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Abstract

Resource-constrained classification tasks are common in real-world applica-
tions such as allocating tests for disease diagnosis, hiring decisions when filling
a limited number of positions, and defect detection in manufacturing settings
under a limited inspection budget. Typical classification algorithms treat the
learning process and the resource constraints as two separate and sequential
tasks. Here we design an adaptive learning approach that considers resource
constraints and learning jointly by iteratively fine-tuning misclassification
costs. Via a structured experimental study using a publicly available data
set, we evaluate a decision tree classifier that utilizes the proposed approach.
The adaptive learning approach performs significantly better than alterna-
tive approaches, especially for difficult classification problems in which the
performance of common approaches may be unsatisfactory. We envision the
adaptive learning approach as an important addition to the repertoire of
techniques for handling resource-constrained classification problems.

Keywords: classification; resource constraints; resource allocation;
cost-sensitive learning; adaptive learning

1. Introduction

Classification, one of the most popular machine learning tasks, is frequently
used for decision-making across a variety of real-world applications such as
classifying the severity of diseases [1], scheduling and allocating resources [2],

ar
X

iv
:2

20
7.

09
19

6v
1 

 [
cs

.L
G

] 
 1

9 
Ju

l 2
02

2



and defect classification for manufacturing processes [3, 4, 5, 6]. Classification
applications are typically associated with misclassification costs and benefits
as a result of incorrect and correct classification, respectively. Many studies
have focused on cost-sensitive classification approaches [7, 8, 9, 10, 11, 12] in
an effort to reduce the costs of misclassification. We illustrate the concept of
imbalanced misclassification costs using the current and real-world example of
classifying COVID-19 patients. Incorrectly classifying an ill patient as healthy
may put this patient’s life at risk as well as others by allowing the ill person to
circulate among healthy persons and infect them (an intangible cost, usually
determined by the judicial system). Classifying a healthy individual as a
COVID-19 patient, on the other hand, may lead to unnecessary treatment,
misuse of medical resources and cause unnecessary financial hardship to the
individual and the general economy. Many studies have applied cost-sensitive
approaches to handling imbalanced classification problems [13, 14] where the
decision maker is interested in detecting the positive cases.

There are four main approaches for making a classifier cost-sensitive: (i)
changing the distribution of classes using over- and under-sampling within
the training data set (i.e., preprocessing of the training data) to reduce
misclassification costs [7, 8], denoted hereafter approach A1; (ii) changing the
data set according to the misclassified samples of the cost-insensitive classifiers
and their error costs (post-processing the training data) using a boosting
approach in ensemble learning methods [12, 15], denoted hereafter approach
A2; (iii) incorporating meta-learning methods on outputs of cost-insensitive
learners using threshold driven techniques in favor of utilizing the probability
estimations for the classes [7, 8, 16, 17], hereafter denoted A3; (iv) directly
incorporating cost-sensitive capabilities into a learning algorithm, i.e., an
algorithm-level solution that adapts existing learning methods so they are
biased towards classes with high misclassification costs, usually presented by
minority classes [8, 18]. We denote this approach as A4.

To summarize, A1 and A2 are data-level methods that change classes’
distributions or their sampling weights. Since these approaches change the
training data set, they can cause the classifier to be biased towards over-
sampled data or against the undersampled data and, therefore, may distort
the interpretability of the generated classifying models. Furthermore, these
methods have little effect on the classifiers, as claimed by Elkan [7]. A3,
which does not change the training data, classifies instances based on the
probability estimation output of a cost-insensitive classifier. As A1 and A2, it
does not directly affect the construction of the classifier. The performance of
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A3, moreover, may lead to unreliable results when it relies on decision trees
and Bayesian networks that tend to provide inaccurate probability estimations
[18, 19, 20, 21]. A4 was used in previous studies for constructing decision
tree models that take the misclassification costs into account when selecting
the best node split and for tree pruning [7, 11, 22, 23, 24, 25]. Some studies
incorporated the costs associated with each chosen attribute in the path
traced from the tree node to the leaf node in the construction of the decision
tree models [26, 27, 28, 29], while others incorporated constraints reflecting
limited budgets when choosing attributes [30, 31]. Despite the focus of these
studies on cost-sensitive classifiers, none of them considers a constraint on
the number of instances classified into specific classes due to scarce resources.
Moreover, most cost-sensitive studies aim to solve classification problems with
known misclassification costs or use the cost-sensitive approaches to adjust
insensitive classifiers to handle imbalanced data. The latter studies use the
misclassification costs to reflect the imbalance of the classes in the training
data set. With this lacunae in mind, our study, the first to do so, utilizes
cost-sensitive learning approaches to incorporate resource constraints into the
learning process.

To understand our motivation we return to our COVID-19 example.
Consider diagnosing COVID-19 patients using a limited number of inspections.
How should the test kits be allocated among people who are suspected as
being ill? One allocation can be to prioritize those who were exposed to
more people (a specific class) in favor of preventing infections. Yet, another
reasonable decision is to prioritize the identification of people who are at a
higher risk of developing a serious disease (another class) to increase their
chances of recovery.

The typical approach for classification under resource constraints is to
feed the classification results as exogenous parameters into an optimization
model that finds (near-) optimal resource allocation [2, 32]. Such an approach
usually requires formulating a resource allocation optimization problem that
gets the classification results as input parameters and the limited resources
are the constraints [2, 11, 12, 32]. In these approaches a classification model,
which is built based on a labeled training data set, is applied to a new data
set that is independent of the training data, which we refer to as the test
data. Constraints are addressed via an optimization model. Few studies blend
the resource constraints by post-processing the training data via varying the
weights of instances (A2) [33]. The limitation of these approaches is that
the classification model does not consider the constraints during its learning
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process.
The main contributions of this research are:

1. Methodologically, this is the first research to develop an integrated
framework that incorporates resource constraints into the learning
process to solve resource constrained-based classification models. For
this, we use cost-sensitive approaches A3 and A4, without changing the
class distributions and distorting the interpretability of the generated
classifying models.

2. From a modeling perspective, the suggested approach can handle set-
tings in which resource constraints dynamically change over time. For
example, consider a COVID-19 test kit purchase order that was delayed,
and thus the number of the available test kits is smaller than anticipated.
As a consequence, the classifier model should be updated according to
the updated resource constraint – which ability our model has. Another
unique feature of the suggested modeling approach is that it does not
require exact knowledge about the misclassification costs, which are
typically hard to obtain. In other words, the algorithm is assured to
converge to the optimal solution even when starting from arbitrary cost
values.

3. Testing the suggested approach demonstrates its favorable performance
compared to approaches that do not consider learning and resource
constraints together.

The rest of the paper is organized as follows. Section 2 introduces a
motivation example and the mathematical background on cost-sensitive ap-
proaches. In Section 3, we introduce our proposed approach for handling
misclassification cost problems with resource constraints and describe the
adaptive cost-sensitive learning algorithm for resource-constrained classifi-
cation problems. The numerical experiments and results are presented in
Section 4. Finally, conclusions are presented in Section 5.

2. Preliminaries and Mathematical Background

This section presents the necessary notation and background as well as
common classification approaches before we develop, in Section 3, an adaptive
cost-sensitive and resource-constrained learning approach.
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2.1. Running Example for a Constrained Cost-Sensitive Classification Problem
We use the following running example throughout the paper to illustrate

the suggested approach. Assume we have 100 COVID-19 test kits and 1, 000
people arrived at our hospital and are waiting to be tested. Obviously, the
test kits can be allocated only to 10% of the people. Based on an initial
assessment of these people upon their arrival, it turns out that 8% of them
lost their sense of taste (feature f1) and 20% had a high fever (feature f2) –
both of which are classic COVID-19 symptoms. All the necessary information
about the people is known including the fact that 100 of them were actually
infected with COVID-19 (i.e., this is a supervised training data set). The
cost of incorrectly classifying a COVID-19 patient as healthy (false negative)
is 19 times larger ($19) than classifying a healthy person as infected (false
positive, $1). The objective is to assign the available test kits to the infected
patients such that the misclassification costs are minimized.

Figure 1: Total misclassification costs as a function of the number of available
COVID-19 test kits

Figure 1 shows the misclassification costs when trying to diagnose COVID-
19 patients among the 1, 000 people as a function of the number of COVID-19
test kits available for the following two classification models.

Model A illustrates the case of classifying the 1000 people according to
a conventional unconstrained cost-sensitive decision tree model based on
the training data collected upon their arrival at the hospital. The model
classifies the people based on feature f2 (high fever). According to this model,
200 people are classified as positive, of which 80 are true positive and 120
are negative (false positive), yielding a precision of 40%; there are 20 false
negatives. As can be seen, the minimal total cost is 120 · $1 + 20 · $19 = $500.
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Since there are only 100 test kits available, only 100 people can be classified
as positive. A naive decision-making approach would allocate the tests to the
100 people with the highest probability of being positive from the 200 positive
classifications. Since all 200 people have the same probability according to
the classification model, 100 of them would be randomly selected to be tested.

Of these 100 people, we expect 80 · 0.5 = 40 to be true positive and
60 false positive based on the 40% precision, and the expected number of
false negatives would increase to 60. As a result, the expected cost for the
constrained classification would be higher, 60 · $1 + 60 · $19 = $1, 200, as
shown by the red point in Figure 1.

Model B presents the proposed method that considers the resource con-
straint of 100 tests and the features of the potentially COVID-19-infected
people. According to this model, 80 people are classified as positive, of which
20 are false positive. Therefore, there are also 40 false negatives. As a result,
the total cost for 100 COVID-19 tests is 20 · $1 + 40 · $19 = $780, with a
precision of 75%. Although Model B’s minimum cost is higher than that of
Model A for the unconstrained classification problem (780 compared to 500,
respectively), for the considered constraint, Model B achieves a cost that is
35% lower compared to Model A. We note that a decision-maker who wants
to use all the 100 tests would still prefer Model B compared to Model A
at a cost of $782.6. Moreover, in binary classification problems, which are
considered in this work, with maximum utilization of resources, a model that
produces a lower cost will necessarily produce higher accuracy and precision
and vice versa (see Section 3.1).

2.2. Decision Threshold Approach for Misclassification Cost Problems
In this section, we introduce basic concepts and definitions related to the

binary cost-sensitive learning problem.
We denote a fully labeled training data set with N instances and k

features as D = {(xi, yi)|i = 1, . . . , N}, where xi = (vi1, vi2, . . . , vik) ⊆
Rk, i = 1, . . . , N denotes a vector of features, for instance i, and yi ∈ {0, 1} is
the value of the dependent variable (denoted hereafter as label) where 0 and 1
are the negative and positive classes, respectively. M is a classification model
(classifier) that maps xi to its predicted label yi. A cost-sensitive classifier
aims to minimize the misclassification costs over a considered data set.

Following [7], we denote C as the misclassification cost matrix where the
cost of labeling instance x as class l, when the actual class is j, is c(l, j) > 0
∀l, j ∈ {0, 1}. We assume that c(l, j) = 0,∀l = j following Ling and Sheng
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Actual 0 Actual 1
Predict 0 c(0, 0) c(0, 1)

Predict 1 c(1, 0) c(1, 1)

Table 1: Binary cost matrix

[8] who showed that any cost matrix can be transformed into an equivalent
matrix in which correct classifications have a zero cost and with the same
classification decisions. Table 1 presents a cost matrix C for the binary case,
which is where we put our focus. c(0, 0) and c(1, 1) represent the costs of
true negative (TN) and true positive (TP ) classifications, respectively, and
c(1, 0), c(0, 1) represent the costs of false positive (FP ) and false negative
(FN) classifications, respectively. In many real-world problems, the cost of
an FN classification is higher than the cost of an FP , i.e., c(0, 1) > c(1, 0)
as reflected in the example in Section 2.1. The expected loss (or in our case,
the cost) of labeling instance x as class l is

L(xi, l) =
1∑
j=0

P (j|xi)c(l, j), (1)

where P (j|xi) is the probability that the true label of instance xi is j, obtained
from a classification modelM. Therefore, the classification that minimizes
the expected loss is

ŷi = argmin
l∈{0,1}

L(xi, l). (2)

As mentioned in the Introduction, a common approach for solving problems
with misclassification costs involves using a threshold on the probability
outputs to minimize the misclassification costs (denoted as A3). In general,
a classification model M computes the probability that the true label of
instance xi is the positive class – that is, si = P (1|xi). The classification is
made by comparing si to some threshold τ . If si > τ , then ŷi = 1; that is,
instance i is given the positive class label. Otherwise, it is labeled as negative,
ŷi = 0.

Elkan [7] proved that the optimal threshold τ for a binary cost-sensitive
classifier is

τ =
c(1, 0)− c(0, 0)

c(0, 1) + c(1, 0)− c(0, 0)− c(1, 1)
. (3)
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Figure 2: Iso-Loss line and ROC curve for COVID-19 motivation example

If c(0, 0) = c(1, 1) = 0, then the threshold is reduced to

τ =
c(1, 0)

c(0, 1) + c(1, 0)
. (4)

Therefore, if si > τ , a positive classification is optimal. Note that the
threshold τ , which is determined exclusively by C, is static and independent
of D.

Finally, the classification follows

ŷi = θ(si − τ), (5)

where θ(z) is a step function such that

θ(z) =

{
1, if z > 0

0, otherwise.
(6)

We use the idea of a threshold to accommodate the resource constraint
into the cost-sensitive learning process.

2.3. Iso-Loss Line
This section introduces the iso-performance line introduced by Provost

and Fawcett [34]. The iso-performance line connects the loss to the receiver
operating characteristic (ROC) curve and enables the best classifier to be
chosen in terms of loss. The ROC space is defined by the y-axis’ true positive
rate (tpr), also known as recall, which is calculated as the number of true
positive classifications divided by the number of all actual positives, and the
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x-axis’ false positive rate (fpr), also known as fall-out, which is the number of
negatives wrongly classified as positives divided by the number of all actual
negatives.

Following [35], the loss of a classifier over a data set can be defined as

L =
N∑
i=1

∑
l∈(0,1)

L(xi, l) = (7)

c(0, 1)(1− tpr)|Dp|+ c(1, 0)fpr|Dn|,

where |Dp| and |Dn| are the number of total actual positive and negative in-
stances in data setD, respectively. One can find the optimal point (fpr∗, tpr∗),
among all possible points in the ROC graph, that achieves the minimum costs
by,

(fpr∗, tpr∗) = argmin
(∀fpr,tpr)

L. (8)

Rearranging Eq. (7), we obtain

tpr =
c(1, 0)|Dn|
c(0, 1)|Dp|

fpr − (
L

c(0, 1)|Dp|
− 1), (9)

which is called the iso-loss line reflecting the relationship between losses fpr
and tpr. As can be seen from Eq. 9, the slope of the line is constant and
determined by the properties of the data set and the cost structure. It can
also be seen that for a given fpr, a higher line represents a lower loss. Figure 2
presents both the ROC curves for Models A and B from our running example
in Section 2.1 as well as the iso-loss lines. We use the ROC graph and iso-loss
lines to present the direction to which we would like to change the ROC graph
of a classifier to reduce the cost by influencing the learning process (oriented
learning). In Section 3.1, we add a constraint to the ROC graph, such that
the limit of the number of instances that can be classified per class would be
taken into account as part of the learning process.

2.4. Post-Classification Resource Constraints
Our main assumption is that a budget constraint limits the number of

instances that can be classified to a class. Accordingly, we define the maximal
number of instances to a class k to be B(k).
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Without loss of generality for the binary case, we assume that the con-
straint is on the positive class, which is represented by the value 1. Hence, the
constraint that limits the number of per-class classifications can be defined by

N ′∑
i=1

ŷi 6 B(1), (10)

where N ′ is the number of instances in the considered data set (typically,
the test data set) and ŷi ∈ {0, 1} is the predicted output of instance i. If
the optimal number of positive classifications, obtained from a cost-sensitive
classifierM, is larger than B(1), the resource constraint is violated. In such
a case one needs to decrease the number of positive classifications to satisfy
the constraint. This necessarily decreases the sum of true and false positives
and increases the sum of true and false negatives.

The common approach to combining the classification and resource con-
straint is to use the results of the classifier M as input parameters to an
optimization problem [2, 32].

The optimization problem can be formulated based on Eqs. (2) and (10)
as

Min
N ′∑
i=1

1∑
j=0

P (j|xi)c(ŷi, j) (11)

s.t.
N ′∑
i=1

ŷi 6 B(1).

The solution approach for this problem classifies the instances with the highest
probability of being positive as positives, which expresses a belief that these
instances relate to the positive class. Without loss of generality, we assume
that probability outputs, defined as si = P (1|xi), are sorted in a decreasing
order, i.e., (s1, s2, . . . , si, sj, . . . ) such that ∀j > i → si > sj. Then, xj may
be classified as positive only if ∑

∀si>sj

ŷi < B(1), (12)

meaning that the constraint is still not satisfied. In other words, the number of
positive classifications for instances with score si > sj is smaller than the value
of the constraint, so there is room for more positive classifications. According

10



to the above-mentioned naive approach, the constraint is considered only
during the decision-making phase. We will use this approach for benchmarking
purposes, in the experimental study.

3. Adaptive Cost-Sensitive Learning with Resource Constraints

We now introduce the proposed approach for embedding resource con-
straints into the learning process.

The objective is to minimize the cost while utilizing all the resources
(e.g., if the constrained resource is 100 COVID-19 test kits, the decision
maker should allocate all these kits). The idea is that the suggested adaptive
approach combines knowledge about classification results of the training data
set and the resource constraint to iteratively adjust the misclassification costs.
The new misclassification costs are used to update a cost-sensitive classifier.
The process repeats until the resource constraint is satisfied with the optimal
threshold in Eq. (4).

3.1. Constraint Line in a ROC Graph
Here we present the resource constraint within the ROC graph to define

the feasible classification area inside it, and search for the optimal point (fpr∗,
tpr∗) that yields the minimum cost, subject to the constraint.

The decision threshold choice, which is presented on the ROC graph of
the training data set, projects the resource constraint of the test data set onto
the training data set; that is, the ratio between the resource constraints of
the testing and training data sets will be equal to the ratio between the sizes
of the testing and training data sets. Since the maximal number of positive
instances in the training data is denoted by B(1), the following inequality
holds

B(1) > |Dn| · fpr + |Dp| · tpr, (13)

where the right hand-side of the equation is the sum of instances predicted as
positive.

Rearranging the inequality and extracting the line on which the number
of positive predictions is forced to equal B(1) (i.e., resources are fully utilized)
leads to the following constraint line that defines the feasible area of the ROC
space:

tpr = −|D
n|

|Dp|
· fpr + B(1)

|Dp|
. (14)
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Figure 3: Feasible area and optimal iso-lines for the COVID-19 running
example

The constraint line intersects with every ROC curve of a classifier. By
definition, at the intersection point, the number of positive classifications
equals the resource constraint, i.e.

∑N
i=1 ŷi = B(1). Each point on the ROC

curve, which is below the constraint line of Eq. (14), represents a solution
in which the number of positive classifications is smaller than the resource
constraint,

∑N
i=1 ŷi < B(1). The minimum cost solution of a classifier that

satisfies the resource constraint is a point on the ROC curve within the feasible
area that has a minimum loss as calculated by Eq. (8).

The theoretical minimum cost is achieved for the case |Dp| > B(1), when
all positive classifications B(1) are correct, i.e., fpr = 0 or for the case of
|Dp| < B(1), when the positive classifications B(1) capture all actual positives,
i.e., tpr = 1. Note that for both cases, we force complete resource utilization,
which means that there are exactly B(1) positive classifications. The cost at
these points is achieved using Eq. (7)

L =

{
c(0, 1) · (|Dp| − B(1)), if |Dp| > B(1)
c(1, 0) · (B(1)− |Dp|), otherwise

. (15)

Figure 3 illustrates, for our running example, the feasible area defined by
the constraint line and the optimal iso-loss lines of Models A and B within
the feasible area. It can be seen that the optimal iso-loss line of Model A,
which satisfies the resource constraint, is different from the optimal iso-loss
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line of unconstrained Model A in Figure 2, reflecting a much higher cost
than the iso-loss line of Model B. Note that the optimal iso-line of Model
B with minimum cost is achieved when the resource constraint is not fully
utilized. The theoretical minimum cost of Eq. (15) is presented as the
intersection point with the tpr axis. In Section 3.2, we will use the feasible
area and iso-loss lines to develop an adaptive cost-sensitive learning algorithm
to solve resource-constrained classification problems, in which the resource
constraint is fully utilized, i.e.,

∑N
i=1 ŷi = B(1); such a situation is manifested

in the intersection points of the ROC curves and the constraint line. Since
a higher intersection point reflects a higher tpr with a higher iso-loss line,
as presented in Eq. (9), the suggested algorithm aims to achieve a ROC
curve with the highest possible intersection point. We also note that a higher
intersection point represents a higher iso-accuracy line, which is defined
by Eq. (9) with c(0, 1) = c(1, 0). Therefore, an algorithm that improves
the cost necessarily improves the accuracy. Since the resource constraint is
fully utilized, the number of positive classifications (TP + FP ) is constant.
Moreover, since the number of actual negatives (TN + FP ) is also constant,
the expression (TP − TN) is constant as well. Thus, an algorithm, which
improves the accuracy ( TP+TN

TP+TN+FP+FN
), necessarily improves the precision

( TP
TP+FP

). This occurs because the improvement in accuracy may be due to
an increase in both TP and TN (by the same value needed to maintain a
constant difference), which causes a direct increase in precision (an increase
in the value of the numerator, while maintaining the value of the denominator
constant). To summarize, an algorithm that improves the cost of a resource-
constrained classification problem, in which the resource constraint is fully
utilized, necessarily improves both accuracy and precision and vice versa.

3.2. Classifier Dependent Threshold for Resource-Constrained Classification
Problems

Assume we have a classifier that splits a data set D into subsets, where a
subset contains a group of instances that are predicted to belong to a specific
class. This assumption holds for decision tree based algorithms, which identify
subsets of instances in the training data set that share common patterns and
that results in the same prediction probability. In other word, each instance in
subset Dk of D has the same prediction probability Sk, i.e., sj = Sk,∀xj ∈ Dk

such that
⋃
∀k
Dk = D and the number of instances within a subset is |Dk|.

We now determine, for a such classifier, a threshold that satisfies the
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resource constraint and yields the minimum cost.
The probability scores of the subsets are sorted in a decreasing order into

vector (S1, S2, . . . , Sl, Sm, . . . ) such that ∀m > l → Sl > Sm. We denote τd as
a classifier dependent threshold, which is calculated as follows:

τd = max{τ,max
k
θ(Sk − τ) · θ

( ∑
∀Sm>Sk

|Dm| − B(1)
)
· Sk}, (16)

where the function θ(·) was defined by Eq. 6. The result of the expression
gets the highest Sk value for which the total number of positive classifications
is equal to or greater than B(1). The instances of a data set are classified
based on the classifier dependent threshold. All instances within the subsets
with Sk > τd are classified as positives and all instances within subsets for
which Sk < τd are classified as negatives. The instances within the subset
for which Sk = τd are allocated to the positives, according to the following
proportion:

p =
B(1)−

∑
{Sk>τd:∀k} |D

k|
|Dk | Sk = τd|

. (17)

The proportion is calculated as the number of allowed (remaining) positive
classifications after some were allocated to the subsets with Sk > τd divided
by the number of instances within the subset k for which Sk = τd. Algorithm
1 presents the classification mechanism of a data set, according to the classifier
dependent threshold. For illustration, consider Example 1.

Example 1. Let us say that we are given (S1, S2, S3, S4) = (0.8, 0.7, 0.6, 0.5),
(|D1|, |D2|, |D3|, |D4|) = (5, 4, 3, 2), τ = 0.55 and B(1) = 7. Applying Eq. (16)
results in τd = S2 = 0.7.

Under such circumstances, the classifier will allocate the scarce resource
of positive classification as follows; the five instances within Subset 1 will be
classified first as positives and the remaining two positives will be randomly
allocated to two of the four instances within Subset 2. We note that for any
B(1) > 14 (the unconstrained case), the threshold is τd = τ = 0.55 since the
right-hand term in the max{τ, ·} of Eq. 16 is 0.
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Algorithm 1 Classification of the training data set based on the classifier
dependent threshold

Input: Cost dependent threshold τ , training data sets D = (X, Y ), subsets
of training data set (D1, D2, . . . ), ordered scores vector S = (S1, S2, . . . ),
resource constraint B(1)
Output: Classification results Ŷ
Initialize: τd ← use Eq. (16)
for Sk ∈ S do

if Sk > τd then
ŷi ← 1,∀i : P (1|xi) = Sk

else if Sk < τd then
ŷi ← 0,∀i : P (1|xi) = Sk

else
p← use Eq. (17)
ŷi ← 1, with probability p ∀i : P (1|xi) = Sk

end if
end for
return Ŷ = {ŷi|i = 1, . . . , N}

3.3. Adaptive Cost-Sensitive Learning with Resource Constraints Algorithm
Our goal is to develop a cost minimizing Adaptive Cost-Sensitive Learning

with Resource Constraints (AdaCSL-WRC) algorithm for decision tree based
classifiers.

The proposed algorithm works as follows. First, in the training phase, a
cost-sensitive decision tree based classifier is constructed while adjusting the
misclassification cost of false positive classifications c(0, 1), in each iteration by
adding a value of ε. In each iteration, the algorithm applies the classifier using
the adjusted costs to derive K splits and their respective probability scores
Sk, k = 1, ..., K. Then, the classifier dependent threshold τd is calculated
using Eq. (16) and the instances within the training data set are classified
while considering the resource constraint using Algorithm 1. To help make
the decision whether or not to adjust the misclassification cost and proceed
to the next iteration, the classifier dependent threshold is compared with
an optimal threshold that does not rely on the resource constraint. Once
the optimal threshold satisfies the resource constraint, the algorithm ends at
iteration i. The generated classifier, at iteration i = i− 1, is applied to the
test data set. We formalize AdaCSL-WRC as Algorithm 2.
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Algorithm 2 Adaptive Cost-Sensitive Learning Algorithm for the Resource-
Constrained Classification Problem

Input: Training data set D = (X, Y ), cost matrix C, decision tree based
model M, projected resource constraint on training data set B(1), step
size for cost adjustment ε
Output: Learned decision tree based modelM∗

Initialize: Cost matrix C, i=1
repeat
Mi ←M (D; C) //trained model
Mi divide D into subgroups Dk, k = 1, ...,K //each with the same score Sk

τ ← use Eq.(4)
τd ← use Eq.(16)
Ŷ ← use Algorithm 1 //classification of training data set
c(1, 0) = c(1, 0) + ε
C ← c(0, 1); c(1, 0)
i = i+ 1

until τd 6 τ
return M∗ =Mi−1

4. Experimental Study

Through experiments, we evaluate the performance of a decision tree
using the proposed algorithm (AdaCSL-WRC) compared to the common ap-
proach of using a cost-sensitive decision tree (denoted CS-DT) and then using
its class prediction probabilities in conjunction with a resource-constrained
optimization model to allocate label predictions to instances. We compare
cost, precision and accuracy indices. For the CS-DT model we use the
implementation of [25] in this GitHub link.

4.1. The Data
The proposed approach was applied to a publicly available data set ob-

tained from the Kaggle website. This data set presents responses of customers
to direct marketing campaigns for a retail company. It contains personal
information about customers including, but not limited to, their education,
status, and purchase history. In total, the data encompass 2,240 direct
marketing campaigns and 23 features after dropping uninformative features,
with a single value for all instances or unique values for each instance. The
objectives when applying a classification model are to predict who is likely
to respond positively to an offer for a product or service (the positive class).
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The resource constraint represents the limited number of customers that the
campaign can target. The frequency of the positive class in the data set is
15%. The cost of a false positive is the cost of contacting a customer who will
not accept the offer and the false negative cost follows from a potential profit
loss. We define the misclassification costs arbitrarily to be c(0, 1) = 10 and
c(1, 0) = 1, which satisfy c(0, 1) > c(1, 0). As shown in Section 3.1, a model
that produces a lower cost will necessarily be more accurate and precise and
vice versa when considering a binary classification problem with maximum
utilization of a resource constraint. Note that since the classifier dependent
value τd is monotonically non-increasing over the iterations in Algorithm 2
until meeting the stopping criterion, any initial misclassification cost values
can be used to achieve the same minimum accuracy and precision, albeit with
different convergence times.

4.2. Experimental Design
The experiment was designed such that we could investigate the perfor-

mance of the proposed algorithm as a function of the two following controlled
parameters:

1. The number of data set features. This parameter is used to adjust the
level of difficulty in classifying tasks. For our experiment, we generated,
from the original data set, two reduced data sets that included 75% and
50% of the original features, while dropping the features with the highest
mutual information values. That is, all the classifiers were evaluated
using three data sets: the original data set with all the features, a data
set with 75% of the features, and a data set with 50% of the features.

2. The value of the resource constraint. We set the value of the resource
constraint to [25%, 75%] of the number of campaigns with positive
responses.

For each resource constraint value, we applied a three-fold stratified cross-
validation process, repeated 10 times (a total of 30 runs). To evaluate the
performance of the models, in each run two subsets were used for training and
the remaining subset for testing. The resource constraint for the test data
set ranges between B(1) ∈ [28, 84] and the projected resource constraint for
the training data set ranges between B(1) ∈ [56, 168]. Thus, for each model,
the classification cost, accuracy and precision were calculated 30 times for
each resource constraint value. For each model, the hyperparameters were
determined based on a grid search. The proposed AdaCSL-WRC presented in
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(a) All features (b) 75% (c) 50%

(d) All features (e) 75% (f) 50%

(g) All features (h) 75% (i) 50%

Figure 4: The average precision (graphs a–c), cost (graphs d–f) and accuracy
(graphs g–i) over all 30 runs as a function of the resource constraint, for
the entire direct marketing campaign data set, the data set with 75% of the
features and the data set with 50% of the features.

Algorithm 2 was applied with a step size for cost adjustment of 1 (ε = 1). The
chosen model generated by the AdaCSL-WRC algorithm is the one applied
to the test data set.

4.3. Results and Discussion
Figure 4 compares the algorithms’ performance as a function of the

constraint level in terms of the average precision, cost and accuracy for
different percentages of the used features. When considering all features,
which is when the classification problem can be considered to be easier with
higher precision and accuracy and lower cost, the preferable model depends
on the constraint size. For the range of 25% to 66%, the decision tree is
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Figure 5: P-values for comparing the adaptive CS-DT model with a conven-
tional DT model (50% features case) for significance.

the best model, while for the range of 66% to 75%, the proposed AdaCSL-
WRC is preferable. For the data sets with 75% and 50% of the features, the
proposed algorithm dominates the other methods over the whole range, and
is significantly better (with a p-value<0.05) over the range of 48% to 75%
for the data set with 75% of the features and almost over the entire range
of [25% to 74% for the data set with 50% of the features, as can be seen
in Figure 5. It is interesting to observe that the proposed AdaCSL-WRC
algorithm performs much better in settings where the decision tree model’s
performance is poor (e.g., precision below 55% , reflecting a lift of 367% or
lower, compared to a priori positive instances in the data set of 15%).

To gain insights about the proposed AdaCSL-WRC algorithm compared
to the alternative DT and CS-DT models, we explore the latter’s performance
in the unconstrained classification problem – see Table 2. Two interesting
insights can be gained from the table. First, the DT model generates lower
positive classifications because given that there are fewer features in the data
set, the model finds fewer significant patterns resulting in high frequency of
classification to the positive class. Therefore, the more difficult it becomes to
classify the positive class (minority), the more the proposed AdaCSL-WRC
algorithm excels. It yields superior results over the DT model. Second, the CS-
DT model generates many more positive classifications than exist in the data
set (4.2 to 6.3 times), as result of the high ratio between the misclassification
costs, i.e., c(1, 0) : c(0, 1) = 1 : 10. Therefore, in a classification problems
with a resource constraint below the number of positive instances in the
data set (scarce resources), and especially when it is difficult to find patterns
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Model % Features Accuracy Precision Cost % Positive
DT 100% 87% 67% 828$ 40%

75% 85% 53% 936$ 35%
50% 85% 32% 1082$ 6%

CS-DT 100% 49% 21% 494$ 421%
75% 45% 20% 527$ 445%
50% 20% 15% 630$ 630%

Table 2: CS-DT and DT performance without considering the resource
constraint

that identify a minority class with high probability, our proposed algorithm
dominates the alternative CS-DT and DT models.

Figures 6 and 7 reflect the adaptive learning of the AdaCSL-WRC algo-
rithm for the data set with all features and a resource constraint of 45%.
Figure 6 shows the cost values of the training and test data sets over time
(iterations). We observe that the cost of the training data set decreases
with the iterations, until satisfying the stopping criterion (red dot). The
cost of the test data set behaves in a similar way. Since we used three-fold
cross-validation, the ratio between the costs of the training and test data sets
is similar to the ratio between the sizes of the test and training data sets, i.e.,
1:2. Figure 7 presents the ROC curves resulting from the generated models at
three different iterations. Specifically, the gray, red and purple ROC curves
represent the models generated at iterations 1, 7 (chosen model) and 10,
respectively. This figure shows that from iterations 1 to 7 (chosen model),
the ROC curve intersects the constraint function at a higher point. After
reaching the chosen model, however, the ROC curve of the model generated
at iteration 10 intersects the constraint function at a lower point.

5. Conclusions

This work develops a novel adaptive cost-sensitive learning approach for
solving resource-constrained binary classification problems. The objective is
to allocate scarce resources to data instances to minimize misclassification
costs and maximize precision and accuracy.

The proposed approach incorporates a resource constraint on the number
of classified instances of classes into the learning process. The algorithm
adaptively adjusts the misclassification costs in such a way that the scarce

20



Figure 6: An example of cost values over iterations of the training and test
data sets, received by applying the AdaCSL-WRC algorithm to the data set
with all features with a resource constraint of 45%. The red point represents
the final chosen model accepted by the AdaCSL-WRC algorithm.

Figure 7: The ROC curves for the models in the different iterations for the
same example as in Figure 6.

resources are fully utilized and maximum accuracy and precision are achieved.
The algorithm was applied, together with a decision tree classifier, to three
versions of a direct marketing campaign data set. The resource constraint was
modeled as a limited number of customers that a direct marketing campaign
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can target. The three versions of the data set – the original data set and data
sets with 75% and 50% of the features – represent various difficulty levels
classification problems face. Our results show that the decision tree using
the proposed AdaCSL-WRC algorithm achieves better cost, accuracy and
precision results than other alternative approaches for all resource constraint
values, for the data sets representing medium and high levels of classifica-
tion difficulty. Furthermore, it achieves significantly better results (with
p-value<0.05) for most values of the resource constraint.

Future research directions that we consider are: 1) to apply the proposed
approach to other classifiers, and 2) to develop a search method for adjusting
the misclassification costs between consecutive iterations.
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