Clostridium difficile has
been performed by applying probabilistic deep learning methods. In the following
sections, the current state-of-the-art for both bacteria is reviewed, with a particular
focus on the number of samples used, the software/technique proposed, and their
reproducibility.

Machine Learning applied to K. pneumoniae antibiotic resistance determina-
tion

It has been established in the literature that one of the major challenges in the
field of microbiology is the emergence of multidrug-resistant bacteria [38, 36, 37].
In particular, multidrug-resistant K. pneumoniae is considered a global public
health threat by major international health organisations due to its rapid spread,
high morbidity and mortality, as well as the economic burden associated with its
treatment and control [38, 36, 37].

K. pneumoniae was first described by Carl Friedlander in 1882 in the lungs of
people who had died from pneumonia. K. pneumoniae is a Gram-negative bacteria
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and belongs to the Enterobacteriaceae family. It is important in the day-to-day
work of microbiology due to its resistance to multiple drugs and, nowadays, it is
resistant to most available antibiotics. This bacterium causes different infections
such as respiratory and urinary tract, bloodstream, or surgical site [79, 80]. In
addition, it is a common nosocomial infection, those that occur when a patient is
hospitalised and infected inside the hospital. These infections are generally treated
with β-lactam antibiotics [81, 82] such as Amoxicillin-Clavulanate. But there
exist different isolates of K. pneumoniae which produce β-lactamase enzymes, as
Extended-Spectrum Beta-Lactamases (ESBL)s [83] which make them resistant to
antibiotics, restricting the possible treatments. Therefore, K. pneumoniae started
to be treated with carbapenem antibiotics, such as imipenem and meropenem. How-
ever, several isolates of K. pneumoniae started to develop resistance mechanisms
of Carbapenemases (CP). This resistance to carbapenems is a major challenge,
as recognised by the World Health Organization (WHO) [44], since some car-
bapenemases can hydrolyse almost all beta-lactam antibiotics, making this bacteria
resistant to both beta-lactams and carbapenems. Nowadays, in clinical laboratories,
as seen in Fig. 1.1, 96 hours are needed to perform AST, which is routine.

MALDI-TOF is designed for microbial identification, but prior studies have
found that detection of the resistance mechanism ESBL and CP can be inferred
from these data due to different molecular weights after hydrolysis by resistant
bacteria [84]. As suggested in [85], ML approaches can automatically analyse
and predict Antibiotic Resistance (AR) based on the MALDI-TOF MS protein
profiles. Therefore, different studies have analysed the use of ML approaches over
MALDI-TOF data to reduce the time needed to detect these resistances from 96
to 24 hours.

The existing literature focuses mainly on classical ML models such as RF, SVM,
or Genetic Algorithm (GA). Additionally, research conducted in recent years tends
to involve small datasets and results that are not reproducible, owing to the use
of private datasets and proprietary software. In fact, a limited number of studies
have been carried out using accessible databases and open-source code.

ClinProTools®3.0 (Bruker, Daltonics, Bremen, Germany) is one of the widely
private software used in the current literature. It is developed by the same company
that manufactures MALDI-TOF machines. This tool provides several traditional
ML models such as GA, Supervised Neural Network (SNN), SVM, or Quick Classifier
(QC). Researchers at Beijing Tongren Hospital [86] proposed the use of ClinProTools
to classify 143 isolates of multidrug-resistant bacteria, including CP and non-CP
strains of K. pneumoniae. However, only 22 samples were indeed K. pneumoniae.
Furthermore, another private software, flexAnalysis, was used to manually select 9
peaks for the detection of meropenem resistance. Finally, a GA model claimed a
perfect classification of the 22 isolates. As previously noted, K. pneumoniae can also
exhibit resistance to β-lactam antibiotics, such as amoxicillin, called ESBL-producer
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bacteria. In their study, Li et al. [87] sought to differentiate between ESBL- and non-
ESBL-producing bacteria by examining a combination of E. coli and K. pneumoniae
isolates. Specifically, with respect to K. pneumoniae, the authors studied 25 isolates
again using GA, SNN, and QC from ClinProoTools. In [88], the samples were
automatically identified by the MALDI biotyper (Bruker). The authors then
used ClinProTools to perform a PCA and a dendrogram to group 25 carbapenem-
resistant K. pneumoniae isolates, resulting in two distinct groups. In doing so, they
identified two separate nosocomial infections that are epidemiologically distinct
from each other. ClinProTools was also used by [89] where they differentiate
between normal K. pneumoniae, which typically affects patients in intensive care
units [90], and hypervirulent, which can infect healthy patients. The authors
reported that the use of SVM on 43 isolates successfully differentiated healthy
and hypervirulent strains. Researchers from the Azienda Ospedaliero-Universitaria
Pisana [91] apply ClinProTools to detect resistance to 139 K. pneumoniae isolates.
The process involves the common steps of baseline removal and smoothing of the
MALDI-TOF MS data, normalisation through their own Total Ion Current (TIC),
and finally, using a GA in conjunction with a K-Nearest Neighbors (KNN), both
available through ClinProTools, to differentiate resistance among isolates. Recently,
in [92], researchers from Wuhan University applied a GA to detect CP over 175
isolates. The preprocessing pipeline they used consisted of various steps, such as
baseline subtraction, spectra averaging, smoothing, and recalibration. Therefore,
they divided the isolates into two groups and performed a binary classification
between CP and non-CP, where non-CP includes other types of antibiotic-resistant
bacteria that were not specifically focused on carbapenem resistance. In summary,
the use of black-box private software is a proliferation in the field of microbiology.
Lately, a Spanish company has developed a new private software equivalent to
ClinProtools called CLOVER Bioanalytical Software ®(Clover Biosoft). This
software incorporates more advanced ML models such as RF, SVM, Hierachical
Clustering Analysis (HCA), Partial Least Square Discriminant Analysis (PLS-DA),
KNN or Light Gradient Boosting Machine (LightGBM). In [93], researchers from
Spain used this software to conduct an analysis of 162 isolates of K. pneumoniae
in order to discriminate between CP-resistant and non-CP-resistant bacteria. They
used both PLS-DA and RF to classify these isolates, eventually achieving a perfectly
accurate score between CP and non-CP.

Rather than relying on proprietary, black-box software, other researchers have
used open-source programming languages, such as Python or R, to automatically
differentiate between isolates. This approach has the advantage of increasing the
reproducibility of the experiments, as the underlying code is accessible and can
be executed. An example of this approach is the study by Kaohsiung Veterans
General Hospital in Taiwan [94], which used open source Spanish software, Mass-Up,
programmed in R [95] to perform an analysis of 95 K. pneumoniae isolates to
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discriminate between carbapenem-resistant and sensitive strains. From Mass-Up,
they used a SVM, a KNN, an RF and an LR classifier. Other studies, such as in [96],
conducted a longitudinal study to detect resistance to ciprofloxacin in 15782 isolates
of K. pneumoniae collected between June 2013 and February 2018. In this study,
they used an XGBOOST and an SVM model to predict resistance to ciprofloxacin.
Moreover, a preprocessed version of the MALDI-TOF MS was made available
consisting of 133 peaks selected using the peak-noise ratio. However, no code
implementation was provided for reproducibility. Other open-source approaches
are based on Python implementation, such as the work presented by Wang et al.
[68] from Anhui Medical University Hospital in China, where they discriminated
between resistant and sensitive carbapenem in 171 isolates of K. pneumoniae by
using SVM and RF. The authors claim that the data is available upon request.
However, in this dissertation, we attempted to contact them and did not receive a
response. In contrast, researchers at ETH Zurich have created a large real-world
clinical data set of MALDI-TOF, consisting of 5554 K. pneumoniae samples, which
is fully shared with the community [97]. From this vast dataset, they performed
different ML and DL techniques to detect resistance to ceftriaxone in K. pneumoniae
using LightGBM and MultiLayer Perceptron (MLP) models.

Table 1.1: Literature review w.r.t. K. pneumoniae antibiotic resistance detection.
Regarding data availability, Yes∗ indicates that the data is available upon request.

Work # of samples Software used Open source Probabilistic Data availability Reproducible

Wang et al. 2013 [86] 22 ClinProTools No No No No
Li et al. 2014 [87] 25 ClinProTools No No No No

Angeletti et al. 2015 [88] 25 ClinProTools No No No No
Huang et al. 2015 [89] 43 ClinProTools No No No No

Giordano et al. 2018 [91] 139 ClinProTools No No No No
Gato et al. 2021 [93] 162 Clover BioSoft No No Yes No

Huang et al. 2020 [94] 95 Mass-Up Yes No Yes∗ No
Weis et al. 2020 [11] 1769 Python Yes Yes Yes Yes

Huang et al. 2022 [92] 175 ClinProTools No No Yes∗ No
Wang et al. 2022 [68] 171 Python Yes No Yes∗ Yes
Weis et al. 2022 [97] 5554 Python Yes No Yes Yes
Weis et al. 2022 [46] 1769 Python Yes Yes Yes Yes
Wang et al. 2022 [96] 15782 R Yes No Yes Yes

Total 6/13 2/13 8/13 5/13

In summary, a recurrent characteristic across previous studies on the detection
of antibiotic resistance in K. pneumoniae is the use of deterministic models. The
existing literature does not incorporate probabilistic approaches in this area of
research. However, an exception to this trend is the work of the research team from
ETH Zurich, who has applied Gaussian Process (GP) in the prediction of antibiotic
resistance in K. pneumoniae using a large real-world clinical dataset obtained from
MALDI-TOF [97]. Their first study presented was in 2021 [11] where they created
a new kernel function specifically tailored for MALDI-TOF MS data. This new

11



kernel is called Peak Information KErnel (PIKE) and for each pair of MALDI-TOF
called MDa,MDb:

PIKE(MDa,MDb) =
1
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By taking a closer look at this function, we can first notice that λa
i and λb

j denote the
intensity of a pair of peaks, and their multiplication is a measure of the interaction
between them. Secondly, as pai and pbj denote the position m/z of this pair of
peaks, their interaction is multiplied by the square difference between their m/z
positions. This means that two peaks that are a greater distance from each other
will be multiplied by 0, and hence their influence is irrelevant. However, two peaks
that are close will be more relevant. This difference is smoothed by a parameter
t that the authors fix to 5 in their article. In summary, PIKE computes a kernel
by comparing the MALDI-TOF MS by pairs where the exponential Euclidean
distance helps to compare similar peaks, as they have similar pi and p′j values.
However, computing this PIKE scales with the number of peaks that each MD
has; hence the spectra must preprocessed topological peak selection. This peak
selection is a simple peak detection method based on the persistence concept from
computational topology which automatically results in a peak detection because
local maxima exhibit high persistence values by construction in MALDI-TOF
data. Following the indications of the authors of [11], only 200 peaks are kept
per sample. Once the PIKE is constructed, they proposed using a GP classifier
to detect 3 different antibiotic resistances in 1769 K. pneumoniae samples from
the DRIAMS [97] dataset. Because they used a probabilistic approach, they could
analyse class probabilities and decision boundaries with uncertainty measurement
of antimicrobial resistant prediction. Following this probabilistic approach, they
improved their own results in a consecutive study [46] in which the authors tackled
the high standard deviation values in the prediction in different train and test
splits. To do so, they applied hierarchical agglomerative clustering to infer the
underlying phylogenetic structure between microbial samples. Thus, they again
calculated the PIKE and used a GP to predict the same bacteria mentioned in the
previous paper, now achieving better overall performance.

In conclusion, previous studies have demonstrated reproducibility on the deter-
mination of antibiotic resistance in K. pneumoniae is limited. Table 1.1 summarises
the literature review performed in previous paragraphs. As shown, of the 13 re-
viewed articles, only a small fraction, 5, are fully reproducible, and only 8 make
their data available, with 3 of them being accessible upon request. Efforts to
obtain data from the corresponding authors were met with limited success, with
only one, Huang et al. [94], providing it. This lack of reproducibility presents
a significant obstacle for researchers verifying and replicating previous findings.
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Furthermore, deterministic approaches have been extensively explored, with 11 out
of 13 reviewed papers utilising them. Only two studies proposed a probabilistic
perspective. Moreover, a gap in the literature exists regarding the proposal of
multi-modal DL models to solve the problem. Other authors have also acknowl-
edged this gap and have suggested that the combination of multi-modal data can
aid in the identification and discrimination of bacteria. For example, Kalkan et. al.
[98] statistically demonstrated the ability to analyse the bacterial population of the
Black Sea by combining information from MALDI-TOF and rRNA sequencing. Ad-
ditionally, Tressler et al. [99] obtained metabolomic and lipidomic measurements of
human breast cancer by manually combining Nuclear Magnetic Resonance (NMR)
spectroscopy and MALDI-TOF imaging. These studies highlight the potential of
multi-modal data to discriminate and identify bacteria, but to date, neither ML
nor DL methods have been applied.

Given the promising results obtained by the probabilistic approaches of Table
1.1 and the current gap in applying multi-modal learning, this thesis proposes an
extension of Factor Analysis (FA) to determine antibiotic resistance mechanisms
automatically. Therefore, in Chapter 5, we tailor and apply the kernelised model
developed in Chapter 3, to the prediction of the resistance mechanism in K.
pneumoniae.

Machine Learning applied to C. diff determination

In the 2000s, there was a significant increase in the incidence of Clostridium difficile
(C. diff or C. difficile) in the United States, resulting in a 400% increase and excess
costs of $4.8 billion [100]. Similarly, in Europe, between 2011 and 2012, C. diff was
responsible for 48% of all gastrointestinal infections [101], with a high prevalence
among patients who have recently been treated with antibiotics [102]. These
infections, particularly severe cases, can lead to life-threatening complications
such as sepsis (a systemic inflammatory response to infection) [103] or colitis
(inflammation of the colon) [104].

In the field of microbiology, C. difficile is a widely recognised and serious
pathogen, first reported in the literature by Hall and O’Toole in 1935 [105]. It is
a Gram-positive, spore-forming bacterium belonging to the Peptostreptococcaceae
family and is known to be one of the main causes of antibiotic-associated diarrhoea.
C. diff has a clonal population with various Sequence Types (ST); the largest study
conducted in the UK identified 69 different ST [106]. In particular, the ribotype
027 (RT027) is often referred to as hypervirulent [107, 108] due to its association
with severe colitis and higher mortality rates [109, 110, 111]. This is because it has
a deletion in the tcdC gene, which regulates the production of toxins responsible
for causing intestinal damage, namely Toxin B and Toxin Binary.

Currently, laboratories rely on the use of a real-time PCR assay, specifically
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GeneXpert C. difficile, to detect the presence of toxins B, binary and deletion in
the tcdC gene in C. difficile strains [112]. However, the emergence of new ribotypes,
such as RT181, which share characteristics with hypervirulent RT027, presents
challenges for accurate detection using PCR methods. Studies have yet to confirm
whether RT181 is indeed hypervirulent, despite being similar to RT027 [113, 114].
This highlights a limitation in current methodologies, as current PCR methods
cannot differentiate between RT181 and RT027. However, as Cuénod et al. [115]
noted in their literature review, MALDI-TOF MS can be used for ribotyping of C.
difficile. This was previously demonstrated by Reil et al. in 2011 [116] through the
analysis of 355 C. diff samples using MALDI-TOF MS, where biomarkers were
found for the manual identification of RT001, RT027 and RT078/126 in the mass
range between 3K−13K Da. Rizzardi et al. in 2015 [117] also noted that extended
MALDI-TOF MS, focusing on the mass range between 30K − 50K Da, was able to
identify biomarkers for various ribotypes, including RT010, RT011, RT012, RT015,
RT017, and RT020, among others.

Existing literature suggests that ML techniques can identify patterns in the
microbiota of C. diff RT027 strains [118], or to predict the outcomes of patient
infections caused by C. diff RT027 strains [119, 120]. However, the application of
ML for the automatic ribotyping of C. diff has not yet been proven. In a study by
Calderaro et al. [121], MALDI-TOF MS was used on a set of 29 C. diff samples to
classify them as epidemic or non-epidemic, but no conclusive results were obtained
regarding automatic ribotyping. Furthermore, the authors did not provide any
accessible code or data.

Up to this day, no studies have applied ML methods to perform automatic
ribotyping of C. diff. In light of this gap in the literature, in Chapter 6, a preliminary
study is conducted in which the models presented in Chapter 3 and Chapter 4
are tailored and applied for the automatic ribotyping of C. diff between RT027,
RT181, and other strains.

1.2 Motivation

In recent years, multi-modal learning has been claimed to be an improvement in
different fields of study. In practise, in bacteria discrimination, classical learning
methods based only on MALDI-TOF are not enough to make a precise determination
of antibiotic resistance, as in [11] where using a GP Weis et al. achieve AUPRC
values of 0.55 and 0.56 in determining antibiotic resistance to ciprofloxacin or
piperacillin/tazobactam.

Therefore, we propose that multi-modal learning methods must be developed
and used in hospital infection treatment workflows, following Fig. 1.5, to enhance
bacterial identification and discrimination. To do so, these methods must be
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Figure 1.5: Infection treatment workflow incorporating ML and multi-modal
information

developed specifically tailored to cover the needs of bacteria and medical data,
which are:

• Dealing with heterogeneous and multi-modal data, such as real, cate-
gorical, binary, or images. For example, combining real information, such
as the MALDI-TOF; with categorical information, such as epidemiological
information about the hospital where the samples are coming from; binary
information regarding the resistance to different antibiotics; or even images of
the agar-agar plates.

• Dealing with high-dimensional fat data, which means that the number of
features exceeds the number of samples. Particularly, in MALDI-TOF, where
each spectrum contains 20K features and the samples are usually N < 500.

The available multi-modal learning solutions rely on complex hierarchical deep
latent representations to project data correlation among views. This complexity
imposes a lack of modularity to add new data views when available and difficulty
missing view handling. Moreover, current complex models hinder inference training
and obscure the interpretability of the model. Hence, a model intended for medical
data needs to be modular to easily adapt to new data types changing its architecture
while keeping a simple relation that can be interpreted.

In this dissertation, we collaborate with the IISGM in Area 4, which focuses
on clinical microbiology, infectious diseases, and Human Immunodeficiency Virus.
Specifically, we collaborate with Belén Rodríguez Sánchez, PhD, from the Infectious
Disease group. As such, each technical contribution developed in this thesis has
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been applied to microbiology problems, particularly in the identification and
discrimination of different types of bacteria.

1.3 Objectives

For this reason, in this thesis, we aim to:

• Develop interpretable deep-generative models to analyse the behaviour of
the data.

• Implement modular formulations that can adapt to different medical data
and problems.

• Provide efficient and accurate models that can be used in real microbiology
laboratories.

• Provide open-source, available and reproducible models to the community.

To achieve these objectives, we extend an existing FA model designed for het-
erogeneous data, the Sparse Semi-supervised Heterogeneous Interbattery Bayesian
Analysis (SSHIBA) model, to the needs of microbiological data using two different
approaches.

First, we start with a Bayesian formulation of FA and tailor it to a kernel for-
mulation. This allows us to propose a new model that can handle high-dimensional
data while exploiting the correlation between multiple views for multi-modal learn-
ing. By using kernel methods, the model can operate in dual space and incorporate
non-linearities specifically tailored to microbiological data, such as specific kernels
[11]. Therefore, we use an FA model whose input is the kernelised view of the
data, rather than the raw data. These dual space variables are linearly combined
using an FA approach with the available multi-view information. Additionally, we
implement automatic relevance vector selection to further reduce the input space.
Finally, the multi-modal learning nature of the model enables us to exploit all the
available information about a given problem.

Secondly, we extend the above model by integrating VAE generative models.
This adds modularity and flexibility to the global framework. VAEs are power-
ful generative models known for their versatility; that is, their encoder-decoder
structure can be easily modified to handle new types of data without affecting any
other part of the Bayesian FA formulation. This means that we are adding a new
modular and flexible component that can handle large amounts of different data,
such as temporal data or image data, simply by changing the encoder-decoder
architecture.
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In collaboration with the IISGM, we make a significant contribution to the
field by demonstrating the feasibility of our proposed models on real-world bac-
teria discrimination problems. Our first model, Kernelised SSHIBA (KSSHIBA),
incorporates high-dimensional MALDI-TOF MS data (RN×20K where N < 500), epi-
demiological data (hospital source of each bacteria), and categorical information on
antibiotic resistance to predict antibiotic resistance in Klebsiella pneumoniae. Our
second model, Factor Analysis Variational AutoEncoder (FAVAE), uses specially
designed VAE encoder-decoder architectures for MALDI-TOF data to automati-
cally ribotype Clostridium difficile bacteria in a preliminary study, which is then
tested on a real outbreak that occurred on January 24th at the Hospital General
Universitario Gregorio Marañón (HGUGM).

1.4 Organisation
This dissertation is divided into seven chapters, which are reviewed in the following
paragraphs. All published articles are included in the introductory lines of their
respective chapter.

Chapter 2. Background. In this chapter, the necessary technical background
required for a comprehensive understanding of the dissertation is provided. The
first part reviews FA models while the second part details VAEs and hierarchical
VAEs in detail, pointing out the current limitations of both models.

Chapter 3. Kernelised SSHIBA. Once the background have been established, our
first technical contribution is presented. In this chapter, we review the kernelised
version of SSHIBA presented in [122]. First, we present the technical advances
of KSSHIBA in terms of dealing with kernelised views, automatic Bayesian rele-
vance vector selection, and automatic feature-relevance determination. Then, we
provide experimental results that demonstrate all the functionalities in various
high-dimensional datasets. The final section provides a summary of the key findings
and concluding remarks.

Chapter 4. Factor Analysis Variational AutoEncoder. Our second technical
contribution is presented in this chapter. First, we introduce the theoretical
foundations and mathematical formulation of our Factor Analysis Variational
AutoEncoder (FA-VAE) [123]. Then, the following sections present experimental
results to demonstrate the efficacy of the approach, including conditioning a pre-
trained VAE to a specific label, domain adaptation between distinct datasets and
styles, and using the approach as a transfer learning tool between generative models.
The last part offers a synopsis of the main discoveries and ultimate comments.
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Chapter 5. Automatic antibiotic resistance prediction using KSSHIBA. In this
chapter, we demonstrate the practical application of the first technical contribution
of this dissertation, KSSHIBA. Specifically, we adapt the model presented in
Chapter 3 to a real-world scenario involving the prediction of antibiotic resistance
mechanisms in K. pneumoniae. To address this challenge, we leverage two different
epidemiological datasets, one from the HGUGM and the other collected from
20 different hospitals in Spain and Portugal. We then describe how we tailor
KSSHIBA to this type of data by integrating multi-modal information such as
MALDI-TOF MS, epidemiological data, and antibiotic resistance mechanisms.
Through experimental results, we demonstrate that KSSHIBA outperforms existing
state-of-the-art methods by exploiting multi-modal learning.

Chapter 6. Automatic ribotyping based on probabilistic techniques. This
chapter presents a practical application of the two technical contributions, KSSHIBA
and FA-VAE, introduced in Chapters 3 and 4, respectively. We demonstrate
how both models can be tailored to solve the automatic ribotyping problem of
Clostridium difficile. By leveraging probabilistic techniques, we propose an approach
to automatically ribotype three different classes: hyper-virulent RT027, 027-like
RT181, and other ribotypes. Our method is tested on a dataset consisting of 275
samples collected at HGUGM where FA-VAE outperforms other methods. We also
apply our approach to a real outbreak that occurred on January 24th and show
that FA-VAE can instantly perform ribotyping on the first day of the outbreak,
whereas traditional PCR techniques require seven days to complete.

Chapter 7. Discussions and Conclusions. We conclude summarising the several
technical and application contributions to the field of microbiology presented in
this thesis. Specifically, we have introduced two novel techniques, KSSHIBA
and FA-VAE, and demonstrated their effectiveness in solving practical problems
encountered in hospitals. These contributions represent a first step towards the use
of multi-modal learning for bacterial identification and discrimination. Furthermore,
we have identified several potential avenues for future research to further advance
this field. Overall, this dissertation represents an important contribution to the
microbiology field and provides a foundation for further exploration and innovation.

18



CHAPTER 2
BACKGROUND

The following chapter aims to provide a thorough technical background that is
essential for comprehending this dissertation. The chapter is divided into two main
sections. Firstly, a detailed review of FA models is presented. Secondly, VAE and
hierarchical VAEs are studied. Lastly, the current limitations of the state-of-the-art
models applied to the clinical microbiology field are highlighted.

2.1 Bayesian Linear Regression

Traditionally, most supervised ML methods consist in developing algorithms able
to learn a function, fw, which maps the input variable x into an output or target
variable y, that is,

y = fw(x) (2.1)

where w represents the parameters, or, weights, needed to translate the input
information into the desired output. To optimise these parameters, a cost or loss
function L is defined and its averaged value over the training data is minimised
w.r.t. w. This process is known as the training phase. A significant number
of conventional ML algorithms adopt this approach. A well-known example is
the Linear Regression (LR) model. The goal of LR is to find the optimal linear
relationship between the input variables x and the output variable y. This linear
relationship is represented by an equation of the form:

y = w0 + w1x1 + ...+ wdxd = wTx+ w0 , (2.2)

where y is the output variable, x = [x1, . . . , xd]
T are the input variables, and

w0, . . . , wd are the regression coefficients of shape D × 1. For model training, the
LR method uses the mean least square cost function, that is, LR finds the values
of w coefficients that minimise the sum of the squared differences between the
predicted and actual values of the outputs over the training data.

Once the model weights w, are learnt, LR can compute the output for new
data x∗ as

f ∗
w = wTx∗ + w0 . (2.3)
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So, for a given input, a deterministic output is computed. However, neither the
uncertainty about the value of the calculated w nor how it affects the predicted
output is taken into account.

To address this issue, the literature proposed Probabilistic ML (PML). PML is a
subfield of ML that deals with the development of models that can make predictions
and decisions based on uncertain or probabilistic information. In PML, a model
is trained not only to produce a single output, but also to generate a probability
distribution over possible outputs. In traditional ML, models are typically trained
to minimise risk, which is defined as the expected value of a loss function. On the
contrary, PML models are trained to maximise the likelihood of the parameters,
which is the probability of the data, x, given the parameters, w of the model. In
PML, some usually used models are GPs or Bayesian models. In particular, in
Bayesian models, the model parameters w, are treated as random variables (rv),
and prior distributions are specified for these variables to represent prior knowledge
or beliefs about their values. These prior distributions are used to update the
posterior distribution when new data is observed, following Bayes’ theorem:

p(w|x) = p(x|w)
p(w)

p(x)
∝ p(x|w)p(w) , (2.4)

where p(x) is often considered a normalisation constant. The posterior distributions
represent the updated beliefs about the model parameters given the observed data.

Following the previous example, the Bayesian approach can be applied to the
classical LR model. Bayesian LR extends Eq. (2.2) defining the model as

y = wTx+ ϵ , (2.5)

where w are the same coefficients defined in classic LR and ϵ is zero-mean noise
with diagonal covariance matrix σ2I. Thus, the likelihood function for y follows

p(y|x,w) ∼ N (y|xw, σ2I) , (2.6)

and then a prior probability distribution is assumed to w taking a Normal Gaussian
distribution:

p(w) ∼ N (w|0, λ−1I) . (2.7)

With this Bayesian approach, we can compute the posterior distribution of the
parameters following:

p(w|y,x) = p(y|x,w)
p(w)

p(y|x) , (2.8)

where p(w|y,x) is the posterior distribution of the parameters given the data and
p(y|x) is the marginal likelihood of the data. Hence, the posterior distribution is
Gaussian given by

p(w|y,x) ∼ N (w|µ,Λ−1) , (2.9)
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where µ = Λ(λ−1w + σ2xTy) and Λ = λ−1 + σ2xTX being the mean and precision
matrices, respectively.

Finally, we can compute the posterior distribution of the parameters and make
predictions for new data points by obtaining the predictive distribution analytically.
This strategy allows us to quantify the uncertainty in the model parameters and
predictions and to incorporate prior knowledge or beliefs about the parameters if
available.

This thesis seeks to advance the understanding of Bayesian models through
a rigorous analysis of FA and VAE models. The applications proposed in this
dissertation will focus on high-dimensional and heterogeneous multi-view problems
and will evaluate the efficacy of FA models in addressing diverse data types. Firstly,
we will examine the classical methods of FA, including Probabilistic Principal
Component Analysis (PPCA) and its Bayesian counterpart Bayesian PPCA [124].
We will then delve into Bayesian InterBattery Factor Analysis (BIBFA) [125], an
extension of BPPCA that addresses multi-view data handling. Finally, we will
analyse an extension of BIBFA that incorporates sparsity, Automatic Relevance
Determination (ARD) and handling of missing data, called SSHIBA [2]. These
analyses will provide a comprehensive understanding of FA models and their
applications in data analysis.

2.2 FA
Factor Analysis (FA) aims to identify the latent variables that explain the covariance
structure of a set of observed variables. For this purpose, FA is based on the
assumption that observed variables, X ∈ RN×D, are linear combinations of a
smaller set of hidden or latent factors, G ∈ RN×K , where K << D, plus some
added noise, ϵ ∈ RN×D . That is,

X = GWT +ϵ . (2.10)

where W ∈ RD×K contains the coefficients that describe the relationship between
the observed variables X and the latent variables G. The underlying factors are
not directly observable, but their effects are present in the observed variables. The
objective of FA is to find the hidden factors G and the projection matrix W.

FA is a versatile technique with a wide range of applications, such as data
compression, visualisation, dimensionality reduction, feature extraction, and the
derivation of interpretable features from high-dimensional data. Probabilistic FA
has been developed to provide a probabilistic interpretation of results, allowing not
only the characterisation of the data, but also an estimation of their uncertainty.

For example, PPCA is a probabilistic approach to the classical PCA method.
In a classical PCA, the goal is to find a linear transformation of the data that
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maximises the variance of the projected data. The PPCA model assumes that the
data is generated by a linear process with Gaussian noise. Specifically, the model
assumes that each data point xn,: = [xn,1, . . . , xn,d] is generated by

xn,: = gn,:W
T + ϵ , (2.11)

where xn,: is a D-dimensional data point, W is a D × K deterministic matrix
of loading vectors and gn,: = [gn,1, . . . , gn,k] is a K-dimensional latent variable
associated with xn,: and ϵ is a D-dimensional Gaussian noise term with zero mean
and covariance matrix τ−1ID. The latent variable gn,: is assumed to have a Gaussian
prior distribution with zero mean and identity covariance matrix,

gn,: ∼ N (0, IK) , (2.12)

where K is a hyperparameter that is K << D to perform dimensionality reduction.
Given the data, the goal of PPCA is to infer the posterior distribution of the

latent variables gn,: and the parameters of the model (W and Σ). This can be done
using the Expectation Maximisation (EM) algorithm or Variational Inference (VI).

In the following subsections, we shall delve into the various Bayesian formulations
of FA. The techniques discussed will be Bayesian PPCA, BIBFA, and finally Sparse
Semi-supervised Heterogeneous Interbattery Bayesian Analysis (SSHIBA), which
this dissertation extends and adapts to microbiological data.

2.2.1 Bayesian Probabilistic Principal Component Analysis
Bayesian Probabilistic Principal Component Analysis (BPPCA) [124] is a Bayesian
extension of PPCA. In PPCA [126], the authors assumed that, given the data point
xn,:, an independent latent variable gn,: ∈ R1×K exists and its prior is distributed
as an isotropic Gaussian:

gn,: ∼ N (0, IK) , (2.13)

being, as explained above, K << D. As such, the data point xn,: can be generated
as a linear combination of the latent random variable gn,: and the projection random
variable W, specifically given by

xn,: |gn,: ∼ N
(
gn,: W

T, τ−1ID
)
. (2.14)

The BPPCA [124] extension incorporates prior probability distributions on
the model parameters W and another on the noise parameter ϵ with precision τ ,
transforming both into rv, as seen in Fig.2.1. Regarding the projection matrix
the projection matrix W, a Gaussian prior distribution is assumed following
W ∼ N (0, IK), and over the noise, a Gamma prior distribution as τ ∼ Γ(aτ , bτ ).

In traditional PPCA [126], τ is a parameter learnt by optimising marginal
likelihood and inference has an exact closed form solution. However, in BPPCA,
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gn,:

xn,: W

N

Figure 2.1: Graphical model of BPPCA. Observations are represented by grey
circles, whereas random variables are represented by white circles.

τ is assumed to have a Gamma prior distribution, being so a random variable.
Hence, approximate inference is used. Let us denote as Θ the set of all previously
defined rvs by BPPCA, that is, {G,W, τ} ⊂ Θ. BPPCA proposes to infer the
posterior distribution of Θ, namely p(Θ|X). Nevertheless, the direct calculation
of this posterior distribution is intractable due to the calculation of p(X). As an
alternative, VI [127] is used to approximate p(Θ|X) by utilising a simpler and
more tractable distribution q(Θ).

Variational Inference

In VI, the proposal is to minimise the Kullback-Leibler (KL) divergence between
q(Θ) and p(Θ|X). The KL measures the divergence between two probability
distributions, i.e, their dissimilarity, meaning that when KL(q(Θ||p(Θ|X)) = 0,
the approximate posterior q(Θ) is equal to the true posterior p(Θ|X). The KL,
defined as,

KL(q||p) =
∫

q(Θ) log

(
q(Θ)

p(Θ|X)

)
dΘ , (2.15)
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quantifies the dissimilarity between q and p. By developing this formula, we can:

KL(q||p) =
∫

q(Θ) log

(
q(Θ)

p(Θ|X)

)
dΘ

=

∫
q(Θ)

Prop. of logarithms︷ ︸︸ ︷
(log q(Θ)− log p(Θ|X)) dΘ

=

∫
q(Θ) log q(Θ)dΘ−

∫
q(Θ) log p(Θ|X)dΘ

=

Def. of expectation︷ ︸︸ ︷
Eq[log q(Θ)]− Eq[log p(Θ|X)]

= Eq[log q(Θ)]−

Bayes rule︷ ︸︸ ︷
Eq

[
log

p(X,Θ)

p(X)

]

= Eq[log q(Θ)]−
Prop. of logarithms︷ ︸︸ ︷

Eq[log p(X,Θ)− log p(X)]

=

Prop. linearity expectation︷ ︸︸ ︷
Eq[log q(Θ)− log p(X,Θ)] + Eq[log p(X)]

= Eq[log q(Θ)− log p(X,Θ)] + log p(X)︸ ︷︷ ︸
intractable

,

(2.16)

following VI, group the intractable terms and the tractable terms as follows:

Eq[log p(X,Θ)− log q(Θ)]︸ ︷︷ ︸
tractable

= log p(X)−KL (q(Θ)||p(Θ|X))︸ ︷︷ ︸
intractable

.
(2.17)

The key concept of VI is that the maximisation of the left part of Eq. (2.17) is
equivalent to the maximisation of the right part. By definition, the KL divergence is
a non-negative function, i.e., KL ≥ 0. Therefore, the maximisation of the tractable
part of Eq. (2.17) causes the KL to be 0, resulting in the left part of the formula
becoming a lower bound of the log evidence log p(X), referred to as the Evidence
LowerBOund (ELBO), as represented in the following equation:

L(q) = −KL (q(Θ)||p(Θ|X)) + log p(X) ≤ log p(X) (2.18)

where L(q) is defined by completely tractable terms:

L(q) = Eq[log p(X,Θ)− log q(Θ)] . (2.19)

Consequently, the maximisation of L(q) results in making the approximation
q(Θ) closer to the true posterior p(Θ|X), and even, at its maximum point, being
q(Θ) = p(Θ|X).
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One method to calculate this ELBO is, for example, using the mean-field
approximation [127]. This technique considers that the approximated distribution
q(Θ) can be fully factorised as

q(Θ) =
∏
i

q(θi) =
∏
i

qi , (2.20)

where θi is the i-th rv of the model and its approximate distribution is denoted as
qi. Thus, we can apply this trick to maximise L(q) w.r.t each qj factor as

L(qj) =

∫
q(Θ) [log p(X,Θ)− log q(Θ)] dΘ

=

Mean-field trick︷ ︸︸ ︷∫ ∏
i

qi

[
log p(X,Θ)−

∑
i

log qi

]
dΘ

=

Separate the j-th r.v.︷ ︸︸ ︷∫
qj

(∏
i̸=j

qi

)
log p(X,Θ)dΘ−

∫
qj

(∏
i̸=j

qi

)
log qjdΘ

−
∫

qj

(∏
i̸=j

qi

)(∑
i̸=j

log qi

)
dΘ

=

∫
qj

[∫ ∏
i̸=j

qi log p(X,Θ)dθi

]
dθj −

∫
qj log qjdθj + cte

=

∫
qj log fjdθj −

∫
qj log qjdθj + cte

= −KL (qj||fj)

(2.21)

where fj is defined by

log(fj) = E−qj [log p(X,Θ)] + cte (2.22)

where −qj represents the expectation of all variables except a specific θj . Therefore,
the KL divergence minimisation between qj and fj, maximises the ELBO L(qj).
Thus, we can compute that the optimal value for log qj that minimises this KL is
given by

log q∗j = E−qj

[
log p(X,Θ)

]
+ constant. (2.23)

In other words, we are going to optimise qj by calculating the expectation
over all the remaining variables in the model as the mean-field follows [128, 129].
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Following this theory, in BPPCA the posterior distribution can be approximated
by mean-field VI. Applying it, the posterior p(Θ|X) is approximated as

p(Θ|X) ≈ q(Θ) = q(W)q(τ)
∏
n

q(gn,:) . (2.24)

Now, to obtain each qj , we apply Eq. (2.23) iteratively to each rv of Eq. (2.24).
To do so, one of the rvs is fixed (called qj) and the expectations of the rest are
calculated. Following this approach, the BPPCA update rules for each qj are
calculated and shown in Table 2.1 where ⟨⟩ is the expectation operator.

Table 2.1: The expressions of the updated distributions for all BPPCA’s rvs
obtained by mean-field.

Variable q∗ distribution Parameters

gn,: N
(
gn,: |⟨gn,:⟩,ΣG

) ⟨gn,:⟩ = ⟨τ⟩X⟨W⟩ΣG

Σ−1
G = IKc +⟨τ⟩⟨WT W⟩

W(m)
∏

d N
(
W |⟨W⟩,ΣW

) ⟨W⟩ = ⟨τ⟩XT ⟨G⟩ΣW

Σ−1
W = IK + ⟨τ⟩⟨GT G⟩

τ
Γ
(
τ |aτ , bτ

) aτ = DN
2

+ aτ

bτ = bτ + 1
2

(∑
n

∑
d x

2
n,d − Tr

(
⟨W⟩⟨GT ⟩X

)
+1

2
Tr
(
⟨WT W⟩⟨GT G⟩

))

2.2.2 Bayesian Inter-Battery FA

In the present work, we have shown the importance of multimodal learning in
real-world situations. Building upon BPPCA and extending PPCA, Klami et al.
[125] proposed a multimodal version of this technique, named BIBFA. In BIBFA,
the latent dimension of gn,: ∈ R1×K , K, is automatically learnt.

In BIBFA, the BPPCA generative model is extended to include multiple input
views. Each view is denoted as the m-th view, with a total of M different modalities
that can be learnt. The technique proposes learning of a common latent projection
space for all M modalities by identifying the inter- and intra-view data correlation.
The global shared latent space, represented by G, is integrated with a set of unique
projection matrices W(m), where m ranges from 1 to M , to produce the respective
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Figure 2.2: Graphical model of BIBFA. Observations are represented by dark
circles, whereas random variables are represented by white ones. The rest denotes
hyper-parameters

views of the data, denoted as X(m). Thus, BIBFA defines the joint probability
distribution as follows:

gn,: ∼ N (0, IK) , (2.25)

w
(m)
:,k ∼ N (0, α

(m)
k

−1
IK) , (2.26)

x(m)
n,: |gn,: ∼ N (gn,: W

(m)T , τ (m)−1
IK) , (2.27)

α
(m)
k ∼ Γ(aα

(m)

, bα
(m)

) , (2.28)

τ (m) ∼ Γ(aτ
(m)

, bτ
(m)

) , (2.29)

where differences from BPPCA can be observed, as illustrated in the graphical
model presented in Fig. 2.2.

In BIBFA, specific parameters W(m) are used for each view, which is a natural
assumption. As the data will differ between views, it follows that X(m) must also
be different for each m modality. Given that each X(m) corresponds to a different
modality, the global G must be combined differently to generate each modality.

Additionally, a new random variable α(m)
k is introduced, which serves as an ARD

prior that induces column sparsity in the columns of the projection matrix W(m)
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[130]. To do so, each k-column of W(m), w(m)
:,k , follows a Gaussian distribution with

zero mean and precision α
(m)
k . For this α(m)

k we assume a Gamma prior distribution
allowing the precision to achieve high values. When this occurs, i.e., α(m)

k value
increase significantly, all elements of w(m)

:,k tends to 0. This means that the k-th
component of G does not affect to the generation of X(m), thus obtaining an
automatic latent feature selection. As the α

(m)
k values are different for each m

modality, this helps to induce projections of different modalities by imposing four
possible scenarios:

1. For a specific k column, if w
(m)
:,k ̸= 0 for all m modalities, it means that

this k latent feature is shared among all views, i.e., it represents common
information between different modalities.

2. For a specific k column, if w(m)
:,k = 0 for all m modalities, it means that this k

latent feature is not utilised by any views and can be pruned, reducing the
dimension of the latent space.

3. For a specific k column, if w(m=j)
:,k ̸= 0,w

(m̸=j)
:,k = 0, it means that this k latent

feature is private to modality m = j.

4. And, for a specific k column, if w(M1)
:,k ̸= 0,w

(M2)
:,k = 0, where M1,M2 are two

different subsets of modalities, it means that this latent feature k is shared by
the subset of modalities [M1,M2].

The generative model proposed by BIBFA aims to enhance the learning of
information from multimodal data while providing interpretability. BIBFA can
automatically prune the latent space dimension by identifying latent features that
are not used by any view in the reconstruction process.

Variational inference

As was proposed in BPPCA, mean-field is again used to calculate the approximate
posterior distribution of all r.v. Θ. Therefore, starting from Eq. (2.24) it can be
extended to cover multiple views and also the new ARD prior as follows:

p(Θ|X(m)) ≈ q(Θ) =
M∏

m=1

(
q(W(m))q(τ (m))

K∏
k

q(α
(m)
k )

) N∏
n=1

q(gn,:) , (2.30)

where the main differences are that now BIBFA proposes two different products,
one per modality that contains its private rv τ (m),W(m), α

(m)
k , and another by

samples that only refer to the global shared latent space.
Moreover, in BIBFA, they proposed a prediction formulation where, given a

new test sample, denoted x∗,:, and a subset of observed views Mo, a predictive
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distribution for an unobserved view u can be obtained. To do so, the posterior of
the unobserved latent variable g*,: is firstly calculated as:

p
(
g*,: |x(Mo)

∗,: , Dtrain
)
=

∫
p
(
g*,: |x(Mo)

∗,: ,Θ
)
p(Θ|Dtrain)dΘ

≈
Point estimate︷ ︸︸ ︷

p
(
g*,: |x(Mo)

∗,: , ⟨Θ⟩
)

= N (g*,: |⟨g*,:⟩,Σg*,:
) ,

(2.31)

where, using point estimation Monte-Carlo approximation, we assume that the
mean value of the Θ is rich enough to compute the prediction being now a Gaussian
distribution. Finally, by applying the Bayes rule, we can define the posterior
p
(
g*,: |xMo

∗,: ,Θ
)

as a Gaussian distribution

⟨g*,:⟩ =
Mo∑
m

(
⟨τ (m)⟩xm

∗,:⟨W(m)⟩
)
Σg*,:

, (2.32)

Σ−1
g*,:

= IK +
Mo∑
m

(
⟨τ (m)⟩⟨W(m)T W(m)⟩

)
, (2.33)

being ⟨g*,:⟩ the mean and Σg*,:
the covariance.

Now, using this posterior, the predictive posterior distribution of the unobserved
modalities can be computed as follows:

p
(
x(u)
∗,: |x(Mo)

∗,: ,Θ
)
=

∫
p
(
x(u)
∗,: |g*,:,Θ

)
p
(
g*,: |x(Mo)

∗,: ,Θ
)
dΘ . (2.34)

As both are Gaussians, any prediction of an unobserved modality can be sampled
from another Gaussian distribution following:

⟨x(u)
∗,: ⟩ = ⟨g*,:⟩⟨W(u)T ⟩ , (2.35)

Σ−1

x
(u)
∗,:

= ⟨τ (u)−1⟩ID + ⟨W(u)⟩Σg*,:
⟨W(u)T ⟩ . (2.36)

The BIBFA model is presented as a method for learning from multimodal
data and making predictions of unobserved parts, with the ability to prune latent
factors automatically. However, it is acknowledged that this model has limitations in
handling heterogeneous data types and dealing with missing data in semi-supervised
environments which are common problems in real case scenarios.

2.2.3 Sparse Semi-supervised Heterogeneous Interbattery Bayesian
Analysis

In [2], an extension of BIBFA is proposed, called Sparse Semi-supervised Heteroge-
neous Interbattery Bayesian Analysis (SSHIBA). This work extends the limitations
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of BIBFA to handle different heterogeneous data types, such as multilabel and
binary, and allows it to operate in semi-supervised scenarios with missing data.

The SSHIBA [2] model presents a solution to heterogeneous multi-view problems
with samples represented in M different modalities. Each m modality, or view, can
be a multilabel, binary, real, or categorical object. The general model framework,
shown in Fig. 2.3a, considers that the sample n-th of the m-th view, x(m)

n,: ∈ R1×D,
can be projected into a latent space of lower dimension, gn,: ∈ R1×K where K is
the number of latent factors of this common space. For this low-dimensional latent
space, the following prior is assumed:

gn,: ∼ N (0, IK) . (2.37)

As seen in Fig. 2.3b, the data point n corresponding to the view m, x(m)
n,: , can

be generated by linearly combining gn,: with a projection matrix W(m) ∈ RD×K ,
that is,

x(m)
n,: = gn,: W

(m)T + b(m) +ϵ(m) , (2.38)

where ϵ(m) is Gaussian noise with zero mean and whose noise power, τ (m) follows a
Gamma distribution:

τ (m) ∼ Γ
(
aτ

(m)

, bτ
(m)
)
. (2.39)

Therefore, we assume that x
(m)
n,: given gn,: follows:

x(m)
n,: |gn,: ∼ N

(
gn,: W

(m)T + b(m), τ (m)−1
IDm

)
. (2.40)

SSHIBA also includes a double ARD prior [124], column- and row-wise, on each
view’s projection W(m) matrix:

w
(m)
d,k ∼ N

(
0, (γ

(m)
d α

(m)
k )−1

)
, (2.41)

b(m) ∼ N (0, IDm) , (2.42)

α
(m)
k ∼ Γ

(
aα

(m)

, bα
(m)
)
, (2.43)

γ
(m)
d ∼ Γ

(
aγ

(m)

, bγ
(m)
)
. (2.44)

On the one hand, α(m)
k eliminates the latent factors cross-validation process. It

implies that each W(m) effectively selects which part of the global latent space G
is specific to each m view (intraview) or shared among views (interview). On the
other hand, γ(m)

d creates sparsity over the D features, thus proposing a feature
selection.

Given the observed data, the model is trained by evaluating the posterior
distribution of all rv. However, these posteriors cannot be calculated precisely, and
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(a) Model multi-view.
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Figure 2.3: Basic structure of SSHIBA. Observations are indicated by dark spheres,
rv by white ones and hyper-parameters by non-circles. While Figure 2.3a depicts
the latent space projection gn,: encompassing all m input perspectives, Figure 2.3b
exemplifies how an actual m-view is modeled. Source: [2]

thus are estimated through the mean-field VI [127] to approximate the posterior
distribution with a completely factorised variational family q as:

p(Θ|X(m)) ≈
M∏

m=1

(
q(W(m))q(τ (m))

K∏
k=1

q(α
(m)
k )

Dm∏
d=1

q(γ
(m)
d )

)
N∏

n=1

q(gn,:), (2.45)

where Θ is a vector of all rv in the model, shown in Fig. 2.3b. Therefore, combining
the mean-field approximation of the posterior distribution with the ELBO creates
a workable coordinate optimisation procedure, in which each rv is computed while
keeping the rest constant, as detailed below:

q∗(θi) ∝ EΘ−i
[log p(Θ−i, θi1,:, ..., θiN,:)] , (2.46)

with Θ−i represents the set of all possible rv excluding θi. The rules for updating
every rv can be seen in Table 2.2.

Furthermore, the Bayesian nature of the model allows it to work in a semi-
supervised fashion, using all available information to determine the approximate
distribution of the variables. In turn, the model can marginalise any missing values
in the data and predict test samples for any view by sampling from its variational
distribution.
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Table 2.2: Distribution for all Θ obtained by mean-field approximation. Source: [2]

Variable q∗ distribution Parameters
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Table 2.3 presents an overview of the features and limitations of current FA
models. These models generally utilise linear decomposition methods, with some
incorporating additional features. For example, the BIBFA model handles multi-
view data, while the SSHIBA model incorporates both heterogeneity and semi-
supervised learning. Despite these improvements, there are limitations to the
versatility of these models in certain contexts, specifically in microbiology scenarios.
In particular, these models may not be suitable for data that exhibit non-linear
relationships and may struggle with high-dimensional data where the number of
variables, D, exceeds the number of samples, N . This poses a computational
bottleneck for SSHIBA, as it requires the inversion of the matrix Σ−1

W(m) ∈ RD×D
+ .

To address this limitation, this thesis presents various extensions to the SSHIBA
model to better suit it for microbiological data. In Chapter 3, a kernel-based
extension, KSSHIBA [122], is proposed to handle high-dimensional data, such as
that obtained from MALDI-TOF MS, while exploiting non-linear relationships in
the data. Then, in Chapter 4, a VAE-based extension, FA-VAE [123], is proposed
to exploit non-linear relationships and further expand the types of heterogeneous
data to handle.
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Table 2.3: Features and limitations of current FA models.

BPPCA BIBFA SSHIBA
Bayesian FA ✓ ✓ ✓
Multiview ✗ ✓ ✓

Heterogeneous ✗ ✗ ✓
Semi-supervised ✗ ✗ ✓

High-dimesional data ✗ ✗ ✗
Non-linear data ✗ ✗ ✗

2.3 Probabilistic Deep Learning

Probabilistic Deep Learning (DL) is a subfield of DL that deals with the integration
of probabilistic methods with deep Neural Network (NN). In probabilistic DL,
models are trained to make probabilistic predictions that provide a measure of the
uncertainty associated with the model’s output. This uncertainty can be used to
estimate the confidence in the model predictions, which can be particularly useful
in decision-making applications where the cost of a wrong prediction can be high.

One of the key examples is Deep Gaussian Processes (DGP). A DGP is a hier-
archical Bayesian model that extends the capabilities of traditional GP algorithms
[131] by incorporating multiple layers of latent variables. The hierarchical structure
of DGP allows for the modelling of complex, non-linear relationships in the data.
DGP models have been used in various tasks such as regression [132] or active
learning [133].

Finally, VAEs are a prominent class of generative models in the field of proba-
bilistic DL. These models are trained to reconstruct input data using a probabilistic
approach, and consist of two main components: an encoder network that maps
input data to a set of latent variables and a decoder network that maps the latent
variables back to the original data space. VAEs have gained recognition for their
flexibility in handling a wide range of data types, including both continuous and
discrete variables, owing to their encoder-decoder architecture. The architecture of
VAEs can be easily adapted to new types of data, such as weather prediction by
using a MLP as shown in [134] or detect traffic issues from real videos by using a
CNN as shown in [135]. Furthermore, VAEs have also been applied to time series
analysis in anomaly detection problems by using a LSTM architecture as shown
in [136].

The VAE model is going to be the focal point of a portion of the models analysed
in this dissertation. We will conduct an in-depth analysis of VAE models to assess
their adaptability in handling diverse types of data. Subsequently, the following
sections will explore the nowadays techniques to handle multi-view information in
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a hierarchical manner. This analysis will provide a comprehensive understanding
of VAE models and their capabilities in data analysis.

2.3.1 Variational AutoEncoders
In order to gain a proper understanding of a VAE, it is important to first consider
the basics of the non-probabilistic AutoEncoder (AE). A non-probabilistic AE
consists of an encoder and a decoder. The goal of the AE is, using an encoder,
to create a smaller representation of the input information that still contains
critical information about it so that the original input can be reconstructed by a
decoder. An intuition for how this process works can be found in Fig. 2.4, which
illustrates how an AE encodes a face into latent attributes that characterise the
image, allowing a decoder to reconstruct the same image.

Figure 2.4: AutoEncoder example

A VAE is a probabilistic approach to describing an observation in a latent
space. Rather than describing an observation as a fixed set of attributes, a VAE
describes a probability distribution for each latent attribute. This can be visualised
in Fig. 2.5, where, instead of a deterministic value for each attribute, we have a
Gaussian probability distribution that describes each attribute. Given a face, it
is encoded into a latent Gaussian probability distribution that characterises each
attribute. The decoder thus samples that distribution and generates an infinite
number of images that are similar to the original one.

Thus, a VAE that assumes that there exists a hidden latent variable z ∈
R1×K that is capable of generating observations x ∈ R1×D through a non-linear
model. It is worth noting that since it is compressed, K << D, meaning that the
latent dimension is always lower than the original, as its purpose is to condense
the information. Following the intuition of Figs. 2.4 and 2.5, the observation
x ∈ R1×64×64 is an image of a face with 64 × 64 pixels and compressed into a
latent variable z ∈ R1×4 where we have four different latent variables that can be
interpreted to explain specific attributes of the image such as gender or smiling.
In other words, D represents the original observation dimension (the number of
pixels in the image), and K is a hyperparameter that denotes the dimension of the
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Figure 2.5: Variational AutoEncoder example. Given an example image, various
images are generated by sampling from a multivariate Gaussian distribution in the
latent space.

hidden latent features. These latent variables are inferred from the observations as
follows:

encoder︷ ︸︸ ︷
pϕ(z|x) =

decoder︷ ︸︸ ︷
pθ(x|z) p(z)

p(x)
, (2.47)

where, pθ(x|z) represents the decoder, which is a parametric NN with parameters θ
whose architecture is a hyperparameter; p(z) represents the prior assumed over the
latent variables, where in the classical VAE it is typically assumed to be a normal
distribution N (0, 1) according to [137]; and p(x) is the marginal likelihood of the
data. However, computing this marginal likelihood is intractable and, thus, it is
not possible to use Eq. (2.47) to construct the encoder. Instead, we use VI to
approximate it with a tractable parameterised family of distributions defined as
qη(z|x). To do this, we minimise the KL divergence between these two distributions,

min
η

KL(qη(z|x)||pϕ(z|x)) , (2.48)

which is equivalent to maximising the following ELBO [137]:

Lθ,η = Eqη(z|x)[log
(
pθ(x|z)

)
]︸ ︷︷ ︸

I

−KL
(
qη(z|x)||p(z)

)︸ ︷︷ ︸
II

, (2.49)

where now qη(z|x) is the encoder which is a parametric NN with parameters η
whose architecture is a hyperparameter; the likelihood term I drives the recon-
struction of the observations given by the encoder; and II ensures that the learnt
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encoder distribution qη(z|x) is restricted to the prior distribution p(z) working as
a regularisation term.

z x

pθ(x|z)

qη(z|x)

Figure 2.6: VAE structure, where qη(z|x) is the encoder network and pθ(z|x) is the
decoder network.

Since Kingma and Welling introduced the original VAE in 2013 [137], numerous
variants and improvements have been developed. In this thesis, we focus on β-VAE
[138, 139], a modification of the original VAE that introduces a hyperparameter β to
the regularisation term in the ELBO (term II in Eq. (2.49)). This hyperparameter,
which is typically set to β>1, leads to more disentangled latent representations of
the latent space z.

It is worth noting that, traditionally, both vanilla VAE and β-VAE are not
designed for heterogeneous and mixed data types. They are mainly applied to a
single type of data. In recent years, various researchers have conducted a deep
analysis that extends the applicability of VAEs to heterogeneous problems. The
next subsection reviews the background of different heterogeneous VAEs.

2.3.2 Heterogeneous Variational AutoEncoders

In the literature, different approaches have addressed the problem of heterogeneous
data. With respect to this problem, VAEs have been widely explored and extended
to deal with mixed data types. The key problem when dealing with heterogeneous
data types in VAEs is the approach that the author takes to mix their latent
representation. As explained above, given input data X, the vanilla VAE encodes
a latent representation Z. However, given multiple input data modalities, where
X(m) is a specific modality of M possibles, the key question is how to mix different
encodings without losing information. Previous research has shown that there
are two current approaches nowadays: (i) differentiating each modality in both
input and latent space using specific likelihoods for each data type, and (ii) only
differentiating them in the input space. The following subsections detail both
schemes.
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Specific likelihoods per data type

Regarding the first approach, the most known heterogeneous VAE is the Heteroge-
neous Incomplete VAE (HIVAE) [3]. HIVAE proposes to use different likelihoods
for each data type, that is, feeding the encoder with the different data types and
then using a specific likelihood for real (R), positive (R++), count (N ), categorical,
and ordinal data. Thus, an ELBO is maximised for all observations where each data
type is fused by combining the different likelihoods. Its graphical generative model
is shown in Fig. 2.7 where γnd determines the specific parameters of each likelihood
type and sn determines which component of the Gaussian mixture generates each
latent space zn. Then, they induce the hierarchy by means of yn, which is an
intermediate representation of all data types.

Figure 2.7: HIVAE graphical model. Source: [3].

However, the idea of combining information directly in the latent space is
not novel, as it has been previously studied in the Joint Multimodal Variational
Autoencoder (JMVAE) proposed by Suzuki et al. in [140]. The graphical model of
the JMVAE is depicted in Figure 2.8. In this work, the authors proposed the use of
different encoders for each type of data and specific likelihoods, such as Gaussian
for real data and Bernoulli for binary data.

z

x(1) x(2)

Figure 2.8: JMVAE graphical generative model.
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Other authors, such as Barrejón et al. [141], extended HIVAE [3] to work with
sequential data driven by LSTMs. Moreover, they also provided a robust model
that can handle missing data in heterogeneous time series by adding an amortised
VI, i.e., introducing a NN that estimates the missing values. As in HIVAE, they
proposed having a specific likelihood for each data type.

In summary, previous studies have typically maximised an ELBO through a
weighted sum of partial ELBOs or losses, one per data type. However, as pointed
out by Javaloy et al. in [142], this approach can lead to negative transfer. To address
this issue, Javaloy et al. proposed the use of a multitask learning approach that
homogenises the gradients between tasks before the weighted sum, thus ensuring
that no task is overlooked in the optimisation process.

Common likelihoods for all data types

Other authors point out that it is not necessary to differentiate each data type in
the latent space. They claim that combining different likelihoods is difficult due to
different magnitudes and training speeds. Instead, they proposed to handle each
data type by different and specific encoder-decoder architectures and then fuse the
latent spaces directly.

Building upon the idea of JMVAE [140], which utilises different likelihoods for
each data type, Vedantam et al. [143], proposed an extension. Here the authors
model each likelihood as Gaussian and mix them by a Product of Experts (PoE)
[144], following an intuition from FA [145]. Additionally, to make the posterior
more well-behaved and close to spherical, they introduce a prior p(z) to the PoE
as a universal expert.

A similar approach was used in Variational Selective AE (VSAE) [4]. The
authors factorised the latent space as a product of Gaussians, decoupling the
heterogeneity in the input space but integrating it into the latent space. As seen in
Fig. 2.9, the authors proposed a specific encoder for each data type, indicated by
red, blue, and green. Additionally, a separate encoder is used to handle missing
information, and a gate is utilised to decide whether to use the normal encoder or the
missing encoder. Afterwards, the model samples from each posterior distribution q
and concatenates all latent spaces into a common one. Finally, specific decoders
handle each data type.

The idea of creating a specific private latent space for each type of data and
then mixing them was previously proposed by other authors, for instance, in the
Multimodal Variational Autoencoder (MVAE) proposed by Wu et al. in [5]. The
key difference is that they fused all private information using a PoE [144], as
depicted in Fig. 2.10. This is an efficient way of training the joint probability of
all private spaces, creating a common shared space.

Other authors proposed to follow the intuition of FA and separate private and
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Figure 2.9: VSAE model overview. Source: [4].

common information shared between views. In [6] the authors determine that
the different data modalities share common information but also have private
information that defines why they are different modalities. For example, a flower
can be described by both an image and text, but each provides specific information.
Therefore, they proposed a private latent variable for each type of data and a
shared one between all modalities, as shown in Fig. 2.11. They follow the same
approach as in the MVAE [5], defining specific encoders for every data type, and
the shared latent space is constructed by PoE of all private representations. While
the MVAE decoder only uses the shared information, the Disentangled Multimodal

Figure 2.10: MVAE model. (a) represents the generative model, equal to JMVAE
but (b) denotes the difference in construction, as seen a PoE is used to mix the
different private latent representations. Source: [5].
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VAE (DMVAE) decoder uses both the shared and private representations as input,
as they believe that combining both improves disentangled representations.

Figure 2.11: DMVAE graphical model. Source: [6].

An extension of the DMVAE is the Multi-VAE [7] where also a private latent
space for each view is used, but the shared latent space is now a categorical latent
variable following a Gumbel softmax reparametrization trick [146], as seen in Fig.
2.12. Thus, they simply concatenate both latent spaces and proposed different
decoders per view.

Figure 2.12: Multi-VAE architecture proposal. Source: [7].

Yuge Shi et al. generalised MVAE [5] into MMVAE [147]. Instead of following
the product of experts as seen in DMVAE [6] or MVAE [5], they outperformed the
cross-generation of images between different data modalities by proposing a change
from PoE to a Mixture of Experts (MoE) claiming that PoE leads to a miscalibration
of experts. They also proposed using Importance Weighted AutoEncoder (IWAE)
[148] instead of vanilla VAE [137] for each specific data type, as it computes a
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tighter ELBO by weighting importance and provides a higher entropy.
Other approaches simplify the architecture; for example in AMVAE [8] the

authors substitute the PoE of DMVAE [6] or the MoE of MMVAE [147] by a fully
connected layer that yields promising results, as seen in Fig. 2.13.

Figure 2.13: AMVAE architecture proposal. Source: [8].

However, other researchers argue that simplicity is insufficient to capture
the complexity inherent in the data. The VAEM [9] is an example of these
complex models. This technique utilises a hierarchical structure to handle common
information between data types and private information that characterises each
type. The authors proposed a training process divided into two stages. In the
first phase, an individual marginal VAE is trained for every variable, adapting to
the nature of each data type, as represented by the inner square of Figure 2.14.
In the second stage, a top-level VAE is trained whose inputs are all the hidden
representations created by each marginal VAE, represented by hn in Figure 2.14.
The VAEM thus consists of a hierarchical structure of VAEs, where the top-level
VAE uses a VampPrior [149] to handle the hierarchical dependency as a mixture of
Gaussians.

Peis et al. 2022 [10] improved the VAEM by substituting the second phase with
an arbitrary hierarchy of latent variables. While VAEM (Fig. 2.14) uses a one-level
hierarchy called hn, HHVAEM (Fig. 2.15) generalises it to any arbitrary level (L)
of hierarchy. This new hierarchical structure better captures the dependencies
between each dimension by balanced Gaussian likelihoods. Additionally, they
improved posterior sampling by means of Hamiltonian Monte Carlo. Finally, they
can handle missing data represented as yv in Fig. 2.15.
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Figure 2.14: VAEM graphical model. Source: [9].

Figure 2.15: HHVAEM graphical model. Source: [10].
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As seen in this literature review, there are different approaches to handling
multi-view data. However, some of them rely on a complex hierarchical deep-
latent representation that projects the data correlation among views. Other
works proposed an inference approach that hinders training and obscures the
interpretability of the model. Finally, others consist of a simpler solution that
works on well-defined benchmark datasets, but its implementation in real-world
problems may not work.

In this study, a novel paradigm is put forth that incorporates and extends
existing literature proposals. Drawing from the hierarchy in the latent space
presented in HIVAE [3] and its extensions, and the intuition of utilising specific
encoder-decoder architectures for each data view exemplified in MVAE [5] and
subsequent models, our approach relies on FA for its ability to provide a modular
and interpretable latent space. By combining the versatility of VAEs in handling
various data types with the interpretability of FA, we proposed the FA Variational
Autoencoder (FA-VAE) model in Chapter 4.
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CHAPTER 3
KERNELISED SSHIBA

In this chapter, we introduce a new technical contribution in the field of Bayesian
statistics. Our approach involves the extension of SSHIBA to a kernelised version,
which enables the handling of non-linear high-dimensional data. Unlike other
Bayesian kernel methods, KSSHIBA not only inherits the advantages of SSHIBA,
such as multi-view modularity, the capability to handle missing data and het-
erogeneous data sources in an explainable way, but also adds the exploitation of
non-linear relationships in the data. The proposed method addresses the growing
challenge of handling heterogeneous multi-view non-linear data in various disci-
plines, particularly in medicine, by introducing a more advanced and adaptable
approach. Through rigorous experimentation and analysis, we demonstrate the
superiority of KSSHIBA over current models in terms of compression efficiency,
prediction accuracy, and interpretability of the results. This novel approach has
significant potential to foster new insights and drive progress in various fields such
as neuroscience [150] and microbiology [45].

This model, KSSHIBA, is published at Neurocomputing journal from Elsevier
[122]. KSSHIBA was developed in collaboration with Dr. Carlos Sevilla-Salcedo
from Aalto University, Finland. While Dr. Sevilla-Salcedo applied the extension to
high-dimensional neuroscience data, we focus on its use in exploiting non-linear
relationships between MALDI-TOF MS data.

Thus, in this chapter, we provide a comprehensive overview of the theoretical
model of KSSHIBA and in Chapter 5 we present its application to bacteria resistance
prediction to antibiotics. Building upon the background in Bayesian statistics and
FA introduced in Chapter 2, we thoroughly describe the method, including its
model formulation, inference algorithm, and learning algorithm. A comprehensive
evaluation of KSSHIBA on various real-world datasets is also presented, along with
a detailed analysis of the results. In accordance with the open science philosophy
upheld in this thesis, the implementation of the KSSHIBA model and all associated
experimentation detailed in this chapter are readily accessible through a public
repository on GitHub, under the link 1.

The chapter is organised as follows: Section 3.1 presents the kernelised for-
mulation of SSHIBA, as well as the proposed formulations for RVs and feature
selection. Then, in Section 3.2 we demonstrate how this new formulation performs

1https://github.com/sevisal/K-SSHIBA
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in experimentation. Ultimately, in Section 3.3 the principal findings are highlighted.

3.1 Bayesian sparse factor analysis with kernelised
observations

In the field of multi-view analysis, a common challenge is to find a shared latent
representation, both inter- and intra-view, for N data samples represented in
M different modalities, denoted as {X(m)}Mm=1. The objective is to compress
the information contained in x

(m)
n,: ∈ RDm , which represents a data point n of

the view m, into a low-dimensional space of size K << (D1, . . . , DM), while
considering the correlations among the data. This latent representation, referred to
as G, contains the shared information between all data modalities. G is obtained
through a combination of its kernel representation, k(m)

n,: , and dual variables, A(m) in
traditional MultiVariate Analysis (MVA) techniques, such as Canonical Correlation
Analysis (CCA). Our proposed approach reforms this idea from a probabilistic
perspective.

In this work, we build upon the SSHIBA algorithm [2] and propose the use
of latent variables gn,: that are merged with dual variables A(m) to generate the
kernel vector k

(m)
n,: . The relationship between gn,:, A(m), and k

(m)
n,: is expressed by:

k(m)
n,: = gn,: A

(m)T + τ (m) , (3.1)

which implies that k(m)
n,: is equal to the dot product of gn,: and the transpose of A(m),

augmented by Gaussian random noise with a zero mean and power determined
by a Gamma distribution, specified by τ (m). The mapping function ϕ(·) and its
corresponding kernel function K(x,x′) = ϕ(x)⊤ϕ(x′) are used to calculate k

(m)
n,: ,

which represents the kernel between x
(m)
n,: and all training data points.

The matrix A(m) is used as a dual projection matrix in the algorithm, and
its structure is defined using the structured ARD prior used in both BIBFA
and SSHIBA. This prior promotes sparsity in the columns of the full matrix, by

assigning a Gaussian distribution to a
(m)
:,k ∼ N

(
0,
(
α
(m)
k

)−1

IKc

)
, and a Gamma

distribution to α
(m)
k ∼ Γ

(
aα

(m)
, bα

(m)
)
. The fusion of these distributions leads to

the creation of sparse latent factors, enabling the selection of the most pertinent
ones [151]. Consequently, each A(m) determines the intra-view information of each
x
(m)
n,: contained in the shared space gn,:. By employing this approach, we can capture

inter-view information in gn,: while selecting the intra-view information through
A(m).

The graphical representation of KSSHIBA is shown in Fig. 3.1. There are
two types of data views considered in KSSHIBA, linear and kernelised. For linear
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Figure 3.1: Graphic model of KSSHIBA.

views, the standard SSHIBA generative model can be used, where the relationship
between the data and the latent variables is represented as x(m)

n,: = gn,: W
(m)T + τ (m).

The weight matrix W(m) follows the structured ARD prior discussed previously.
On the other hand, for the kernelised views, the relationship between the data
and the latent variables is modelled through a kernel function as described in Eq.
(3.1). This type of representation is used when non-linear relationships within and
between the views need to be considered or when the dimensionality of the view
is large relative to the number of data points and working in the dual space is
preferred to reduce the number of parameters. When both linear and kernelised
views are present, the latent projection gn,: is learned to accurately reconstruct
both types of data representations.

It should be noted that simply drawing a sample from the model in Eq. (3.1)
does not guarantee that the resulting kernel matrix will be positive semidefinite.
The kernel matrix is treated as a type of observation, known as a kernelised
observation, and the parameters of the model are selected based on the goal of
minimising reconstruction error. As shown in Fig. 3.2, a graphical illustration is
provided that demonstrates how the kernelised observation and its reconstruction
through Eq. (3.1) using the mean of the posterior distribution of gn,: are related.
The illustration shows that the kernelised observations are effectively reconstructed.
While more suitable models could be employed to customise the observation model,
such as specifying the noise distribution as an inverse Wishart or modelling its
covariance as the product of two low-rank matrices, they were found to result in
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a less flexible overall model and therefore were not considered in this study. The
focus here is on the model presented in Eq. (3.1), and it is acknowledged that
further investigations in this field could lead to even more promising outcomes.
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(a) Real matrix (b) Approximated matrix (c) Reconstruction error

Figure 3.2: KSSHIBA’s generative properties demonstrated through an example of
complete kernel matrix reconstruction.

The posterior distribution of a kernelised m-view can be evaluated as:

p(Θ|k1,:, . . . ,kN,:) =

∏N
n=1 p(kn,:|Θ)p(Θ)

p(k1,:, . . . ,kN,:)
, (3.2)

p(k1,:, . . . ,kN,:) =

∫
p(Θ,k1,:, . . . ,kN,:)dΘ, (3.3)

where Θ refers to all random variables (rv). We employ a mean-field VI technique
[127] and optimise the ELBO of Eq. (3.3) as:

log p(k1,:, . . . ,kN,:) ≥
∫

q(Θ) log

(∏N
n=1 p(kn,:|Θ)p(Θ)

q(Θ)

)
dΘ (3.4)

with a completely factorised variational family, permitting us to estimate the
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posterior outlined in Eq (3.2) as

p(Θ|K(m)) ≈
M∏

m=1

(
q
(
A(m)

)
q
(
τ (m)

) Kc∏
k=1

q
(
α
(m)
k

)) N∏
n=1

q(gn,:) , (3.5)

where the stack version of the kernel for each sample, k(m)
n,: , of the m-view, with

dimension N ×Dm, is represented by K(m).
The optimisation algorithm for the approximate inference approach in the

KSSHIBA framework utilises the mean-field posterior structure and the ELBO
expressed in Eq. (3.4). This algorithm is computationally efficient, as it resembles
a coordinate-ascent method and optimises each factor in the approximate posterior
distribution in Eq. (3.5) applying:

q∗(θi) ∝ EΘ−i [log p(Θ,k1, :, . . . ,kN, :)] , , (3.6)

where θi refers to a specific parameter, and Θ−i represents all other parameters in
the set Θ.

A reformulation of the input matrix in terms of a kernel matrix results in
a similar structure to SSHIBA, allowing for the preservation of previous model
capabilities. The mean-field factor update rules for KSSHIBA are displayed in
Table 3.1. The expected value is denoted by <>. Further explanations of the
calculations involved can be found in the supplementary material of the KSSHIBA
paper [122].

Whereas the GP computational cost is equivalent to O(N3), KSSHIBA delivers
a more systematic and efficient optimisation process of the order of O(N2K +K3).
This significant improvement in computational efficiency enables the exploration
of even more complex and non-linear relationships in data, making KSSHIBA a
highly flexible and powerful method for machine learning and data analysis.

Instead of relying on heuristics [152, 153] or a two-step optimisation processes
[154], KSSHIBA employs a mean-field update rule to determine kernel param-
eters. This approach offers several benefits, including the ability to perform
semi-supervised learning and feature selection, as well as incorporating the benefits
of the SSHIBA formulation.

3.1.1 Automatic relevance vector determination

The proposed model features a double ARD prior for its dual variables A(m):

a
(m)
n,k ∼ N

(
0,
(
γ(m)
n α

(m)
k

)−1
)
. (3.7)
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Table 3.1: Table of mean-field approximated q distribution rules for variables in
the KSSHIBA model.

Variable q∗ distribution Parameters

gn,: N
(
gn,: |µgn,: ,ΣG

) µgn,: =
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allowing for both row-wise by α
(m)
k and column-wise sparsity induced by γ

(m)
n as

γ(m)
n ∼ Γ

(
aγ

(m)

, bγ
(m)
)
. (3.8)

This leads to a more condensed representation of the data, which in turn reduces
the effective number of latent factors and automatically determines the quantity
of factors that have an impact on the final model. The mean-field factor update
rules for this double ARD case are presented in Table 3.2. Additional information
regarding the calculation of these expressions can be located in the supplementary
section of the KSSHIBA study [122].

3.1.2 Automatic feature selection
However, the previous double ARD method only selects relevance vectors, not
features as intended in SSHIBA. To achieve automatic feature selection, we can
modify the ARD kernel by multiplying each feature of the original observations
with a variable λ

(m)
d in the kernel definition. This allows for the determination of
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Table 3.2: Updated q distribution for automatic RV selection.

Variable q∗ distribution Parameters
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feature relevance through the ARD structure. For instance, a Radial Basis Function
(RBF) kernel can be expressed as

k(m)
n,n = exp

(
−

Dm∑
d=1

(
x
(m)
n,d − x

(m)
n,d

)2
λ
(m)
d

)
, (3.9)

thus optimisation of λ(m) is performed by maximising the lower bound of the
mean-field approach. If the m-th view is kernelised, the only term in the lower
bound that is affected by the ARD is Eq

[
ln
(
p
(
K(m) |Θ

))]
. Hence, the optimised

ELBO regarding the kernel is now2

ELBOK = − ⟨τ (m)⟩
2

N∑
n=1

N∑
u=1

(
k(m)
n,u

2−2 k(m)
n,u ⟨a(m)
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n,:⟩+ ⟨a(m)T

u,: , a(m)
u,: ⟩⟨gT

n,:,gn,:⟩
)
,

(3.10)

The mean-field updates over the variational bound and the direct maximisation of
the lower bound are performed alternately using gradient ascent methods such as
Pytorch and Adam. By setting a threshold for λ(m), the model can automatically
select the most relevant features during training.

3.2 Results
In this section, we carry out a comprehensive evaluation of the performance of the
KSSHIBA model on benchmark datasets. The objective of this evaluation is to
study the behaviour of the model with respect to various datasets and problems.
The aim is to thoroughly examine how the extensions proposed in this chapter
perform in different scenarios and to assess if the goals of their proposals are
achieved. In Chapter 5, the KSSHIBA model is applied to a real-world scenario

2The full derivation can be found in [122]
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involving the prediction of antibiotic resistance based on MALDI-TOF MS and
heterogeneous data. Additionally, in Chapter 6, the performance of the KSSHIBA
is compared to that of the FA-VAE model, which is introduced in Chapter 4, in
the context of automatic ribotyping of bacteria based on MALDI-TOF MS data.

3.2.1 Experimental setup

The objective of this section is to assess the effectiveness of the KSSHIBA frame-
work by means of a comparison with other leading algorithms that share analogous
capabilities with respect to multi-dimensional regression and categorical classifi-
cation. To perform the regression task, we use eight datasets from the Mulan
repository [155, 156, 157], which are described in detail in Table 3.3. We compare
the KSSHIBA with KPCA, KCCA, MRD, Support Vector Regression (SVR) [158],
MLP [159], and Heterogeneous Incomplete Variational AutoEncoder (HI-VAE)
[3]. For the classification task, we use four image datasets to study the feature
selection method of KSSHIBA and validate its interpretability. Finally, we use
an heterogeneous dataset of arrhythmia to compare the latent factors learned by
KSSHIBA with other methods such as SVM or CCA+SVM.

In our evaluation of the multi-regression performance, we compared the KSSHIBA
framework to KPCA and KCCA using a radial basis function (RBF) kernel. To
determine the best kernel hyperparameter value for each of these models, we consid-
ered 20 values of γ on a log scale, ranging from 10−10

C
to 100.5

C
, where C is the number

of tasks. For the KPCA model, predictions were made by combining it with linear
regression (KPCA+LR), while KCCA was used on its own and in conjunction with
linear regression (KCCA+LR) to provide a comprehensive comparison. The latent
factors number was fixed to either the maximum possible value of C for KCCA
or to explain 95% of the variance in KPCA. We also evaluated the performance
of SVR, and like KCCA and KPCA, we used an RBF kernel. Additionally, we
evaluated the regularisation parameter λ, exploring 11 values on a logarithmic scale
from [10−4 to 104].

To evaluate the performance of KSSHIBA in relation to other methods, we
compared it to MRD [160] in both multiregression and latent space interpretability
tasks. In this comparison, the Matlab library found in reference [160] was utilised,
and the quantity of latent variables was established to be double the quantity
of tasks (2 ∗ C). The models were trained using an RBF kernel with automatic
relevance determination, and the training epochs were constrained to 100 because
of the time-consuming nature of the training process for MRD.

Additionally, we compared KSSHIBA to an heterogeneous VAE approach known
as HI-VAE, which, like KSSHIBA, is capable of modelling heterogeneous data,
dealing with missing values, and finding low-dimensional data representations.
We chose to use the same kernel as we used for other baselines and followed the
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layer configuration suggested by the authors, which consisted of three layers with
dimensions 50-50-50.

Finally, we also compared our model to an MLP neural network in two different
scenarios. First, to force a dimension bottleneck of C in the hidden layers, similar
to KCCA, we tested two approaches: (i) a dense layer with C neurons and (ii)
two dense layers with C neurons and Dm neurons, respectively. Second, a scenario
without a bottleneck was considered, with three configurations being validated:
(i) 100 neurons unique dense layer, (ii) 100-50 dense layers, and (iii) 10-50-100
bottleneckled dense layers.

In regards to KSSHIBA, we utilised its semi-supervised capability for output
prediction by incorporating the test samples without their targets during the
training phase. The labels of these samples were then predicted using the mean of
the posterior distribution. The inference process of KSSHIBA used a convergence
criteria based on the evolution of the lower bound to determine the number of
iterations. The algorithm was terminated when the mean value of the previous lower
bound values was greater than the lower bound in the last iteration minus 10−4, or
when it reached 10,000 iterations. Ten random initialisation were performed for
each KSSHIBA model, and the one with the best lower bound was chosen. The
ARD priors included in the projection matrix W(m) were used to automatically
prune latent factors in KSSHIBA.

We conducted a nested 10-folds Cross-Validation (CV) to determine the hyper-
parameters of each model. The outer CV split the dataset into training and test
sets, while the inner CV split the training set into a validation set and a second
training set. This approach enabled us to assess the overall performance of the
framework and validate the model parameters.

To evaluate the performance of the various method variations and optimise
the hyperparameters of the method through CV, we relied on the coefficient of
determination (R2) for multiregression and accuracy in case of classification.

3.2.2 Performance evaluation of KSSHIBA for multi-dimensional
regression

The purpose of this section is to evaluate the effectiveness of KSSHIBA in semi-
supervised multidimensional regression and compare it to some of the current
leading methods. For this comparison, we have utilised eight multidimensional
regression datasets from the Mulan repository [155, 156, 157], the key characteristics
of which are outlined in Table 3.3.

The results of the proposed model in two scenarios, one where the number of
latent factors was learned using the ARD prior and another where it was set to the
number of tasks (C), are presented in Table 3.4. These results are compared to
those of other methods, including KCCA, KPCA, MRD, SVR, MLP, and HI-VAE.
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In particular, we can see that KSSHIBA consistently outperforms most reference
methods in every database, pointing out the performance advantages obtained in
edm and oes97. Additionally, it is notable that this performance improvement is
accomplished with an effective dimensional reduction, since KSSHIBA, applying a
feature extraction, is able to outperform both an SVR and an MLP that use all
the original features. When looking at the models that find latent representations
(KPCA+LR, KCCA+LR, and HI-VAE), none of them provides consistently good

Table 3.3: Characteristics of the multitask databases used in this work.

Database Samples Features Tasks

at7pd 296 411 6
at1pd 337 411 6
edm 154 16 2
enb 768 8 2
jura 359 15 3
oes10 403 298 16
oes97 334 263 16
wq 1,060 16 14

Table 3.4: R2 scores expressed as mean ± standard deviation (white) and latent
factor (light gray) are depicted in each sub-row, respectively, for the KSSHIBA
and the various methods under examination on the multitask databases. The data
has been normalised and, if a kernel is used, it has been centred.

KSSHIBA
KSSHIBA

MRD KPCA + LR KCCA KCCA + LR SVR RBF
MLP

MLP
K = C K = C

at1pd
0.77± 0.09 0.78± 0.09 0.67± 0.07 0.67± 0.12 0.45± 0.05 0.75± 0.11

0.01± 0.05
0.75± 0.09

0.77± 0.12
53± 8 6 12 22± 10 6 6 6

at7pd
0.48± 0.26 0.52± 0.13 0.48± 0.12 0.39± 0.19 0.24± 0.05 0.57± 0.16

0.01± 0.03
0.29± 0.33

0.35± 0.69
53± 11 6 12 21± 1 6 6 6

oes97
0.63± 0.16 0.69± 0.10 0.34± 0.07 0.45± 0.20 0.30± 0.08 0.36± 0.09

0.39± 0.10
0.57± 0.22

0.58± 0.21
108± 11 16 32 12± 7 16 16 16

oes10
0.79± 0.08 0.80± 0.07 0.38± 0.07 0.59± 0.15 0.35± 0.17 0.43± 0.12

0.47± 0.12
0.77± 0.07

0.76± 0.08
104± 22 16 32 14± 7 16 16 16

edm
0.37± 0.19 0.21± 0.09 −0.17± 0.45 0.38± 0.19 0.26± 0.18 0.18± 0.26

0.35± 0.19
0.14± 0.17

0.26± 0.21
17± 2 2 4 16± 5 2 2 2

jura
0.61± 0.10 0.30± 0.10 0.57± 0.06 0.38± 0.11 0.11± 0.08 0.18± 0.15

0.60± 0.05
0.32± 0.12

0.61± 0.06
64± 7 3 6 23± 1 3 3 3

wq
0.12± 0.01 0.12± 0.01 −0.35± 0.08 0.09± 0.02 −0.01± 0.01 −0.01± 0.01

0.08± 0.02
0.10± 0.02

0.13± 0.03
48± 3 14 28 29± 0.98 14 14 14

enb
0.99± 0.01 0.86± 0.02 0.91± 0.01 0.86± 0.01 0.96± 0.01 0.98± 0.01

0.99± 0.01
0.89± 0.01

0.99± 0.08
118± 4 2 4 13± 1 2 2 2
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results over all databases, while KSSHIBA provides outstanding results due to its
ease of adaptation to different scenarios. At the same time, the results obtained
by KSSHIBA with K = C reveal that standard KSSHIBA is too conservative in
the number of extracted features and we could force a more restrictive pruning
without degrading the final performance (note that KSSHIBA with K = C only
deteriorates in the problems with only 2 or 3 (edm, jura and enb) since in these
cases the number of latents is extremely reduced.

3.2.3 Evaluation of the solution in terms of RVs

The purpose of the KSSHIBA approach is to demonstrate its ability to construct
compact solutions by selecting a subset of training points, known as RVs. This was
tested using the same databases and experimental setup as in the previous section,
but with comparison to the KPCA + LR and KCCA + LR models using the
Nyström subsampling technique. The optimal percentage of RVs was determined
by cross-validation by exploring values from 1 to 100 percent of the total number
of training data.

The results shown in Table 3.5 indicate that the inclusion of automatic RV selec-
tion in KSSHIBA maintained or improved performance for most of the databases,
while reducing the complexity of the model. The reduction in the number of RVs
also resulted in a further reduction in the number of latent factors. In comparison to
KPCA + LR and KCCA + LR, KSSHIBA showed a lower percentage of RVs needed
to describe the kernel, as it learns the relevance of each element and eliminates
it accordingly, while KPCA and KCCA obtain the compact solution through a
random selection of RVs.

For the purpose of comparison, we also included the results of the MRD approach
when the number of inducing points was varied. However, we observed that the
behaviour of MRD with respect to the number of inducing points is unstable and
highly dependent on the database. This is because the position of the inducing
points is determined using a regular grid, which does not allow for optimisation,
resulting in significant fluctuations in performance.

In contrast, the results of KPCA combined with LR and KCCA combined with
LR may vary and require modifications to the quantity of RVs to attain accurate
outcomes, whereas KSSHIBA demonstrates a comparatively stable coefficient of
determination (R2) value. This stability can be attributed to KSSHIBA’s capability
to determine the significance of each RV and factor this information into all model
inferences when updating its parameters.

Finally, Fig. 3.3 provides a analysis of the effect of the number of RVs or
inducing points (MRDs) on the evaluation of the solution in terms of RVs. The
results for MRD are not included for the wq database as the model iterations have
not been completed at the time this material is being written due to the high
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computational time required by the library.

3.2.4 Analysis of the feature relevance

In order to evaluate the feature relevance of the KSSHIBA approach (as outlined
in Section 3.1.2), we conduct an experiment using image classification datasets.
The input view in this experiment consists of images, while the output view is the
corresponding category label. This setup provides a visual representation of the
relevance of each pixel as a feature.

For this experiment, we use three image datasets: warpAR10P (60× 40 pixels),
Yale (32× 32 pixels), and Olivetti (32× 32 pixels). These datasets can be found in
the Feature Selection Repository3 and the aligned version of the Labelled Faces
in the Wild (LFW) dataset [161] obtained by [162]. The characteristics of these
datasets are listed in Table 3.6.

3http://featureselection.asu.edu/datasets.php

Table 3.5: Outcome of the automatic RV selection experiment on the multitask
database. The first subcolumn illustrates the average and deviation of the R2 score
in white, with the light grey indicating the actual quantity of latent variables (K).
The relevant vectors are represented as a percentage of the total samples.

Sparse KSSHIBA KPCA + LR KCCA + LR
R2 - K %RV s R2 - K %RV s R2 - K %RV s

at1pd 0.77± 0.09
18.4± 24.1

0.78± 0.09
69.7± 32.9

0.80± 0.09
84.8± 27.5

41± 11 87± 35 6

at7pd 0.55± 0.15
18.5± 26.3

0.56± 0.18
79.7± 31.7

0.60± 0.12
73.9± 34.1

70± 27 90± 37 6

oes97 0.58± 0.15
38.6± 24.5

0.52± 0.24
81.7± 27.8

0.42± 0.30
23.9± 27.8

61± 7 124± 34 16

oes10 0.77± 0.11
44.4± 38.4

0.71± 0.12
71.9± 11.6

0.66± 0.10
57.8± 35.2

74± 6 132± 53 16

edm 0.42± 0.21
53.8± 28.5

0.41± 0.26
52.5± 30.5

0.20± 0.14
22.7± 13.6

13± 4 29± 14 2

jura 0.58± 0.14
48.7± 38.4

0.57± 0.10
60.7± 28.9

0.36± 0.09
18.9± 7.5

30± 4 59± 14 3

wq 0.12± 0.01
58.1± 33.2

0.12± 0.02
22.9± 15.9

0.10± 0.01
5.9± 3.1

21± 2 96± 49 14

enb 0.99± 0.01
19.5± 12.8

0.91± 0.01
48.9± 32.9

0.97± 0.01
41.9± 12.2

78± 8 28± 1 2
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(a) oes97 database. (b) oes10 database.

(c) edm database. (d) jura database.

(e) wq database. (f) enb database.

Figure 3.3: R2 results analysis for several % of RVs in KCCA+LR, KSSHIBA,
KPCA+LR, and MRD. For the last, they are inducing points instead.

To prepare the LFW dataset for our analysis, we had to perform some processing
steps. This involved cropping the images to remove any unnecessary information
and reducing the size of the images to 60× 40 pixels to lower the computational
demands of the training process. To make the dataset more manageable, we only
selected images of the 7 individuals with the largest number of images in the
database.
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The KSSHIBA approach used in this study involved incorporating an ARD
kernel in the input images to conduct a feature relevance analysis. As a result, Fig.
3.4 displays the relevance masks learned by the model on each dataset, with lighter
colours representing relevant pixels and darker colours indicating that a pixel is
not relevant. By using these datasets, we can clearly see the face shape that has
been learned by the model, which identifies the pixels that the model should focus
on and pays less attention to the background. In some cases, the model can even
clearly define facial features such as the nose, cheek, or chin, producing a face mask.

The masks produced by KSSHIBA reveal that the relevances learned for the
LFW dataset are sharper and more detailed, likely due to the larger number of
samples in this database. The masks for the warpAR10P and Olivetti datasets
show that the model tends to focus on the area surrounding glasses, likely because
a significant number of images in both databases feature people wearing glasses.
Additionally, the model recognises that if a subject wears glasses in one image, they
will likely wear them in others, making this feature relevant for subject classification
in these datasets. The masks also suggest that the model tends to downplay the
importance of mouth and eye features, while placing greater emphasis on hair,
cheeks, and facial shape. This is not as pronounced in the warpAR10P dataset
because many images feature cloth covering the face below the nose.

3.2.5 Analysis of the extracted latent factors

The aim of this section is to compare the interpretability of the extracted latent
factors generated by the MRD approach based on shared GPLVMs with those
generated by the proposed KSSHIBA model. To do this, we will use the Oil
classification database [163] as the test case, which consists of 2,000 samples, 12
features, and 3 output classes. The models will be trained with 15 latent factors
(the number of features plus the number of output classes), and with the addition of
ARD latent factor selection. The KSSHIBA model uses an RBF kernel exclusively
for the input view, while MRD uses it for both the input and output views. The

Table 3.6: Characteristics of the face databases used in this work.

Database Samples Features Classes

LFW 1,277 2,400 7
warpAR10P 130 2,400 10

Yale 165 1,024 15
Olivetti 400 1,024 40
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(a) LFW (b) warpAR10P

(c) Yale (d) Olivetti

Figure 3.4: The feature selection extension of KSSHIBA has learnt feature masks
for various face recognition problems, and these masks show the significance of
each pixel. Lighter hues indicate higher relevance of the pixel, while darker shades
signify lower relevance.

results showed that MRD achieved an accuracy of 99.0%, while KSSHIBA achieved
an accuracy of 99.4%. It should be noted that the available MRD implementation
in Matlab is not scalable for large datasets, leading to longer computational times.

The relevance of each latent factor for MRD and KSSHIBA is shown in Fig. 3.5.
With MRD, the number of latent factors to be used for input and output data is
predetermined. Fig. 3.5a displays the relevance of all these common factors, where
the first 12 are related to the input view and the last three to the output, as the
model primarily focuses on the latter. In contrast, the KSSHIBA model displays
separate weights for each perspective (as depicted in Fig.s 3.5b and 3.5c). This
signifies that the latent factors might not be important and could be discarded
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(a) MRD - common

(b) KSSHIBA - input (c) KSSHIBA - output

Figure 3.5: Measure of relevance for each learnt latent factor on the Oil database.
Fig. 3.5a shows the relevance of the commons for the MRD model (all latents have
resulted to be shared by both views). Figs. 3.5b and 3.5c show, respectively, the
relevance for the input view and the output view for KSSHIBA.

(latent 7), or they might only be relevant for one view (latents 5 and 14), or they
could be significant for more than one view (highlighting latents 0, 2, and 8).
The inclusion of an ARD prior to the A(m) projection matrices results in a more
understandable model, as it provides valuable information about the latent factors.

Finally, the interpretability of the results was analysed through the examination
of the most relevant extracted latent features, as depicted in Fig. 3.6. The results
indicate that the KSSHIBA algorithm was able to find a subspace in which the
classification problem could be easily solved with the use of just three of the most
relevant common latent factors. In contrast, the MRD model was found to project
most of the samples into a single point, thus requiring a greater number of latent
factors to discriminate between the different classes. It may be inferred from the
results that incorporating non-linearities through kernel methods can enhance the
processing of input data in both MRD and KSSHIBA models. However, non-
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linearities do not appear to be as useful for predicting output categories. In the
MRD model, non-linearities are incorporated into both input and output views,
whereas in KSSHIBA, only the input data is processed using a kernelised method.
Nonetheless, KSSHIBA is able to perform a more informative and discriminative
analysis by computing categories linearly.

(a) Latent space of MRD (b) Latent space of KSSHIBA

Figure 3.6: Learnt projections for the Oil database. Each figure shows the pro-
jections over the three most relevant factors: latents 12, 13 and 14 for MRD and
latents 0, 2 and 8 for KSSHIBA.

3.3 Conclusions
In this chapter, we have proposed starting from the SSHIBA approach, which
was already able to work with semi-supervised heterogeneous multi-view problems.
Then, we have extended its formulation to handle non-linear data relationships, to
provide compact representations with an automatic selection of RVs, and to obtain
the input feature relevance functionality by means of an ARD over the kernel.

The results prove the relevance of the proposed formulation, achieving not
only competitive performance but also transforming the data into a reduced set of
interpretable latent variables and a compact model consisting of a reduced subset
of RVs. Furthermore, the feature relevance criteria are able to learn relevant masks
that provide insight into the input space for the goal task.

In this study, the benchmarking results demonstrate the effectiveness of the
KSSHIBA model in addressing non-linear data. As such, in Chapter 5, we further
extend the application of KSSHIBA by customizing it to handle MALDI-TOF MS
data within the domain of microbiology. By leveraging specific kernels in this field,
we aim to demonstrate the versatility and robustness of the KSSHIBA model in
addressing real-world data challenges.

While KSSHIBA’s use of kernel functions enables efficient handling of non-linear

61



data, it may not be optimal for certain types of data. In light of this, we outline in
the next chapter of this dissertation, Chapter 4, an extension to KSSHIBA and
SSHIBA that incorporates Variational Autoencoders (VAEs) to provide a more
comprehensive solution for a broader range of non-linear data, including image and
temporal data that may require specialised kernels.
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CHAPTER 4

FACTOR ANALYSIS VARIATIONAL AUTOENCODER

This chapter is motivated by the notable improvements achieved in the literature
by generative models, such as VAEs, in representing high-dimensional complex
data types such as images. In particular, we propose a novel Bayesian method,
called Factor Analysis Variational AutoEncoder (FA-VAE), that combines the
interpretability of Bayesian FA, the multi-view handling of MVA and the versatility
of VAEs to address this problem. Our contribution is the integration of VAEs into
the SSHIBA architecture to handle new input data types, making our method
a powerful tool for tackling complex, high-dimensional and heterogeneous data
problems. While the analysis of results in this chapter is focused on images
to facilitate their interpretation, in Chapter 6 we analyse the versatility of this
approach by extending its application to MALDI-TOF MS data.

The goal of the proposed method is to enhance the capabilities of existing
techniques for handling diverse data types in real-world scenarios. Building upon
the success of SSHIBA [2] and its kernelised version, KSSHIBA [122], which have
proven effective for handling various data types including categorical, real, positive,
binary, and kernelised data, we aim to push the boundaries of these approaches and
tackle new and challenging data types such as images or time series, specifically
using CNNs or RNNs. By doing so, we aim to develop a powerful and flexible tool
that can adapt to any data structure.

For this purpose, we extend SSHIBA by introducing VAE versatility, while
retaining the interpretability of the FA latent space. The proposed scheme is
capable of assembling multiple VAEs, creating a model that can function with
multiple data domains, depending on the VAE architecture. For instance, VAE with
CNN encoder-decoder structure permits us to efficiently handle images. Specifically,
we demonstrate that taking advantage of the multi-view SSHIBA architecture, we
can condition a pretrained VAE to various labels or categories set in the other
views. This way, using different VAEs per view, working in different domain, we
perform domain adaptation between two distinct databases while conditioning them
on external attributes surpassing SOTA procedures. Additionally, we illustrate
how transfer learning between VAE models in different views can enhance the
final model performance. Finally, we also show FA-VAE’s flexibility, as a simple
alteration in the encoder-decoder architecture enables it to function with new forms
of data, such as time dependence using 1D-CNNs, as shown in Chapter 6.
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The technical results presented in this chapter are under review at Information
Sciences journal from Elsevier, whose preprint can be publicly accessed [123]. In
accordance with the open science philosophy upheld in this thesis, the implementa-
tion of the FA-VAE model and all associated experiments detailed in this chapter
are readily accessible through a public repository on GitHub, under the link 1.

The organisation of the chapter is as follows: In Section 4.1, we introduce the
theoretical foundations and mathematical formulation of our proposed method.
Subsequently, in Section 4.2, we conduct experiments to demonstrate the efficacy
of our approach. Specifically, in Section 4.2.1, we illustrate the ability to condition
a pretained VAE to a specific label. In Section 4.2.2, we showcase the use of
our method for domain adaptation between distinct datasets and styles. And in
Section 4.2.3, we propose using our approach as a transfer learning tool between
generative models. Lastly, in Section 4.3, we summarise the key findings and
provide concluding remarks.

4.1 Factor Analysis Variational AutoEncoder
Our contribution is the development of a novel hierarchical approach, known
as Factor Analysis VAE (FA-VAE), that adapts the SSHIBA method to handle
VAE networks to model new data types. To explain the FA-VAE method, we
begin by summarising the generative model of the FA framework, in which each
observation x

(m)
n,: ∈ R1×Dm is associated with a global shared space gn,: ∈ R1×K ,

where K < {D1, D2, . . . , DM}. The global shared space is assumed to follow a
Gaussian distribution:

gn,: ∼ N (0, IK) . (4.1)
These latent variables are combined with a set of unique projections matrices
w

(m)
:,k ∈ R1×K assuming a Gaussian distribution

w
(m)
:,k ∼ N (0, α

(m)
k

−1
IK) . (4.2)

with an ARD α
(m)
k ∼ Γ(aα

(m)
, bα

(m)
) prior over the columns. When the values of

α
(m)
k become high, it induces some k-columns to be set to 0, resulting in sparse

representations. The combination of the shared global gn,: latent variables with
the projection matrices W(m) generates the m-observations x

(m)
n,: as

x(m)
n,: |gn,: ∼ N (gn,:W

(m)T , τ (m)−1
IK) . (4.3)

where, due to the ARD induced by α
(m)
k , only the relevant k-columns of gn,: for

the current view are used to generate the current x
(m)
n,: , disentangling private and

shared information.
1https://github.com/aguerrerolopez/FA-VAE
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Our approach involves the incorporation of latent information derived from
multiple VAEs into the global gn,: shared space. To do so, for a given m-view data
point x

(m)
n,: ∈ R1×Dm by means of a VAE-like structure, we obtain an embedded

representation, z(m)
n,: ∈ R1×D′

m , where D′
m << Dm. These embedded latent variables,

z
(m)
n,: for m = 1, ...,M , contribute to the construction of the global latent variable by

projecting their shared information into gn,:, where K < {D′
1, D

′
2, . . . , D

′
M}. Given

the nature flexibility of VAE-like structure, each individual pair of encoder-decoder
for each m-th view can be chosen to handle different data types. This flexibility
allows the FA-VAE model to effectively handle a wide range of heterogeneous
observations, beyond those already handled by SSHIBA, such as images modelled
using a CNN or sequential data modelled using an RNN.

To obtain the embedded latent representation z
(m)
n,: of the m-th view, we employ

a VAE that encodes the observations using the variational distribution z
(m)
n,: |x(m)

n,: ∼
qη(z

(m)
n,: ), where

qη(z
(m)
n,: ) ∼ N

(
µz(m)

η (x(m)
n,: ),Σ

z(m)

η (x(m)
n,: )
)
, (4.4)

where µz(m)

η (x
(m)
n,: ),Σz(m)

η (x
(m)
n,: ) are the output of an independent parametric encoder

for each m-th view. Consequently, the FA framework interprets z
(m)
n,: as a pseudo-

observation, whereby the generative FA model assumes that

z(m)
n,: ∼ N

(
gn,: W

(m), τ (m)−1
ID′

m

)
, (4.5)

and, thus, the observations x(m)
n,: are generated from z

(m)
n,: using the VAE conditional

distribution x
(m)
n,: | z(m)

n,: ∼ pθ(x
(m)
n,: | z(m)

n,: ) as

x(m)
n,: ∼ N

(
µ
x
(m)
n,:

θ (z(m)
n,: ), σ

−1IK

)
(4.6)

where µ
x
(m)
n,:

θ (z
(m)
n,: ) is the output of an independent parametric decoder for the m-th

view and its precision has been fixed to σ.
The fusion of the VAE latent space and the FA framework is a non-trivial task.

In a VAE, the maximisation of the ELBO ensures that the variational distribution
qη(z

(m)
n,: |x(m)

n,: ) is close to the prior distribution p(z
(m)
n,: ) by minimising their KL

divergence, as demonstrated in Eq. (2.49). However, in a standard VAE, the prior
distribution is normally distributed, p(z(m)

n,: ) ∼ N
(
0, ID′

m

)
,which imposes continuity

and completeness on the latent space. In other words, any point in the latent space
can be decoded to produce a meaningful output, and a series of samples can be
decoded in a progressive manner from the training space. When dealing with a
multi-modal problem, this regularisation term does not take into account that the
embedded latent space z

(m)
n,: must share information with other views to learn them
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gn,:

z
(0)
n,:

x
(0)
n,:

τ (0)

W(0)

z
(1)
n,:

x
(1)
n,:

τ (1)

W(1)

qηpθqηpθ

SSHIBA

VAE-1 VAE-2

View 2View 1

Figure 4.1: FA-VAE graphical model example with two VAEs. The blue dotted
rectangle denotes the SSHIBA rv while the red rectangles indicate the two VAEs
structures, one per view. Gray circles denote observations, and white circles
represent rv.

by the shared global gn,:. If this issue is not addressed, the latent space z
(m)
n,: will

only contain information for reconstructing the input, similar to an unsupervised
vanilla VAE.

In order to create a z
(m)
n,: that shares information with the available multi-modal

data, a possible approach is to impose a specific distribution as a regularisation
term. Following this idea, we can use the distribution z

(m)
n,: |gn,: given by SSHIBA

in Eq. (4.5) and employ it as a regularisation term of the VAE loss. This way, we
propose using the following ELBO for each m-VAE:

L(m) = E
qη

(
z
(m)
n,: |x(m)

n,:

) log (pθ(x(m)
n,: |z(m)

n,: )
)

− βKL
(
qη(z

(m)
n,: |x(m)

n,: )||N
(
gn,: W

(m), τ (m)−1
))

,
(4.7)

where the first term is the Gaussian Log-Likelihood (GLL) between the true
observations x

(m)
n,: and their reconstruction sampled from pθ(x

(m)
n,: |z(m)

n,: ), and the
second term minimises the KL divergence between the variational distribution
qη(z

(m)
n,: |x(m)

n,: ) and the prior imposed in Eq. (4.5). Note that the ARD presented
in the columns of W(m) determines the relevant information that gn,: contains
w.r.t. our current view z

(m)
n,: . The hyperparameter β serves as a balance between
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two conflicting objectives: (i) the degree of fidelity in the reconstructed data and
(ii) maximising the amount of shared information with the other views in the
multi-modal dataset.

Regarding variational inference, let us define all random variables of the FA-
VAE as three sets: θM ∈ {z(m)

n,: ,W(m), τ (m)} where m denote all possible views;
θV ∈ {Z(v)} where v denote all VAE-like views; and θG ∈ {gn,:} which contains the
global variables for all views. Hence, the set of random variables is Θ ∈ {θM , θV , θG}.
SSHIBA updates the first set θM for all real, multi-label, binary or categorical data
views by the mean-field variational inference explained in Chapter 2 in Table 2.2.
The second set of variables, θV , are updated by the posterior of each v-VAE model,
qη(z

(m)
n,: ), defined in Eq. (4.4). Finally, the global latent variables θG are updated

by mean-field approach but now differentiating between VAE and non-VAE views
following

gn,: ∼ N
(
gn,: |µgn,: ,ΣZ

)
, (4.8)

where

µgn,: =
M∑

m=1

(
⟨τ (m)⟩X(m)⟨W(m)⟩ΣZ

)
︸ ︷︷ ︸

I

+
V∑

v=1

(
⟨τ (v)⟩⟨Z(v)⟩⟨W(v)⟩ΣZ

)
︸ ︷︷ ︸

II

, (4.9)

Σ−1
Z = IKc +

M∑
m=1

(
⟨τ (m)⟩⟨W(m)T W(m)⟩

)
. (4.10)

Note that, in comparison to Table 2.2, now the mean of the global latent variable
is calculated by two terms. The term I comprises all the m-views already tackled
by SSHIBA, that is, real, multi-label or binary views. The term II contains all
the v-views tackled now by each v-VAE architecture. However, regarding the
calculation of Σ−1

Z there is no distinction between views.
Following this procedure, FA-VAE trains according to the steps detailed in

Algorithm 1.

4.2 Experiments
Throughout this section, we demonstrate the flexibility of FA-VAE in addressing
relevant problems in deep probabilistic modelling. Firstly, in Section 4.2.1, we
exploit the multi-view framework of FA-VAE to condition a pretained VAE to
multilabel targets. Next, in Section 4.2.2, we apply it to a domain adaptation
problem and compare it with the Multi-VAE model [7]. In addition, we disentangle
and analyse the shared latent variables. Finally, in Section 4.2.3 we use the proposed
FA-VAE framework to perform transfer learning between multiple VAEs, showing
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Initialise gn,:,W
(m), z

(V )
n,: , α

(m)
k , τ (m)

while FA-VAE not converge do
Update q(gn,:) following Eq. (4.8);
for each view do

Update q(W(m)) following 2nd row of Table 2.2;
for each epoch do

Maximise the v-VAE’s ELBO in Eq. (4.7)) ;
end
Update ⟨z(V )

n,: ⟩ sampling from qη(z
(V )
n,: ) defined in Eq. (4.4) ;

Update q(α
(m)
k ) following 3th row of Table 2.2;

Update q(τ (m)) following 4th row of Table 2.2;
end

end
Algorithm 1: FA-VAE training algorithm

how transfer learning creates a more expressive and understandable latent space
than other models such as β-VAE [139]. The code for reproducing the following
experiments can be found in GitHub2.

4.2.1 FA-VAE as a conditioned generative model

In this first experiment, we demonstrate the utility of the FA-VAE framework in
adapting a pretrained unconditioned VAE, pθ(x), to model a conditional distri-
bution, pθ(x|a), using a given set of labelled data {xi, ai}Ni=1, where xi denotes
an observation and ai denotes an attribute. We conducted our analysis using the
CelebA dataset [164], which consists of 30000 samples of celebrity faces charac-
terised by different attributes. Specifically, we selected three attributes to consider
in our analysis, namely wearing lipstick, gender, and smiling. We used RGB images
of size 64 × 64 × 3 and ensured that the three attributes were represented in a
stratified manner across the dataset.

We propose to use the FA-VAE multi-view framework to model a two-view setup
for a given problem shown in Fig. 4.2. The first view is responsible for modelling
the attributes (A) as a multi-label vector with three attributes: wearing lipstick,
gender, and smiling. We use the standard multilabel SSHIBA’s configuration
for this view, without any VAE. In this case, we generate the binary attributes
denoted as x

(A)
n,: from the pseudo-observation z

(A)
n,: using a Bernoulli distribution.

2https://github.com/aguerrerolopez/FA-VAE
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gn,:

z
(A)
n,:

x
(A)
n,:

τ (A)

W(A)

z
(I)
n,:

x
(I)
n,:

τ (I)

W(I)

qηpθ

Attributes view: 30000× 3 Images view: 30000× 64× 64

Figure 4.2: Conditioning a single VAE to a multilabel attribute vector using FA-
VAE architecture where A denotes attributes view and I images views. Gray circles
are observations, and white circles represent rv.

The mathematical expression for this distribution is given by

p
(
x(A)
n,: |z(A)

n,:

)
=

3∏
d=1

ez
(A)
n,dx

(A)
n,dσ

(
− z

(A)
n,d

)
, (4.11)

where σ denotes the sigmoidal function.
In the second view (I), we consider observed RGB images denoted as x

(I)
n,: ∈

R64×64×3. For the encoder and decoder, we adopt the network architecture proposed
in the β-VAE paper [138]. Specifically, we utilize a CNN network with five convolu-
tional layers, where the number of channels in each layer is 64, 128, 256, 512, 1024,
and the kernel size is 4, stride is 2, and padding is 1. Following the CNN layers,
a fully connected layer is used to generate the parameters µη and Ση to infer the
embedded latent variable zIn,: ∈ R100. The decoder network follows the inverse
structure of the encoder.

To train the FAVAE, we first train an unconditioned vanilla VAE on CelebA data
until convergence, and then integrate it into FA-VAE’s architecture to condition
it on attributes. The convergence of these two steps is analysed in Figure 4.3.
Specifically, Figure 4.3a shows the ELBO of the vanilla VAE trained from scratch,
while Figure 4.3b shows the ELBO evolution during fine-tuning of FA-VAE. This
indicates that the pre-trained VAE remains stable and does not lose reconstruction
power, allowing for conditioning without interfering with its learning. Essentially,
we demonstrate with these results that only 150 epochs are enough to condition an
unsupervised model, such as a VAE, with FA-VAE.

The proposed model can be used to modify the attributes of a given image.
Specifically, a CelebA image x

(I)
n,: is projected onto its embedded latent space z

(I)
n,:

using qη(z
(I)
n,: |x(I)

n,: ), and this latent space representation is fixed as the reference
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(a) Vanilla VAE ELBO trained from
scratch

(b) Pretained vanilla VAE ELBO inside
FA-VAE’s architecture

Figure 4.3: VAEs convergence by its own and inside FA-VAE’s architecture. Fig.
4.3a shows the ELBO of a vanilla VAE trained on CelebA from scratch. In Fig.
4.3b we plug the vanilla VAE from Fig. 4.3a into FA-VAE’s architecture.

image. A set of attributes to be changed is selected to generate z
(A)
n,: , and then the

posterior predictive distribution of gn,: (as shown in Table 2.2) is used, where:

Σ−1
g∗
n,:

= IKc +
(
⟨τ (A)⟩⟨W(A)T W(A)⟩

)
+
(
⟨τ (I)⟩⟨W(I)TW(I)⟩

)
, (4.12)

µg∗
n,:

=
(
⟨τ (A)⟩z(A)

n,: ⟨W(A)⟩Σg∗
n,:

+ ⟨τ (I)⟩z(I)n,: ⟨W(I)⟩Σg∗
n,:

)
. (4.13)

We can utilise the proposed model to generate samples from the shared view
g∗
n,: while keeping the private representations of the given attributes z

(A)
n,: fixed and

z
(I)
n,: varied. Specifically, we sample z

(I)
n,: from a Gaussian distribution with mean

g∗
n,:W

(I) and variance τ (I), and then generate new images using the generative
distribution of FA-VAE pθ(x

∗(I)
n,: |z(I)n,: ). The resulting images are presented in Figs.

4.4a and 4.4b. These images demonstrate the ability of our model to alter attributes
of the input image, such as gender (right column) or facial expression (smiling or
neutral, top row vs. bottom row).

In addition, this model allows us to generate random conditioned facial images.
The process for generating these images involves several steps. First, we create a
random multilabel vector x

(A)
n,: using binary notation for attributes such as wearing

lipstick, gender, and smiling. Next, we create the corresponding pseudo-observation
z
(A)
n,: of this vector. Finally, we generate the posterior distribution of the global latent

variable gn,: given z
(A)
n,: . This posterior distribution follows a Gaussian distribution
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(a) Example 1 (b) Example 2

Figure 4.4: Different faces generated with FA-VAE by modifying their attributes.
The left column of each subfigure represents the raw image. Each subfigure’s centre
and right columns represent the altered images by changing the different attributes
indicated in the title, meaning [smile, lipstick, gender].

with parameters

Σ−1
g∗
n,:

= IKc + τ (A) W(A)T W(A) , (4.14)

µg∗
n,:

= τ (A) z(A)
n,: W

(A) Σg∗
n,:

; (4.15)

then we sample z
(I)
n,: ∼ N (g∗

n,:W
(I), τ (I)); and ultimately we use the generative

distribution of FA-VAE pθ(x
(I)
n,: |z(I)n,: ) to sample artificially generated conditioned

images. Fig. 4.5 shows these images generated by 8 different configurations of the
multilabel attributes x

(A)
n,: .

4.2.2 Domain adaptation
In this study, we explore the modularity of FA-VAE and demonstrate its ability to
combine multiple VAEs simultaneously. To illustrate this, we employ a three-view
FA-VAE configuration, using the CelebA dataset [164] and the Google Cartoon Set
[165] dataset. Specifically, we train a VAE with 10000 CelebA images in the first
view and another VAE with 10000 Cartoon images in the second view. Additionally,
we incorporate a binary label to model the hair color in the third view, using a
categorical SSHIBA layer.

Our hypothesis is that the embedded variables z
(m)
n,: can capture domain infor-

mation from face images (F), cartoon avatars (C), and hair color (H). The shared
latent space variable, gn,:, serves as a bridge between domains, facilitating the
adaptation of real-world faces to 2D cartoon avatars while accounting for hair color.
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Figure 4.5: Fake faces generated by random x
(A)
n,: vectors. The title of each image

indicates which attribute is activated: smiling, wearing lipstick, and gender. For
example, [1 0 0] means a smile [1] without lipstick [0] on a woman’s face [0], and [1
0 1] means a smile [1] without lipstick [0] on a male’s face [1].

The architecture is depicted in Fig. 4.6. This approach has potential applications
in various domains, including face recognition, character creation, and animation.

z
(F )
n,:

x
(F )
n,:

W(F ) τ (F )

z
(H)
n,:

x
(H)
n,:

W(H)

τ (H) z
(C)
n,:

x
(C)
n,:

W(C)

τ (C)

gn,:

qηpθ qηpθ

Faces view: 10000× 64× 64× 3Hair view: 10000× 2 Cartoon view: 10000× 64× 64× 3

Figure 4.6: FA-VAE configuration to perform domain adaptation between two
VAE-based views representing real-world faces (CelebA) and cartoon avatars (Car-
toon) while conditioning to a third categorical view (hair). Grey circles denote
observations, and white circles represent rv.

The CelebA faces view (F ) comprises 10000× 64× 64× 3 real celebrity face
images, while the Cartoon view (C) consists of 10000× 64× 64× 3 cartoon avatar
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images. We use the β-VAE encoder-decoder configuration proposed in Section 4.2.1
by [139] with β > 1 for both views. The hair view (H) contains a binary label of
10000× 2 indicating the hair color label: blond or brunette.

In this experiment we compare FA-VAE with the Multi-VAE [7] model, which
utilises a discrete latent variable cn to share the context of all views (see Fig. 4.7).
In this experiment, we incorporate the hair label as an additional dimension in
x
(F )
n,: and x

(C)
n,: for the Multi-VAE model.

cn,:z
(F )
n,:

x
(F )
n,:

z
(C)
n,:

x
(C)
n,:

Figure 4.7: Multi-VAE configuration where two VAEs are conditioned with a
categorical variable cn,:. CelebA images are represented by x

(F )
n,: , Cartoon images

are represented by x
(C)
n,: , and cn,: is the categorical variable which is shared by the

two VAEs. Grey circles denote observations, and white circles represent rv.

Fig. 4.8 presents a comparison of the performance of FA-VAE and Multi-VAE
models in the task of translating images from the CelebA domain to the Cartoon
domain, based on hair colour information. The first row shows CelebA images, the
second row displays the generated images by FA-VAE, and the third row shows the
generated images by Multi-VAE. FA-VAE outperforms Multi-VAE in capturing
inherent features such as sunglasses, in addition to hair colour. Multi-VAE fails to
properly learn skin colour, as evidenced by Images 3 and 9, while FA-VAE produces
high-quality 2D avatars without blur or artefacts.

The embedded latent variables Z(C) and Z(F ) capture domain-specific informa-
tion, while the global shared space G facilitates the transfer of information between
domains, enabling domain adaptation to translate images from one domain to
another. As an illustrative example, we begin by projecting two CelebA images
into their embedded latent space, resulting in z

(F )
1,: and z

(F )
2,: . We then project these

into the shared latent space to obtain g1,: and g2,:, which are used to sample the
embedded latent space of the cartoon domain, resulting in z

(C)
1,: and z

(C)
2,: . Finally,

we interpolate the embedded representation of each pair of images in each domain
using the convex combination:

z
(v)
λ,: = λz

(v)
1,: + (1− λ)z

(v)
2,: , (4.16)
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Figure 4.8: Domain adaptation from CelebA dataset to Cartoon dataset. The first
row represents the original observations in CelebA dataset. In contrast, the second
and third rows represent their translation to the Cartoon domain using FA-VAE
(second row) and Multi-VAE (third row).

where v represents the domain (CelebA or Cartoon), and λ is a parameter that
controls the degree of interpolation between the two images. Finally, using the
embedded representation generated by z

(v)
λ,: we can use pvθ(x

(v)
λ,: |z

(v)
λ,: ) to generate a

sample for each domain. The reconstructed sequences x
(v)
λ,: |z

(v)
λ,: for different values

of λ are shown in Fig. 4.9.

Figure 4.9: Examples of an image transformation and domain adaption application.
The first and second rows show the evolution from z

(F )
1,: to z

(F )
2,: and, from z

(C)
1,: to

z
(C)
2,: , respectively.

Fig. 4.9 displays two rows of images showing a complete evolution from one
image to the other through points sampled from the embedded space. The complete-
ness of the embedded variables is demonstrated by the generation of meaningful
images from any sampled point. Additionally, the gradual and smooth transitions
between the images demonstrate the continuity of the embedded variables. In the
cartoon domain, the images show a clear evolution in hairstyle, hair colour, and
eyeglasses. Therefore, we can conclude that both embedded variables, Z(C) and
Z(F ), are informative and explainable, satisfying both completeness and continuity
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criteria.
Similar to interpolating between points in an embedded latent space, we can

interpolate directly from the global space by sampling from gn,: and generating
a sample that is interpretable by both domains. To illustrate this behaviour, we
present two examples. We select two new CelebA observations x

(F )
1,: and g

(F )
2,: and

project them to the global space G as g1,: and g2,:. We then calculate gλ,: using
Eq. (4.16). Next, we project them back to their embedded spaces z

(F )
λ,: and z

(C)
λ,:

by means of W(F ) and W(C), respectively. Finally, each m-VAE decoder decodes
z
(F )
λ,: and z

(C)
λ,: to create a pair of images. The reconstructed sequences x̃

(m)
λ,: |gλ,: are

shown in Fig. 4.10.
Our analysis reveals a trade-off between the completeness and continuity of the

generated content by each of the gλ,:. The CelebA faces domain exhibits better
continuity resulting in a clear transition between the generated images. However,
the Cartoon domain, characterised by a discrete set of features, shows better
completeness with each gλ,: generating a cartoon avatar without any distortion
or artefact. We demonstrate that the global latent variable is both complete and
continuous.

Figure 4.10: Example of an image transformation and domain adaptation appli-
cation using a common global representation gλ,:. The first row shows images
generated by the CelebA VAE while the second row shows images generated by
the Cartoon VAE.

In this study, we utilise the FA-VAE model to analyse the interrelationships
between multiple views of a dataset. To achieve this, we calculate the mean of each
matrix W(m) along its rows, resulting in a row vector of length K, where K is the
number of latent factors in gn,:. This vector represents the relative importance of
each latent factor in gn,: for each view. The three resulting vectors are shown in
Fig. 4.11, sorted by weight values in the hair view. The shared and unique latent
features across views are then analysed based on their corresponding weights in
the three views.

Our results show that the first 22 and the 25th latent features are shared
between all three views, indicating that 23 latent features are required to explain
the information shared across all three multimodal views. Additionally, latent
feature 30 is shared exclusively between the CelebA and Cartoon datasets, but
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Figure 4.11: Mean over the rows of each W(m) matrix. Each row is a vector
representing the importance that each k latent feature of gn,: has to reconstruct
each view. The first row represents the Celeba view, the second row represents the
Cartoon view, and the third row represents the Hair view.

it has no contribution to the hair view. Furthermore, we observe that five latent
factors are exclusively used by the CelebA dataset, while almost all latent features
are required to explain the complex CelebA dataset itself. Thus, the FA-VAE
model allows for a visual analysis of the interrelationships between multiple views
of a dataset, providing insights into the shared and unique information across the
different views.

4.2.3 Transfer learning

The computational cost of training powerful VAEs is a significant challenge, as
these deep networks require many epochs to train. To address this issue, we propose
a novel approach to accelerate the training process using FA-VAE as a transfer
learning tool between multiple VAEs operating on the same domain.

Consider the CelebA dataset as an illustrative example, with a two-view setup
described by the graphical model shown in Figure 4.12. In the first view (V ), we
employ a pre-trained vanilla VAE, specifically the one trained in Section 4.2.1. As
such, we only use the pre-trained encoder and decoder and do not train them again,
resulting in static z

(V )
n,: . For the second view (I), we begin with the architecture

of the β-VAE discussed in Section 4.2.1 and add an additional final CNN layer to
make it deeper. The final CNN layer has a channel size of 2048, kernel size of 4,
stride of 2, and padding of 1 in the encoder, while the decoder exhibits an inverse
structure.

Our hypothesis is that using the embedded space provided by a pre-trained
vanilla VAE, z(V )

n,: , we can accelerate the training of a deeper VAE and potentially
lead to a better global solution. In order to demonstrate this hypothesis, we
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Pretrained VAE view: 30000× 64× 64× 3 Images view: 30000× 64× 64× 3

Figure 4.12: Transfer learning graphical model using FA-VAE. The V view repre-
sents information pre-learned by a vanilla VAE. As it is pretained, z(V )

n,: is no longer
a rv but an observation. The I view represents CelebA images using a β-VAE.
Grey circles denote observations, and white circles represent rv.

compared two scenarios: our transfer learning approach using FA-VAE and a
single β-VAE with the same structure as the second view of FA-VAE. We present
the performance of both approaches in Figure 4.13. We observe that FA-VAE
demonstrates accurate reconstruction capabilities in the initial epochs, indicating
that the latent space of the vanilla VAE provides a good initialisation. Furthermore,
FA-VAE achieves the same maximum GLL as β-VAE in approximately four times
fewer epochs, demonstrating its faster speed. Additionally, FA-VAE achieves the
highest absolute value in terms of GLL compared to β-VAE alone. The global term
of KL for FA-VAE is lower than that for β-VAE, as shown in Figure 4.13b. The
periodic spikes in the KL plot correspond to the times when the SSHIBA part of
FA-VAE updates the VAE prior distribution, as seen in Algorithm 1. Meanwhile, for
β-VAE, the KL starts increasing while FA-VAE directly decreases, which justifies
the better behaviour since the beginning.

In Fig. 4.14, we present five randomly selected test images that were not used
during the training phase. We apply three different models, namely β-VAE, FA-
VAE, and Multi-VAE, to encode the images into their corresponding latent spaces,
followed by reconstructing them back to their original domain. Since it might not
be straightforward to discern the method that produces the best reconstruction, we
provide the R2 score on the reconstruction of the 10,000 test images in Table 4.1.
As can be seen from the table, FA-VAE outperforms the other models in terms of
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(a) Reconstruction term measured by GLL. (b) KL divergence term.

Figure 4.13: ELBO decomposition in the reconstruction term and the KL divergence
term. The red line represents our approach, FA-VAE, while the black line represents
β-VAE on its own.

the R2 score, indicating that transfer learning can enhance model performance.

Model Samples R2 score

Multi-VAE 10000 0.855± 0.154
β-VAE 10000 0.941± 0.032

FA-VAE 10000 0.969± 0.027

Table 4.1: Reconstruction performance measured in R2 score over 10,000 CelebA
test samples.

FA-VAE offers the advantage of creating a more expressive and meaningful
embedded latent representation of images compared to β-VAE. To demonstrate
it, the 10 most relevant features are arbitrarily modified to analyse their visual
impact on the reconstructed image. The 10 most relevant features were selected
based on the absolute values in the weight matrix W(m), for both embedded latent
variables: z ∈ R1x100 for β-VAE, and z

(I)
n,: ∈ R1x100 for FA-VAE. These values were

then randomly modified in the [−20, 20] interval.
As shown in Fig. 4.15a, for β-VAE, each row represents one of the 10 most

relevant features. The z latent space reveals that only three of the features have
a visual interpretation. The blue rows show that facial hair can be controlled by
increasing or decreasing its corresponding value. The green row also has an impact
on the image contrast. However, the remaining features do not have a discernible
visual impact on the images.

Figure 4.15b presents an evaluation of FA-VAE that demonstrates its superiority
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Figure 4.14: Images reconstructed by β-VAE and by FA-VAE

over β-VAE in terms of both interpretability and clarity of its embedded latent
space. Among the 10 most relevant features identified, 9 are visually interpretable.
For example, the golden-marked latent features control skin tone and facial rotation,
the green rows determine gender and hairstyle, the blue row distinguishes between
cold and warm background colours, and the grey-labelled latent features regulate
smiling. Moreover, the study shows that FA-VAE can effectively capture facial
information while filtering out noisy backgrounds in the latent space.
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(a) β-VAE

(b) FA-VAE

Figure 4.15: Latent space evolution. Each row represents the 10 most relevant
features based on absolute value. The red column represents the image generated
by the model without any modification.
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4.3 Conclusions
We have presented the first deep hierarchical VAE for mixed and heterogeneous
data using an interpretable FA latent space in this work.

Having built on the foundation of the successful SSHIBA and KSSHIBA ap-
proaches in dealing with semi-supervised heterogeneous multi-view problems, we
have developed the FA-VAE model to further expand the range of data domains it
can handle. With the ability to work with a wide range of data types, including
multilabel, continuous, binary, categorical, and even image data, depending on the
VAE architecture, the FA-VAE model offers a versatile and powerful solution for
real-world data sets.

Our results have shown that the FA-VAE model is capable of converting
unsupervised problems into supervised ones, as demonstrated in Section 4.2.1,
where a pretrained VAE has been accurately conditioned to different labels such as
smiling, wearing lipstick, or new gender. Within just 150 epochs, the model has
been able to readapt and condition itself to arbitrary labels. Additionally, we have
demonstrated that the FA-VAE model can be used for domain adaptation between
different image types, outperforming current SOTA approaches in translating real
faces to emojis, as shown in Section 4.2.2. The FA-VAE model has also set a
new standard in the field by being the first model capable of performing transfer
learning between generative models, as demonstrated in Section 4.2.3. This has
allowed for faster learning and improved performance, further solidifying its place
as a robust solution for dealing with real-world data sets. To demonstrate the
applicability of FA-VAE to real-world scenarios, in Chapter 6, we have applied it
to automatically ribotyping C. diff isolates.

Overall, the FA-VAE model is a highly flexible and powerful supervised multi-
VAE formulation for dealing with complex, high-dimensional data problems.
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CHAPTER 5
AUTOMATIC ANTIBIOTIC RESISTANCE

PREDICTION USING KSSHIBA

As part of the collaboration between the Department of Theory Signal and Com-
munications from the UC3M and the Instituto de Investigación Sanitaria Gregorio
Marañón, the technical contributions presented in this thesis have been tailored
and adapted to actual microbiological contexts. Thus, in this chapter, we customise
and implement the technical contributions explained in Chapter 3 to the prediction
of antimicrobial resistant mechanisms in K. pneumoniae.

K. pneumoniae is widely recognised as a significant public health concern by
major international health organisations, due to its rapid dissemination, substan-
tial morbidity and mortality rates, and the financial impact associated with its
treatment and control [38, 36, 37]. The existence of multidrug-resistant strains
that harbour these resistance mechanisms complicates treatment options and the
patient’s prognosis [44, 43].

During the past decade, different outbreaks of K. pneumoniae were regis-
tered by Hospital General Universitario Gregorio Marañón (HGUGM) and various
surveillance programmes (STEP and SUPERIOR) [166, 167] that were analysed in
Hospital Universitario Ramón y Cajal (HURyC) creating two multidrug resistant
data collections K. pneumoniae: one of 282 samples and another of 120 samples.
Each bacteria strain is characterised by its MALDI-TOF MS, that is, a mass
spectrometry containing 20k features for each sample.

As previously discussed in Chapter 2, current machine learning techniques
have various limitations. As displayed in Table 1.1, certain studies [86, 87, 88, 89]
concentrated on small datasets with less than 50 samples, suggesting solutions
that lack the ability to generalise. Most of them used proprietary black-box tools
such as ClinProTools [86, 87, 88, 89, 91, 93, 92]. However, only a few studies
[11, 96, 68, 97] proposed open and reproducible research. Influenced by previous
research [94, 11, 96, 68, 97] we proposed the use of open source code and publicly
share the data used. Finally, drawing inspiration from [11, 46], we proposed the use
of probabilistic modelling to conduct the prediction of K. pneumoniae resistance
mechanisms.

Therefore, we apply and tailor KSSHIBA [122], our technical contribution
presented in Chapter 3, to this microbiological scenario. As observed, the issue
presented is a high-dimensional problem, suffering from the data curse, i.e., too
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many features for a limited number of samples. Thus, we apply KSSHIBA directly,
using well-established kernel functions such as linear kernel to reduce dimensionality;
Radial Basis Function (RBF) kernel to to exploit non-linearity present in the data;
or specifically tailored kernels for MALDI-TOF MS data such as PIKE [11] which
we adapt to work within the KSSHIBA framework.

Using KSSHIBA, we propose to simplify the existing pipeline for determining
antibiotic resistance mechanisms by leveraging epidemiological information using
multimodal learning. In doing so, we aim to demonstrate two points: first, the
applicability of KSSHIBA’s model in real-world scenarios and its motivation; second,
that KSSHIBA surpasses current state-of-the-art models, such as XGBoost [168],
MLPs, RF, SVMs, or GPs. To do so, KSSHIBA conducts dimensionality reduction
using kernel methods and automatically handles parameter selection using Bayesian
optimisation. In particular, it explains each view by a linear product with a
matrix weight that varies across views, enabling identification of which latent
dimensions are explaining each of the views. We evaluated performance in two
different bacterial domains: (1) using data from HGUGM and (2) grouping strains
from 18 geographically dispersed hospitals, selected based on their phenotypic and
genotypic resistance to beta-lactams and all analysed at HURyC. From the results,
we conclude that a heterogeneous model with linear kernels must be used to predict
susceptibility to AR.

The application results presented in this chapter are published at Engineering
Applications of Artificial Intelligence from Elsevier [45]. In accordance with the open
science philosophy upheld in this thesis, the implementation of the FA-VAE model
and all associated experimentation detailed in this chapter are readily accessible
through a public repository on GitHub, under the link 1. The developed work
was carried out in collaboration with the team led by Belén Rodríguez-Sánchez
of Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) and with the
team led by Dra. Rosa del Campo of Instituto Ramón y Cajal de Investigación
Sanitaria (IRyCIS).

The chapter is organised as follows: In Section 5.1, we provide the motivation
for using KSSHIBA in the prediction of antibiotic resistance mechanisms. Then, in
Section 5.2, we describe the K. pneumoniae collections, the technical adaptations
made to KSSHIBA, and the models that were selected for comparison. In Section
5.3, we conduct several experiments to predict ESBL and CP resistance mechanisms.
Finally, in Section 4.3, we draw conclusions and highlight the key findings of the
study.

1https://github.com/aguerrerolopez/RMPrediction
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5.1 Motivation to use KSSHIBA

Current SOTA solutions for the MALDI-TOF MS analysis tend to share the follow-
ing common pipeline: (1) a time-consuming MALDI-TOF MS data preprocessing,
e.g. using the MALDIquant (MQ) package; (2) a dimensionality reduction technique
such as Principal Component Analysis (PCA); and (3) a classification/regression
algorithm that has to be cross-validated to choose its hyperparameters. Moreover,
this pipeline results in black-box private softwares that are not interpretable or
lacks transparency in order to understand which variables or sources of information
are performing the classification task, such as ClinProTools [86, 91, 92] or Clover
BioSoft [93].

Our proposal simplifies this pipeline while provides explainable results, including
epidemiological information, and outperforming the SOTA models in prediction
AR. The use of KSSHIBA as a predictor for AR is motivated by several factors.
Firstly, KSSHIBA can efficiently handle raw MALDI-TOF MS data, eliminating
time-consuming pre-processing MQ, and avoiding external preprocessing. Secondly,
KSSHIBA performs a double dimensionality reduction, obtaining a common low-
dimensional latent representation of all input data sources through kernelised data
representations that use matrices of the dimension number of samples (N) instead
of the number of features (D). Thirdly, hyperparameter tuning is eliminated since
the Bayesian nature of the model implies the ability to automatically optimize the
model parameters by maximizing the variational lower bound. Fourthly, KSSHIBA
provides interpretable solutions since it calculates a weight matrix for each view,
capable of explaining how they correlate. Lastly, KSSHIBA tackles epidemiological
differences by indicating the origin center of each spectrum, recognizing that two
similar bacteria can be from different strains.

In this chapter, we propose to improve the efficiency of the current antibiotic
prescription pipeline in hospitals by proposing a new pipeline as shown in Fig. 5.1.
Our proposal involves the use of KSSHIBA to analyse multimodal information and
reduce the time required for making antimicrobial treatment decisions by 24-72
hours. It is important to note that we do not suggest replacing the current methods
of Antimicrobial Susceptibility Testing (AST), but rather to complement and
accelerate the process. In our proposal, we suggest using ML-guided antimicrobial
treatments during the waiting period for empiric results to improve the overall
efficiency of the process.
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Figure 5.1: Infection treatment workflow enhanced by multimodal ML methods.

5.2 Materials and Methods

5.2.1 Isolates selection and processing

In this study, we have included two distinct data domains obtained from two different
hospitals, namely Hospital General Universitario Gregorio Marañón (HGUGM) and
Hospital Universitario Ramón y Cajal (HURyC). Due to differences in their origins
and potential variations in analysis techniques, each domain has been treated as a
separate entity to account for any potential epidemiological or technical differences.

The first data domain consists of 282 consecutive clinical K. pneumoniae isolates
collected between 2014 and 2019, which were isolated and analysed at the HGUGM
institution. This dataset is the most homogenised, as all isolates were collected
and analysed in the same institution. Hereafter, we refer to this data domain as
the HGUGM domain.

The second data domain comprises 120 isolates that were characterised in
surveillance programs (STEP and SUPERIOR) [167, 166] obtained from 8 Spanish
and 11 Portuguese hospitals. However, the MALDI-TOF MS spectra were all
analysed at the HURyC institution. Therefore, this data domain is referred to as
the HURyC domain.

Both domain datasets were kept frozen at −80◦C in skim milk and, after
thawing, cultured overnight at 37◦C on Columbia blood agar (bioMérieux, Lyon,
France) for 3 subcultures for metabolic activation. The MS analysis has been
centralised and performed by the same operator, at each institution, using an
MBT Smart MALDI Biotyper mass spectrometer (Bruker Daltonics, Bremen), in
6 separate replicates (2 positions on 3 consecutive days). Protein extraction was
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performed by adding 1µl 100% formic acid and then drying at room temperature.
Next, 1µl of HCCA matrix solution (Bruker Daltonics) was added to each spot.
The MALDI-TOF spectra have been acquired in a positive linear mode in the
range of 2 kDa to 20 kDa, using default settings [169], although only data between
2,000-12,000 m/z [170, 171] has been used.

Both HGUGM and HURyC institutions utilised the same procedure to de-
termine Antimicrobial Susceptibility Testing (AST) for their respective datasets,
which involved the use of the automated broth microdilution method of the Mi-
croscan® System (Beckman-Coulter, CA, USA) in accordance with the common
criteria EUCAST (2021). It is important to note that in this study, the term AST
refers to the laboratory procedure used to empirically verify resistance mechanisms,
while Antibiotic Resistance (AR) refers to the automatic prediction using ma-
chine learning techniques. The presence of Extended-Spectrum Beta-Lactamases
(ESBL)/Carbapenemases (CP) genetic-resistant mechanisms was confirmed through
molecular tests. Each isolate was labelled as Wild Type (WT), ESBL-producer, or
ESBL+CP-producer, as shown in Table 5.1.

Table 5.1: Dataset detailed by domain and label types.

Dataset Label Samples

GM
WT 85

ESBL 6
ESBL+CP 191

RyC
WT 9

ESBL 58
ESBL+CP 53

The Ethics Committees of both HGUGM and HURyC (codes MICRO.HGUGM.2020-
002 and 087-16, respectively) have approved this study. The study was carried out
on microbiological samples, not human products, and informed consent from the
patient was not required.

5.2.2 Multi-view KSSHIBA for MALDI-TOF MS data
In this study, we propose adapting the KSSHIBA model [122] to effectively predict
the susceptibility of CP and ESBL for each isolate using MALDI-TOF MS data. As
explained in Chapter 3, KSSHIBA is a Bayesian multi-view semi-supervised model
designed to address non-linearities in the data, such as those in MALDI-TOF MS.
Furthermore, it can operate in a reduced dimensionality space (N × N), where
N << D, by leveraging kernel data representations and projecting all input views
onto a shared, low-dimensional latent space. To exploit these functionalities in this
problem, we explore two KSSHIBA architectures.
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Figure 5.2: Probabilistic graphical model for the evaluated data set: view D
corresponds to the label of the domain they come from (HGUGM or HURyC), view
M corresponds to the kernelised MALDI-TOF MS data, and view T corresponds to
the AR (WT, ESBL or ESBL+CP). The white circles represent random variables
that the model learns, while the grey circles represent the observations.

For the first configuration, we propose using a multi-view framework composed
of three data sources: the kernelised MALDI-TOF MS data, the AR to be predicted,
and the domain label indicating the hospital where the data was analyzed. The
graphical model representing this multi-view approach is depicted in Figure 5.2. By
adopting this approach, we are able to effectively handle the unique characteristics
of the MALDI-TOF MS data. The kernelised view is able to efficiently manage the
non-linearities of the data. The domain view enables us to account for potential
epidemiological differences between isolates, and the low-dimensional common space
allows us to model the interaction between the domain, the data, and the AR in a
transparent and explainable manner.

The MALDI-TOF data, i.e. the M view, is kernelised, K ∈ RN×N , where N is
the number of samples in each experiment and N << D. Furthermore, choosing
different kernel functions allows modelling the relations between peaks in different
ways, such as using PIKE or RBF kernels. Then, each row of K represents a
kernelised observation, denoted as kn,::

kn,: = [kf(Mn,M1), ..., kf(Mn,MN)] , (5.1)

where kf(Ma,Mb) is a kernel function between Ma and Mb, which are an arbitrary
pair of MALDI-TOF mass spectra.

In this view, denotes as M , KSSHIBA considers that a common low-dimensional
latent variable vector gn,: ∈ R1×K is linearly combined with a set of dual variables
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A ∈ RN×K , where K is the dimension of the low-dimensional latent space, and a
zero mean Gaussian noise ϵ(M) to generate each row of the kernelised observations
kn,:, as:

kn,: = gn,:A
T +ϵ(M) , (5.2)

where the prior over the latent space is given by gn,: ∼ N (0, IK); the prior over the
k-th column of the dual variables A, a(M)

:,k , is given by a
(M)
:,k ∼ N (0, (αk)

−1IK); and

the noise ϵ(M) ∼ N
(
0, τ (M)−1

)
. Thus, the random variable αk ∼ Γ(a, b) follows an

ARD prior [130] over the columns of A to automatically select the columns of gn,:

(latent factors) that are indeed relevant to explain the current data view.
For the AR view, denoted as T, we propose to use a one-hot encoding for

the Wild Type (WT), ESBL, and ESBL + Carbapenemases (ESBL+CP) tags.
Similarly, for the data domain, denoted as D, we consider binary encoding where a
value of 0 means that the data come from the HGUGM domain and a value of 1
means that the data come from the HURyC domain.

To accommodate for these two binary observations, we first consider that
there exist two real latent variables X(m), m ∈ {T,D}, which are generated by
the common low-dimensional latent variable gn,: ∈ R1×K , and then are linearly
combined with a projection matrix W(m) ∈ RD×K (where Dm is the observation
dimension) and a Gaussian noise with zero mean ϵ(m), as follows:

x(m)
n,: = gn,: W

(m)T +ϵ(m) for m ∈ {T,D} , (5.3)

where W(m)’s prior is identical to A’s to automatically select which columns of
gn,: are needed to explain these two views. Then, we are able to generate T(m) by
conditioning to this new latent representation X(m) using an independent Bernoulli
probability model [129], for the AR view, as:

p
(
tn,: |x(T )

n,:

)
=

3∏
d=1

p
(
tn,d |x(T )

n,d

)
, (5.4)

where
p
(
tn,d |x(T )

n,d

)
= ex

(T )
n,d tn,dσ

(
− x

(T )
n,d

)
. (5.5)

And for domain view, as it is binary:

p
(
dn,1 |x(D)

n,1

)
= ex

(D)
n,1 dn,1σ

(
− x

(D)
n,1

)
. (5.6)

The model is trained by evaluating the posterior distribution of all posteriors
of random variables given the observed data. These posteriors are approximated
through mean-field variational inference [127] maximising the Evidence Lower
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Figure 5.3: Probabilistic graphical model for multi-centre approach. The white
circles represent random variables that the model learns, while the grey circles
represent the observations.

BOund (ELBO). For more details, see [2, 122]. Furthermore, the Bayesian nature
of the model allows it to work in a semi-supervised fashion, using all available
information to determine the approximate distribution of the variables. In turn, the
model can marginalise any type of missing values in the data, as well as predict the
test samples for AR by sampling its variational distribution. Table 5.2 shows the
updated rules for the mean field factor for each random variable in the KSSHIBA
model.

The utilisation of a single view for both data collection may prove too rigid,
especially when using a parameterised kernel, such as an RBF one, which requires
the same parameter value for both collections in the previous approach. As a
result, we propose an alternative configuration, a novel multi-centre approach that
employs a specific kernel for each centre. To facilitate this, we present a three-view
scheme, as illustrated in Fig. 5.3.

The first view consists of MALDI-TOF MS data with Support Vectors (SV)s
from the HGUGM, while the second view contains MALDI-TOF MS SVs from
the HURyC. As in this problem the HGUGM contains 282 data points and the
HURyC contains 120 data points, the construction of each kernel view is as
follows: the HGUGM view compute a 402× 282 kernel matrix, being the kernel
between all the data and the HGUGMs SVs; however the cross-domain kernels (the
kernel between HURyC data and HGUGM SVs) are set to zero, since the domain
differences between these MALDI-TOF MS makes these cross-domain kernels be
uninformative. This way, the last 120 rows of this kernel matris are zero. Similarly,
the HURyC view comprises a 402× 120 kernel matrix with the first 282 rows set
to zero.

Finally, the third view comprises information on antibiotic resistance for all
data points. By following this procedure, KSSHIBA can achieve domain adaptation
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by translating MALDI-TOF MS data from one domain to another. Note that this
configuration makes the latent variable gn,: use the MALDI-TOF MS information
related to each domain but the output space (the third view with the antibiotic
resistance) is jointly learn by both domains.

5.2.3 Kernels for MALDI-TOF MS
As a kernel function, we first test a nonlinear approach, such as RBF [172] which
is given by:

kf(Ma,Mb) = exp

(
− ||Ma −Mb||2

2σ2

)
, (5.7)

where σ is the variance hyperparameter. Then, we also test a linear kernel [173]
that follows:

kf(Ma,Mb) = MT
a Mb . (5.8)

In both cases, Ma and Mb are a pair of MALDI-TOF spectra.
Finally, we work with a SOTA kernel function called PIKE [11], which exploits

the nonlinear correlations between the MALDI-TOF peaks as follows:

kf(Ma,Mb) =
1

2
√
2πt

#Peaks∑
i,j

λiλ
′
j exp

(
− (pi − p′j)

2

8t

)
, (5.9)

where t is a smoothing parameter that must be cross-validated, λi, λj correspond
to the intensity values of each pair of peaks and pi, pj is their m/z position in the
spectra. Recall that each MALDI-TOF consists of 12,000 different peaks. Due
to the computational cost to evaluate Eq. (5.9) in that number of peaks, the
spectra are preprocessed beforehand by topological peak selection [11]. This peak
selection is a simple peak detection method based on the persistence concept from
computational topology, which automatically results in peak detection because
local maxima exhibit high persistence values by construction in MALDI-TOF data.
Following the indications of the authors of [11], only 200 peaks are kept per sample.
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Table 5.2: Updated rules, obtained by a mean field approximation, of q distribution
for the different variables of the KSSHIBA model. The first row is common for all
views. From row 2 to row 4 is only for the M view. Lastly, the three last rows are
for views T and D.

Variable q∗ distribution Parameters
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5.2.4 Model training and validation
In our study, we investigate two scenarios for analyzing our data: (1) training and
testing on each domain separately, which is known as intra-domain analysis, and
(2) training and testing on both domains together, which is known as inter-domain
analysis.

For inter-domain analysis, we merge the datasets in two different ways: (1) by
directly combining the two domains, using only the kernelised MALDI-TOF view
and the AR view, and (2) by adding a third view that indicates the domain of
each data point. In the first case, we do not use the D observations, while in the
second case, we use them to study the importance of knowing the data origin. We
divide each domain into five random training-test folds to evaluate performance.
To correct for label imbalance, we oversample the minority class in each training
fold to obtain consistent class ratios across the folds.

We compare kernelised Sparse Semi-Supervised Interbattery Bayesian Analysis
(KSSHIBA) with an SVM and a GP since all three models can work with kernel
formulations. Since we are solving a multiclass classification problem, we train the
SVMs and GPs in a one-vs-all scheme. In addition, we also compare ourselves to
multitasking RF.

Regarding cross-validation, we use an inner 5-fold over the training folds to vali-
date all hyperparameters. To do so, we followed a 5-fold grid search cross-validation
technique to cross-validate the parameter C in the set of values {0.01, 0.1, 1, 10} for
the SVM, and for the RF we adjust the number of estimators and the maximum
number of features exploring the values {50, 100, 150} and {auto, log2}, respectively.
For both KSSHIBA and GP, the hyperparameters are optimised by maximising
the ELBO and the marginal log-likelihood of the data, respectively. When using
RBF kernel, we cross-validate γ parameter in a logspace with 13 steps in the range
{−9, 3}. When using PIKE, we also cross-validate the t smoothing value in the
range of {1, 5, 10}.

Finally, to demonstrate that KSSHIBA does not need external preprocessing,
we use our model with and without MQ preprocessing. When we use MQ, we
denote it using the prefix MQ-, e.g., MQ-KSSHIBA.

We measure performance in terms of the Area Under the ROC Curve (AUC) of
the AR prediction on the test folds.

5.3 Results
In this section, we present the results obtained using the proposed model and the
different SOTA algorithms. First, we study the classification performance in the
intra-domain scenario. Later, we analyse the performance in the inter-domain
scenario to evaluate the advantages of working with multi-view data sources. Finally,
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we study the projection of the latent space learnt by KSSHIBA to understand the
correlation between the source domain and the labels.

Each model has a name that is made up of three terms, which refer to the
preprocessing method, the type of model, and the kernel function used. For example,
the name "KSSHIBA-RBF" means that the model uses raw MALDI-TOF data,
the KSSHIBA model, and an RBF kernel function. On the other hand, the name
"MQ-GP-PIKE" means that the model uses the MQ package to preprocess the
MALDI-TOF data, a GP model, and the PIKE kernel function. In the intra-domain
scenario, the multi-view nature of KSSHIBA is denoted by the term "Preprocessing-
Model Kernel Domain". For instance, the model KSSHIBA-LINEAR-DOMAIN
refers to the use of KSSHIBA model with a linear kernel function without any
preprocessing, and with the addition of domain labels.

5.3.1 Intra-domain scenario

Tables 5.3 and 5.4 summarise the results obtained by training and testing indepen-
dent models for each domain (HGUGM and HURyC).

Table 5.3: Results of nonlinear models in the intra-domain scenario in terms of
mean AUC and standard deviation w.r.t. the 5 random splits. The best result for
each case is shown in bold. The last row indicates the Weighted average AUC over
all the data.

Dataset Label KSSHIBA KSSHIBA MQ-GP SVM MQ-SVM MQ-RF RF
RBF PIKE PIKE [11] RBF RBF

GM
WT 0.61±0.14 0.71±0.16 0.75±0.11 0.67±0.12 0.71±0.18 0.74±0.15 0.70±0.17

ESBL 0.57±0.28 0.56±0.32 0.35±0.14 0.40±0.29 0.53±0.21 0.45±0.21 0.39±0.21
ESBL+CP 0.85±0.14 0.78±0.09 0.79±0.07 0.82±0.19 0.83±0.17 0.82±0.12 0.80±0.19

RyC
WT 0.47±0.35 0.64±0.19 0.56±0.20 0.45±0.15 0.45±0.21 0.52±0.09 0.57±0.26

ESBL 0.70±0.10 0.43±0.09 0.43±0.11 0.72±0.14 0.52±0.12 0.58±0.13 0.69±0.10
ESBL+CP 0.67±0.12 0.43±0.09 0.55±0.05 0.71±0.17 0.57±0.07 0.69±0.06 0.71±0.07

Weighted average AUC 0.74± 0.13 0.66± 0.18 0.68± 0.17 0.74± 0.11 0.71±0.16 0.73±0.12 0.71± 0.11

Table 5.4: Results of linear models in the intra-domain scenario in terms of mean
AUC and standard deviation w.r.t. the 5 random splits. The last row indicates the
weighted Weighted average AUC over all the data.

Dataset Label KSSHIBA GP
LINEAR LINEAR

GM
WT 0.70±0.15 0.70±0.18

ESBL 0.46±0.19 0.54±0.18
ESBL+CP 0.77±0.16 0.80±0.20

RyC
WT 0.49±0.22 0.48±0.28

ESBL 0.59±0.08 0.58±0.14
ESBL+CP 0.66±0.05 0.62±0.06

Weighted average AUC 0.70± 0.09 0.71± 0.11
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According to the results presented in Table 5.3, when analysing the HGUGM
domain, the KSSHIBA model outperforms the baselines in terms of AUC for both
the prediction of ESBL and ESBL+CP. It is worth noting that non-linear kernels
are more effective, as evidenced by the comparison between Table 5.3 and Table
5.4. Specifically, the RBF kernel is the most suitable option for predicting both
ESBL and ESBL+CP, while the PIKE kernel is the best option for predicting WT.

In contrast, the HURyC domain presents significant challenges for modeling, as
none of the models tested achieved satisfactory performance across all three labels.
Nonetheless, it is noteworthy that the application of non-linear techniques, such as
PIKE, RBF, and RF, yielded better results than their linear counterparts.
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5.3.2 Inter-domain scenario
Table 5.5 and Table 5.6 show the results obtained by linear and nonlinear models,
respectively, when trained jointly on both HGUGM and HURyC domains. When
using the first approach, i.e., both MALDI-TOF MS data collections are completely
combined in one view, we denote it as KSSHIBA-KERNEL-DOMAIN. In contrast,
when using the second approach, i.e., each MALDI-TOF MS data collection is
modelled by an independent kernel, we denote it as KSSHIBA-KERNEL-MULTI.

Table 5.5: Results of linear models in the inter-domain scenario in terms of mean
AUC and standard deviation w.r.t. the 5 random splits. The best result for every
case is shown in bold. The last row indicates the weighted Weighted average AUC
over all the data.

Dataset Label KSSHIBA KSSHIBA MQ-KSSHIBA KSSHIBA GP SVM
LINEAR LINEAR LINEAR LINEAR LINEAR LINEAR
MULTI DOMAIN DOMAIN

GM
WT 0.76±0.05 0.77±0.11 0.78±0.06 0.72±0.14 0.76±0.10 0.62±0.13

ESBL 0.57±0.24 0.46±0.19 0.51±0.25 0.39±0.21 0.43±0.20 0.39±0.21
ESBL+CP 0.82±0.03 0.88±0.08 0.90±0.05 0.86±0.08 0.86±0.08 0.85±0.08

RyC
WT 0.62±0.09 0.70±0.16 0.48±0.28 0.66±0.16 0.68±0.17 0.59±0.20

ESBL 0.60±0.10 0.55±0.09 0.53±0.07 0.49±0.09 0.60±0.10 0.69±0.12
ESBL+CP 0.55±0.13 0.68±0.10 0.63±0.10 0.64±0.06 0.64±0.04 0.66±0.14

Average performance 0.72±0.15 0.77± 0.13 0.77± 0.18 0.74± 0.17 0.76± 0.13 0.74± 0.13
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Table 5.6: Results of nonlinear models in the inter-domain scenario in terms of
mean AUC and standard deviation w.r.t. the 5 random splits. The MG-GP PIKE
means reproducing the work done in [11]. The last row indicates the weighted
Weighted average AUC over all the data.

Dataset Label KSSHIBA KSSHIBA KSSHIBA MQ-GP SVM
PIKE RBF RBF PIKE [11] RBF

DOMAIN DOMAIN MULTI

GM
WT 0.64±0.17 0.59±0.16 0.71±0.05 0.74±0.14 0.65±0.13

ESBL 0.44±0.37 0.32±0.23 0.53±0.28 0.40±0.12 0.40±0.19
ESBL+CP 0.73±0.12 0.81±0.12 0.80±0.05 0.77±0.10 0.85±0.08

RyC
WT 0.51±0.14 0.63±0.07 0.47±0.22 0.62±0.22 0.57±0.26

ESBL 0.39±0.14 0.66± 0.05 0.69±0.10 0.49±0.09 0.69±0.12
ESBL+CP 0.51±0.14 0.59±0.11 0.62±0.14 0.59±0.06 0.68±0.14

Average performance 0.62± 0.15 0.70± 0.13 0.73±0.11 0.69± 0.13 0.75± 0.12

Table 5.7: Results of SOTA non-kernel methods in terms of mean AUC and
standard deviation w.r.t. the 5 random splits. The last row indicates the weighted
Weighted average AUC over all the data.

Dataset Label LightGBM MLP XGBoost

GM
WT 0.58± 0.08 0.80± 0.08 0.76± 0.02

ESBL 0.68± 0.09 0.50± 0.12 0.60± 0.17
ESBL+CP 0.62± 0.04 0.82± 0.07 0.74± 0.08

RyC
WT 0.75± 0.21 0.52± 0.20 0.64± 0.33

ESBL 0.41± 0.13 0.57± 0.09 0.52± 0.07
ESBL+CP 0.60± 0.05 0.68± 0.06 0.64± 0.06

Average performance 0.58± 0.09 0.74± 0.12 0.69± 0.09

When both domains are combined into the same view, i.e., the first approach
KSSHIBA-KERNEL-DOMAIN, the linear version with domain labels outperforms
all SOTA models in predicting both WT and ESBL+CP, as shown in Table 5.5.
Moreover, KSSHIBA-LINEAR-DOMAIN also outperforms all models used in the
previous experiments that were targeted to each particular domain. With this
configuration, the KSSHIBA model can handle heterogeneous data, such as the
domain label, which allows it to exploit the information present in both data sets.

When comparing the Average Performance of the kernelised experiments, i.e.,
Table 5.5 and Table 5.6, the linear kernel outperformed all non-linear approaches,
namely PIKE and RBF kernels. This may be induced because the distributions in
the two domains are significantly different and a common parameter for the kernel
that can capture these differences is not feasible. In fact, the multi-centre approach,
KSSHIBA RBF MULTI, which uses different γ per view, namely the cross-validated
ones in Section 5.3.1, outperformed KSSHIBA RBF DOMAIN where the same γ
value is used as a unique kernel is presented.
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When comparing KSSHIBA with and without a domain view, that is, KSSHIBA-
KERNEL vs KSSHIBA-KERNEL-MULTI vs KSSHIBA-KERNEL-DOMAIN, the
results pointed out that including domain information in the model improved its
performance a both multi-view approaches outperform the KSSHIBA-KERNEL.
We hypothesise that the domain information allowed the model to eliminate any
possible local epidemiological bias and merge both datasets effectively.

Additionally, the KSSHIBA model had an advantage over other models in
that it did not require external preprocessing with MQ. While MQ preprocessing
performed well in the HGUGM domain, it performed poorly in the HURyC domain,
likely due to biasing the data towards the larger domain. Using raw data instead of
preprocessed data improved the performance of the model in the HURyC domain,
while maintaining a similar performance in the HGUGM domain.

Regarding the multi-centre approach, the non-linear kernel showed a improve-
ment in their performance as seen in Table 5.6. However, no global improvement
has been accomplished in comparison to including the domain when using linear
kernel, as seen in Table 5.5.

When comparing the performance of linear and non-linear kernel functions for
the prediction of both WT and ESBL+CP, it was found that linear kernels were
better suited for both tasks. This indicates that in the first experiment, where
only one domain was considered, the model was over-fitted, and by incorporating
out-of-distribution data, the linear kernel was able to generalise better.

After examining the relevant literature, we find that the current SOTA models
for antibiotic resistance (AR) prediction include LightGBM, XGBoost, and MLP
neural networks. In order to compare these models with our proposed KSSHIBA
method, we conducted experiments as shown in Table 5.7. Our results indicate
that both XGBoost and MLP show promising performance. However, our proposed
KSSHIBA method achieves higher average performance scores than either of these
models. Additionally, none of the models, including KSSHIBA, is able to achieve
high AUC values for ESBL prediction across all tasks. We posit that this is due
to a lack of sufficient data on ESBL, which is represented by only 64 samples
in the dataset with a relatively low representation in the AR profile. Hence,
additional data on ESBL is required to enable effective learning of its variability
and generalisation to new data.
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Figure 5.4: Latent space correlation between input views. Each row represents the
mean of each w

(m)
d,: d-row having then 76 values, one per each k latent feature. Each

subplot represents one W(m) matrix per view. The most important features (the
highest weight value) are represented in black, and the least important features (the
lowest weight value) are represented in white. Finally, the features were ordered by
their relevance to the prediction task

5.3.3 Latent space analysis
Given that the KSSHIBA LINEAR DOMAIN model has shown the best perfor-
mance among the considered models, we will now investigate the learned latent
space projection to gain insights into the significance of the domain label.

Fig. 5.4 displays the average weight of each latent factor W(m) for m ∈ M,T,D,
which is calculated as the average across every column. The matrix W(M) is
obtained by moving from the dual space variables A to the primal space as shown
in the following equation:

W(M) = MT A, , (5.10)

where M corresponds to the raw MALDI-TOF observations. Because of the sparsity
induced by the ARD prior, W(m) automatically selects only the k relevant features
of gn,: for each m data view.

In this instance, the KSSHIBA model determined that a reduced set of 76 latent
features was sufficient, as illustrated in Fig. 5.4. It is worth noting that of these
76 features, only 14 are relevant for predicting the AR label, and all of them are
associated with the MALDI-TOF view. However, only 3 of these 14 features are
capable of capturing all the available information simultaneously. Additionally, it
is worth mentioning that the MALDI-TOF view requires 51 private latent features,
which capture the behavior of this view alone, much like a PCA would do.

In Fig. 5.4, it can be observed that there is a correlation between the AR of
each strain and its original domain, as indicated by the presence of 3 shared latent
features. Additionally, the domain label is utilised to explain the projection of the
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Figure 5.5: t-SNE 2-dimensional representation of the 14 latent variables of G that
are relevant for the domain view. Red crosses stand for a gn,: whose observation
comes from the HGUGM domain, while every blue dot stands for a gn,: whose
observation comes from the HURyC domain.

MS, thereby demonstrating that the distributions of MALDI-TOF differ depending
on the epidemiology.

In terms of low-dimensional projection, Fig. 5.5 illustrates the use of T-
distributed Stochastic Neighbor Embedding (t-SNE) to map the 14 relevant latent
features that explain the domain view onto a 2-dimensional space. The two domains
exhibit separate distributions, which can be easily distinguished using a simple
linear classifier. The HGUGM domain is more compact due to its samples being
derived from a single hospital, whereas the HURyC domain, which consists of
samples from 19 different hospitals, displays a sparser distribution with distinct
clusters of data points. The four black circles in Fig. 5.5 correspond to four different
hospitals within the HURyC domain collection. Therefore, our model can cluster
the data by both domain and hospital, without being explicitly informed of this
information.

By reducing the initial 10,000 MALDI-TOF features to only 76 latent features,
KSSHIBA is able to produce a low-dimensional latent space representation. To-
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gether with domain characterisation, this accounts for the superior results achieved
by KSSHIBA over all SOTA methods in the inter-domain scenario, since it can
identify the differences between MALDI-TOF data depending on their domain,
facilitating improved generalisation of predictions.
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5.4 Conclusions
In this study, we present a novel method for predicting antibiotic resistance of K.
pneumoniae to ESBL and CP production that utilises both MALDI-TOF spectra
and epidemiological information. Our approach is based on an enhanced version
of the KSSHIBA algorithm that achieves superior performance in terms of AUC
when compared to state-of-the-art algorithms such as XGBoost, LightGBM, MLP,
SVMs, and GP. Notably, our method is the first to process raw MALDI-TOF data
without requiring external preprocessing using MQ. It also offers dimensionality
reduction by simultaneously integrating MALDI-TOF and epidemiological data
into a low-dimensional latent space. Moreover, the KSSHIBA algorithm provides
interpretable results by leveraging epidemiological information through its multi-
view architecture. Furthermore, it is capable of automatically tuning the model
hyperparameters using Bayesian inference.

In this chapter, we investigated the advantages of our approach in two distinct
bacterial domains: (1) using data from a single hospital (GM) and (2) grouping
strains from 18 hospitals across different geographic locations, selected based on
their phenotypic and genotypic resistance to beta-lactams (RyC). We found that all
current non-heterogeneous models, such as GPs or SVMs, exhibited overfitting to
one of the domains and performed poorly in the smaller domain, as shown in Table
6. Therefore, heterogeneous models that can analyze epidemiological information
are necessary to predict AR in a fair and unbiased manner between domains. Our
experiments demonstrated that it is critical to adjust for different data distributions
when working with two domains simultaneously. In fact, the inclusion of domain
information improved the learning process of KSSHIBA, enabling it to properly
model the different data distributions by overcoming the bias introduced by the
data itself, which can lead to overfitting, particularly if there is domain imbalance.
However, the process of learning a probabilistic model involves learning a full
distribution of the data, which adds complexity to the training phase.

Our work contributes towards the important goal of reducing ineffective antibi-
otic prescribing by enabling the prediction of possible resistance mechanisms in K.
pneumoniae. The implementation of our method in microbiological laboratories
has the potential to improve the detection and treatment of multidrug-resistant
infections, as well as significantly reduce the time required to obtain resistance
results compared to traditional manual methods. This could have a substantial
impact on global public health by improving patient outcomes.

As a next step, we propose a longitudinal study over real test samples in clinical
settings, where KSSHIBA and other baseline models can be used to automatically
predict AR and assess its viability in a real-world scenario. After validation, we
plan to develop a web server for KSSHIBA as a rapid AR detection method in
laboratories.
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CHAPTER 6
AUTOMATIC RIBOTYPING BASED ON

PROBABILISTIC TECHNIQUES

Following the collaboration with the Instituto de Investigación Sanitaria Gregorio
Marañón, we customise and implement the technical contributions explained in
Chapters 3 and 4 to a pilot study of the automatic ribotyping of Clostridium
difficile (C. diff ).

C. diff is a pathogen that has gained widespread recognition for its significant
economic burden in the United States [100] and its rapid spread in Europe [101].
This pathogen is particularly prevalent among patients who have recently been
treated with antibiotics [102] and its infection can cause life-threatening complica-
tions, such as sepsis [103] or colitis [104], particularly in severe cases. Currently,
hyper-virulent C. diff strains, such as RT027 [107, 108], are associated with severe
colitis and higher mortality rates [109, 110, 111] due to a deletion in the tcdC gene,
which regulates toxins production. Current laboratories use real-time PCR assays,
for example the GeneXpert C. diff, to detect the presence of toxins B and binary,
and the deletion in the tcdC gene in C. diff strains [112]. However, new ribotypes,
such as RT181, which share those characteristics with hyper-virulent RT027 but
differs in symptoms, present challenges for accurate detection using PCR methods.

Therefore, in this chapter we propose a solution using ML techniques following
the philosophy established in Chapter 5. To do so, we apply and tailor KSSHIBA
[122] (Chapter 3) and FA-VAE [123] (Chapter 4) to the automatic ribotyping
of C. diff based on their MALDI-TOF MS. We follow the same approach as in
Chapter 5 using KSSHIBA with RBF, Linear and PIKE kernels. Then, we compare
their performance in time, ribotyping accuracy, and latent space dimensionality to
FA-VAE. We adapt FA-VAE, presented in Chapter 4, by implementing different
VAE architectures, such as 1D-CNN and MLP encoder-decoder. Both models are
analysed over a dataset of 275 C. diff from the Hospital General Universitario
Gregorio Marañón (GM) containing 10 different ribotypes (RT) that are grouped
into three groups: hyper-virulent RT027, new RT181, and nonvirulent RTs. In this
dataset, a train-test split is performed to evaluate the performance of the different
models. Finally, best models are evaluated in a real outbreak involving 3 C. diff
isolates ocurred on January 24th. Specifically, FA-VAE perfectly predicted the RT
the first day of the outbreak, while current laboratories methodologies lasted 6 days
on obtaining results. Our objective is not only to demonstrate the effectiveness of
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probabilistic models, such as FA-VAE, in automating microbiological laboratories
and rapid ribotyping C. diff, but to drastically reduce the time required for this
process by up to 6 days, ultimately enabling more efficient and effective management
of outbreaks and control of infectious diseases.

The results of the applications presented in this chapter have been submitted
as a preliminary study to the XXVI Congreso Nacional de la Sociedad Española de
Enfermedades Infecciosas y Microbiología Clínica. In accordance with the open
science philosophy upheld in this thesis, all associated experiments detailed in this
chapter are readily accessible through a public repository on GitHub, under the
link 1, developed in collaboration with the team led by Belén Rodríguez-Sánchez of
the IISGM.

The organisation of this chapter is as follows: Section 6.1 reviews the state-
of-the-art in the automatic ribotyping of C. diff and motivates the use of ML
techniques. Section 6.2 describes the C. diff collection, including the pre-processing
steps and technical adaptations to both KSSHIBA and Factor Analysis VAE (FA-
VAE). Section 6.3 presents the results of two experiments: a preliminary study to
test the feasibility of the proposal and a study of a real outbreak of C. diff. Finally,
in Section 6.4, the chapter concludes with a summary of the main findings and
suggestions for future work.

6.1 State-of-the-art in C. diff ribotyping
In the last decade, more than 70 different strains of C. diff have been discovered
[106]. In particular, the RT027 strain is often referred to as hyper-virulent [107, 108]
due to its association with severe colitis and higher mortality rates [109, 110, 111].
Recent studies [113, 114] discovered an outbreak of a new pathogenic ribotype,
called RT181, which is detected as false RT027 by PCR methods as it also presents
a deletion in the tcdC gene. Hence, it presents a challenge to an accurate detection
in clinics.

As noted by Cuénod et al. [115] in their 2021 literature review, MALDI-TOF
MS can be used for ribotyping of C. diff. This was previously demonstrated by Reil
et al. [116] in 2011 through the analysis of 355 C. diff samples using MALDI-TOF
MS, where biomarkers were discovered for manual identification of RT001, RT027,
and RT078/126 in the mass range between 3K − 13K Da. Moreover, Rizzardi et
al. [117] in 2015 also observed that extended MALDI-TOF MS, with mass range
of 30K − 50K Da, was able to identify biomarkers for various ribotypes, including
RT010, RT011, RT012, RT015, RT017 and RT020, among others.

To date, no studies have properly applied ML methods to perform automatic
ribotyping of C. diff. In Calderaro et al. [121] MALDI-TOF MS was used on a

1https://github.com/aguerrerolopez/Clostridium
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set of 29 C. diff samples to classify them as epidemic or non-epidemic, but were
unable to achieve conclusive results regarding automatic ribotyping. Additionally,
they did not make their code or data publicly available exhibiting the same trend
as in K. pneumoniae depicted in Chapter 5. Hence, as stated before, there is
a lack of reproducibility in the current state-of-the-art. In light of this gap in
the literature, we propose performing automatic ribotyping of C. diff using the
technical advancements presented in this dissertation, such as KSSHIBA [122]
(Chapter 3) and FA-VAE [123] (Chapter 4).

6.2 Materials and Methods

6.2.1 Bacterial isolates

Two data sets are included in this pilot study, comprising of an initial dataset of
275 C. diff isolates and a collention of a real clinical scenario consisted of 3 C. diff
isolates obtained. The isolates from the first data set were obtained during the first
two quarters of 2022 whereas the outbreak isolates are from January 24th of 2023.

Before processing, the isolates were grown on Brucella blood agar (Beckton
Dickinson®) and incubated under stringent anaerobic conditions at 37◦C. The
incubation period was extended to 48 hours to provide sufficient growth time
for C. diff. Prior to analysis, all isolates were reconfirmed using MALDI-TOF
MS technology on an MBT Smart MALDI Biotyper (Bruker Daltonics, Bremen,
Germany) with updated database containing 9957 mass spectra profiles (MSP),
following the standard protocol of Formic Acid followed by HCCA (α-Cyano-4-
hydroxycinnamic acid) matrix solution.

For the acquisition of spectra, a small amount of each C. diff colony was placed
on the MALDI metal plate in duplicate, overlaid with 1µl of 100% formic acid,
allowed to dry and spotted with 1µ l of organic HCCA matrix. Each spot on the
MALDI plate was read twice. MALDI-TOF spectra were acquired after a 48h
incubation period for each isolate, obtaining 4 spectra per strain. Spectra were
acquired in positive mode in the region of 2K to 20K Da.

The study is carried out on microbiological samples, not human products, so
informed consent from the patient is not required.

6.2.2 Isolates ribotyping

All C. diff strains were ribotyped at the HGUGM facility and Table 6.1 shows the
relation of each RT of the database. For prediction purposes, the isolates were
grouped in three categories: hyper-virulent RT027, 027-like RT181 and others,
presenting the relation shown in Table 6.2.
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Table 6.1: Relation of number of samples per ribotype and per dataset.

Ribotype (RT) Training samples Outbreak

RT001 30
RT002 38
RT014 29
RT017 30
RT023 19
RT027 30
RT078 30
RT106 30
RT181 30
RT207 30
RT651 3

Total 275 3

Table 6.2: Manual labelled samples for ML purposes in three classes: RT027, RT181
and Others.

Ribotype (RT) Training samples Outbreak

RT027 30
RT181 30
Others 216 3

Total 275 3

6.2.3 MALDI-TOF MS preprocessing and methodology

As shown in the paper by Guerrero et al. [45] and in Chapter 5 of this thesis, it has
been demonstrated that no preprocessing is required for MALDI-TOF MS. As a
result, the standard processing, consisting of the four steps (i) variance stabilising,
(ii) smoothing, (iii) baseline removal, and (iv) intensity calibration, are avoided in
this study.

Regarding the methodology, a preliminary study is conducted in which the
training dataset is partitioned using a 60-40 train-test split. To address the issue of
label imbalance, random oversampling of RT027 and RT181 is carried out resulting
in stratified train partitions. The performance of each model is evaluated using
balanced accuracy, taking into account the label imbalance in the test set, and in
macro-average AUC with respect to ribotyping classification. Secondly, the best
models are selected by performance, namely FA-VAE MLP and KSSHIBA Linear,
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and they are retrained with full training dataset, i.e., the 275 samples. Finally,
these retrained models are tested on the real outbreak scenario where they are
employed in conjunction with traditional PCR techniques to ribotype.

As means of comparison, KSHHIBA is tested with three different kernels: RBF,
Linear and PIKE, where kernel parameters (σ in RBF and t smooth in PIKE) are
cross-validated. Then, in FA-VAE two different encoder-decoder architectures are
tested: 1 layer MLP and 3 layer 1D-CNN.

6.2.4 KSSHIBA adapted to C. diff
In this context, we adapt the KSSHIBA architecture to tackle MALDI-TOF MS
data and efficiently ribotype C. diff strains. In particualr, a two-view KSSHIBA is
proposed, as shown in Fig. 6.1. The first view deals with the kernelised MALDI-
TOF MS data, with different kernels such as Linear, RBF or PIKE. That means
that instead of working with X ∈ R275×18000 we work with the kernelised version
K ∈ R275×275. The second view models the RT information containing a one-
hot encoder version of the RT that identifies each isolate. Using KSSHIBA, we
can efficiently deal, in terms of computational cost, with the high-dimensional
MALDI-TOF data at the same time that we exploit non-linear relationships.

gn,:

z
(R)
n,:

x
(R)
n,:

τ (R)

W(R)

k
(M)
n,: τ (M)

A(M)

Ribotype view: 275× 3 MALDI-TOF view: 275× 275

Figure 6.1: Probabilistic graphical model for the evaluated data set: view M
corresponds to the VAE that handles MALDI-TOF MS, and view R corresponds
to the RT (RT027, RT181, Others). The white circles represent random variables
that the model learns, while the grey circles represent the observations.

6.2.5 FA-VAE adapted to C. diff
Furthermore, we suggest the FA-VAE model presented in Chapter 4 as a generative
approach to process MALDI-TOF MS data for automatic ribotyping of C. diff
isolates. To tailor the FA-VAE model to the specific characteristics of the data,
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we propose the implementation of two distinct methods: a static approach and a
mass-temporal approach.

For the static approach, a FA-VAE with two views is proposed. As first view,
the MALDI-TOF MS data is processed using a VAE with a MLP encoder-decoder
structure. This involves using an encoder-decoder architecture with linear layers
to handle input data represented by X(1) ∈ R275×18000, and projecting it into a
latent space represented by Z(1) ∈ R275×H , where in the experimentation we tested
H = 20, 100. The second view, the RT view, comprises a one-hot encoder version
of the RT that identifies each isolate as proposed in KSSHIBA.

In the context of our study, we would like to emphasise that the m/z axis of
the MALDI-TOF MS instrument captures the masses arriving at different time
steps, as described in Chapter 1. Due to the fact that lighter masses reach the
detector earlier, they appear at lower m/z values, which leads to the interpretation
of the m/z axis as a temporal axis. To take advantage of this temporal dependence,
we propose using a one-dimensional convolutional neural network (1D-CNN) as
the encoder-decoder structure for the first view of our multi-view model. This
involves the exploitation of 1D-CNNs to handle the input data represented by
X(1) ∈ R275×18000, and project it into a latent space represented by Z(1) ∈ R275×K ,
where in the experimentation we tested H = 20, 100, taking into account the
temporal relationships between the peaks. This temporal concept is motivated by
the behaviour of PIKE, as described by Weis et al. (2020) [11], where peaks that
are closer in m/z coordinates are more correlated as they may be peptides of the
same protein. The employment of a 1D-CNN is henceforth justified on the grounds
of its potential to exploit the correlation between adjacent peaks while exhibiting
relatively weaker association with distal peaks along the m/z axis.

Both approaches share the same graphical model shown in Fig. 6.2. The key
difference between both approaches is which architecture deals with the encoding-
decoding phase of MALDI-TOF MS data.

6.3 Results

In this section, the results obtained using the proposed models are presented.
Two different scenarios are discussed: a preliminar study and an actual outbreak
scenario.

In the first case, we investigate the potential benefits of applying ML techniques
to automate ribotyping of C. diff. We evaluate the performance of ML models based
on various metrics, including dimensionality reduction, computational efficiency,
balanced accuracy, and AUC. Furthermore, we analyse the latent spaces generated
by the KSSHIBA and FA-VAE methods.

Ultimately, to analyse its implementation in laboratories, a real outbreak is
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Figure 6.2: Probabilistic graphical model for the evaluated data set: view M
corresponds to the VAE that handles MALDI-TOF MS, and view R corresponds
to the RT (RT027, RT181, Others). The white circles represent random variables
that the model learns, while the grey circles represent the observations.

studied. Best models selected in the first study are used in real time along traditional
PCR techniques to check the feasibility of using ML techniques in laboratories.

6.3.1 Preliminar study

As motivated in Section 6.1, a gap in literature exists with regard to the utilisation
of ML techniques for the automated ribotyping of C. diff. In light of this, an
exploratory study is undertaken to assess the feasibility of such an approach.

Table 6.3: Results of KSSHIBA and FA-VAE approaches in AUC and Balanced
Accuracy for a fixed 40% random test samples. First reduction represents the
dimension of the first technique used, in case of FA-VAE the H output dimension
of the encoder and in case of KSSHIBA the N number of samples used for the
kernelisation. The best results for each case is shown in bold.

Model First reduction (H or N) K Iterations Time Balanced Accuracy AUC
FA-VAE MLP 20 7 544 42 0.97 0.98
FA-VAE MLP 100 9 622 57 0.94 0.96

FA-VAE 1D-CNN 20 5 721 207 0.84 0.88
FA-VAE 1D-CNN 100 8 787 234 0.83 0.97
KSSHIBA RBF 388 87 10000 290 0.95 0.98

KSSHIBA LINEAR 388 100 10000 332 0.99 0.99
KSSHIBA PIKE 388 100 10000 334 0.99 0.99

The results of testing the different approaches under study on 40% of the
data are presented in Table 6.3. All models employed techniques for reducing the
dimensionality of the data and we analyse their performance for different latent
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dimensions. For instance, when the FA-VAE approach is utilised, different dimension
of the VAE latent space, H, are analysed and when the KSSHIBA approach is
used, the number of relevant vectors, N , used in the kernel for projecting the
data is indicated together to the dimension of the FA latent space, K, which is
automatically optimised. Additionally, the time cost required for the convergence
of the model is measured by iterations and time.

The evaluation results, measured by the balanced accuracy and AUC scores,
indicate that all models achieve high accurate results, with none of the approaches
having a score lower than 0.83 in balanced accuracy or 0.88 in AUC. The highest
scores have been obtained by the KSSHIBA models in both the PIKE and LINEAR
versions, with values of 0.99 in both metrics, suggesting near-perfect results. The
stationary version of FA-VAE, known as FA-VAE MLP, closely follows the perfor-
mance of KSSHIBA, with scores of 0.97 and 0.98 in balanced accuracy and AUC,
respectively. In terms of time cost, it is noted that the KSSHIBA implementations
require 10000 iterations to converge, while the FA-VAE MLP achieve comparable
results in significantly less time, requiring 18 times fewer iterations and 8 times
less time. Moreover, the interpretability of the models is also taken into account,
providing FA-VAE a more compact latent representation, that is, lower K value.
However, the results obtained from the 1D-CNN approaches, which employed a
temporal approach, were found to be comparatively lower and not as suitable for
the given task.

In conclusion, the results of this preliminary study suggest that KSSHIBA
(LINEAR or PIKE) achieves superior performance in terms of accuracy, while
FA-VAE MLP performs comparably with the added benefit of a more compact
latent space and lower time cost. The findings of this study indicates the viability
of using MALDI-TOF data for automatic ribotyping of C. diff strains.

6.3.2 Real outbreak on January 24th

On January 24th, a real outbreak of C. diff was reported in the HGUGM, which
involved three distinct strains and MALDI-TOF spectra were obtained. In order
to evaluate the feasibility of using FA-VAE and KSSHIBA models in a laboratory
context, both models were applied to the collected spectra. Since it was a real
scenario, no label was available for the affected strains, so two control samples
(both RT027) were tested as a reference. Table 6.4 shows the prediction made by 5
different approaches and the true label obtained by traditional rybotyping.

With regards to performance, the FA-VAE MLP 20 model was superior to all
other methods, as it achieved a complete classification of the three outbreak samples
and both control samples. The KSSHIBA RBF model also showed a satisfactory
performance, correctly identifying the outbreak and one control sample. However,
both the FA-VAE 1D-CNN and KSSHIBA PIKE models were able to identify
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Table 6.4: Results of KSSHIBA and FA-VAE approaches in terms of Accuracy for
the outbreak samples and two control samples. The control samples are denoted as
cn whereas outbreak samples are anotated as on. The best model is shown in bold.

Model c1 c2 o1 o2 o3 Accuracy Time
PCR ribotyping RT027 RT027 Others Others Others - 7 days

FA-VAE MLP 20 RT027 RT027 Others Others Others 1.00 ∅
KSSHIBA RBF Others RT027 Others Others Others 0.80 ∅

FA-VAE 1D-CNN 20 RT181 RT181 Others Others Others 0.60 ∅
KSSHIBA PIKE Others Others Others Others Others 0.60 ∅
KSSHIBA Linear RT181 RT027 Others RT181 RT181 0.40 ∅

the outbreak but failed to correctly classify the control samples. Conversely, the
KSSHIBA LINEAR model demonstrated poor performance, misclassifying almost
all samples.

The results obtained in this real scenario suggest that both KSSHIBA PIKE
and LINEAR may have suffered from over-fitting in the preliminary study, while
models with lower accuracy such as KSSHIBA RBF and FA-VAE MLP 20 seem to
have demonstrated better generalisation capabilities.

6.3.3 Latent space analysis

To gain a deeper understanding of the results presented in Table 6.4 and the possible
over-fitting presented in Table 6.3, we perform a latent space analysis. As Table 6.3
shows, each model uses a different size of latent space, K. To make these projections
comparable, we use t-SNE to reduce all models into a 2D space. Fig. 6.3 show the
2D t-SNE projections for the previous models. In these projections, predictions of
the test samples are depicted by a circle and the true value is indicated by a cross.
If the circle and cross have the same colour, the model made a correct prediction,
and if the colours differ, it is a missclassification.

A closer examination of the performance of the KSSHIBA models is conducted.
As we saw in Table 6.4, KSSHIBA models lacked generalisation power, hence we
analysed their latent space projections, represented in Fig 6.3. If we focus on
KSSHIBA models (first row of Fig 6.3) theirs projections are not well-clustered,
with no clear separation between the different data points, which might indicate a
potential over-fitting issue.

However, the FA-VAE approaches (second row of Fig 6.3) show a more clustered
latent projection compared to the KSSHIBA models. It is worth noting that both
FA-VAE models have a lower dimensional latent space, making the projection to
2D easier to perform. In the case of FA-VAE MLP, which performed perfectly in
the real outbreak scenario, three clear clusters can be observed, each containing
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one of the categories RT027, RT181 and Others. However, there is also a fourth
cluster that groups some RT027 and RT181 indicating that the problem is not
straight-forward. Moreover, RT027 and RT181 are the ones that the PCR technique
cannot differ due to their similarities.
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Figure 6.3: (a) KSSHIBA RBF (b) KSSHIBA PIKE (c) KSSHIBA LINEAR (d) FA-VAE MLP (e) FA-VAE
1D-CNN
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6.4 Conclusions
In this preliminary study, we present a new approach for the automatic ribotyping
of C. diff by harnessing the potential of probabilistic deep learning techniques
using MALDI-TOF data. We investigate the practical viability of the proposed
Bayesian FA models, namely KSSHIBA and FA-VAE, as a solution to this issue.
To the best of our knowledge, this is the first demonstration of the feasibility
of utilising probabilistic models to perform ribotyping of C. diff. To assess the
viability of our approach, we conducted experiments on 275 samples from the
HGUGM and achieved accuracy rates above 80% for all models, where particular
configurations of KSSHIBA even reached perfect accuracy. Additionally, we tested
KSSHIBA and FA-VAE in a real-life outbreak scenario in the HGUGM where
FA-VAE performed a successfully classification. Our results not only exhibit high
accuracy in predicting the ribotype of each strain, but also reveal an interpretable
latent space, which represents a crucial advancement in the field. Additionally,
the traditional ribotyping methods typically took 7 days to provide results, while
our proposed methods were able to produce results on the same day, offering a
significant reduction in the time required to take action.

It is important to note the limitations of this study, as they present opportuni-
ties for future research. For example, it would be beneficial to analyse strains with
geographical differences in order to determine the generalisability of the findings.
Moreover, a wider testing over time should be performed, along with PCR tech-
niques, to keep evaluating the system. Despite these limitations, this preliminary
study successfully demonstrated the potential of using MALDI-TOF-based proba-
bilistic deep learning for automating bacterial ribotyping. The promising results
obtained in a real outbreak provide a solid foundation for further advancements in
this field.

The ultimate goal of this study would be to establish the viability of probabilistic
models based on MALDI-TOF for clinical use and to demonstrate its superiority
over traditional methods by reducing time cost. The next step is to conduct a
rigorous longitudinal study, which will use the models, FA-VAE and KSSHIBA, in
real-world laboratory procedures and compare them to traditional PCR techniques.

Moreover, the scope of future studies should be expanded to include a diverse
range of sample origins, in order to fully understand the impact of epidemiological
characteristics on bacterial ribotyping. This will not only deepen our understanding
of bacterial ribotyping but also inform more effective public health measures.

In conclusion, this study is a crucial stepping stone towards realising the full
potential of MALDI-TOF for bacterial ribotyping and advancing our ability to
tackle bacterial outbreaks.
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CHAPTER 7
CONCLUSIONS

In this dissertation, we have presented two technical innovations that address the
challenge of incorporating diverse and multiple data sources. Specifically, we have
tailored these solutions to handle microbiological data, working in collaboration
with the Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), and
implemented them in real-world microbiology laboratories. We have developed
a novel approach that merges advanced Factor Analysis (FA) techniques with
kernel-based methods (as outlined in Chapter 3) and powerful generative models
such as Variational AutoEncoder (VAE)s (as presented in Chapter 4). The result
has been a set of robust, modular, and easily interpretable models that have been
applied to two important microbiological scenarios, including the prediction of
antibiotic resistance in Chapter 5 and the automation of the ribotyping procedure
in Chapter 6. These contributions represent an advancement in the field and pave
the way for future breakthroughs in microbiological research.

7.1 Summary of Methods and Contributions
The first theoretical model presented in this dissertation, Kernelised Semi-Supervised
Heterogeneous Inter-Battery Analysis (KSSHIBA), has addressed semi-supervised,
multi-view, high-dimensional data challenges by integrating kernel-based strategies
and diverse, semi-supervised data perspectives. The model has generated condensed
representations through the automatic selection of RVs and feature selection by
executing ARD over the kernel. KSSHIBA has offered a Bayesian interpretation
of FA that can seamlessly incorporate high-dimensional data while exploiting
non-linearities by using kernel methods, along with categorical, binary, positive,
and real data. The feasibility of KSSHIBA has been proven by outperforming
state-of-the-art proposals in multidimensional regression tasks, high-dimensional
image databases, and interpretability in high-dimensional classification tasks.

The second model presented in this dissertation, Factor Analysis-Variational
AutoEncoder (FA-VAE), combines a powerful generative model, VAE, with the FA
framework established in KSSHIBA. This model is the first deep hierarchical VAE
for mixed and diverse data using an interpretable FA latent space. Specifically,
FA-VAE has been able to adapt multiple VAEs, creating a modular model that
can operate with a wider range of data domains. Exploiting the VAE architectural
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choice, the model can handle categorical, binary, positive, real, image, or even
temporal data. Each VAE has been conditioned by a deep hierarchical structure
using FA, learning a disentangled and explicable latent space. The effectiveness of
FA-VAE has been demonstrated by its superior performance compared to existing
state-of-the-art approaches in (i) conditioning generative models, (ii) performing
domain adaptation between datasets, and (iii) performing transfer learning between
generative models.

As part of the partnership with the IISGM, the first model, KSSHIBA, has been
customised and applied to detect antibiotic resistance in K. pneumoniae in the
IISGM and in the IRyCIS. Specifically, we have adapted KSSHIBA to work with
Linear, RBF and PIKE kernels, being the last one particularly suited for handling
MALDI-TOF MS data. Additionally, we have made use of the multi-view capability
of KSSHIBA to integrate epidemiological data into the model. We have also taken
advantage of the semi-supervised approach to incorporate all relevant data, including
MALDI-TOF MS and epidemiological information, into the prediction model. This
led to KSSHIBA performing better than state-of-the-art models, achieving 0.88 and
0.77 AUC scores in ESBL+CP and WT antibiotic resistance prediction. We have
deduced that, based on the results obtained, heterogeneous models are superior to
traditional methods by incorporating epidemiological information about the bacteria.
Its implementation in clinical laboratories could accelerate the rapid identification
of multidrug-resistant isolates, thereby reducing the time for a therapeutic decision
from 96 hours to 24 hours and thus having a significant impact on global public
health improving patient outcomes.

The second model, FA-VAE, has been also tailored and applied in the micro-
biological laboratory of IISGM. FA-VAE has been presented as a novel method
for automatic ribotyping of C. diff using MALDI-TOF data and probabilistic DL
techniques is introduced. The feasibility of both, KSSHIBA and FA-VAE, has been
evaluated as a potential solution for this problem. To the best of our knowledge,
this is the first demonstration of using probabilistic DL for C. diff ribotyping. To
determine the viability of the proposed approach, experiments have been conducted
on 275 samples from the HGUGM. The results showed high accuracy rates, with
KSSHIBA even achieving perfect accuracy. The models have been also tested in
a real-life outbreak scenario in the HGUGM, where FA-VAE proved successful
classification. The results not only demonstrated high accuracy in predicting each
strain’s RT but also revealed an interpretable latent space. Additionally, the
traditional ribotyping methods typically took 7 days, while the proposed methods
produced results on the same day, offering a significant reduction in response time.

In conclusion, this dissertation has made a significant contribution to the field of
Bayesian FA by addressing its limitations in processing diverse data types through
the development of the novel models KSSHIBA and FA-VAE. Furthermore, a
comprehensive examination of the limitations in automating laboratory procedures

116



within the field of microbiology has been conducted, and the efficacy of the newly
developed models has been demonstrated through their successful application
to important problems, such as antibiotic resistance prediction and automatic
ribotyping. Therefore, KSSHIBA and FA-VAE, both in terms of their technical
and applied contributions, represent major advancements in the field of Bayesian
statistics and pave the way for future breakthroughs in automating microbiological
laboratories.

7.2 Proposals for future research
In light of the results presented in this dissertation there is immense potential for
the utilisation of probabilistic models to revolutionise the field of microbiology
and fully automate laboratory procedures. Consequently, the established lines of
research developed in this thesis can be expanded to encompass more comprehensive
and far-reaching objectives.

7.2.1 Enhance predictivity of FA-VAE in unbalanced multi-view
problems

An exciting direction for extending the FA-VAE model would be to improve
predictivity in the embedded latent space generated by the VAE in unbalanced
multi-view settings. Our proposal currently faces a limitation whereby certain
non-VAE views may be inadequately represented in the global gn,: latent variables
in some multi-view scenarios. This is due to the fact that these variables are
constructed by combining all embedded latent variables z(m)

n,: and observed variables
x
(m)
n,: . As a result, a z

(m)
n,: that represents a MALDI-TOF may be over-represented

against a multi-label x(m)
n,: that determines epidemiological information. Thus, a

promising avenue for future work is to modify the regularisation term in each
v-VAE by incorporating the posterior predictive distribution of gn,:, denoted as
g∗
n,:. This predictive version would be constructed using all m-views except for

the one handled by the v-VAE. By implementing this approach, the regularisation
term could induce the z

(v)
n,: embedded latent space to contain predictive information

about the other views, thereby mitigating the bias stemming from an over-reliance
on the specific view itself.

7.2.2 Widely epidemiological study over K. pneumoniae

An additional application of KSSHIBA and FA-VAE would be to broaden the
experiment conducted in Chapter 5 to include samples from additional locations.
Future research could take the method outlined by Weis et al. [97] to the next
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level by integrating their extensive dataset of 5000 K. pneumoniae samples from
Switzerland with our own study presented in [45] to thoroughly investigate variations
in bacterial epidemiology on a European scale. We aim to push the boundaries
of both articles by investigating if it is possible to predict antibiotic resistance of
Iberian bacteria using a model trained only with Swiss bacteria, and then further
enhance the model by fine-tuning it with a small number of Iberian bacteria. This
research could lead to two potential hypotheses: (i) it is possible to create a highly
accurate and versatile model that automatically distinguishes antibiotic resistance
regardless of the country, or (ii) transfer learning is necessary to achieve optimal
results when transitioning between countries. Both cases, suggest the creation
of a comprehensive European database of K. pneumoniae to advance the field of
medical microbiology and improve patient outcomes.

7.2.3 Multi-view unsupervised E. coli spread analysis

An interesting application of our FA-VAE model would be to conduct a com-
prehensive, multi-view unsupervised analysis of Escherichia coli at the Hospital
General Universitario Gregorio Marañón (HGUGM). E. coli is a prevalent bacteria
within the Enterobacter family that causes diarrhoea, stomach cramps, and fever,
commonly found in hospitals. In 2022, more than 8000 MALDI-TOF MS samples
have been analysed in HGUGM regarding E. coli. Medical doctors hypothesise
that E. coli spreads in the hospital, causing the infection of other patients, even
healthcare professionals, resulting in nosocomial outbreaks in various parts of the
hospital. Therefore, a future study could use the proposed FA-VAE model to
conduct a thorough, unsupervised multi-view analysis of the spread of E. coli at
the HGUGM. To achieve this, we propose using FA-VAE in the following way: (i)
the first view will handle MALDI-TOF MS data with a VAE; (ii) the second view
will deal with categorical information on which hospital service the E. coli has been
found; and (iii) the third view will manage demographic data about patients. This
approach would enable us to identify key patterns and trends in the spread of E.
coli in the HGUGM, potentially helping to prevent future nosocomial outbreaks.

The application of time-based spectral clustering to track the spread of hospital
infections would be a valuable tool for health specialists. By implementing a
real-time clustering system that updates daily or weekly with the current outbreaks
at the hospital, specialists can gain insights into the evolution of the spread
of infections over time. An interesting technical contribution would be to apply
spectral clustering using the PIKE kernel, which is specifically designed for analysing
MALDIs, to conduct daily or weekly clustering and then incorporate previous time
steps, such as the preceding week, to create a more comprehensive view of the
infection’s progression.
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7.2.4 Longitudinal and international study of C. diff
The current method of bacterial ribotyping, which relies on traditional PCR
techniques, has proven to be effective in many ways. However, the limitations of
this method have become increasingly evident, particularly in terms of accuracy,
as discussed in Chapter 6. In light of these limitations, the exploration of new
and innovative methods of bacterial ribotyping is of utmost importance. The
preliminary study described in this thesis has provided compelling evidence of
the potential of probabilistic DL and MALDI-TOF for bacterial ribotyping. The
results of this study have indicated that MALDI-TOF-based probabilistic models
have the potential to outperform traditional PCR techniques in terms of time cost
and accuracy.

However, an international longitudinal study is necessary to fully validate these
findings and determine the viability of probabilistic DL for ribotyping in real-world
laboratory procedures. By considering a broader range of sample origins, the
study would provide valuable insights into the impact of epidemiological factors on
bacterial ribotyping. Moreover, the validation of the models during time would
result into a confidence measure about how accurate probabilistic DL models can
be performing this job. This will not only deepen our understanding of bacterial
ribotyping but also inform more effective public health measures.
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