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Abstract

The paper introduces an interactive machine learning mechanism to process the measurements of an uncertain, nonlinear dy-
namic process and hence advise an actuation strategy in real-time. For concept demonstration, a trajectory-following optimization
problem of a Kinova robotic arm is solved using an integral reinforcement learning approach with guaranteed stability for slowly
varying dynamics. The solution is implemented using a model-free value iteration process to solve the integral temporal difference
equations of the problem. The performance of the proposed technique is benchmarked against that of another model-free high-order
approach and is validated for dynamic payload and disturbances. Unlike its benchmark, the proposed adaptive strategy is capable
of handling extreme process variations. This is experimentally demonstrated by introducing static and time-varying payloads close
to the rated maximum payload capacity of the manipulator arm. The comparison algorithm exhibited up to a seven-fold percent
overshoot compared to the proposed integral reinforcement learning solution. The robustness of the algorithm is further validated
by disturbing the real-time adapted strategy gains with a white noise of a standard deviation as high as 5%.

Keywords: Optimal control, Adaptive control, Reinforcement learning, Adaptive critics, Model-reference adaptive systems

1. Introduction

Measurement-driven solutions based on adaptive learning
concepts are challenged by many factors, such as the need to in-
corporate the dynamics of the process explicitly into the under-
lying strategies [1, 2]. Many adaptive approaches have been de-
signed offline and lack the ability to capture high-order model-
following dynamics [3–6]. Hence, many adaptive learning ap-
proaches employ either complex or computationally expensive
algorithms [5–8]. This gets more challenging when adaptive
mechanisms are adopted for coupled regulation and optimiza-
tion missions, where the dimensions of the state and action
spaces grow significantly [9–11].

Machine Learning approaches have been employed in many
instrumentation applications, such as quality monitoring of laser
cladding [12], vortex flow-meter design [13], measurement of
residual Oxygen concentration [14], vision-based measurement
systems [15], state-of-charge prediction [16], localization of
faults and network status detection [17], Parkinson’s disease di-
agnostics [18], machine health monitoring [19], real-time aging
prediction of integrated circuits [20], vision systems calibration
in welding robots [21], and sleep apnea analysis [22]. Other
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machine learning forms have adopted Recurrent Neural Net-
work (RNN) and Long Short-Term Memory (LSTM) networks
to solve various optimization problems [23]. A maneuvering
system is developed for Unmanned Aerial Vehicles (UAVs) us-
ing dynamic inversion and LSTM network approaches [24].
Another adaptive cruise mechanism adopted a transfer learn-
ing idea that is based on LSTM networks [25]. The Hierarchi-
cal Temporal Memory (HTM) and LSTM network approaches
have been adopted to predict short-term arterial traffic flow [26].
A deep neural network that employs a feedback control con-
cept is adopted to solve an intelligent structural control prob-
lem [27]. It makes use of a state-selector function to avoid for-
getting key states by the neural-networks and hence improve
the overall performance. An LSTM-based deep learning ap-
proach has been used to predict the vapor mass quantity in the
adsorption bed [28]. Other machine learning mechanisms based
on LSTM, Bidirectional Long Short-Term Memory (BiLSTM),
and Gated Recurrent Unit (GRU) have been employed to im-
prove the efficiency of adsorption cooling systems [29].

Reinforcement learning (RL) is a class of Machine Learn-
ing that offers a structured approach to learn the best strategy-
to-follow [30–32]. It leverages feedback from an agent’s in-
teractions with its environment to either reward or penalize the
agent’s actions through the utility of a value function [33]. The
goal of the agent is to maximize a cumulative sum of the re-
wards [34]. This class of adaptive systems uses two-step tech-
niques known as policy iteration (PI) and value iteration (VI) [34–
37]. For nonlinear applications, Integral Reinforcement Learn-
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ing (IRL) approaches are adopted to solve optimal control prob-
lems [38]. The means of adaptive critics are employed to im-
plement the RL solutions using two neural network structures,
namely the actor and critic networks [34]. The adaptive critics
approximate the strategy-to-follow using an actor neural net-
work; while the value of applying a certain strategy is approxi-
mated by a critic neural network. These approaches have been
used to solve cooperative control problems for multi-agent sys-
tems communicating over graphs [39–41]. An adaptive Fuzzy-
RL mechanism is adopted to control flocking motion of a swarm
of robots in [42]. Regression models such as iterative and batch
least squares are employed to implement the PI solutions [37,
43]. The adaptive approaches are adopted to control underactu-
ated vehicles and distributed generation sources [44, 45].

Linear Quadratic Tracking Regulators (LQT) provide of-
fline control strategies that solve the optimal tracking control
problems. This requires a knowledge of the system dynam-
ics, where the optimal control gains are then applied to the for-
ward evolution of the state [46]. This problem is ubiquitous in
modern control applications, namely in intelligent control sys-
tems [1]. In order to develop robust adaptive control solutions,
it is often desirable to develop a model for the plant, or at least
an approximate dynamic model. Although this approach has
certain benefits, modeling the dynamics of a system can require
assumptions that may narrow the applicability of the model and
introduce uncertainty about the dynamic system parameters.
Applying model approximations techniques, such as lineariza-
tion for instance, can lead to a loss of generality. In cases where
a dynamic model is available, certain model-reference adaptive
control approaches may be considered. These involve back-
stepping, sliding mode control, and Lyapunov methods, for ex-
ample [47–54]. Given the dependency of such methods on the
dynamics the process, the control strategies inherit such limita-
tions. This can be seen in [49], for example, where the lateral
motion of a 5-DoF trailer system is stabilized with a model ref-
erence adaptive system (MRAS) using Lyapunov theory [49].

The above mentioned challenges are tackled in this work
using an integral adaptive learning approach. Herein, another
form of MRAS is proposed for the online control of unknown
nonlinear systems. It is then validated using a 6-DoF Kinova
robotic arm. The control gains are adapted to reflect the vari-
ations in the dynamics of the robotic application. The adap-
tive learning algorithm actuates the joints following interac-
tive reference-trajectories. It employs a data-driven scheme
to determine the variations in the control strategies needed to
move the end-effector between the desired positions. The con-
troller relies on an online IRL mechanism with guaranteed sta-
bility for slowly varying dynamics. The work contributes an
online measurement-driven adaptive learning mechanism that
(i) adopts incremental learning capabilities to improve the con-
trol strategy in real-time, (ii) avoids incorporating the process
and the reference-model dynamics explicitly into the underly-
ing control strategy, (iii) provides a flexible feedback mecha-
nism in terms of the order of the model-following dynamics,
and (iv) allows for online approximate solutions for a class
of optimal tracking problems. It builds on the contributions
of [55] to develop an online IRL control mechanism for non-

linear model-following systems with uncertain dynamics. The
work presented herein supports the theoretical findings of [55]
with solid data-processing and practical evidence. A data-driven
approach is developed for the real-time control of a 6-DoF Ki-
nova robotic arm, as a highly nonlinear dynamic system. It
adopts incremental learning features to adapt the strategies with-
out estimating the dynamics of the robotic arm or explicitly ex-
pressing the strategies in terms of the reference-trajectory dy-
namics. In addition, the control structure is modified to accom-
modate incremental learning capabilities associated with the
control strategy (i.e., provide data-driven features to the under-
lying strategies allowing for online adaptations). The value of
using the temporal difference equation in rejecting high-frequency
noise is also explored and analyzed in details. Finally, the pro-
posed solution is benchmarked against another model-free ap-
proach for dynamic payload and disturbances.

The rest of the paper is organized as follows: The objectives
of the adaptive learning problem are highlighted in Section 2.
Section 3 introduces a description of the trajectory-tracking op-
timization problem. Section 4 lays out the mathematical foun-
dation of the temporal difference solution, including a stabil-
ity analysis of that solution. The IRL solution and its imple-
mentation using an adaptive critics technique are introduced in
Section 5. The practical experimentation setup and results are
discussed in Sections 6 and 7, respectively. Finally, main con-
cluding remarks are highlighted in Section 8.

2. Instrumentation Setup of the Kinova Robotic Arm

The data-driven approach presented herein is applicable to
a large-class of nonlinear systems. It is applied to solve the
model-following problem of a Kinova JACO manipulator, where
each joint is controlled independently of the other. Note that in
addition to the nonlinear nature of the dynamics of each joint,
it is also time-dependent due to the simultaneous motion of
the joints, which adds to the complexity of the control prob-
lem. The inherited features in the IRL solution enable the di-
rect use of joint-measurements without estimating the dynamics
of the robotic arm. Furthermore, the temporal difference struc-
ture of the online IRL solution (i.e., integral temporal difference
or Bellman equation) enables robust filtering characteristics for
the high-frequency content of the processed signals. This will
be highlighted later when presenting the results in Section 7.

The Kinova JACO manipulator is a 6-DoF robot equipped
with a two-finger gripper, as shown in Fig. 1. The actuators are
interfaced through commercial RS-485 communication proto-
col providing a data rate of 12 Mbps and a high-level control
frequency of 100 Hz. Their low-level control loops operate at
500 MHz. Each servometer is equipped with a position sensor
with a resolution of 3, 686, 400/turn. Herein, the robot is con-
trolled through the Robot Operating System (ROS).

Each control signal ui(t) ∈ R actuates the motion of joint i
(i.e., the position angle θi(t)), and the angular velocity is calcu-
lated by θ̇i(t) = (θi(t) − θi(t − ν))/ν, where t is a time-index, ν
is a sampling-time, and i ∈ {1, 2, 3, 4} represents the joint that
is being controlled. Hereafter, index i is omitted for simplicity,
since the algorithm is the same for each joint.
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Figure 1: Kinova JACO manipulator

3. Problem Formulation

This section introduces the mathematical foundation of the
trajectory-tracking optimization problem. The goal is to ma-
nipulate the joints of the robotic arm simultaneously to follow
a desired trajectory in real-time. The learning scheme decides
on the actuation signals of the joints online through adapted
strategies to regulate the trajectory tracking-errors between the
desired and measured angular positions θd(t) and θ(t), respec-
tively. Hence, the dynamic model of each joint is given by

θ̇ = f (θ(t), u(t)) . (1)

It is assumed here that the drift dynamics of the joint are em-
bedded in unknown function f . The adapted strategy does not
require to incorporate such dynamics explicitly in its structure.
Herein, the trajectory-tracking problem is formulated as an op-
timization problem, where the main objective is to select an ac-
tuation signal in real-time (i.e., a control strategy that is decided
based on a machine learning process) to regulate the trajectory-
tracking errors ε(t) = θd(t) − θ(t) (i.e., ideally, the aim is to
achieve limt→∞ ∥ε(t)∥ = 0). The control signal due to an at-
tempted strategy π is given by uπ(t) = uπ(t−ν)+ηπ(t), where the
correction in the actuation signal is represented by ηπ(t) such
that ηπ(t) = ωπ0 ε(t) + ω

π
ν ε(t − ν) + ω

π
2ν ε(t − 2ν). The notation

ν refers to the desired sampling interval needed to collect the
real-time measurements. Further, the tuple {ωπ0, ω

π
ν , ω

π
2ν} defines

the control gains of a policy π, which will be determined using
the online RL solution. The structure of the correction signal
ηπ(t) could vary to reflect high-order error dynamics. This is
done by increasing the number of employed error samples (i.e.,
ε(t−o ν), o = 0, 1, . . . ,L). Herein, a second-order tracking error
system is considered (i.e., o = 2), which proved to be sufficient
to achieve the optimization goals, as shall be demonstrated later.
The signal ηπ(t) decides on the relative angular deviations to ap-
ply without any information on the dynamics of the robotic arm.
The choice of o = 2 means that, this approach can represent as
double as the error dynamics of a model-following problem.

The trajectory-tracking problems are mostly solved using
adaptive learning approaches, since it is difficult to implement

the optimal tracking solutions for complex high-order error dy-
namical systems [1]. Typically, optimal tracking control prob-
lems are solved offline based on the knowledge of the system
dynamics. Further, such solutions often start by solving a sub-
set of coupled differential equations offline before solving the
remaining subset online [46]. The dynamics of the reference-
model must be explicitly embedded in the structure of such so-
lutions, which makes their complexities dependent on the num-
ber of controlled joints. Moreover, the solutions do not ensure
robustness against varying dynamics of the robotic arm. All of
this urges for an innovative model-free adaptive solution that
can be realized in real-time. Herein, the proposed IRL scheme
is divided into two parts. First, an optimal tracking control setup
is considered to develop a temporal difference structure that can
be solved online. Then, an adaptive learning scheme based on
IRL is considered to solve the trajectory-tracking optimization
problem. The solution is realized by sampling and processing
the tracking errors of each joint, as illustrated in Fig. 2.

+ Kinova Robot Arm-

Joint (i): Correction Strategy

IRL

Solution

Joint (i):Actuation Signal

Joint i

Figure 2: Trajectory-tracking system

4. Optimal Trajectory Tracking

This section introduces the mathematical foundation of the
online adaptive learning solution. It relies on an optimal con-
trol setup rather than employing an explicit optimal tracking
control one. This is done to relax the challenges associated
with solving the optimal tracking control problems [46]. How-
ever, this strategy needs a proper process to ensure that it does
not require information on the robot dynamics. The solution
is realized in a measurement-driven manner, where a moving
finite storage of tracking-error samples is considered. As high-
lighted earlier, the number of error samples defines the order
of the error dynamics. This structure exhibits an advantage
compared to low-order error dynamical systems employed in
classical adaptive systems [46, 56]. The goal is to select an
optimal strategy π∗ which yields an optimal correction signal
ηπ∗ for each joint independently, to follow a desired trajectory.
The error samples are stored in a vector X(t) = [ ε(t) ε(t −
ν) ε(t − 2ν) ]T ∈ R3, which signifies the state vector in an op-
timal control setup. A convex performance index P, that is in-
spired by the linear quadratic regulator structure, is employed
such that Pπ(t) =

∫ ∞
t U(X(ξ), ηπ(ξ)) dξ, where the cost func-

tion U(. . . ) incorporates X and ηπ such that U(X(ξ), ηπ(ξ)) =
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1
2

(
XT (ξ) Q X(ξ) + ηπT (ξ) R ηπ(ξ)

)
. The positive definite matri-

ces 0 < Q ∈ R3×3 and 0 < R ∈ R are weighting structures. In
this particular case, R is a real scalar.

The performance index P evaluates a strategy ηπ(t) over a
finite interval. The following developments explain: (i) the
setup of the implicit optimal control solution; (ii) the condi-
tions needed to develop a candidate solution; (iii) the temporal
difference structure employed by the adaptive learning solution;
and (iv) the model-free structure of the optimal control strat-
egy. These developments combine findings from the adaptive
and optimal control theories.

Theorem 1. Let a kernel solution function S (X(t), ηπ(t)) be
non-negative and S (0) = 0. Thus,

1. S ∗ (X(t), ηπ(t)) represents an optimal solution for the Hamilton-
Jacobi-Bellman equation (HJB) equation
H(X(t),∇S ∗ (X(t), ηπ∗(t)) , ηπ∗(t)) = 0.

2. S (X(t), ηπ(t)) represents a Lyapunov function.

Proof. 1. The Hamiltonian for the trajectory-tracking optimiza-
tion problem decides the optimal policy along the trajectory
of the error dynamics V̇π(t) = 0 such that

H(X(t),µ(t), ηπ(t)) = µT (t) V̇π(t) +U (X(t), ηπ(t)) ,

where Vπ(t) = [ XT (t) ηπ(t)T ]T and µ denotes a Lagrange
multiplier associated with the constraints V̇π(t).
The kernel solution structure S (. . . ) is selected to be convex
in vector Vπ(t) such that

S (X(t), ηπ(t)) =
1
2

VπT (t)H Vπ(t), (2)

where 0 < H ≡

[
HXX HXη
HηX Hηη

]
∈ R4×4, HηX ∈ R1×3 and

Hηη ∈ R.

The relation between the kernel solution and µ is explained
by the Hamilton-Jacobi (HJ) theory [46]. Herein, the La-
grange multiplier is found to be µ ≡ ∇S (X(t), ηπ(t)) =
∂S (X(t), ηπ(t))/∂Vπ(t). Substituting∇S (X(t), ηπ(t)) into the
HamiltonianH(. . . ), yields a Bellman equation given by

∇S (X(t), ηπ(t))T V̇π(t) +U (X(t), ηπ(t)) = 0. (3)

It can be noted that this expression is an infinitesimal repre-
sentation of Pπ(t) def

= S (X(t), ηπ(t)) =
∫ ∞

t U(X(ξ), ηπ(ξ)) dξ.
Therefore, (3) can be restructured such that

H(X(t),∇S (X(t), ηπ(t)) , ηπ(t)) =
Ṡ (X(t), ηπ(t)) +U (X(t), ηπ(t)) . (4)

Solving H(X(t),∇S (X(t), ηπ(t)) , ηπ(t)) = 0, while applying
the optimal strategy yields the HJB equation. The optimal
signal ηπ∗ is derived by applying Bellman’s optimality con-
ditions such that ηπ∗(t) = arg minηπ(t) H(X(t),∇S (X(t), ηπ(t)) ,
ηπ(t)). The optimal solution S ∗ is found by solving the HJB

equation given by

H(X(t),∇S ∗ (X(t), ηπ∗(t)) , ηπ∗(t)) =
Ṡ ∗ (X(t), ηπ∗(t)) +U (X(t), ηπ∗(t)) = 0. (5)

2. Since the kernel solution function S is quadratic and con-
vex, then it represents a Lyapunov candidate function. Us-
ing (4) and taking the time-derivative of the kernel solution
S yield Ṡ (X(t), ηπ(t)) = −U (X(t), ηπ(t)) ≤ 0. Therefore,
S (X(t), ηπ(t)) fulfills the conditions of a Lyapunov function.

■

This mathematical setup solves the optimal tracking control
problem through finding the optimal kernel solution S ∗. How-
ever, in order to realize the solution in real-time, a temporal
difference structure and an explicit model-free form of the op-
timal strategy are required. Hence, Theorem 2 builds on the
results of Theorem 1 to develop a temporal difference structure
that can be employed by the reinforcement learning solution.

Theorem 2. The kernel solution S ∗ (X(t), ηπ∗(t)) satisfies an in-
tegral Bellman optimality equation that is given by

S ∗ (X(t), ηπ∗(t)) =
∫ t+ν

t
U (X(ξ), ηπ∗(ξ)) dξ

+ S ∗ (X(t + ν), ηπ∗(t + ν)) , (6)

where the optimal policy π ∗ def
= {ω∗0, ω

∗
ν, ω

∗
2ν} satisfies the sta-

tionarity condition of the optimization problem.

Proof. Applying Euler approach on the Bellman equation (3),
yields a temporal difference structure given by

S (X(t), ηπ(t)) − S (X(t + ν), ηπ(t + ν))
ν

= U (X(t), ηπ(t)) .

Equivalently, this could be written as

S (X(t), ηπ(t)) =
∫ t+ν

t
U (X(ξ), ηπ(ξ)) dξ

+ S (X(t + ν), ηπ(t + ν)) . (7)

This represents a temporal difference form, where Bellman’s
optimality conditions can be applied to find the optimal strat-
egy. Hence, ηπ∗(t) = arg minηπ(t) S (X(t), ηπ(t)). This and (2)
yield

ηπ∗(t) = −H−1
ηηHηX X(t). (8)

This optimal policy structure π∗ = −H−1
ηηHηX, is model-free

and relies only on the kernel solution matrixH . Therefore, this
matrix is adapted in real-time using the tracking error measure-
ments. Employing this optimal strategy into (7), yields the In-
tegral Bellman optimality equation (6). The optimal correction
signal is given by ηπ∗(t) = ω∗X(t) where the optimal control
gains follow ω∗ = [ω∗0 ω

∗
ν ω

∗
2ν ] = −H−1

ηηHηX ■

The next result discusses the stability of the trajectory-tracking
error system following the solution of the Integral Bellman op-
timality equation (6) using the optimal strategy (8).

4



Lemma 1. Let the value of the initial kernel solution S be
bounded such that S (X(0), ηπ(0)) ≤ T . Given a bounded inde-
pendent command trajectory θd(t), the trajectory tracking error
dynamical system is asymptotically stable with limt→∞ ε(t) = 0
and limt→∞ Ṡ (X(t), ηπ(t)) = 0.

Proof. According to Theorem 1, the solution S (X(t), ηπ(t)) is
shown to be a Lyapunov function. Then, the inequality given
by S (X(t), ηπ(t)) ≤ S (X(0), ηπ(0)) ≤ T ,∀t holds. This yields,
S (X(t), ηπ(t)) ∈ L∞. So, ε(t), ε(t − ν), ε(t − 2ν) ∈ L∞ and H
(implicitly signifies a vector of control gains ω∗) ∈ L∞. Since
S is proved to be a Lyapunov function and the integral Bell-
man equation can be formulated as

∫ t
0 Ṡ (X(ϑ), ηπ(ϑ)) dϑ =

S (X(t), ηπ(t))−S (X(0), ηπ(0)). Then, −
∫ t

0 Ṡ (X(ϑ), ηπ(ϑ)) dϑ ≤
S (X(0), ηπ(0)). This shows that Ṡ (X(t), ηπ(t)) ∈ L∞, and con-
sequently implies that ε̇(t), ε̇(t − ν), ε̇(t − 2ν) ∈ L∞. Using (5)
and (8), a conclusion can be made such that

∫ t
0 XT (ϑ)

(
Q + ω∗T Rω∗

)
X(ϑ) dϑ ≤ S (X(0), ηπ(0)), which reveals that ε(t), ε(t−ν), ε(t−
2ν) ∈ L2 and Ṡ (X(t), ηπ(t)) ∈ L2. Applying Barbalat’s Lemma [1],
yields limt→∞ Ṡ (X(t), ηπ(t)) = 0. Thus, the tracking error dy-
namic system is asymptotically stable and limt→∞ ε(t) = 0. ■

Remark 1. Adaptive control solutions with time-delays adopt
direct and indirect parameter estimation schemes in real-time
control strategies. In the model-reference adaptive solution
proposed here, the algorithm is based on multi-step time sam-
pling of the tracking error, where the number of steps is left as a
user-defined parameter. The time shifting induced by the multi-
step sampling naturally incorporates a time-delay into the un-
derlying strategy without requiring additional parameter esti-
mation approaches.

The above results provide a temporal difference solution
framework that uses a model-free strategy to solve an opti-
mal trajectory tracking problem in real-time. It relies on kernel
structure (2) and employs a model-free strategy (8) to solve the
integral Bellman optimality equation (6). This optimal solution
cannot be realized analytically. Hence, a reinforcement learn-
ing solution scheme is considered next to realize the solution.

5. Reinforcement Learning Adaptive Solution

The Bellman optimality equation (6) and the optimal model-
free control strategy (8) will be used to develop an adaptive
learning solution adopting the heuristic form of IRL to con-
trol the joints of the Kinova obotic arm, simultaneously in real-
time. A value iteration mechanism will be considered to realize
the online IRL solution. Then, an adaptive critics structure is
employed to approximate the IRL solution in real-time using a
gradient-descent technique.

5.1. Online Value Iteration Solution

A simplified value iteration procedure for each joint of the
robotic arm is described as follows:

1. Initialize the kernel solution matrix H0, control signal
u(0), correction signal η(0), and error vector X(0).

2. Start an iterative process r = 0, 1, 2, . . . ,N, where r refers
to a sequence of adapted or updated policies.

(a) Solve for the new kernel solutionH r+1 such that

S r+1 (X(t), ηr(t)) =
∫ t+ν

t
U (X(ξ), ηr(ξ)) dξ

+ S r (X(t + ν), ηr(t + ν)) . (9)

(b) Improve the correction strategy as

ηr+1(t) = −
[
H−1
ηηHηX

]r+1
X(t). (10)

3. Upon convergence of ∥H r∥ terminate the adaptation.

This online IRL solution is based on a value iteration mech-
anism that solves the temporal difference equation (9) and up-
dates the control strategy (10) in the above mentioned desig-
nated order. Theorem 3 below verifies the convergence of the
adapted kernel solution following this iterative procedure.

Theorem 3. Let the value iteration solution update the kernel
matrix H r and the optimal strategy ωr using (9) and (10), re-
spectively. Then,

1. The value iteration process yields a sequence 0 ≤ S 0 ≤ S 1 ≤

S 2 ≤ · · · ≤ S ∗ that converges to the optimal solution of (6).

2. The strategies advised by (10) are stabilizing ones.

Proof. 1. The initial kernel solution is bounded such that 0 <
S 0 (X(0), ηπ(0)) ≤ T . Thus, according to (9), the equal-
ity S r+1 (X(t), ηπ(t)) =

∑r
i=0 S 1 (X(t + i ν), ηπ(t + i ν)) −

∑r
i=1

S 0 (X(t + i ν), ηπ(t + i ν)) holds. This leads to a non-decreasing
sequence (i.e., 0 ≤ S 0 ≤ S 1 ≤ · · · ≤ S r ≤ S r+1, ∀r).
The trajectory-tracking error dynamical system is shown to
be asymptotically stable. Therefore, the cumulative cost is
bounded (i.e., 0 <

∫ ∞
0 U (X(ξ), ηπ(ξ)) dξ ≤ T̄ ). This leads

to a converging sequence such that 0 ≤ S 0 ≤ S 1 ≤ · · · ≤

S r ≤ S r+1 ≤ T + T̄ , ∀r. Accordingly, the value iteration
procedure results in a sequence 0 ≤ S 0 ≤ S 1 ≤ · · · ≤ S ∗,
where S ∗ is the solution of Bellman optimlaity equation (6).

2. The integral Bellman optimality equation S r (X(t), ηr(t)) −
S r (X(t + ν), ηr(t + ν)) =

∫ t+ν
t U (X(ξ), ηr(ξ)) dξ employs the

optimal strategies ηr, ∀r, ν given by (10). This and the sta-
bility results yield

lim
ξ→∞

S r (X(ξ), ηr(ξ)) = 0 ≤ · · · ≤ S r (X(t + 2 ν), ηr(t + 2 ν)) ≤

S r (X(t + ν), ηr(t + ν)) ≤ S r (X(t), ηr(t)) .

Therefore, the strategies µr,∀r are stabilizing and the result-
ing sequence of updated strategies can be written as

S 0
(
X(t), η0(t)

)
≤ S 1

(
X(t + ν), η1(t + ν)

)
≤

S 2
(
X(t + 2ν), η2(t + 2ν)

)
≤ · · · ≤ S r (X(t + rν), ηr(t + rν)) .

■
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Remark 2. Generally, Lyapunov solutions for model-following
problems require the knowledge of the process dynamics and of
the desired trajectory dynamics. IRL is adopted in optimization
problems written in a temporal difference form, as for exam-
ple induced by the integral Bellman equation in a discrete-time
form. Temporal difference forms with function approximation
are the core of families of model-free solution methods for op-
timization problems. Herein, the simultaneous solution of (9)
and (10) provides a novel algorithmic approach to the optimal
tracking problem based on the computational form of the IRL.

5.2. Adaptive Critics Implementation

Neural networks are adopted to implement the value iter-
ation solution. This is done using critic and actor neural net-
works to approximate the kernel function and associated opti-
mal strategy. These structures are adapted in real-time using
data measured along the trajectory of the robotic arm system.
The kernel solution value function is approximated such that

Ŝ (X(t), η̂(t)) =
1
2

VT (t)Ωc V(t),

whereΩc represents the critic weights, η̂(t) is the approximation
of correction control signal, and Vπ(t) = [ XT (t) η̂(t) ]T . The
critic weights Ωc > 0 approximate the kernel solution matrix
H > 0 which is adapted by the value iteration process. This
structure is inspired by that of the kernel matrixH .

The structure of the actor neural network follows the form
of the optimal strategy (10) such that

η̂(t) = Ωa X(t),

where the actor neural network weightsΩa approximate the op-
timal control gains ω∗ = [ω∗0 ω

∗
ν ω

∗
2ν ].

Herein, a gradient-descent approach is employed to adapt
the actor and critic weights. Thus, the adaptation error struc-
tures of the critic and actor are inspired by the value itera-
tion procedure given by (9) and (10), respectively. The tun-
ing error associated with adapting the critic weights is given
by ECritic =

1
2

(
Ŝ (X(t), η̂(t)) − S̃ (t)

)2
, where S̃ (t) is defined by

S̃ (t) = U (X(t), η̂(t)) + Ŝ (X(t + ν), η̂(t + ν)). Therefore, the
critic tuning law follows

Ω(r+1)
c = Ω(r)

c − αc E(r)
CriticVπ VπT , (11)

where 0 < αc < 1 is an adaptation rate for the critic weights.
Similarly, the tuning error associated with adapting the actor
weights is formulated as EActor =

1
2 (η̂ − ũ)2, where ũ = −Ω−1

cη̂η̂Ωcη̂X.
Thus, the resulting actor adaption law is given by

Ω(r+1)
a = Ω(r)

a − αa E(r)
Actor XT , (12)

where 0 < αa < 1 is the learning rate of the actor weights. The
detailed steps of the online adaptive critics implementation of
the IRL solution are listed in Algorithm 1.

Remark 3. Herein, the problem is formulated as determinis-
tic, consistently with the literature on reinforcement learning

solutions of optimal control problem with model-free setups,
where optimal control policies are learned by relying on mea-
surements along a specific system’s trajectory, eliminating the
necessity of the system’s drift dynamics/model which may be
unknown or highly uncertain [46]. Additive noise is used as
disturbance in various scenarios below to test and illustrate the
robustness of the adaptive learning solutions.

Algorithm 1 Online Adaptive Critics Solution

Input:
Total number of adaption steps N
Sampling interval ν
Adaptation rates αa and αc

Weighting matrices Q and R
Convergence threshold σ and a time-window of length L to
check convergence

Output:
Tuned actor and critic weights (i.e., Ω

(t+ℓν)
a and

Ω
(t+ℓν)
c , ℓ = 0, 1, . . . ,N)

1: Define the desired trajectory θd(t),∀t
2: Initialize the angular position θ(0), control signal u(0), ac-

tor weights Ω(0)
a , and critic weights Ω(0)

c
3: Calculate the error vector X(0)
4: ℓ ← 0
5: Convergence Condition← False
6: while ℓ < N and Convergence Condition = False do
7: Compute the correction control signal η̂(ℓν)
8: Adjust the control signal u(ℓν) + η̂(ℓν) and then actuate

each joint
9: Observe θ((ℓ + 1) ν)

10: Use θd((ℓ + 1) ν) to find ε(t + (ℓ + 1) ν)
11: CalculateU(X(ℓ ν), η̂(ℓν)) and S (X(ℓ ν), η̂(ℓν))
12: Find X((ℓ + 1) ν) and η̂((ℓ + 1) ν). Hence, get S (X((ℓ +

1) ν, η̂((ℓ + 1)ν))
13: Find the target values of the critic and actor neural net-

work approximators S̃ (ℓ ν) and η̃(ℓν)
14: Adapt the critic weights Θ(ℓ+1)

c ▷ use tuning law (11)
15: Adapt the actor weights Θ(ℓ+1)

a ▷ use tuning law (12)
16: if ℓ > L and

∥∥∥Ω(ℓ+1−l)
c −Ω

(ℓ−l)
c

∥∥∥ ≤ σ, ∀l ∈ {0, 1, . . . , L},
then

17: Ω
(∗)
c ← Ω

(ℓ+1)
c

18: Convergence Condition← True
19: end if
20: ℓ ← ℓ + 1
21: end while

return Ω(t+ℓν)
a and Ω(t+ℓν)

c , for ℓ = 0, 1, . . . ,N

6. Experimental Setup

Five experiments are carried out to evaluate the controller’s
performance under various conditions. In the first four experi-
ments, the control scheme is applied to simultaneously track the
nominal trajectories of the four joints (base, shoulder, elbow,
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and wrist) under four different conditions. In these experiments,
the initial joint positions are taken as θ(0) = [ 0 90 180 −

135 180 0 ]T (degrees). Note that the last two joints of the
robot are not controlled. The first experiment implements the
control algorithm in an ideal case where there is no payload and
no dynamic disturbances. The response to this experiment is
used as a baseline for the comparison with the other responses,
along with the nominal trajectories. To test the algorithm under
a different payload, the second experiment is conducted while
a gripper, mounted at the robot’s end-effector, holds a constant
payload of 3 lb, which represents approximately 91% of the
arm’s total payload capacity. The purpose of the third exper-
iment is to assess the controller’s performance in the face of
sudden payload changes. It is conducted by starting with no
payload and then abruptly adding a 2.5 lb sandbag to the grip-
per around the halfway mark of the experiment. To evaluate
the disturbance rejection capacity of the proposed solution, a
fourth experiment is carried out where the actor weights are
synthetically disturbed by additive noise drawn from the nor-
mally distributed random variable M ∼ N(0, σ) during the be-
ginning of the experiment. This experiment is repeated while
varying the duration and standard deviation of the weight dis-
turbances. The values used are tabulated in Table 1. Such a
scenario, demonstrates the robustness of the algorithm to vari-
ations in initial weights and shows a strong ability to adapt the
weights as needed. Furthermore, the experiment mimics mea-
surement noise that may be imposed on or passed to the ac-
tuation signals. It is important to note that this synthetic dis-
turbance is superimposed to the actual measurement noise in-
trinsic to the instrumentation of the manipulator’s arm. The
fifth experiment tests the controller’s ability to compensate for
a time-varying payload by controlling a single-joint (the el-
bow) while the gripper gradually lifts a sandbag off the top of
a table so that the payload carried by the robot gradually in-
creases to the full-weight of the sandbag (2.5 lb). The initial
joint positions in this time-varying payload experiment are set
to θ(0) = [ 90 143 − 45 − 135 180 0 ]T (degrees). A brief
summary of the five experiments is provided in Table 2. Exper-
iment 4 is the only one that was not conducted on the real robot.
It is rather run on ROS/Gazebo simulation platform to protect
the robot from any erratic behaviors that may arise due to the
injected noise.

Table 1: Disturbance experiment parameters

Duration (%) 20 40 60 100
Variance, σ2 0.025 0.025 0.020 0.0125

The nominal joint trajectories for the first four experiments
are shown in Figs. 3(a) to 3(d), while that of the fifth exper-
iment is shown in Fig. 3(e). This collection of reference tra-
jectories provides variety of model-following dynamics to test,
including slow dynamics and faster dynamics (the latter repre-
sented by the high frequency sinusoidal signal). Further, sharp
and nonlinear forms of trajectories are considered. The goal
is to test the robustness of the IRL solution under co-exiting
interacting dynamic trajectories. The base joint trajectory in

Table 2: Summary of the experiments

Experiment Description

1 No payload, no disturbance
2 Constant payload of 3 lb throughout the experiment
3 Abrupt payload of 2.5 lb halfway throughout the ex-

periment
4 Random distrurbance of actor weights at the begin-

ning of the experiment
5 Time-varying payload

Fig. 3(a) represents an exponential growth for a predefined du-
ration of three time-constants followed by an exponential decay
for another duration of three time-constants. This trajectory is
used to observe the system’s ability to follow a path with time-
varying position and velocity. The linear reference trajectory
of the shoulder shown in Fig. 3(b) probes the system’s ability to
follow a time-varying angular position while maintaining a con-
stant velocity. The elbow’s target trajectory in Fig. 3(c) aims to
analyze the ability of the system to maintain a constant angular
position for a period of time before reacting to a step change. A
notable difference between the elbow’s trajectory and the other
trajectories is the discontinuity of the former. The step change
in the desired elbow’s angular position should force the IRL al-
gorithm to extrapolate and deliberately choose points that are
not specified by the given values. Finally, the reference trajec-
tory of the wrist shown in Fig. 3(d) investigates the algorithm’s
ability to track sinusoidal signals.
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Figure 3: (a)–(d): Nominal trajectories for experiments 1 to 4. (e): Elbow’s
reference trajectory for experiment 5.
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The high-level control loop operates at a rate of 8 Hz for the
IRL algorithm with N = 960 and ν = 0.125 s, where here N
and ν represent the discrete-time index and the cycle period of
the actuation system, respectively. In all test cases, the adap-
tation rates for the actor and critic weights are selected to be
αa = 0.01 and αc = 0.05, respectively. The initial critic matri-
ces are randomly generated for the first test case and then held
constant throughout the remainder of the test cases for consis-
tency purposes. Since the joint encoders sampling frequency
and the actuation frequency are 50 Hz and 8 Hz, respectively,
the corresponding time delay is negligible. The high-level ROS
control between the external computer and the Kinova manipu-
lator is secured through a USB-B connection while the embed-
ded low-level actuator controls leverage the RS-485 protocol.

The critic weighting matrices for the four joints are set to

Ωc1 =


0.80350 0.30937 0.84494 0.71454
0.30937 0.21330 0.31157 0.36979
0.84494 0.31157 1.09927 0.53435
0.71454 0.36979 0.53435 0.92855

 ,

Ωc2 =


0.42471 0.49183 0.54214 0.52932
0.49183 0.66047 0.31157 0.59427
0.54214 0.31157 1.15278 0.89470
0.52932 0.59427 0.89470 1.05989

 ,

Ωc3 =


0.55195 0.39823 0.37661 0.25486
0.39823 0.51538 0.42652 0.33598
0.37661 0.42652 0.40267 0.35263
0.25486 0.33598 0.35263 0.48076

 ,

Ωc4 =


1.52075 0.78373 1.29889 1.07203
0.78373 0.93637 0.54343 0.28335
1.29889 0.54343 1.41173 0.91172
1.07203 0.28335 0.91172 1.2790

 .
The initial actor weights are decided using the above critic ma-
trices such that Ω0

a = −H
−1
ηηHηX + Y , where Y ∼ N(0, 0.1) .

The random variable is added to the base, shoulder, and elbow
joints, to show robustness to the initial conditions of the actor
weights and to more readily demonstrate the adaptability of the
IRL. The values of Q and R are quoted below for completeness.

Q1 =

0.51503 0.25789 0.06581
0.25789 0.19214 0.07471
0.06581 0.07471 0.03784

 , R1 = 0.07451,

Q2 =

0.85038 0.59431 0.47996
0.59431 0.51992 0.24568
0.47996 0.24568 0.38590

 , R2 = 0.00876,

Q3 =

0.74237 0.51836 0.63923
0.51836 0.41698 0.46758
0.63923 0.46758 0.60572

 , R3 = 0.49363.

Q4 =

0.56665 0.36332 0.53481
0.36332 0.47523 0.37991
0.53481 0.37991 0.5266

 , R4 = 0.019686.

To put the performance of the IRL algorithm in perspective,
we compare it with a high-order model-free adaptive control

Table 3: Parameters used for the HOMFAC algorithm

Parameter Value Parameter Value

α [ 1/2 1/4 1/8 1/8 ] η 0.8
λ 0.1 µ 0.01
ρ 0.8 ϕ0

1 15
ϕ0

2 15 ϕ0
3 25

ϕ0
4 25

(HOMFAC) scheme presented in [57], which is an improved
version of the algorithm proposed in [58]. The adaptive learn-
ing solution differs in the structure when compared with that of
the HOMFAC approach. The adaptive solution employs adapt-
able strategies unlike the HOMFAC approach, where fixed con-
trol gains are considered. Furthermore, the reinforcement learn-
ing strategy captures explicit high-order error dynamics, while
the order of error dynamics is controllable. This is unlike the
HOMFAC case, where explicit zero-order error dynamics are
utilized into the control strategy. This means that the adaptive
learning solution has more capacity to react to the variations in
the error patterns. The simulation cases in Section 7 highlight
the impact of such differences. Just like the IRL algorithm, the
HOMFAC technique is applied to each of the four joints. Both
algorithms are implemented in Python 2.7 and interfaced with
the robot through ROS Melodic. The parameter values used
for the HOMFAC algorithm are the same as those presented
in [57] and are tabulated in Table 3. Parameters α, η, λ, µ, and
ρ, dictate the adaptation properties of the estimator ϕ(t) and cal-
culation of the control action u(t). Parameters ϕ0

i , i = 1, 2, 3, 4,
represent the initial conditions of the joint estimators. These
values are chosen experimentally. In order to successfully im-
plement the HOMFAC algorithm on the Kinova JACO arm, the
frequency is reduced to 5 Hz. Attempts to implement the HOM-
FAC algorithm with higher frequencies induced non-convergent
responses.

7. Results and Discussion

The joint trajectories achieved with the IRL and HOMFAC
algorithms are logged at run-time and plotted against the nom-
inal trajectories for comparison. The results for the first three
experiments are illustrated in Figs. 4 to 7. It is observed that
the IRL algorithm is able to converge rapidly to the reference
signals, which is not always the case for the HOMFAC tech-
nique. These figures clearly demonstrate the superiority of the
IRL algorithm over the HOMFAC. This is more evident in the
cases where there is a sudden or/and continuous changes in the
reference trajectories (e.g., Figs. 6 and 7). As a matter of fact,
in some experiments, the HOMFAC exhibits excessive oscilla-
tions and even divergence, as in Fig. 6 and Fig. 7(c), respec-
tively, while the IRL algorithm shows a smooth and rapid con-
vergence. Quantitatively, Fig. 6(c) shows a maximum elbow
joint overshoot using the HOMFAC algorithm of approximately
28% as opposed to approximately 4% for the IRL. For the pur-
pose of readability and completeness, the adaptations of the ac-
tuator gains are presented in the Appendix.
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(a) Experiment 1
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(b) Experiment 2
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(c) Experiment 3

Figure 4: Base trajectories for the first three experiments.
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(b) Experiment 2
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(c) Experiment 3

Figure 5: Shoulder trajectories for the first three experiments.

The tracking performance of the IRL algorithm for experi-
ment 4 is shown in Fig. 8. The adaptations of the elbow actor
gains are depicted in Fig. 9. For completeness, the gain figures
for the rest of the joints can be found in Appendix A. Despite
the extra noise injected in the first 24 s of the experiment, the
IRL algorithm maintained a trajectory profile which oscillates
closely around the reference-signal during this period of time
before it rapidly converges after that. This is particularly clear
for joints 3 and 4 (the oscillations in joint 1 are too small to
be noticed). The significant oscillations in the shoulder joint
between the 20 s and 60 s point marks are due to the depen-
dence of motion between joints 2 and 3. The axes of rotation
for these two joints are parallel to one another, implying that
any jerk in joint 2 influences joint 3. This is clearly observed
by considering the response of joints 2 and 3 between the 45 s
and 50 s point marks. During this interval, an increase in oscil-
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(c) Experiment 3

Figure 6: Elbow trajectories for the first three experiments.
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Figure 7: Wrist trajectories for the first three experiments.

lation is observed in both joints before the behavior is rectified
by the IRL algorithm and the trajectory error is successfully
reduced preceding the step change in joint 3 at the 60 s mark.
The actor’s effort in counter-acting the noise is manifested in
the dynamic behavior of its gains during the first 24 s. They
smoothly converge soon after that. For readability, the results
of the experiments with longer disturbance periods are included
in Appendix B.

The robot’s initial configuration and the results for experi-
ment 5 are visualized in Figs. 10 and 11, respectively. These
results are consistent with those observed earlier in that, the
HOMFAC algorithm seems to ill-cope with continuously chang-
ing dynamics (due to the time-varying payload in this case).
Nonetheless, the IRL method easily converges despite a few mi-
nor initial oscillation cycles. As expected, the learning process
of the IRL algorithm remains active while the payload is vary-
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Figure 8: Joint trajectories for experiment 4.
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Figure 9: Adaptation of the elbow actor gains for experiment 4.

ing and stabilizes right after it reaches a constant value. This is
shown in the variation of the actor gains plotted in Fig. 12.

Figure 10: Robot initial position for experiment 5.
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Figure 11: Shoulder trajectories for experiment 5.
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Figure 12: Adaptation of the shoulder actor gains for experiment 5.

8. Conclusion

The paper discusses the need for reliable real-time process-
ing schemes of sensor readings using robust machine learn-
ing algorithms. To that end, an integral reinforcement learn-
ing approach is developed for the control of a class of nonlin-
ear systems. This is accomplished in real-time without prior
knowledge of the robot dynamics or explicitly incorporating
the desired trajectory in the adapted strategies. The solution
is realized using a value iteration process. The convergence
and stability characteristics of the adaptive learning solution
are formally analyzed. The proposed technique is demonstrated
on a 6-DoF Kinova robotic arm and is compared with another
model-free controller (HOMFAC). Results show the superiority
of the former approach under various dynamics and reference
signals, including high-frequency measurement noise.
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Appendix A. Actors Adaptations for Experiments 1-3
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Figure A.13: Adaptation of the base actor gains for the first three experiments.
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Figure A.14: Adaptation of the shoulder actor gains for the first three experi-
ments.
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Figure A.15: Adaptation of the elbow actor gains for the first three experiments.
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Figure A.16: Adaptation of the wrist actor gains for the first three experiments.
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Appendix B. Supplementary Data for Noise Experiments
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Figure B.17: Joint trajectories for experiment 4 with noise added to actor
weights over the first 40% of the experiment.

0 20 40 60 80 100 120
Time, t (sec)

0

20

40

60

80

100

120

140

Ba
se

 Jo
in

t A
ng

le
, (

) Nominal
IRL

(a) Joint 1

0 20 40 60 80 100 120
Time, t (sec)

90

100

110

120

130

140

150

Sh
ou

ld
er

 Jo
in

t A
ng

le
, (

)

Nominal
IRL

(b) Joint 2

0 20 40 60 80 100 120
Time, t (sec)

120

140

160

180

200

El
bo

w 
Jo

in
t A

ng
le

, (
) Nominal

IRL

(c) Joint 3

0 20 40 60 80 100 120
Time, t (sec)

225
200
175
150
125
100

75
50

W
ris

t J
oi

nt
 A

ng
le

, (
)

Nominal
IRL

(d) Joint 4

Figure B.18: Joint trajectories for experiment 4 with noise added to actor
weights over the first 60% of the experiment.

0 20 40 60 80 100 120
Time, t (sec)

0

20

40

60

80

100

120

140

Ba
se

 Jo
in

t A
ng

le
, (

) Nominal
IRL

(a) Joint 1

0 20 40 60 80 100 120
Time, t (sec)

90

100

110

120

130

140

150

Sh
ou

ld
er

 Jo
in

t A
ng

le
, (

)

Nominal
IRL

(b) Joint 2

0 20 40 60 80 100 120
Time, t (sec)

130

140

150

160

170

180

190

El
bo

w 
Jo

in
t A

ng
le

, (
) Nominal

IRL

(c) Joint 3

0 20 40 60 80 100 120
Time, t (sec)

225
200
175
150
125
100

75
50
25

W
ris

t J
oi

nt
 A

ng
le

, (
)

Nominal
IRL

(d) Joint 4

Figure B.19: Joint trajectories for experiment 4 with noise added to actor
weights over the experiment.
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Figure B.20: Adaptation of the base actor gains for experiment 4..
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Figure B.21: Adaptation of the shoulder actor gains for experiment 4.
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Figure B.22: Adaptation of the wrist actor gains for experiment 4.
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