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Learning Vehicle Trajectory Uncertainty
Barak Or and Itzik Klein,

Abstract—A novel approach for vehicle tracking using a
hybrid adaptive Kalman filter is proposed. The filter utilizes
recurrent neural networks to learn the vehicle’s geometrical and
kinematic features, which are then used in a supervised learning
model to determine the actual process noise covariance in the
Kalman framework. This approach addresses the limitations
of traditional linear Kalman filters, which can suffer from
degraded performance due to uncertainty in the vehicle kinematic
trajectory modeling. Our method is evaluated and compared to
other adaptive filters using the Oxford RobotCar dataset, and
has shown to be effective in accurately determining the process
noise covariance in real-time scenarios. Overall, this approach
can be implemented in other estimation problems to improve
performance.

Index Terms—Kalman filter, vehicle tracking, trajectory mod-
eling, adaptive estimation, recurrent neural networks, long short-
term memory, curvature estimation features.

I. INTRODUCTION

In many applications, accurate positioning is required.
Those include, vehicle tracking tasks [1]–[8], vehicle trajec-
tory smoothing [4], [9]–[12], autonomous driving [13], [14],
advanced driver-assistance systems [15] , and path planning
and tracking for vehicles and robots [16], [17]. For trajectory
uncertainty estimation, in [18] the authors present a vehicle
trajectory prediction method that takes into account aleatoric
uncertainty to improve the overall accuracy of the prediction.
In [19], the authors propose a probabilistic vehicle trajectory
prediction method based on a dynamic Bayesian model that
integrates the driver’s intention, maneuvering behavior, and
vehicle dynamics using in-vehicle sensors. The method esti-
mates the vehicle trajectory and achieves accurate long-term
predictions in both lane-keeping and lane-changing scenarios.

To achieve accurate positioning the model-based Kalman
filter (KF) is widely used. One of the challenges to consider
when applying a KF for tracking applications is the modeling
of the vehicle trajectory, as expressed by the system matrix
and associated process noise covariance. Typically, constant
velocity (CV) or constant acceleration (CA) models are em-
ployed for a wide range of vehicle tracking problems [1],
[12], [20]–[22]. However, these models make assumptions
that may not accurately reflect real-world scenarios, where
a vehicle’s velocity and acceleration may vary over time. In
the CV model, the underlying assumption is that the vehicle
travels with constant velocity. The addition of process noise
turns the model to a nearly CV model allowing the filter to
cope with varying velocity conditions. In the same manner,
the CA model assumes constant vehicle acceleration and the
addition of process noise turns the model to a nearly CA model
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allowing the filter to cope with varying acceleration. That is,
the added process noise covariance enables the filter to cope
with unmodeled vehicle dynamics (for example, as additional
states) or perturbations up to some order of magnitude [23].

Using the CV and CA models ensures a Gauss-Markov
(GM) process and provides an optimal estimation [24], [25].
As long as the underlying model assumptions hold, the filter
accuracy is satisfactory. However, in practice, the vehicle
dynamics can differ from the model assumptions leading to
a mismatch between the modeling and the actual behavior
of the vehicle. As a consequence, the KF tracking filter
performance degrades, and, in some situations, diverges. In
automated vehicle perspective, it might result in a loss of
information on the vehicle location that could potentially lead
to an accident [26]. Therefore, model uncertainty, namely
process noise covariance determination, is considered critical
in the pre-processing phase of the KF [24], [27], [28].

Generally, increasing the value of the process noise co-
variance matrix results in the short memory behavior of the
filter. In such situations, the assumption made on the vehicle’s
kinematic model is less relevant, as the filter gives more weight
to the external measurements when calculating the filter gain.
However, in some situations, this can lead to non-optimal
trajectory estimation. In contrast, setting lower values for the
process noise covariance matrix leads to a long memory behav-
ior of the filter. In such situations, the kinematic model is more
dominant in the filtering process. As a result, even a small
deviation from the assumed kinematic model can result in poor
estimation performance and sometimes in filter divergence. To

Fig. 1. Trajectory modeling error demonstration. The vehicle position at
timestamp k is predicted to maintain a straight line, according to the trajectory
model (CV). However, its true position at time k is along the road, where it
performed a circular motion (along a circle with radius ρ) to remain on the
road. This tracking error is directly caused by uncertainty in the trajectory
model design (represented by the red vertical line).

cope with varying conditions along the trajectory, model-based
adaptive approaches to tune the process noise covariance,
were suggested in the literature [24], [29]–[32]. Among them,
the common approaches are 1) the innovation-based method,
where the innovation quantity is used together with the Kalman
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gain to calibrate the matrix [33], 2) modified scaling, where
the measurement noise covariance matrix is known and used
to keep the trajectory uncertainty noise matrix scaled [34],
and 3) generative learning, where the system transition matrix
model is used to calculate and correct model error every
two successive steps [23]. Although many works addressed
this issue, the problem of optimal trajectory modeling by
tuning the trajectory uncertainty process noise covariance is
still considered unsolved [24].

Recent advancements in machine learning (ML) and deep
learning (DL) techniques [35] have demonstrated state-of-the-
art performance in various fields such as computer vision [36],
natural language processing [37], inertial sensing [38], and
autonomous underwater vehicle navigation [39], [40].

Recent works, addressing model uncertainty, explore the
possibility of using ML/DL approaches. Learning approaches
suggest including a loss function that contains the process
noise covariance, both directly and indirectly [23]. There,
the learning approach learns the covariance matrix parameters
online. Yet, the resulting time to converge is too long, as the
entire history of the tracking process is considered. In [9], a
curve-fitting approach was proposed for tuning the trajectory
uncertainty noise matrix using a neural network. However, this
method requires a training set with accurate ground truth for
the entire trajectory, which makes it unrealistic for real-time
tracking in new environments. This is a significant limitation
of the proposed method and poses a challenge to its practical
implementation in real-world scenarios.

In [28],we proposed a novel hybrid learning framework
for a nonlinear extended KF. This filter fuse between an
inertial navigation system (INS) and a global navigation
satellite system using a DL model. The DL model captures
the dynamic of the system in real-time and adapts it to
improve its performance. The proposed method is tested
using field experiments with a quadrotor, and it was shown to
improve position accuracy by 25% compared to model-based
INS/GNSS fusion.

In this paper, a hybrid adaptive linear KF, based on ML
algorithms and the model-based KF equations is proposed to
cope with the model uncertainty in a vehicle tracking problem.
Our objective is to provide a robust estimate of the process
noise covariance, resulting in enhanced positioning accuracy.
To that end, we implement the CV and CA models and assume
the availability of position measurements received for example
from radar, LiDAR, or GNSS receiver. Although an end-to-
end network is simpler to implement, it does not give any
intuition to the problem and acts as a black box. On the other
hand, hybrid approaches rely on well-established model-based
theory while adding the benefits of data-driven approaches
by replacing a single operation in the model-based solution.
The proposed hybrid approach consists of two steps. First,
recurrent neural networks (RNNs) [41] are employed to learn
the vehicle’s geometrical and kinematic features, namely, the
road curvature and vehicle speed. Secondly, these features are
inserted into a supervised learning (SL) model providing the
actual process noise covariance to use in the KF framework.

The main contributions of this paper are:

1) A hybrid supervised adaptive learning-based method that
incorporates road curvature, vehicle speed, and noise
measurement covariance as features to accurately esti-
mate the model trajectory uncertainty.

2) A novel neural network structure to regresses the road
curvature based on past position estimates.

3) Real-time implementation of a linear KF, where the
learned trajectory uncertainty is utilized to optimize the
model noise covariance matrix for two tracking models:
CV and CA.

The proposed approach can be applied in online scenarios.
To demonstrate its performance, vehicle tracking using CV
and CA models is considered. The proposed approach is
analyzed and compared to six other adaptive filters using the
Oxford RobotCar database [42]. Results show the benefits of
implementing the proposed hybrid learning model approach.

The rest of this paper is organized as follows: Section 2
deals with the problem formulation for CV and CA models and
the tracking filter and its trajectory uncertainty as well as the
common approaches to adapt the trajectory uncertainty noise
matrix. Section 3 presents our trajectory uncertainty learning
scheme including the feature engineering, dataset generation
process, and online tuning scheme with the KF. Section 4
presents the results and Section 5 gives the conclusions.

II. PROBLEM FORMULATION

This section presents the tracking filter by examining three
different cases of trajectory uncertainty. Additionally, the CV
and CA models, along with their corresponding measurement
models, are provided. Finally, various model-based adaptive
approaches for determining the value of the trajectory uncer-
tainty noise matrix in a real-time setting are discussed.

A. Tracking Filter

The linear discrete KF is presented. The filter’s initial
conditions are

x̂0 = E [x0]

P0 = E
[
(x0 − E [x0]) (x0 − E [x0])

T
] (1)

where x0 is the initial state vector, x̂0 is the initial estimate
state vector, P0 is the initial covariance error, E is the expected
value operator, and T is the transpose operator.
The state estimate propagation is made by

x̂−k = Φx̂k−1 (2)

where x̂−k is the estimate of the current state k, x̂k−1 is the
estimate of the previous state (k − 1), and Φ is the discrete
system matrix.
The error covariance propagation is calculated using

P−k = ΦPk−1Φ
T+Qk (3)

where Pk−1 is the estimate from the previous state, (k−1), P−k
is the estimate from the current state, k, and Q is the trajectory
uncertainty noise matrix (covariance). When a measurement is
available the state and covariance update are made according
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to the following set of equations (4)− (7).
The Kalman gain is given by

Kk= P−k HT
(
HP−k HT + Rk

)−1
(4)

where R is the measurement noise covariance matrix and H
is the observation matrix.
The innovation vector is defined as:

νk=zk −Hx̂−k (5)

where zk is the measurement at time step k. Finally, the state
estimate update is

x̂k= x̂−k +Kkνk (6)

and the error covariance update (correction) is given by

Pk= (I−KkH) P−k (7)

The choice of Q can be divided into three categories:
1) Q = 0: might lead to a non-stabilized/optimal filter

Theorem 1. If Qk → 0, then the Kalman gain is a
function of the weighted trajectory model, the error
covariance, Pk−1, and the measurement noise covariance
only. In that manner, Eq.(4) can be rewritten as

Kk =
[(

ΦPk−1Φ
T
)−1

+ HTR−1
k H

]−1

HTR−1
k (8)

2) ‖Q‖2 → ∞ (flat prior): leads to not considering the
model, so the KF uses the measurement only.
Theorem 2. If ‖Q‖2 → ∞, then the Kalman gain
reduces to

Kk =
[
HTR−1

k H
]−1

HTR−1
k (9)

and the state estimate Eq. (6) reduces to the weighted
least squares estimator (LSE):

x̂k =
[
HTR−1

k H
]−1

HTR−1
k zk (10)

3) An arbitrary positive matrix can be set manually or using
one of the methods presented in Section 2.3.

B. CV and CA Models

Any trajectory model includes some level of uncertainty.
The simplest modeling approach is to set a linear trajectory
motion with an additional uncertainty term. This assumption
has important properties such as the Markov-Gauss process,
where the current state depends only on the last state, allowing
optimal implementation of the KF for accurate tracking. For
example, consider an autonomous vehicle tracking problem
using a CV model as demonstrated in Figure 1. In practice,
the vehicle moves along a circle. The velocity vector points
towards the tangential direction due to the circular motion.
However, according to the assumed trajectory in the design
process,, the vehicle should be moving in a straight direction.
Such contradiction will lead to large positioning errors unless
the process noise covariance is tuned online.

Commonly, two trajectory models are considered for vehicle
motion:

1) CV model: Assumes that the vehicle moves at a constant
velocity in most parts of its trajectory.

2) CA model: Assumes that the vehicle moves in a constant
acceleration in most parts of its trajectory.

As the CV model is described by fewer state variables
compared to CA, it is less sensitive to modeling errors.
Alongside, the CA model considers the velocity changes with
an additional state for the acceleration.
in the CV model, the vehicle position is modeled by

pik+1 = pik + vik∆t+
√
qikn

i
k (11)

while in the CA model, the vehicle position is modeled by

pik+1 = pik + vik∆t+
1

2
aik∆t2 +

√
qikn

i
k (12)

where p is the vehicle’s position, v is the vehicle’s velocity, a
is the vehicle’s acceleration, ∆t is the step size (assumed to be
constant), q is the uncertainty term, n is a standard Gaussian
white noise, and i ∈ {x, y} is the axis index.
The two-dimensional state vector of the CV model is given
by

x =
[

pT vT
]T ∈ R4×1 (13)

where pT =
[
px py

]
and vT =

[
vx vy

]
.

The CV model transition matrix is

ΦCV =

[
I2×2 ∆tI2×2

0 I2×2

]
∈ R4×4 (14)

where In×n is the identity matrix of rank n, and the process
noise covariance matrix is given by

QCV
k =

 02×2 02×2

02×2
qxk 0
0 qyk

 ∈ R4×4 (15)

The two-dimensional state-vector of the CA model includes
the position and velocity states, as the CV model, with the
addition of the acceleration state:

x =
[

pT vT aT
]T ∈ R6×1 (16)

where aT =
[
ax ay

]
and the corresponding transition

matrix is given by

ΦCA =

 I2×2 ∆tI2×2
1
2∆t2I2×2

02×2 I2×2 ∆tI2×2

02×2 02×2 I2×2

 ∈ R6×6 (17)

and the trajectory noise covariance matrix is

QCA
k =


02×2 02×2 02×2

02×2 02×2 02×2

02×2 02×2
qxk 0
0 qyk

 ∈ R6×6 (18)

The state-space model, of the CV or CA methods, is defined
by:

xk+1 = Φxk +
√

Qknk (19)

where xk is the state vector at time step k and Φ is the
dynamic transition matrix.
The error between the true state, xTruek , and the model state,
xk, is defined by:

x̃k
∆
= xk − xTruek (20)
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To estimate the vehicle state-vector, Eq.(13) for CV or Eq,(16)
for CA models, external position measurements are employed.
The discrete external position measurement is given by

zik = pik +
√
rikw

i
k, i ∈ {x, y} (21)

where rik is the measurement noise covariance and wik is a
zero-mean white Gaussian noise.
The measurement matrix for the CV model is expressed by:

HCV =
[

I2×2 02×2

]
∈ R2×4 (22)

Similarly, the measurement matrix for the CA model is defined
as follows:

HCA =
[

I2×2 02×2 02×2

]
∈ R2×6 (23)

The corresponding measurement noise covariance matrix, for
both models, is given by

RCV
k = RCA

k = Rk =

[
rxk 0
0 ryk

]
∈ R2×2 (24)

Finally, The measurement model is defined by:

zk= Hxk+
√

Rkwk (25)

where H can be the CV model Eq.(22) or CA model Eq.
(23) measurement matrix. Notice, as this work is focused on
estimating the model uncertainty (process noise covariance),
without the loss of generality, the measurement noise covari-
ance Eq.(24) is assumed to be perfectly known.
Also, as there is no correlation between the measurement and
process noises, the cross covariance matrix (E

[
nkwk

T
]
) is

assumed to be zero.

C. Model-Based Adaptive Approaches

Three commonly used model-based approaches for adaptive
tuning of the process noise covariance are addressed. Those
methods are described below:

1) Innovation-based method. The most common approach
to estimate Q in an adaptive KF framework, was sug-
gested in [33]. This approach is based on the innovation
vector (Eq.(5)) to construct the innovation matrix for a
window size ξ

Ck
∆
=

1

ξ

k∑
j=k−ξ+1

νjνj
T (26)

where Ck is the innovation matrix. The choice of ξ is
critical for the system performance: if a small window
size is selected, the averaging might be insufficient to
capture the relevant information. Yet, if ξ is too big, there
will be a delay in the innovation estimation due to the
time elapsed from the previous trajectory points.
The innovation matrix, Eq.(26), together with the Kalman
gain, K, are used to adapt Q using:

Q̂k = KkCkK
T
k (27)

2) Generative learning. A naive approach for learning the
filter parameters (and specifically Q) [23] requires access

to the full state-vector, and is generally considered inap-
plicable (due to difficulty in measuring all state variables).
Generative learning demands the maximization of the
likelihood function of all the data, using:

Q∗ = arg max
Q

−M log [2πQ]

−
M∑
k=1

(xk −Φxk−1)
T
Q−1 (xk −Φxk−1)


(28)

where M is the amount of samples. The optimal solution
of Eq.(28) is given by

Q∗k =
1

M

M∑
k=1

(xk −Φxk−1) (xk −Φxk−1)
T (29)

3) Scaling method. A scaling method for the covariance
matrices was proposed in [43] and [44]. The Kalman gain,
K, depends on the ratio of Q and R. Hence, if one of
them is known, the other can be estimated. For example,
if R is known, Q can be estimated by satisfying the
following condition for covariance matching:

HP−k HT+Rk = Ck (30)

The core idea behind the scaling method is that if the
estimated covariance of νk in Eq.(26) is much larger than
the theoretical covariance, then Q should be increased
and vice versa. This deviation from the optimal value is
considered using a scaling factor αk, defined as

αk =

trace

([
1
ξ

k∑
j=k−ξ+1

νjνj
T

]
−Rk

)
trace

(
HP−k HT

) (31)

leading to a scaled covariance of

Q̂k =
√
αkQ̂k−1 (32)

III. LEARNING TRAJECTORY UNCERTAINTY

In this section, the motivation for the importance of the
trajectory uncertainty matrix is described. Next, a detailed
description of our proposed hybrid approach, including the
learning methodology and the process of generating the
datasets used in this study is given.

A. Motivation

Assume that the vehicle trajectory can be divided into a
finite set of curves, Lk ∈ L. For each curve, the averaged
curvature, averaged velocity, and measurement noise can be
calculated. The curve can be represented by the vehicle
estimated states:

Lk = {p̂xi , p̂
y
i }
k−1
i=k−N ∈ R2×N (33)

where Lk is a state segment, represented by N points. Using
the curvature operator, Eq.(34), the curve, as a function of the
vehicle states, is mapped into a segment curvature, κ̄k:

κ̄k (Lk) =
1

N

k+N−1∑
j=k

κj

 (34)
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where κj is defined by

κj
∆
=

det (L′j ,L
′′
j)

‖Lj‖3
(35)

and L′k and L′′k are the first and second order derivatives,
respectively. From an estimation point of view, such formu-
lation of a curve, Lk, can be interpreted as a road section k
provided by N points with curvature κk, as demonstrated in
Figure 2.
Obviously, if κ → ∞, the trajectory is a straight line and

Fig. 2. A general trajectory consisting of two sections with different
geometrical properties showing the length and curvature of each segment.
The road curvature is defined in Eq.(35).

no compensation for the geometrical mismatch between the
trajectory model and the actual vehicle trajectory should be ap-
plied. However, if the mismatch is significant , compensation
for the inaccuracy of the assumed model should be applied.
Hence, Q should be tuned accordingly.
For example, a demonstration of the a vehicle trajectory that
was set to follow a circular trajectory while the KF system
model was set to follow a straight line with Q = 0 is presented
in Figures 3. Notice, that the KF prediction of the position
vector suffered from a large error.

Thus, accurate vehicle estimation requires considering var-
ious factors such as the curvature of the vehicle’s path, its
speed, measurements noise, and other factors. By modeling
the vehicle’s trajectory as a CV or CA model, the filter
designer can adjust the trajectory process noise matrix to
account for these factors and their level of uncertainty. This
approach can effectively handle the complexities of real-world
vehicle position estimation by incorporating important features
(factors) into the trajectory modeling without the need for pre-
mapping road segments or using a map. This can be done in
real-time, as described in the next section.

B. Proposed Approach

A novel approach is derived for online learning the tra-
jectory model uncertainty, in terms of the process noise
covariance matrix, using geometric and kinematic features. It
is argued that an online calculation of such features together
with a pre-trained model allows better determination of the
trajectory uncertainty model, and hence, the process noise
covariance matrix. In the proposed approach, presented in
Figure 4, the previous N vehicle position states are inserted
into a bi-directional long short-term memory (LSTM) network

Fig. 3. Estimated and ground truth trajectories. The KF was designed with an
incorrect trajectory model (the vehicle was moving in a different trajectory)
and with Q = 0.

to regress curvature of each trajectory segment. In parallel,
the vehicle speed is calculated using the averaged estimated
velocity components of the previous N states. Next, the road
curvature, vehicle speed, and the measurement noise covari-
ance, are employed as features (input) to an additional learning
model (fine tree, Gaussian Process Regression (GPR), or
support vector machine) to determine Q∗k. Finally, the model-
based KF utilizes the adaptive learned optimal Q∗k to output
the current estimated state, x̂k. Estimating the curvature, κ̂, in

Fig. 4. block diagram of the proposed approach. N previous estimated
position states are inserted into a bi-directional LSTM to regress the road
curvature. The road curvature, vehicle speed, and the measurement noise
covariance, are employed as features (input) to an additional learning model
to determine Q∗

k .

real-time vehicle tracking scenarios is not a trivial task, as the
measured vehicle position and their estimates are noisy. Hence,
an LSTM network was suggested to estimate the averaged
curvature along a curve [45]; specifically, a bi-directional
LSTM (Bi-LSTM), as described below. The curvature alone is
not sufficient for tuning Qk; therefore, two additional features
are considered: 1) the measurement noise covariance and 2)
the vehicle speed. These three features are combined into an
ML model to determine the optimal Qk according to the last
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N measurements and their estimate.

C. Learning Framework

The proposed learning framework has two steps: 1) The Bi-
LSTM model used for online curvature learning 2) A feature-
based SL model to estimate the process noise covariance. Here,
the curvature from step 1) is used as one of the features. The
proposed learning framework is illustrated in Figure 5.

1) Bi-LSTM based model for online curvature learning:
A DL-based model to generalize the geometric curvature
property was designed. The main advantage of using DL is
the generalization capability of intrinsic properties appearing
in sequential data. The LSTM is a modification of the vanilla
RNN, where feedback connections are added. Every LSTM
unit with input (αt) contains a cell (Ct), an input gate (it), an
output gate (ot), and a forget gate (ft). The cell’s output (ht)
is usually flattened and inserted into fully connected layers.
The cell remembers values over intervals and the three gates
regulate the flow of information in and out of the cell, as
shown in Figure 6.
Generally, when using an LSTM network, the information

passes only backward, where only casual time-dependent
properties are calculated (only past information). One method
to circumvent this is to pass the information forward through
an additional layer, thereby allowing the network to capture
additional information. This approach is known as the bi-
directional LSTM (Bi-LSTM) [45] and is illustrated in Figure
7. Here, two time blocks are presented for two successive time
steps, each with two LSTM blocks consisting of 100 units. One
passes information forward and the other passes information
backward. Their output is combined using a Sigmoid activation
function to obtain their final output (m), inserted into a fully
connected layer with 30 hidden units. An example on how to
produce an adaptive learning curvature module is provided
in Figure 8. The figure shows a circle with a predefined
radius, equals to 10[m] (black line). The measurement noise
magnitude was set to 1[m2] in both x and y directions, and the
vehicle speed was set to 10[m/s]. Applying the KF (Eq.(2)-
(7)), created the estimated trajectory (blue). Each 20 samples
along the circle were stored with their respective optimal κ∗,
as the ground truth label. By repeating this procedure a dataset
was created.

2) Learning models configuration: Three types of features
are used as input to the SL model:

1) Road curvature (as described in the previous subsection):

κ̂k = fBi−LSTM

(
{xj}k−1

j=k−N

)
(36)

where κk is the road curvature at time k.
2) Vehicle speed:

ŝk =

√
(v̂xk)

2
+ (v̂yk)

2 (37)

where ŝk is the estimated vehicle speed calculated using
the estimated velocity components at time k.

3) Measurement noise covariance:

Rk =

[
r 0
0 r

]
(38)

where r is a know constant (for the entire scenario) noise
variance .

The SL model’s output is q∗:

q∗k = fSL (κ̂, r, ŝ) (39)

where fSL is the applied learning algorithm.
3) Learning algorithm summary: Algorithm 1 summarizes

the online tuning process of Qk, using both the Bi-LSTM
network and the SL model, embedded in the model-based
KF framework. In step 5, Qk is calculated using the vehicle
speed, the measurement noise covariance, and the curvature
estimation. An hedging mechanism enforces Qk as a positive
diagonal matrix. Finally, the KF is updated and the states are
stored. Step 5 expresses the proposed learning framework in-
cluding the Bi-LSTM-based model and the SL model. Figure 9
shows Algorithm 1, steps 2-5, including the network structure.
The general flow of the algorithm is summarized in Figure 5.

Algorithm 1 SL-based model for online tuning of Qk

Input: x0,P0,Q0,R,Φ,H, z, ξ
Output: x̂k

1: Initialization: x̂0 = 0, Q̂1 = Q0

LOOP Process
2: for k = 1 to M do
3: Propagate

x̂−k ,P
−
k = f(Φ, x̂k−1,P

−
k−1, Q̂k)

4: Calculate gain
Kk = f(P−k ,H,R)

5: Estimating speed

ŝk =
√

(v̂xk)
2

+ (v̂yk)
2

6: if k > ξ then
7: Update Q̂k

Q̂k = fSL

(
s, r, {xj}kj=k−ξ+1

)
8: Hedging Q

Q̂k ← Q̂k � I
[Qij ]k ← [Qij ]kI{[Qij ]k>0}

9: else
10: Qk=Q0

11: end if
12: Update

x̂k,P
+
k = f(x̂−k ,Kk, zk,H, x̂k−1,P

−
k−1, Q̂k)

13: Return x̂k
14: end for

D. Datasets

To establish the relationship between vehicle speed, mea-
surement noise, road curvature, and their optimal Q∗ matrix,
the following assumptions were made:

1) Fixed altitude: All vehicle’s trajectories are represnted in
two dimensions.

2) All vehicle’s trajectories can be represented as a super-
position of curves, each with corresponding curvatures
κk.

3) Vehicle speed values vary between 2[m/s] and 40[m/s].
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Fig. 5. The proposed learning model consists of two stages: 1) a Bi-LSTM model to regress the road curvature (κ) and 2) the three features speed (s), noise
magnitude (r), and curvature, are plugged into a learning algorithm to regress the process noise covariance

Fig. 6. LSTM unit with input, forget, and output gates.

4) Measurement noise variance is identical in both directions
such that rx = ry = r, and noise is assumed to be zero
mean white Gaussian noise.

5) The KF step-size is constant.
Following these assumptions, we constructed circular trajec-
tories with different radius lengths (1/κ), measurement noise,
and speed, as provided in Table 1. The circles were obtained
using the following circular trajectory model:

pxk = (1/κ) cos (ωtk) (40)

pyk = (1/κ) sin (ωtk) (41)

where tk is the time propagated by

tk = tk−1 + ∆t (42)

and the angular velocity, ω, is defined by the road’s curvature,
κ, and the vehicle’s speed, s, as

ω = sκ. (43)

Fig. 7. Illustration of a bi-directional LSTM model. The output of the forward
layer (hFt ) is combined with the output of the backward layer (hBt ) using a
Sigmoid activation function.

Eqs.(40)-(43) combined with the KF (Eqs. (1)-(7)) were simu-
lated once for the CV model (Eq.(14),(15),(22),(24)) and once
for the CA model (Eq.(17),(18),(23),(24)).

Using the parameters in Table 1, a grid search for the op-
timal q∗ value was performed. For example, the set {κ, r, s}j
was run 34 times for different q candidates (the list is pro-
vided in the appendix). For each candidate, qj , Monte-Carlo
(MC) with 50 iterations was simulated to obtain an accurate
calculation of the mean square error (MSE) measure.

Finally, the value that minimizes the MSE was stored with
its set values as the ground truth values:

Q∗ = arg min
Q

x̃TQx̃ (44)
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Fig. 8. An example of a trajectory included in the dataset.

Fig. 9. The proposed algorithm follows a set of steps to estimate the trajectory
uncertainty matrix. First, the state vector is propagated by using the dynamic
model and the previous trajectory uncertainty matrix. Then, the Kalman gain is
computed, the state vector is updated, and handcrafted features are estimated
based on the state vector. Finally, using those features an SL-based model is
implemented to estimate the trajectory uncertainty matrix.

where

Q =

[
0(m−d)×(m−d) 0(m−d)×d

0d×(m−d) qId×d

]
∈ Rm×m, (45)

m is the state vector dimension, and d is the physical dimen-
sion. Thus in our 2D scenarios, d = 2. For example, one
case of finding the optimal q∗ values for κ = 0.05[1/m], s =
10[m/s], r = 1[m2] in a CV trajectory model is presented in
Figure 9. The optimal value obtained a position root mean
square error Eq.(46) of less than 0.4[m] with q∗ = 0.04.

TABLE I
FEATURE PARAMETERS USED TO CREATE THE TRAIN DATASET.

Parameter Values Range Value step
Speed 2 < s < 40

[
m
s

]
∆s = 2

[
m
s

]
Curvature 1/200 < κ < 1

[
1
m

]
∆κ = 1/10

[
1
m

]
Measurement noise cov. 0.2 < r < 4

[
m2

]
∆r = 0.2

[
m2

]

Fig. 10. An example of finding the optimal q∗ in a sense of minimum PRMSE
(Eq.(46)).

IV. ANALYSIS AND RESULTS

In this section, we present a comparative evaluation of
model-based adaptive approaches and our suggested learning-
based models. To assess the performance of the models, we
utilize two error metrics as evaluation criteria:
• Position root mean square error is

PRMSE =

√√√√ 1

Tk

∑
i∈{x,y}

[
Tk∑
k=1

(
pik
True − p̂ik

)2
]

(46)

where Tk is the total time steps.
• Position mean absolute error:

PMAE =
1

Tk

∑
i∈{x,y}

[
Tk∑
k=1

∣∣∣(pik)True − p̂ik∣∣∣
]

(47)

A single RobotCar trajectory of 31 minutes/10[km], with
varying vehicle driving scenarios, is employed as the test
trajectory. This trajectory is illustrated in Figure 11.

A. Road Curvature Estimation

In the first step of the proposed learning framework, Section
3.3, the goal is to reconstruct the road curvature given a
short curve (N = 20). To that end, another massive dataset
of 240, 000 examples was created. Each example contains
twenty points (features), simulated along a defined circle with
a known radius and its curvature (label). These examples were
defined according to Table 1.
This dataset was divided in a ratio of 80/20 for the train/test
procedures (192, 000/48, 000), where for every epoch, 24, 000
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Fig. 11. A single trajectory from the Oxford RobotCar dataset with a duration
of 31 minutes and 10 kilometers of vehicle driving scenarios. The estimated
trajectory was obtained using the CA fine tree Bi-LSTM based Q(r, s, κ)
Regression model, where r = 0.5[m2].

shuffled examples were fed into the LSTM-based model with
their respective curvature parameters. Our working environ-
ment includes: Intel i7-6700HQ CPU@2.6GHz 16GB RAM
with MATLAB. The training time of the final curvature
estimator elapsed about 20 minutes. The Adam optimizer
[46] with a gradient threshold, for 30 epochs (8 iterations
each) was employed for the training. In this setup, the trained
model achieved a curvature root mean square error (RMSE)
of 0.0114[m−1] on the test set.
Six architectures for the curvature estimation task were sug-
gested and trained:

1) BiLSTM+FC: A BiLSTM layer with 20 hidden units,
followed by a fully connected (FC) layer with ten units
and output layer of a unit representing the curvature size.

2) BiLSTM+2FC: Same as BiLSTM+FC with an addi-
tional FC layer with ten units.

3) BiLSTM+2FC+LReLU: Same as BiLSTM+2FC with a
nonlinear activation function between the layers, leaky
rectified linear unit (LReLU), to deal with the non-
linearity property of the learning task.

4) LSTM+FC : One LSTM layer with 20 units followed
by one FC layer.

5) LSTM+2FC : Same as LSTM+FC with an additional
FC layer with 10 units.

6) LSTM+2FC+LReLU : Same as LSTM+2FC with the
LReLU activation functions between the layers.

The RMSE of each model and the average running time (mean
value of 1000 runs) are provided in Table 2. The best archi-
tecture, BiLSTM+2FC+LReLU, achieved a curvature RMSE
of 0.0114[m−1] on the test set.

B. Model-Based Approaches

The model-based adaptive approaches, presented in Section
2.3, were evaluated using Monte Carlo (MC) simulations with
100 iterations on the RobotCar [42] dataset (test dataset), for

various measurement noise levels as summarized in Table
3. First, the cases with q → 0 (Theorem 1), which were
translated for practical reasons into q = 10−9 to avoid
numerical issues, were evaluated. This case represents the high
confidence level of the KF in the system modeling. There, as
expected, significant position errors were obtained for all noise
levels for both CV and CA models, . Next, scenarios with
q → ∞ (Theorem 2), which were translated into q = 109 to
avoid numerical issues, were examined. This case represents
a flat prior, where the trajectory model is not considered, and
the position error is mainly determined by measurement. The
chosen constant values were the same as the measurement
noise covariances: q = r. As expected, the RMSE was greatly
improved compared to the case of q → 0. Then, the adaptive
model-based methods were evaluated. The innovation-based Q
tuning approach, generative learning (with four/six terms along
the diagonal of Q), and scaling method were implemented
with a fixed window size of ξ = 10 as no major change in
the performance for different window sizes was observed. All
adaptive approaches yield better performance than q → 0,
q →∞, or constant values. In most cases, the lower PRMSE
and PMAE were obtained for the innovation-based method
with a CA model.

C. Learning-Based Approaches
In this part, the training process of the learning algorithm

given the three features (speed, road curvature, and measure-
ment noise covariance) and its integration in the model-based
KF framework is addressed.

1) SL Training Procedure: Applying learning-based adap-
tive approaches can be made after they are appropriately
trained. Several regression and classification models were
trained and analyzed for both CV and CA datasets (Section
3.4) to determine which one of them to employ in our proposed
approach. The motivation to include also the classification
models, aside from the regression models, is their higher
robustness as there exist a finite set of accessible values for
q. The training/test procedure included the five-fold cross-
validation approach [47] for obtaining robust trained models.
The regression models included decision trees, linear regres-
sion, Gaussian process regression (GPR) [48], and support
vector machine regression [49]. Classification models were
also trained, including decision trees, k nearest neighborhood
(KNN), SVM, and Naive Bayes. The training and testing were
made on the dataset as defined in Section 3.4 It was observed
that an optimized GPR, with a non-isotropic Matern 5/2 kernel,
obtained the lowest RMSE of 0.67[m] and thus was selected
as a possible candidate from all regression models for the CV
dataset. Also, SVM with a cubic kernel was selected for the
classification approach, with an accuracy of 72%. The SVM
confusion matrix is presented in Figure 12, showing that most
of the values were predicted correctly. For the CA dataset, a
fine tree was selected as a possible candidate as it obtained the
lowest RMSE of 0.83[m] out of all regression models. Also,
SVM with a quadratic kernel was selected for the classification
approach, as it obtained an accuracy of 74.5%. The SVM
confusion matrix is given in Figure 13, showing that most
of the values were predicted correctly.
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TABLE II
DL-BASED MODELS PERFORMANCE IN ESTIMATING THE ROAD CURVATURE.

Architecture RMSE [m−1] running time [s]
BiLSTM+FC 0.0460 0.0042
BiLSTM+2FC 0.0240 0.0042

BiLSTM+2FC+LReLU (chosen) 0.0114 0.0044
LSTM+FC 0.0257 0.0039

LSTM+2FC 0.0401 0.0042
LSTM+2FC+LReLU 0.0131 0.0042

TABLE III
COMPARISON OF SIX MODEL-BASED APPROACHES ON THE TEST DATASET WITH DIFFERENT VALUES OF THE MEASUREMENT NOISE COVARIANCE. EACH

APPROACH WAS EXAMINED ON THE CV AND CA MODELS.

Model / Error metric PRMSE [m] PMAE [m] PRMSE [m] PMAE [m] PRMSE [m] PMAE [m]
Measurement noise cov. r = 0.5[m2] r = 0.5[m2] r = 2[m2] r = 2[m2] r = 4[m2] r = 4[m2]

CV Q → 0 98.4 103 125 132 143 151
CA Q → 0 23.6 24.5 32.0 33.0 37.5 38.4

CV ‖Q‖2 → ∞ (LSE) 0.99 1.12 1.99 2.25 2.82 3.19
CA ‖Q‖2 → ∞ (LSE) 1.00 1.12 2.00 2.25 2.82 3.18

CV constant Q 0.64 0.73 1.12 1.26 1.47 1.66
CA constant Q 0.62 0.70 1.13 1.27 1.53 1.72

CV innovation-based Q 0.64 0.70 1.09 1.20 1.42 1.56
CA innovation-based Q 0.55 0.61 0.97 1.08 1.30 1.45
CV generative learning 0.82 0.95 1.64 1.97 2.30 2.80
CA generative learning 0.82 0.96 1.64 1.98 2.31 2.83

CV scaling method 0.57 0.60 1.01 1.09 1.35 1.46
CA scaling method 0.61 0.65 1.09 1.18 1.45 1.57

Fig. 12. Confusion matrix for SVM classifier with a cubic kernel, where the
problem is formulated as a classification task (CV dataset).

2) Integrating the ML models in the KF: Eventually, these
ML models are integrated in the KF in a real-time manner to
predict and tune the sub-optimal Qk matrix and, thus, creating
an hybrid learning algorithm. To that end, the GPR, SVM, and
fine tree methods, for both CV and CA models were evaluated
for two different cases:

• Using only two features: the measurement noise covari-
ance (r) and speed (s). In that manner, the Bi-LSTM
network is not required in the process.

• The same two features from the first case with the

Fig. 13. Confusion matrix for the SVM classifier with a quadratic kernel,
where the problem is formulated as a classification task (CA dataset).

addition of the curvature (κ) feature. In this case, the
Bi-LSTM based model was plugged into the scheme, as
shown in Figure 5.

Similarly to the model-based models (showing results in Table
3), the RobotCar dataset was used as the test dataset to evaluate
the ML-based approaches. The learning-based approach results
are summarized in Table 4.
The minimum PRMSE and PMAE for r = 0.5[m2] was
obtained for the CA model with the fine tree and Bi-LSTM
regression models (three features). Here, a PRMSE of 0.47[m]
was obtained, reflecting a reduction of 13% from the CV
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GPR model (PRMSE=0.54[m]). Hence, for a low covariance
measurement noise of r = 0.5[m2], adding the curvature as a
feature for determining Qk improves the filter’s performance.
In a higher measurement noise covariance, r = 2[m2], the re-
sults degrade and yield an PRMSE= 0.85[m] and PMAE=0.95
for a CA model with the SVM approach (only (s, r) as
features). The reason for not considering the curvature lies
in the difficulty of reconstructing the averaged curvature from
a noisy series. Still, those results are lower by 12% than the
one obtained using the innovation-based method with the CA
model (PRMSE=0.97[m]).

Lastly, increasing the measurement noise covariance to
r = 4[m2] results in a lower PRMSE =1.11[m] and
PMAE=1.25[m] for a CV model with the GPR approach
(a PMAE of 1.25[m] was obtained also in the CV GPR
BiLSTM model). This PRMSE is lower by 14.6% than the
one achieved using the CA innovation-based Q approach. We
also considered the case of perfect curvature, κGT , to evaluate
the curvature-based models performance. The results are also
summarized in Table 4, where there is a minor improvement
of no more than 2% PRMSE reduction while the κGT is
considered. Hence, the Bi-LSTM based curvature learning was
well trained and provides an accurate curvature in a real time
setting.

D. Discussion

The model-based adaptive approaches results are provided
in Section 4.1 and our hybrid learning-based adaptive ap-
proaches results in Section 4.2. The performance of the
adaptive model-based approaches is superior to model-based
approaches with constant process noise values, as they try to
capture the vehicle current dynamics and the measurement
noise statistics in a real-time setting. The innovation-based
model and the scaling method are better than the generative
learning, as they achieved lower PRMSE and PMAE for all
tested measurement noise covariance values. For r = 0.5[m2],
the CA innovation-based Q obtained PRMSE of 0.55[m]
and PMAE of 0.61[m]. Thus, an improvements of 11% and
13% was obtained in the PRMSE and PMAE, respectively,
compared to model-based approaches with constant process
noise values.
The learning-based adaptive approaches were pre-trained to
capture the non-linearity and other uncertainty properties;
once using the relationship between the measurement noise
covariance and vehicle speed and once with the addition of the
road curvature as a feature. The hybrid learning-based adaptive
approaches achieved better performance than the adaptive
models as they consider additional learned information during
the training phase. Without the curvature feature, CV GPR-
based Q(r, s) Reg. model, obtained a PRMSE of 0.54[m] and
PMAE of 0.57[m], for r = 0.5[m2]. This model improves
the PRMSE by 13% and the PMAE by 19% compared to
model-based approaches with constant process noise values.
Including the road curvature feature, the best performance for
the CA model was archived with the fine tree BiLSTM-based
Q(r, s, κ̂). It obtained a PRMSE of 0.47[m] and PMAE of
0.53[m], for r = 0.5[m2]. Hence, it improves the PRMSE

by 24% and the PMAE by 24% compared to model-based
approaches with the CA constant process noise values and
improves the PRMSE with 14.5% and the PMAE with 13.1%
compared to the adaptive model-based methods.

V. CONCLUSIONS

The proper choice of the trajectory process noise covariance
matrix is critical for achieving high accuracy when imple-
menting the discrete linear KF for vehicle tracking scenarios.
The commonly used solution is to choose constant matrix
parameters or to use any model-based adaptive approach. A
practical hybrid ML-based framework to tune a sub-optimal
covariance matrix online, was proposed. The framework com-
bines kinematic and geometrical features, with a Bi-LSTM-
based model to estimate the road curvature and an SL model
utilizing it with the measurement noise covariance and vehicle
speed to regress the process noise matrix.

The proposed scheme for vehicle tracking was thoroughly
evaluated using extensive simulations on the RobotCar dataset.
The results demonstrate the efficiency of the suggested ap-
proach as it outperforms model-based adaptive Kalman filter
approaches in terms of the position RMSE. The proposed
approach requires training the model only once, regardless of
the specific characteristics of the vehicle’s motion or the road’s
trajectory.
Specifically, our learning approach achieved a position RMSE
lower than 0.5[m] (24% improvement compared to the best
model-based approach) using a Kalman filter with a CA
model, by incorporating Bi-LSTM for the road curvature re-
gression and SVM for the process noise regression. The SVM
algorithm uses only three features: vehicle speed, measurement
noise covariance, and road curvature. These results demon-
strate the effectiveness of the proposed method in handling
the complexities of real-world vehicle tracking and pave the
way for future research in this field. The proposed approach
can be implemented in real-time vehicle tracking problems
( for example using a standalone GNSS receiver) including
autonomous vehicles, robotics platforms, or drones.
The proposed learning approach requires additional compu-
tational resources when compared to existing model-based
adaptive approaches. Thus, an increase in the computational
load of the system is expected. However, with the advancement
in hardware and optimization techniques, this drawback can
be mitigated. In future research, we aim to elaborate the
proposed learning approaches by evaluating it on additional
experimental data to ensure their robustness.

APPENDIX

Q =

 0.005, 0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.2,
0.3, 0.5, 0.7, 1, 1.2, 1.3, 1.5, 2, 2.5, 3, 3.5, 4,
4.5, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 25, 30


REFERENCES

[1] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. Esti-
mation with applications to tracking and navigation: theory algorithms
and software. John Wiley & Sons, 2004.

[2] Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering, 82(1):35–45, 1960.



LEARNING VEHICLE TRAJECTORY UNCERTAINTY / OR AND KLEIN 12

TABLE IV
LEARNING-BASED ADAPTIVE APPROACHES COMPARISON FOR SIX LEARNING-BASED APPROACHES ON THE TEST DATASET WITH DIFFERENT VALUES OF

THE MEASUREMENT NOISE COVARIANCE. EACH RESULT IS A MEAN OF 20 REPETITIONS AND EACH APPROACH WAS EXAMINED ON THE CV AND CA
MODELS.

Model / Error metric [m] PRMSE PMAE PRMSE PMAE PRMSE PMAE
Measurement noise covariance r = 0.5[m2] r = 0.5[m2] r = 2[m2] r = 2[m2] r = 4[m2] r = 4[m2]

CV GPR Q(r, s) Reg. 0.54 0.57 0.86 0.97 1.11 1.25
CV SVM Q(r, s) Class. 0.63 0.71 0.94 1.05 1.16 1.30

CA fine tree Q(r, s) Reg. 0.62 0.70 1.13 1.27 1.52 1.72
CA SVM Q(r, s) Class. 0.63 0.70 0.85 0.95 1.15 1.29

CV GPR BiLSTM Q(r, s, κ̂) Reg. 0.49 0.54 0.86 0.95 1.14 1.25
CV SVM BiLSTM Q(r, s, κ̂) Class. 0.51 0.55 0.91 0.99 1.22 1.32

CA fine tree BiLSTM Q(r, s, κ̂) Reg. 0.47 0.53 0.85 0.95 1.14 1.27
CA SVM BiLSTM Q(r, s, κ̂) Class. 0.50 0.56 0.90 0.99 1.20 1.33

CV GPR BiLSTM Q(r, s, κGT ) Reg. 0.49 0.54 0.86 0.96 1.15 1.27
CV SVM BiLSTM Q(r, s, κGT ) Class. 0.50 0.54 0.98 1.04 1.30 1.38

CA fine tree BiLSTM Q(r, s, κGT ) Reg. 0.48 0.53 0.86 0.96 1.15 1.29
CA SVM BiLSTM Q(r, s, κGT ) Class. 0.50 0.56 0.90 1.00 1.21 1.34

[3] Daniel N Aloi and Oleksiy V Korniyenko. Comparative performance
analysis of a Kalman filter and a modified double exponential filter
for GPS-only position estimation of automotive platforms in an urban-
canyon environment. IEEE Transactions on Vehicular Technology,
56(5):2880–2892, 2007.

[4] Lu Xiong, Xin Xia, Yishi Lu, Wei Liu, Letian Gao, Shunhui Song,
and Zhuoping Yu. IMU-based automated vehicle body sideslip angle
and attitude estimation aided by GNSS using parallel adaptive Kalman
filters. IEEE Transactions on Vehicular Technology, 69(10):10668–
10680, 2020.

[5] Danijel Pavkovic, Josko Deur, and Ilya Kolmanovsky. Adaptive kalman
filter-based load torque compensator for improved si engine idle speed
control. IEEE Transactions on Control Systems Technology, 17(1):98–
110, 2008.

[6] Zhaobo Qin, Liang Chen, Jingjing Fan, Biao Xu, Manjiang Hu, and
Xin Chen. An improved real-time slip model identification method
for autonomous tracked vehicles using forward trajectory prediction
compensation. IEEE Transactions on Instrumentation and Measurement,
70:1–12, 2021.

[7] Andrea Motroni, Alice Buffi, Paolo Nepa, and Bernardo Tellini. Sensor-
fusion and tracking method for indoor vehicles with low-density uhf-rfid
tags. IEEE Transactions on Instrumentation and Measurement, 70:1–14,
2020.

[8] Rui Xiong, Lijing Li, Chunxi Zhang, Kun Ma, Xiaosu Yi, and Huasong
Zeng. Path tracking of a four-wheel independently driven skid steer
robotic vehicle through a cascaded ntsm-pid control method. IEEE
Transactions on Instrumentation and Measurement, 71:1–11, 2022.

[9] Stanley Baek, Chang Liu, Paul Watta, and Yi Lu Murphey. Accurate
vehicle position estimation using a Kalman filter and neural network-
based approach. In 2017 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1–8. IEEE, 2017.

[10] Hormoz Marzbani, Hamid Khayyam, Ching Nok To, ai Võ Quoc, and
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