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A B S T R A C T
Nonconvex optimization problems have always been one focus in deep learning, in which
many fast adaptive algorithms based on momentum are applied. However, the full gradient
computation of high-dimensional feature vector in the above tasks become prohibitive. To reduce
the computation cost for optimizers on nonconvex optimization problems typically seen in deep
learning, this work proposes a randomized block-coordinate adaptive optimization algorithm,
named RAda, which randomly picks a block from the full coordinates of the parameter vector
and then sparsely computes its gradient. We prove that RAda converges to a 𝛿-accurate solution
with the stochastic first-order complexity of𝑂(1∕𝛿2), where 𝛿 is the upper bound of the gradient’s
square, under nonconvex cases. Experiments on public datasets including CIFAR-10, CIFAR-
100, and Penn TreeBank, verify that RAda outperforms the other compared algorithms in terms
of the computational cost.

1. Introduction
Deep learning has achieved great success in many domains including image recognition [1, 2], natural language

processing [3, 4], constrained learning [5], and intelligent decision [6, 7]. On the other hand, deep neural networks are
typically of high complexity with ultra-high-dimensional features [8, 9, 10]. To solve optimization problems in deep
learning tasks is thus becoming increasingly difficult due to prohibitive computations as well as the unpopularity of
expensive high-performance devices.

One popular fast optimization algorithms for deep training is Stochastic Gradient Descent (SGD). Note that
“stochastic" means that at each iteration one or a mini-batch of samples are stochastically drawn from the sample set,
and numerical evaluation shows that the batch size has some influence on the complexity of the algorithm [11]. SGD
has simple steps that are easy to implement, and its generalization ability is excellent. However, SGD converges slowly
in deep training tasks which restricts its further applications. For this reason, many faster convergence algorithms with
the adaptive learning rate have been proposed, such as Adam [19], LightAdam [20], and AdaBelief [21]. Most adaptive
algorithms are theoretically appealing due to the guaranteed convergence in cases of convex loss functions. Practically,
these algorithms treat deep learning tasks as convex optimization problems for which guaranteed convergence bounds
can be obtained [22, 23, 24]. However, deep learning tasks are typically not convex optimization problems. Therefore,
nonconvex optimization algorithms appear more suitable for deep learning tasks though their convergence is more
difficult to prove. To this end, some nonconvex algorithms for deep training have been proposed including Yogi [25]
and PAGE [26].

Albeit their success of the previous fast optimization algorithms, these algorithms mainly consider the computa-
tional challenge due to the huge amount of samples. They seldom address the ultra-high-dimensionality issue, which
is typically seen in deep learning problems. In case of high non-convexity, such issue may even be more serious.
To further enable efficient training in deep learning models, randomized algorithms have drawn much attention
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Figure 1: Comparison between RAda and the general adaptive optimization algorithms: (a) the general algorithms with
adaptive learning rate; (b) The proposed algorithm, RAda.

recently. Concretely, an effective way to reduce the computational cost of high-dimensional vectors by performing
Randomized Coordinate-Block (RBC) optimization has become one hot spot [14, 15]. By picking stochastically a
block of coordinates to compute the updated information, RBC based algorithms have shown their capability in greatly
reducing the cost of each calculation as opposed to their original optimization algorithms [16, 17, 18].

While existing RBC-based algorithms mainly consider convex optimization problems [27], in this work, we focus
on designing optimization algorithms on non-convex problems in deep learning. We propose a novel RBC-based
training algorithm called RAda with the adaptive learning rate. First, the proposed algorithm randomly picks a block-
coordinate of the high dimensional parameter vector to compute its gradient per iteration; this can significantly lower the
computational cost for the original cases where a gradient is calculated in the whole dimensions. Then, our algorithm
exploits the momentum of the sparse gradient to achieve an adaptive learning rate, which can ensure fast convergence.
Finally, the proposed algorithm engages the 𝑠𝑖𝑔𝑛(⋅) function to control the variation of the first-order momentum
and the second-order momentum within a reasonable range to prevent the variation from changing drastically, which
can promote convergence even in nonconvex cases. Note that the proposed algorithm uses a similar approach for the
adaptive learning rate as Yogi. However, the second-order momentum 𝐯𝑡 of the proposed algorithm is based on its
first-order momentum 𝐦𝑡 as opposed to dependence on 𝐠𝑡 in Yogi. As we shall see shortly, this approach adopted by
RAda remains as advanced as Yogi in the nonconvex case. An illustration of this process can be seen in Figure 1.

To sum up, the main contributions of this paper can be three-fold:
• We develop a computationally efficient adaptive algorithm for nonconvex optimization problems. The proposed

algorithm decreases its computational cost by the randomized block coordinate descent optimization method.
Meanwhile, the proposed algorithm preserves the learning rate form of the previous adaptive optimization
algorithms, so as to follow their performance.

• We provide the complexity analysis of the proposed algorithm. We prove that the proposed algorithm converges
with the bound 𝑂(1∕𝑇 + 1∕𝑏), where 𝑇 is the time horizon and 𝑏 denotes the mini-batch size. Moreover, we
analyze that RAda has the stochastic first-drder complexity 𝑂(1∕𝛿2) for achieving a 𝛿-accurate solution under
nonconvex conditions.

• We validate the excellent performance of the proposed algorithm in terms of the low computational cost on
public datasets for nonconvex optimization problems.

The rest of this paper is structured as follows. Related work is introduced in Section 2. Section 3 provides the
preliminaries for this work, including notations, problem setup, assumptions, and definitions. We present our algorithm
design in Section 4. The convergence analysis of the proposed algorithm is shown in Section 5. Experimental details
are shown in Section 6. Section 7 summarizes this work succinctly.
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2. Related Work
Nonconvex optimization problem is always one of the challenges in the optimization field, in which a local optimum

is typically found. Meanwhile, SGD optimization algorithm is one of the main methods for dealing with training tasks
in deep learning. On the one hand, for the nonconvex optimization, Ghadimi and Lan [28] proposed an algorithm named
the randomized stochastic gradient method that achieves a convergence rate of 𝑂(1∕𝜀2), where 𝜀 is the gradient bound.
Furthermore, Duchi et al. [29] utilized the adaptive regularization method to achieve an acceleration in terms of the
dimension. On the other hand, many adaptive learning rate algorithms have been proposed for nonconvex optimization
problems in recent years. For instance, Chen et al. [30] studied the convergence of Adam-type algorithms for nonconvex
optimization. In this model, the convergence bound of order 𝑂(log 𝑇 ∕

√

𝑇 ) (where 𝑇 is the time horizon), is guaranteed
with certain additional conditions. Moreover, Zaheer et al. [25] proposed an adaptive gradient algorithm, named Yogi,
for nonconvex stochastic optimization problems, which converges to a 𝛿-accurate solution with the stochastic first-order
complexity of 𝑂(1∕𝛿2). Here 𝛿 is the bound of the squared gradient.

Recently, RBC has been successfully applied in gradient descent optimization methods to reduce the computational
cost of computing gradients of high-dimensional vectors. Simon et al. [31] successfully combined RBC and the
classical Frank-Wolfe algorithm for the dual structural support vector machine problem. Moreover, to reduce the
expensive operations in huge-scale optimization problems, Nesterov [32] proposed the solution based on the RBC
method. Furthermore, Zhou et al. [27] proposed a new variant of Adam based on RBC that obtains good performance
on the computational cost. However, these RBC-based algorithms are investigated mainly under convex optimization
assumptions. To extend the RBC optimization in nonconvex problems, Xie et al. [33] proposed an RBC ascent policy
search algorithm for mean-variance optimization.

Although various RBC methods flourish in both convex and nonconvex optimization problems, there are rare
studies to explore RBC in nonconvex optimization when the learning rate is adaptive. To fill this gap, we propose an
RBC-based adaptive optimization algorithm under nonconvex conditions in this paper. Importantly, we prove that even
with the adaptive learning rate, the proposed algorithm can converge under the more general nonconvex loss functions
which are typically seen in deep neural networks.

3. Preliminaries
3.1. Notations

In this paper, the sets of all real numbers and the real Euclidean space with 𝑑 dimensions are denoted by ℝ and ℝ𝑑 ,
respectively. All vectors are denoted in bold. 𝐱𝑡 represents the vector 𝐱 at time 𝑡, and 𝑥𝑡,𝑖 denotes the 𝑖-th coordinate
element of the vector 𝐱𝑡. For vector operations, 𝐱2 and √

𝐱 are used to represent the element-wise square and square
root, respectively. Meanwhile, 𝐱∕𝐲 is used to represent the element-wise division of vectors 𝐱 and 𝐲. Throughout this
paper, we utilize ‖ ⋅ ‖ and ⟨⋅, ⋅⟩ to denote the standard Euclidean norm and the scalar inner product in Euclidean space,
respectively.
3.2. Problem Setup

In this paper, we consider the nonconvex stochastic optimization problems formed as
min
𝐱𝑡∈ℝ𝑑

𝑓 (𝐱𝑡) ∶= 𝔼𝑠𝑡∼ℙ[𝓁(𝐱𝑡, 𝑠𝑡)], (1)

where function 𝓁(⋅) is smooth (possibly nonconvex), ℙ is a probability distribution on the domain  ⊂ ℝ𝑘, and {𝐱𝑡}are parameter vectors. The optimization problem, i.e, Equation (1), arise naturally in deep learning under nonconvex
conditions where 𝓁(⋅) is the loss function, 𝐱𝑡 is called the deep model parameter vector, and ℙ is an unknown data
distribution.
3.3. Assumptions and Definitions

In this section, we first state the assumptions used in this work.
Assumption 1 Suppose that the loss function 𝓁(⋅) used in our algorithm is Lipschitz continuously differentiable with
Lipschitz constant 𝐿 > 0, i.e., there exists a constant 𝐿 satisfying that

‖∇𝓁(𝐱, 𝑠) − ∇𝓁(𝐲, 𝑠)‖ ≤ 𝐿‖𝐱 − 𝐲‖,∀𝐱, 𝐲 ∈ ℝ𝑑 . (2)
Y. Zhou et al.: Preprint submitted to Elsevier Page 3 of 16
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Assumption 2 Suppose that the gradient of the loss function 𝓁(⋅) is bounded, i.e., ‖∇𝓁(𝐱𝑡,𝑖, 𝑠)‖ ≤ 𝐺 for all 𝐱 ∈
ℝ𝑑 , 𝑠 ∈  , and 𝑖 ∈ [𝑑].

Assumption 3 Suppose that the gradient variance between the expected loss 𝑓 (⋅) and the real loss 𝓁(⋅) is bounded,
i.e.,

𝔼 ‖

‖

∇𝓁(𝐱𝑡, 𝑠) − ∇𝑓 (𝐱𝑡)‖‖
2 ≤ 𝜎2

for all 𝐱𝑡 ∈ ℝ𝑑 .

It is noted that these assumptions are also typically used in the analysis of Stochastic First-Order (SFO) methods such
as [27, 28, 25].

In the stochastic convex optimization problems, the convergence measure is the regret, i.e.,

𝑅(𝑇 ) =
𝑇
∑

𝑡=1

(

𝑓 (𝐱𝑡) − 𝑓 (𝐱∗)
)

,

where 𝐱∗ is the optimal solution on domain ℝ𝑑 . Regret is a popular paradigm in the field of stochastic convex
optimization, such as [20, 19, 34, 35]. As mentioned above, our work focuses on the nonconvex condition that is the
common setting for risk minimization in deep learning. However, the notion of regret does not apply to the stochastic
nonconvex optimization setting. For this reason, we engage an applicable convergence measure for the nonconvex
setting by the following definition.
Definition 1 The algorithm’s SFO complexity is defined as the gradient evaluation times of the objective function 𝓁
with respect to its first argument made by the algorithm.

Definition 1 is a general framework for convergence analysis in nonconvex optimization problems that is common
used in many previous works, such as [28, 25]. Following these previous work on nonconvex optimization problems,
we also measure the “stationarity" of the iteration 𝐱 by exploiting ‖∇𝑓 (𝐱)‖2 ≤ 𝛿. The solution of this case is called
𝛿-accurate solution. In addition, we will prove that the proposed algorithm converges in nonconvex settings based on
this definition in the following content.

4. Proposed Algorithm
In this section, we will elaborate the proposed algorithm where the pseudo code of RAda is listed in Algorithm 1.

In the training process of deep learning, the parameter vector 𝐱𝑡 presents all parameters including complex deep model
nodes and high dimensional data features. Therefore, the gradient evaluations of the very high dimensional 𝐱𝑡 make
the training prohibitive in deep learning, especially when the computing resources are limited. To significantly reduce
the gradient evaluation cost, we design a randomized gradient descent algorithm that only need calculate the gradient
of a block of coordinates.

First, the proposed RAda algorithm randomly chooses a block 𝑖 from the full coordinates of 𝐱𝑡, where 𝑖 ∈ [𝑑]. Then,
RAda evaluates the gradient for the 𝑖-th coordinate: 𝑔𝑡,𝑖 = ∇𝑓 (𝑥𝑡,𝑖). Obviously, RAda’s gradient estimation cost saves
a lot of compuation compared to the full-coordinate gradient estimation which are often used in Adam, AMSGrad,
and Yogi. Moreover, RAda follows the iteration form of the first order momentum of Adam, AMSGrad and Yogi, i.e.,
the step 3 in Algorithm 1. To adapt to the nonconvex optimization settings, we introduce the 𝑠𝑖𝑔𝑛(⋅) function for the
second order momentum: 𝑣𝑡,𝑖 = 𝑣𝑡−1,𝑖 − (1 − 𝛽2)𝑠𝑖𝑔𝑛

(

𝑣𝑡−1,𝑖 − 𝑚2
𝑡,𝑖

)

𝑚2
𝑡,𝑖, which follows Algorithm 2 in [25]. Finally,

RAda updates the parameter vector for time 𝑡 + 1: 𝐱𝑡+1 = 𝐱𝑡 − 𝜂𝑡𝐦𝑡∕
√

𝐯𝑡 + 𝜖.
In terms of the update rule, 𝐯𝑡 − 𝐯𝑡−1 is given as −(1 − 𝛽2)𝑠𝑖𝑔𝑛

(

𝐯𝑡−1 −𝐦2
𝑡
)

𝐦2
𝑡 in our RAda, while it is

−(1 − 𝛽2)(𝐯𝑡 − 𝐠𝑡)2 in Adam. Therefore, the difference between 𝐯𝑡 and 𝐯𝑡−1 depends only on 𝐦2
𝑡 in RAda as opposed

to dependence on both 𝐯𝑡−1 and 𝐠2𝑡 in Adam. For this reason, Adam can rapidly increase its learning rate when 𝐯𝑡−1 is
much larger than 𝐠2𝑡 . Such strategy of increasing rapidly the learning rate can provide a fast convergence speed for the
algorithm. However, once it converges to the local minimum or saddle point, the extremely small learning rate makes
Adam unable to escape from the saddle point, partially leading to its poor generalization ability in some cases. Instead,
RAda can increase its learning rate in a controlled fashion similar to Yogi, since 𝐦𝑡 is based on the linear form of 𝐠𝑡.
Y. Zhou et al.: Preprint submitted to Elsevier Page 4 of 16
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Intuitively, at each iteration, RAda updates the parameter vector 𝐱𝑡 based on a block coordinate of the gradient,
leading to a significant reduction of the computation cost. Therefore, the advantage of RAda would be more obvious
especially in training ultra-high dimensional deep models. Theoretically,In the following, we provide the thorough
convergence analysis for RAda showing that the block coordinate method can still converge. This makes our proposed
RAda algorithm also appealing theoretically.
Algorithm 1 Pseudo Code of RAda
Input: 𝐱1 ∈ ℝ𝑑 , learning rate {𝜂𝑡}𝑇𝑡=1, decay parameters 0 ≥ 𝛽1, 𝛽2 ≥ 1, 𝜖 > 0.
Initially Set: 𝐦0 = 𝟎, 𝐯0 = 𝟎.
Output: 𝐱𝑡+1

1: for 𝑡 = 1 to 𝑇 do
2: Choose randomly 𝑖 via uniform distribution on {1,… , 𝑑}
3: Compute the gradient of the 𝑖-th coordinate:

𝑔𝑡,𝑖 = ∇𝓁(𝑥𝑡,𝑖)
4: Compute the first-order momentum of the 𝑖-th coordinate:

𝑚𝑡,𝑖 = 𝛽1𝑚𝑡−1,𝑖 + (1 − 𝛽1)𝑔𝑡,𝑖
5: Compute the second-order momentum of the 𝑖-th coordinate:

𝑣𝑡,𝑖 = 𝑣𝑡−1,𝑖 − (1 − 𝛽2)𝑠𝑖𝑔𝑛
(

𝑣𝑡−1,𝑖 − 𝑚2
𝑡,𝑖

)

𝑚2
𝑡,𝑖

6: Update the 𝑖-th coordinates of 𝐦𝑡 and 𝐯𝑡 respectively
7: Compute the parameter vector at time 𝑡 + 1:

𝐱𝑡+1 = 𝐱𝑡 − 𝜂𝑡𝐦𝑡∕
√

𝐯𝑡 + 𝜖
8: end for
9: return 𝐱𝑡+1

5. Convergence Analysis
In this section, we prove that the SFO complexity of RAda has a guaranteed bound under nonconvex conditions.

Obviously, the training process of deep learning is a typical time-slotted system. In each slot, the learner randomly
selects a variable from its subset and updates that variable in the opposite direction of its gradient. For the sake
of simplicity, let 𝑞(𝑡)𝑖 be randomly chosen from {0, 1} and be i.i.d Bernoulli random variables with probability
(𝑞(𝑡)𝑖 = 1) = 𝑝, where 𝑖 ∈ [𝑑] and 𝑡 ∈ [𝑇 ]. Note that 𝑞(𝑡)𝑖 denotes the value of 𝑞𝑖 at the 𝑡-th slot. Then, step 2
and 3 of RAda can be expressed mathematically as
𝑔𝑡,𝑖 = 𝑞(𝑡)𝑖 ∇𝓁(𝑥𝑡,𝑖) = 𝑄(𝑡)∇𝓁(𝑥𝑡,𝑖), (3)
where 𝑄(𝑡) ∈ {0, 1}𝑑×𝑑 is a diagonal matrix with 𝑄(𝑡)

𝑖𝑖 = 𝑞(𝑡)𝑖 . Moreover, we let  𝑡 represent the history of RAda until
time slot 𝑡, i.e.,
 (𝑡) =

{

𝑄(0), 𝑄(1),… , 𝑄(𝑡−1)} . (4)
To prove the convergence of RAda, we next present the following Lemmas 1-4 that are based on the proposed

algorithm.
Lemma 1 If function 𝑓 (⋅) is Lipschitz continuous gradient with constant 𝐿 > 0 for all 𝐱𝑡+1, 𝐱𝑡 ∈ ℝ𝑑 and 𝑡 ∈ [𝑇 ], we
have

𝑓 (𝐱𝑡+1) ≤ 𝑓 (𝐱𝑡) +
⟨

∇𝑓 (𝐱𝑡), 𝐱𝑡+1 − 𝐱𝑡
⟩

+ 𝐿
2
‖

‖

𝐱𝑡+1 − 𝐱𝑡‖‖
2 . (5)

The proof of Lemma 1 is presented in Appendix A.
Lemma 2 If 𝑔𝑡,𝑖, 𝑣𝑡,𝑖, 𝜖, 𝛽2 are generated by the proposed algorithm RAda, then we have the following inequality:

|𝑚𝑡,𝑖|
√

𝑣𝑡,𝑖 + 𝜖 +
√

𝑣𝑡−1,𝑖 + 𝜖
≤ 1

√

1 − 𝛽2
. (6)
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The proof of Lemma 2 is provided in Appendix B.
Lemma 3 If 𝑣𝑡,𝑖, 𝑣𝑡−1,𝑖, 𝛽2 are generated by RAda, the we have that 𝑣𝑡,𝑖 ≥ 𝛽2𝑣𝑡−1,𝑖.

The proof of Lemma 3 is shown in Appendix C.
Lemma 4 For the iterates {𝐱𝑡} for all 𝑡 ∈ [𝑇 ] in RAda that chooses a mini-batch with size 𝑏, the following inequality
holds:

𝔼
[

‖𝑚𝑡,𝑖‖
2] ≤

[

∇𝑓 (𝑥𝑡,𝑖)
]2 +

𝜎2𝑖
𝑏
, (7)

for all 𝑖 ∈ [𝑑].

The proof of Lemma 4 can be found in Appendix D.
From the above Lemmas 1, 2, 3, 4, we can obtain the following Theorem 1 which provides a guaranteed convergence

bound for RAda.
Theorem 1 Suppose that Assumptions 1,2,3 are applied, let 𝜂𝑡 = 𝜂 for all 𝑡 ∈ [𝑇 ]. The parameters 𝜂, 𝛽1, 𝛽2, 𝜖 are

generated by RAda, which satisfy the following conditions: 1 − 𝛽2 ≤ 𝜎2

16𝐺2 and 𝜂 ≤
√

𝜖𝛽2
2𝐿 . The mini-batch size chosen

by RAda is 𝑏. Then we have the following bound

𝑇
∑

𝑡=1
𝔼 ‖

‖

∇𝑓 (𝐱𝑡)‖‖
2 ≤ 𝑂

(

𝑓 (𝐱1) − 𝑓 (𝐱∗)
𝑝𝜂𝑇

+ 𝜎2
)

. (8)

Proof. Indeed, RAda updates the parameter vector according to the gradient of a randomly picked coordinate, since
that 𝑔𝑡,𝑖 = ∇𝓁(𝑥𝑡,𝑖) where the coordinate 𝑖 is chosen randomly from {1,… , 𝑑} via uniform distribution. Therefore,
the condition expectation should be taken in Equation (5), which is conditioned on  (𝑡). Then we take the condition
expectation for each term in Equation (5) and have

𝔼
[

𝑓 (𝐱𝑡+1)| (𝑡)] ≤ 𝑓 (𝐱𝑡) + 𝔼
[⟨

∇𝑓 (𝐱𝑡), 𝐱𝑡+1 − 𝐱𝑡
⟩

| (𝑡)] + 𝔼
[𝐿
2
‖

‖

𝐱𝑡+1 − 𝐱𝑡‖‖
2
| (𝑡)

]

. (9)

Since that 𝑥𝑡,𝑖 ∼ 
(

𝑥𝑡,𝑖 = 𝑞(𝑡)𝑖 = 1
)

, we attain

𝔼
[

𝑓 (𝑥𝑡+1,𝑖)| (𝑡)] ≤ 𝑓 (𝑥𝑡,𝑖) + 𝔼
[⟨

∇𝑓 (𝑥𝑡,𝑖), 𝑥𝑡+1,𝑖 − 𝑥𝑡,𝑖
⟩

| (𝑡)] + 𝔼
[𝐿
2
‖

‖

𝑥𝑡+1,𝑖 − 𝑥𝑡,𝑖‖‖
2
| (𝑡)

]

= 𝑓 (𝑥𝑡,𝑖) + 𝑝 ⋅
⟨

∇𝑓 (𝑥𝑡,𝑖), 𝑥𝑡+1,𝑖 − 𝑥𝑡,𝑖
⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀1

+
𝑝𝐿
2

⋅ ‖
‖

𝑥𝑡+1,𝑖 − 𝑥𝑡,𝑖‖‖
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀2

. (10)

Now, we consider the term 𝑀1 in Equation (10):
𝑀1 = 𝑝∇𝑓 (𝑥𝑡,𝑖) ⋅ (𝑥𝑡+1,𝑖 − 𝑥𝑡,𝑖)

= 𝑝∇𝑓 (𝑥𝑡,𝑖) ⋅
−𝜂𝑡𝑚𝑡,𝑖
√

𝑣𝑡,𝑖 + 𝜖

= −𝑝𝜂𝑡∇𝑓 (𝑥𝑡,𝑖)

[

𝑚𝑡,𝑖
√

𝑣𝑡,𝑖 + 𝜖
−

𝑚𝑡,𝑖
√

𝑣𝑡−1,𝑖 + 𝜖
+

𝑚𝑡,𝑖
√

𝑣𝑡−1,𝑖 + 𝜖

]

=
−𝑝𝜂𝑡∇𝑓 (𝑥𝑡,𝑖)𝑚𝑡,𝑖

√

𝑣𝑡−1,𝑖 + 𝜖
− 𝑝𝜂𝑡∇𝑓 (𝑥𝑡,𝑖)

[

𝑚𝑡,𝑖
√

𝑣𝑡,𝑖 + 𝜖
−

𝑚𝑡,𝑖
√

𝑣𝑡−1,𝑖 + 𝜖

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀 ′

1

. (11)

where the second equation follows from step 7 of RAda, the third equation is obtained by arranging the terms.
For clarity, we next consider the bound of term 𝑀 ′

1 in Equation (11) separately.

𝑀 ′
1 ≤ |

|

𝑚𝑡,𝑖
|

|

⋅
|

|

|

|

|

|

1
√

𝑣𝑡,𝑖 + 𝜖
− 1

√

𝑣𝑡−1,𝑖 + 𝜖

|

|

|

|

|

|
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= |

|

𝑚𝑡,𝑖
|

|

⋅
|

|

|

|

|

|

√

𝑣𝑡−1,𝑖 + 𝜖 −
√

𝑣𝑡,𝑖 + 𝜖
√

𝑣𝑡,𝑖 + 𝜖 ⋅
√

𝑣𝑡−1,𝑖 + 𝜖

|

|

|

|

|

|

=
|

|

𝑚𝑡,𝑖
|

|

√

𝑣𝑡,𝑖 + 𝜖 ⋅
√

𝑣𝑡−1,𝑖 + 𝜖
⋅

|

|

𝑣𝑡,𝑖 − 𝑣𝑡−1,𝑖||
√

𝑣𝑡,𝑖 + 𝜖 +
√

𝑣𝑡−1,𝑖 + 𝜖

=
|

|

𝑚𝑡,𝑖
|

|

√

𝑣𝑡,𝑖 + 𝜖 ⋅
√

𝑣𝑡−1,𝑖 + 𝜖
⋅

(1 − 𝛽2)𝑚2
𝑡,𝑖

√

𝑣𝑡,𝑖 + 𝜖 +
√

𝑣𝑡−1,𝑖 + 𝜖

≤

√

1 − 𝛽2 ⋅ 𝑚2
𝑡,𝑖

(

√

𝑣𝑡−1,𝑖 + 𝜖
)

⋅ 𝜖
. (12)

In the above inequality (12), the first inequality is attained by Cauchy–Schwarz inequality. The third equation follows
from the 5-th step of the proposed algorithm which is

𝑣𝑡,𝑖 = 𝑣𝑡−1,𝑖 − (1 − 𝛽2)𝑠𝑖𝑔𝑛
(

𝑣𝑡−1,𝑖 − 𝑚2
𝑡,𝑖

)

𝑚2
𝑡,𝑖.

Moreover, the last inequality of the inequality (12) is from Lemma 2 that is

|𝑚𝑡,𝑖|
√

𝑣𝑡,𝑖 + 𝜖 +
√

𝑣𝑡−1,𝑖 + 𝜖
≤ 1

√

1 − 𝛽2
.

Therefore, plugging inequality (12) into equation (11), we have the following bound of term 𝑀1:

𝑀1 ≤
−𝑝𝜂𝑡𝑚𝑡,𝑖∇𝑓 (𝑥𝑡,𝑖)

√

𝑣𝑡−1,𝑖 + 𝜖
−

𝑝𝜂𝑡𝑚2
𝑡,𝑖∇𝑓 (𝑥𝑡,𝑖) ⋅

√

1 − 𝛽2
(

√

𝑣𝑡−1,𝑖 + 𝜖
)

⋅ 𝜖
. (13)

Going back to inequality (10) and considering the bound of term 𝑀2, we obtain the following

𝑀2 =
𝑝𝐿
2

⋅ ‖
‖

𝑥𝑡+1,𝑖 − 𝑥𝑡,𝑖‖‖
2

=
𝑝𝐿
2

⋅ ‖‖
‖

−
𝜂𝑡𝑚𝑡,𝑖

√

𝑣𝑡,𝑖 + 𝜖
‖

‖

‖

2

≤
𝑝𝐿𝜂2𝑡

2
√

𝛽2𝑣𝑡−1,𝑖 + 𝜖
⋅

𝑚2
𝑡,𝑖

√

𝛽2𝑣𝑡−1,𝑖 + 𝜖

≤
𝑝𝐿𝜂2𝑡

2
√

𝛽2𝑣𝑡−1,𝑖 + 𝜖
⋅

𝑚2
𝑡,𝑖

√

𝛽2(𝑣𝑡−1,𝑖 + 𝜖)

≤
𝑝𝐿𝜂2𝑡
2
√

𝜖𝛽2
⋅

𝑚2
𝑡,𝑖

√

𝑣𝑡−1,𝑖 + 𝜖
, (14)

where the first equation is from the 7-th step of Algorithm 1, the first inequality follows from Lemma 3 which is
𝑣𝑡,𝑖 ≥ 𝛽2𝑣𝑡−1,𝑖, and the second inequality obtained from the fact that 0 < 𝛽2 < 1.

Substituting inequalities (13) and (14) into inequality (10), we further attain the following bound

𝔼
[

𝑓 (𝑥𝑡+1,𝑖)| (𝑡)]

≤ 𝑓 (𝑥𝑡,𝑖) −
𝑝𝜂𝑡𝑚𝑡,𝑖∇𝑓 (𝑥𝑡,𝑖)
√

𝑣𝑡−1,𝑖 + 𝜖
−

𝑝𝜂𝑡𝑚2
𝑡,𝑖∇𝑓 (𝑥𝑡,𝑖) ⋅

√

1 − 𝛽2
(

√

𝑣𝑡−1,𝑖 + 𝜖
)

⋅ 𝜖
+

𝑝𝐿𝜂2𝑡
2
√

𝜖𝛽2
⋅

𝑚2
𝑡,𝑖

√

𝑣𝑡−1,𝑖 + 𝜖

≤ 𝑓 (𝑥𝑡,𝑖) −

(

𝑝𝜂𝑡 −
𝑝𝜂𝑡𝐺

√

1 − 𝛽2
𝜖

−
𝑝𝐿𝜂2𝑡
2
√

𝜖𝛽2

)

[∇𝑓 (𝑥𝑡,𝑖)]2
√

𝑣𝑡−1,𝑖 + 𝜖
+

(

𝑝𝜂𝑡𝐺2(1 − 𝛽2)
2𝜖

−
𝑝𝐿𝜂2𝑡
2
√

𝜖𝛽2

)

𝜎2𝑖
𝑏
√

𝑣𝑡−1,𝑖 + 𝜖
, (15)
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where the first inequality is attained by the fact that |∇𝑓 (𝑥𝑡,𝑖)| ≤ 𝐺, and the second inequality follows from Lemma 4.
Going further, from the conditions in Theorem 1, we have the following bounds:

𝐺
√

1 − 𝛽2
𝜖

≤ 1
4
,

𝐿𝜂𝑡
2
√

𝜖𝛽2
≤ 1

4
. (16)

Applying inequality (16) into inequality (15), we obtain a new bound in the following manner:
𝔼
[

𝑓 (𝑥𝑡+1,𝑖)| (𝑡)]

≤ 𝑓 (𝑥𝑡,𝑖) −
(

𝑝𝜂𝑡 −
𝑝𝜂𝑡
4

−
𝑝𝜂𝑡
4

) [∇𝑓 (𝑥𝑡,𝑖)]2
√

𝑣𝑡−1,𝑖 + 𝜖
+

(

𝑝𝜂𝑡𝐺
√

1 − 𝛽2
8

−
𝑝𝜂𝑡
4

)

𝜎2
𝑖

𝑏
√

𝑣𝑡−1,𝑖 + 𝜖

≤ 𝑓 (𝑥𝑡,𝑖) −
𝑝𝜂𝑡
2

[∇𝑓 (𝑥𝑡,𝑖)]2
√

𝑣𝑡−1,𝑖 + 𝜖
+

(

𝑝𝜂𝑡𝐺
√

1 − 𝛽2
8

−
𝑝𝜂𝑡
4

)

𝜎2
𝑖

𝑏
√

𝑣𝑡−1,𝑖 + 𝜖

≤ 𝑓 (𝑥𝑡,𝑖) −
𝑝𝜂 ⋅ [∇𝑓 (𝑥𝑡,𝑖)]2

2
(

√

2𝐺 + 𝜖
)

+
𝑝𝜂𝐺

√

1 − 𝛽2 − 2𝑝𝜂

8
√

𝜖
⋅
𝜎2

𝑏
, (17)

where the last inequality is from the fact that 0 ≤ 𝑣𝑡−1,𝑖 ≤ 2𝐺2.
Then applying telescoping sum for inequality (17), we obtain the following bound:

𝑝𝜂

2
(

√

2𝐺 + 𝜖
)

𝑇
∑

𝑡=1
𝔼 ‖

‖

∇𝑓 (𝑥𝑡,𝑖)‖‖
2 ≤ 𝑓 (𝑥1,𝑖) − 𝔼[𝑓 (𝑥𝑇+1,𝑖)] +

𝑝𝜂𝐺
√

1 − 𝛽2 − 2𝑝𝜂

8
√

𝜖
⋅
𝜎2𝑇
𝑏

. (18)

Furthermore, from inequality (18), we further attain that
𝑇
∑

𝑡=1

𝑑
∑

𝑖=1
𝔼 ‖

‖

∇𝑓 (𝑥𝑡,𝑖)‖‖
2

≤
2
(

√

2𝐺 + 𝜖
)

𝑝𝜂

𝑑
∑

𝑖=1

(

𝑓 (𝑥1,𝑖) − 𝔼[𝑓 (𝑥𝑇+1,𝑖)]
)

+
2
(

√

2𝐺 + 𝜖
)

𝑝𝜂
𝑝𝜂𝐺

√

1 − 𝛽2 − 2𝑝𝜂

8
√

𝜖
⋅
𝑑𝜎2𝑇
𝑏

. (19)

Moreover, by the fact that 𝑓 (𝑥∗𝑖 ) ≤ 𝑓 (𝑥𝑡+1,𝑖), we have the following bound:

𝑇
∑

𝑡=1
𝔼 ‖

‖

∇𝑓 (𝐱𝑡)‖‖
2 ≤

2𝑑
(

√

2𝐺 + 𝜖
)

𝑝𝜂
(

𝑓 (𝐱1) − 𝑓 (𝐱∗)
)

+

(

√

2𝐺 + 𝜖
)(

𝐺
√

1 − 𝛽2 − 2𝑝𝜂
)

4
√

𝜖
⋅
𝑑𝜎2𝑇
𝑏

. (20)

Therefore, from inequality (20), we obtain the desired result as follows:
𝑇
∑

𝑡=1
𝔼 ‖

‖

∇𝑓 (𝐱𝑡)‖‖
2 ≤ 𝑂

(

𝑓 (𝐱1) − 𝑓 (𝐱∗)
𝑝𝜂𝑇

+ 𝜎2
)

. (21)

The proof of Theorem 1 is completed. ■

As we can see, the proposed algorithm obtains a guaranteed bound that verifies its convergence on nonconvex
conditions. Moreover, reviewing inequality (20), the proposed algorithm generates 𝐱𝑡 with constant 𝜂, and also has the
following bound:

𝑇
∑

𝑡=1
𝔼 ‖

‖

∇𝑓 (𝐱𝑡)‖‖
2 ≤ 𝑂

( 1
𝑇

+ 1
𝑏

)

.

Going further, from Definition 1, our proposed algorithm has the SFO complexity of𝑂(1∕𝛿2) for achieving a 𝛿-accurate
solution under nonconvex cases.

Moreover, from the result in inequality (20), the sampling probability 𝑝 of block-coordinate has a negative effect
on the proposed algorithm’s convergence. Indeed, RAda sacrifices some algorithm complexity for a very lightweight
computation cost per round. The result in Theorem 1 provides a guaranteed convergence bound. In the following
section, we will verify the great advantages of RAda in computing costs through the experiments conducted on public
datasets, and report the result curves on running time.
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Figure 2: Curve results of training loss vs. running time, on CIFAR-10 dataset. RAda has the least running time.
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Figure 3: Curve results of training loss vs. running time, on CIFAR-100 dataset. RAda has the least running time.
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Figure 4: Curve results of test accuracy vs. running time, on CIFAR-10 dataset. RAda is the fastest to achieve the desired
performance.

6. Experiments
From our theoretical analysis, we gain the insight that the proposed algorithm uses very less computation cost than

the other adaptive algorithms per iteration. To verify this insight, we conduct two experiments on image classification
and language processing tasks. For the image classification task, we present empirical results of running time vs.
training loss on public datasets. In addition, we also present experimental results on test accuracy to examine the
generalization ability of RAda. For the language processing task, we present empirical results on perplexity vs. running
time. In this experiment, three LSTM models with different layers are used as the RNN framework on Penn TreeBank
dataset. All the experiments are conducted on a machine with one NVIDIA GeForce RTX 3080 GPU and Inter Core
i9-10900x CPU.
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Figure 5: Curve results of test accuracy vs. running time, on CIFAR-100 dataset. RAda is the fastest to achieve the desired
performance.
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Figure 6: Curve results with different block-coordinate selection probability of RAda in ResNet-34. (a) shows the result
of training loss vs. running time on CIFAR-10; (b) shows the result of training loss vs. running time on CIFAR-100; (c)
shows the result of test accuracy vs. running time on CIFAR-10; (d) shows the result of test accuracy vs. running time on
CIFAR-100.
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Figure 7: Curve results of RAda on language modeling. (a) shows the result of perplexity vs. running time on 1-layer LSTM
model; (b) shows the result of perplexity vs. running time on 2-layer LSTM model; (c) shows the result of perplexity vs.
running time on 3-layer LSTM model.

6.1. Experimental Settings
6.1.1. Datasets and Models.

Image Classification Task. Two benchmark datasets are used as baselines in our experiments. One is CIFAR-10,
which consists of 60,000 color images of 32 × 32 resolution, with a total of 10 categories. Moreover, each category
contains 6,000 images. The dataset is divided into two subsets, a training set of 50,000 images and a test set of 10,000
images. The other is CIFAR-100 which has 100 categories, which consists of 60,000 color images of 32×32 resolution.
We run our experiments in three classical deep models: VGG-16 [36], ResNet-34 [37], and DenseNet-121 [38], which
are widely used deep convolutional neural networks.
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Language Processing Task. In this part, the famous dataset, Penn TreeBank, is used as baselines. This dataset is
formed by annotating esach word with a POS tag. In addition, its training set contains 38,219 sentences and 912,344
tokens, validation set has 5,527 sentences and 131,768 tokens, and test set consists of 5,462 sentences and 129,654
tokens. Moreover, we adopt 1-layer LSTM network, 2-layer LSTM network, and 3-layer LSTM network as the RNN
model in this experiment, respectively.
6.1.2. Algorithms

We use the following popular optimization algorithms as our comparison methods: SGD, Adam [19], PAGE [26],
YOGI [25]. For SGD, the version with the momentum is used, in which momentum is 0.9 and weight decay coefficient
is 5𝑒− 4. The other executed algorithms including the proposed algorithm are all equipped with the adaptive learning
rate. The learning rate of YOGI is set to 1𝑒 − 2, and the learning rate of Adam is set to 1𝑒 − 3. The coefficients of
momentums are 𝛽1 = 0.9, 𝛽2 = 0.999. Moreover, Yogi and Rada both have the parameter 𝜖 of 1𝑒− 3. The parameter 𝜖
in Adam and PAGE is 1𝑒 − 8. The mini-batch size is 128 in our experiments. In addition, 𝐦𝑡 and 𝐯𝑡 are initialed to 𝟎.
6.2. Experimental Results and Analysis
6.2.1. Image Classification Task

First, we focus on investigating whether RAda outperforms the compared algorithms on computation cost, which
is the main concern of this paper. To visually observe such comparison of each algorithm, we plot the curves of the
training loss on running time. We run the algorithms on the image classification task of CIFAR-10, and report the
results in Figure 2. We also implement the algorithms for image classification on CIFAR-100, and plot the curves in
Figure 3. The results shown in these two figures verify that RAda takes the least running time to reach its desired
training loss on VGG-16, ResNet-34, and DenseNet-121. Moreover, we obverse that RAda converges even quicker
than the first-order algorithm SGD in running time. Though SGD is a simple first-order algorithm, it still computes
the full coordinate gradient each iteration, which consumes a large computation time. These experimental results show
that the proposed algorithm RAda may have a huge advantage in computation cost, compared to the other adaptive
algorithms and even SGD in some cases.

Second, we conduct experiments to verify whether RAda can perform satisfactory in terms of test accuracy. As
seen from the design of RAda, although the gradient calculation cost of each iteration is greatly reduced, some gradient
information may also be lost. Therefore, a consequent question arises, i.e. whether RAda will come at the cost of a
significant loss of accuracy. For this reason, we report the test accuracy results of all executed algorithms. The results
of image classification task on CIFAR-10 and CIFAR-100 are respectively shown in Figure 4, and Figure 5. From the
two figures, we observe that the test accuracy of the proposed algorithm can reach the best level in most cases, and even
surpass the other comparison algorithms in some cases. Although the gradient information of RAda at each iteration
is more sparse, since the computational cost of each iteration is very low, the accuracy loss can be compensated by the
additional number of iterations without taking up too much running time.

Finally, we examine how the selection probability 𝑝 of block-coordinates would affect the performance. According
to the original design of the deep models, the hyper-parameter number in VGG-16 is 1,383,575,544, the hyper-
parameter number of ResNet-34 is 25,636,712, and that of DenseNet-121 is 8,062,504. In all the above experiments,
we set 𝑝 = 1∕5000 for RAda. In this group of experiments, we choose the value for 𝑝 from {1∕1000, 1∕5000, 1∕10000}
for RAda, and run the algorithm to train ResNet-34 on CIFAR-10. The experiment result is shown in (a) and (b) of
Figure 6. Overall, we believe that a probability of 𝑝 = 1∕5000 is what we expect. Namely, it not only takes less
running time, but also brings the loss to a smaller value. Moreover, the results of test accuracy are shown in (c) and (d)
of Figure 6 where the curve of 𝑝 = 1∕5000 also works well for both running time and test accuracy. Nevertheless, it
would be both interesting and important to analyze how the probability 𝑝 would affect the performance of the algorithm
theoretically. We will leave this exploration as our future work.
6.2.2. Language Processing Task

Language processing is another important task in the field of deep learning. For this reason, we present experiments
to further verify the effectiveness of the proposed algorithm on this task. Moreover, we use LSTM network, one
of the most commonly used RNN models, to complete the language modeling. In our experiments, 1-layer with
5,293,200 parameters, 2-layer with 13,632,400 parameters, and 3-layer with 24,221,600 parameters LSTM are
applied, respectively. Finally, we report the results of perplexity vs. running time in Figure 7. Note that the lower
of the perplexity, the better the performance of the algorithm. Straightly, the curves in this figure show that the
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proposed algorithm reaches a stable low-perplexity state fastest, which means that the proposed algorithm has lower
computational cost and shorter running time per iteration than the other compared algorithms, and thus can complete
the learning task in a short total running time.

7. Conclusion and Future Work
In this paper, we explore the rationale for the randomized block-coordinate optimization of adaptive training

algorithms in nonconvex cases. Specifically, we propose a RBC based adaptive algorithm and prove that it converges
when its loss function is nonconvex. Moreover, we provide the empirical evidence to support our theoretical analysis.
The proposed algorithm takes very less computation cost than the other algorithms per iteration, and consumes
additional iterations to obtain a good performance on test accuracy. Experimental results on image classification task
(using CIFAR-10 and CIFAR-100 datasets) and language processing task (using Penn TreeBank dataset) demonstrate
the performance of our algorithm.

Although we only validate the low computational cost advantage of our RAda on image classification and NLP
tasks, our algorithm could also work similarly on other deep learning tasks, such as GAN and transfer learning tasks,
as justified by the theoretical analysis of our algorithm. Additionally, we would prefer to leave the exploration of such
tasks as future work. Moreover, another open problem is the optimal sample size for our proposed algorithm, which
could inspired from [10, 39]. We also leave this work for the future.
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Appendix
A. Proof of the Lemma 1
Lemma 1. If function 𝑓 (⋅) is Lipschitz continuous gradient with constant 𝐿 > 0 for all 𝐱𝑡+1, 𝐱𝑡 ∈ ℝ𝑑 and 𝑡 ∈ [𝑇 ], we
have
𝑓 (𝐱𝑡+1) ≤ 𝑓 (𝐱𝑡) +

⟨

∇𝑓 (𝐱𝑡), 𝐱𝑡+1 − 𝐱𝑡
⟩

+ 𝐿
2
‖

‖

𝐱𝑡+1 − 𝐱𝑡‖‖
2 . (22)

Proof. For all 𝐱𝑡+1, 𝐱𝑡 ∈ ℝ𝑑 , we have

𝑓 (𝐱𝑡+1) = 𝑓 (𝐱𝑡) + ∫

1

0

⟨

𝑓 ′ (𝐱𝑡 + 𝜔(𝐱𝑡+1 − 𝐱𝑡)
)

, 𝐱𝑡+1 − 𝐱𝑡
⟩

𝑑𝜔

= 𝑓 (𝐱𝑡) +
⟨

𝑓 ′(𝐱𝑡), 𝐱𝑡+1 − 𝐱𝑡
⟩

+ ∫

1

0

⟨

𝑓 ′ (𝐱𝑡 + 𝜔(𝐱𝑡+1 − 𝐱𝑡)
)

− 𝑓 ′(𝐱𝑡), 𝐱𝑡+1 − 𝐱𝑡
⟩

𝑑𝜔. (23)

Rearranging equation (23), we obtain

|

|

|

𝑓 (𝐱𝑡+1) − 𝑓 (𝐱𝑡) −
⟨

𝑓 ′(𝐱𝑡), 𝐱𝑡+1 − 𝐱𝑡
⟩

|

|

|

=
|

|

|

|

|

∫

1

0

⟨

𝑓 ′ (𝐱𝑡 + 𝜔(𝐱𝑡+1 − 𝐱𝑡)
)

− 𝑓 ′(𝐱𝑡), 𝐱𝑡+1 − 𝐱𝑡
⟩

𝑑𝜔
|

|

|

|

|

≤ ∫

1

0

|

|

|

⟨

𝑓 ′ (𝐱𝑡 + 𝜔(𝐱𝑡+1 − 𝐱𝑡)
)

− 𝑓 ′(𝐱𝑡), 𝐱𝑡+1 − 𝐱𝑡
⟩

|

|

|

𝑑𝜔

≤ ∫

1

0

‖

‖

‖

𝑓 ′ (𝐱𝑡 + 𝜔(𝐱𝑡+1 − 𝐱𝑡)
)

− 𝑓 ′(𝐱𝑡)
‖

‖

‖

⋅ ‖𝐱𝑡+1 − 𝐱𝑡‖𝑑𝜔
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≤ ∫

1

0
𝜔𝐿‖𝐱𝑡+1 − 𝐱𝑡‖2𝑑𝜔

= 𝐿
2
‖𝐱𝑡+1 − 𝐱𝑡‖2, (24)

where the first inequality follows from Triangle inequality, the second inequality is attained from Cauchy-Schwarz
inequality, i.e., ⟨𝑥, 𝑦⟩ ≤ ‖𝑥‖ ⋅ ‖𝑦‖ for all 𝑥, 𝑦 ∈ ℝ, and the last inequation is yielded from equation (2). Therefore, the
proof of Lemma 1 is completed. ■

B. Proof of the Lemma 2
Lemma 2. If 𝑔𝑡,𝑖, 𝑣𝑡,𝑖, 𝜖, 𝛽2 are generated by the proposed algorithm RAda, then we have the following inequality:

|𝑚𝑡,𝑖|
√

𝑣𝑡,𝑖 + 𝜖 +
√

𝑣𝑡−1,𝑖 + 𝜖
≤ 1

√

1 − 𝛽2
. (25)

Proof. To prove the desired result, we consider this issue in the following two aspects. On one hand, if 𝑣𝑡−1,𝑖 ≥ 𝑚2
𝑡,𝑖,

thus 𝑠𝑖𝑔𝑛
(

𝑣𝑡−1,𝑖 − 𝑚2
𝑡,𝑖
)

= 1. Moreover, by the 5-th step of RAda, we attain that

|𝑚𝑡,𝑖|
√

𝑣𝑡,𝑖 + 𝜖 +
√

𝑣𝑡−1,𝑖 + 𝜖

≤
|𝑚𝑡,𝑖|

√

𝑣𝑡−1,𝑖 − (1 − 𝛽2)𝑚2
𝑡,𝑖 + 𝜖 +

√

𝑣𝑡−1,𝑖 + 𝜖

≤
|𝑚𝑡,𝑖|

√

𝑚2
𝑡,𝑖 − (1 − 𝛽2)𝑚2

𝑡,𝑖 +
√

𝑣𝑡−1,𝑖

≤ 1
√

1 − 𝛽2
. (26)

On the other hand, if 𝑣𝑡−1,𝑖 < 𝑚2
𝑡,𝑖, thus 𝑠𝑖𝑔𝑛

(

𝑣𝑡−1,𝑖 − 𝑚2
𝑡,𝑖
)

= −1, and we attain that

|𝑚𝑡,𝑖|
√

𝑣𝑡,𝑖 + 𝜖 +
√

𝑣𝑡−1,𝑖 + 𝜖

≤
|𝑚𝑡,𝑖|

√

𝑣𝑡−1,𝑖 + (1 − 𝛽2)𝑚2
𝑡,𝑖 + 𝜖

≤
|𝑚𝑡,𝑖|

√

(1 − 𝛽2)𝑚2
𝑡,𝑖

≤ 1
√

1 − 𝛽2
. (27)

Therefore, the proof of Lemma 2 is completed. ■

C. Proof of the Lemma 3
Lemma 3. If 𝑣𝑡,𝑖, 𝑣𝑡−1,𝑖, 𝛽2 are generated by RAda, the we have that 𝑣𝑡,𝑖 ≥ 𝛽2𝑣𝑡−1,𝑖.
Proof. Firstly, if 𝑣𝑡−1,𝑖 ≤ 𝑚2

𝑡,𝑖, and from the step 5 of Algorithm 1, we have

𝑣𝑡,𝑖 = 𝑣𝑡−1,𝑖 + (1 − 𝛽2)𝑚2
𝑡,𝑖

Y. Zhou et al.: Preprint submitted to Elsevier Page 13 of 16



Randomized Block-Coordinate Adaptive Algorithms for Nonconvex Optimization Problems

= 𝛽2𝑣𝑡−1,𝑖 + (1 − 𝛽2)(𝑣𝑡−1,𝑖 + 𝑚2
𝑡,𝑖)

≥ 𝛽2𝑣𝑡−1,𝑖. (28)
Secondly, if 𝑣𝑡−1,𝑖 > 𝑚2

𝑡,𝑖, then we have the following bound by the step 5 in RAda:

𝑣𝑡,𝑖 = 𝑣𝑡−1,𝑖 − (1 − 𝛽2)𝑚2
𝑡,𝑖

≥ 𝑣𝑡−1,𝑖 − (1 − 𝛽2)𝑣𝑡−1,𝑖
≥ 𝛽2𝑣𝑡−1,𝑖. (29)

Combining inequations (28) and (29), we obtain the desired result. Therefore, the proof of Lemma 3 is completed. ■

D. Proof of the Lemma 4
Lemma 4. For the iterates {𝐱𝑡} for all 𝑡 ∈ [𝑇 ] in RAda that chooses a mini-batch with size 𝑏, the following inequality
holds:
𝔼
[

‖𝑚𝑡,𝑖‖
2] ≤

[

∇𝑓 (𝑥𝑡,𝑖)
]2 +

𝜎2𝑖
𝑏
, (30)

for all 𝑖 ∈ [𝑑].
Proof. We first define the following notation:

𝜁𝑡 =
1

|𝑆𝑡|

∑

𝑠∈𝑆𝑡

(

∇𝓁(𝑥𝑡,𝑖, 𝑠) − ∇𝑓 (𝑥𝑡,𝑖)
)

, (31)

where 𝑆𝑡 is the total number of samples, and 𝑠 is the sample of time 𝑡.
From equality (31), we attain that

𝜁𝑡 + ∇𝑓 (𝑥𝑡,𝑖) =
1

|𝑆𝑡|

∑

𝑠∈𝑆𝑡

[

∇𝓁(𝑥𝑡,𝑖, 𝑠) − ∇𝑓 (𝑥𝑡,𝑖)
]

+ ∇𝑓 (𝑥𝑡,𝑖)

= 𝑔𝑡,𝑖. (32)
We take the expectation for equality (32) and obtain

𝔼
[

𝑔2𝑡,𝑖
]

= 𝔼
[

‖𝜁𝑡 + ∇𝑓 (𝑥𝑡,𝑖)‖2
]

= 𝔼
[

𝜁2𝑡
]

+
[

∇𝑓 (𝑥𝑡,𝑖)
]2

= 1
𝑏2

𝔼
[(

∑

𝑠∈𝑆𝑡

(

∇𝓁(𝑥𝑡,𝑖, 𝑠) − ∇𝑓 (𝑥𝑡,𝑖)
)

)2]
+
[

∇𝑓 (𝑥𝑡,𝑖)
]2

= 1
𝑏2

𝔼
[

∑

𝑠∈𝑆𝑡

(

∇𝓁(𝑥𝑡,𝑖, 𝑠) − ∇𝑓 (𝑥𝑡,𝑖)
)2
]

+
[

∇𝑓 (𝑥𝑡,𝑖)
]2

≤
𝜎2𝑖
𝑏

+
[

∇𝑓 (𝑥𝑡,𝑖)
]2, (33)

where the second equality follows from the fact that 𝜁𝑡 is a mean zero random variable, the third equality uses the fact
that 𝔼[‖𝜁1 +…+ 𝜁𝑘‖2] = 𝔼[‖𝜁1‖2 +…+ ‖𝜁𝑘‖2], the inequality follows from Assumption 3.

Moreover, from the 4-th step in RAda, we obtain the following inequality:

𝑚𝑡,𝑖 = 𝛽𝑡1𝑚0,𝑖 + (1 − 𝛽1)(𝑔1,𝑖 + 𝑔2,𝑖 +…+ 𝑔𝑡,𝑖). (34)
From inequality (34), we further attain that

|𝑚𝑡,𝑖| ≤ (1 − 𝛽1)|𝑔1,𝑖 + 𝑔2,𝑖 +…+ 𝑔𝑡,𝑖| ≤ |𝑔𝑡,𝑖|, (35)
where the second inequality is due to the fact that RAda selects only one block-coordinate of the gradient per round.

Combining inequalities (33) and (35), we have the following bound:

𝔼
[

𝑚2
𝑡,𝑖
]

≤
𝜎2𝑖
𝑏

+
[

∇𝑓 (𝑥𝑡,𝑖)
]2. (36)

Therefore, the proof of Lemma 4 is completed. ■
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