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Abstract—Visually realistic GAN-generated facial images raise obvious concerns on potential 

misuse. Many effective forensic algorithms have been developed to detect such synthetic images in 

recent years. It is significant to assess the vulnerability of such forensic detectors against adversarial 

attacks. In this paper, we propose a new black-box attack method against GAN-generated image 

detectors. A novel contrastive learning strategy is adopted to train the encoder-decoder network 

based anti-forensic model under a contrastive loss function. GAN images and their simulated real 

counterparts are constructed as positive and negative samples, respectively. Leveraging on the 

trained attack model, imperceptible contrastive perturbation could be applied to input synthetic 

images for removing GAN fingerprint to some extent. As such, existing GAN-generated image 

detectors are expected to be deceived. Extensive experimental results verify that the proposed 

attack effectively reduces the accuracy of three state-of-the-art detectors on six popular GANs. High 

visual quality of the attacked images is also achieved. The source code will be available at https:// 

github.com/ZXMMD/BAttGAND. 

 

Index Terms—Black-box attack, Anti-forensic, GAN-generated image detector, GAN fingerprint, 

Encoder-decoder network, Contrastive perturbation 

 

I. INTRODUCTION 

Nowadays, it becomes increasingly easy to manipulate the face of a real person in an image or even 

to automatically synthesize non-existent faces. The remarkable progress of deep learning technologies, in 

particular Generative Adversarial Networks (GAN) [1], has led to the generation of fairly realistic fake 

content. Fake facial images can be easily synthesized by accessible open software and mobile applications 

such as FaceApp [2]. Many different GANs, such as ProGAN [3], StarGAN [4], StarGAN2 [5], StyleGAN 

[6], StyleGAN2 [7], and StyleGAN3 [8], have been proposed in recent years. Such GANs are capable of 

generating extremely realistic facial images, which may be misused for malicious purposes, such as 

forging identities for fraud and posing a threat to social security. 
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To defend against the threat incurred by GANs, plenty of forensic methods have been proposed to 

detect GAN-generated face images. Some approaches exploit specific facial traces, such as iris color [9] 

left behind by early GAN architectures, for example, there is difference between color of the left and right 

eye in some face images generated by ProGAN. Most recent GAN image detection methods rely on deep 

learning and significantly outperform the handcraft feature-based ones. Mala et al. [10] demonstrate that 

the off-the-shelf deep neural networks, such as Xception [11], Inception [12] and DenseNet [13], could 

achieve excellent detection performance after being pre-trained on ImageNet and trained on GAN-

generated and real images. Wang et al. [14] propose an effective GAN-generated image detector based on 

ResNet50 [15] backbone network. Strong sample enhancement based on compression and blur is applied 

to model training for improving the generalization ability and robustness of such a detector. In [16], the 

generalization performance is further boosted by inserting an initial residual layer and removing 

downsampling in the first layer. It is significant to evaluate the security and reliability of such GAN-

generated image detectors in real-world applications, where malicious attacks may exist. 

In recent years, adversarial sample techniques have caused a new threat to GAN-generated image 

detectors, which may be fooled or performance-degraded by anti-forensic attacks [17-23]. Carlini et al. 

[17] propose to generate adversarial samples based on Box-constrained L-BFGS [18] or JSMA [19] for 

attacking GAN detectors in the white-box scenario. Similarly, Zhao et al. [20] achieve a white-box attack 

by synthesizing forensic traces associated with real images via an anti-forensic generator. However, such 

attack methods require full knowledge of the detector including network structure and internal parameters, 

which are almost inaccessible in real applications. As such, a few black-box attack methods have also 

been proposed. Xie et al. [21] present an end-to-end deep dithering model to eliminate the generative 

artifacts on various GAN-generated images. The attacked images are yielded by adding dithering noise to 

GAN images, instead of being regenerated as a whole. The FakePolisher method [22] achieves shallow 

reconstruction of fake images by a learned linear dictionary, which could reduce the artifacts introduced 

during image synthesis to some extent. Neves et al. [23] train an anti-forensic generator in one-class mode, 

where only real images are used in the training phase. Inherent characteristics of such real images are 

captured by an autoencoder and then injected into the GAN images. Although such an attack method owns 

the merits of training without GAN samples and yielding high-quality attacked images, the successful rate 

of attacking is still required to be improved. Moreover, since the attacked target is GAN-generated images, 

a better practice might be to use both real and fake image samples with the same visual content under 

two-class supervised training.  

To enhance the performance and applicability, in this paper we propose a new black-box attack against 

GAN-generated image detectors. Contrastive perturbation is learned by deep supervised training of a 

simple yet effective encoder-decoder network on GAN images and their simulated real counterparts. Once  
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the training is completed, GAN fingerprint can be removed by adding such perturbation to input GAN 

images. Our attack method only needs to access the input-output, instead of full information, of a forensic 

detector for constructing training sample set. Specifically, we perform supervised training by constructing 

pairs of GAN and simulated real images, which enjoy the same visual appearance. The simulated real 

image can be considered as a label of the input GAN image, and the anti-forensic generator would be 

trained by making the output infinitely close to such a label and away from the input GAN image. 

The rest of this paper is organized as follows. The proposed black-box attack scheme is presented 

detailedly in Section II, followed by extensive experimental results and discussions in Section III. We 

draw the conclusions in Section IV. 

II. PROPOSED BLACK-BOX ATTACK 

In this section, the proposed attack scheme against GAN-generated image detectors is described in 

detail. A successful attack should generally meet the following requirements on the attacked image, which 

1) can escape the detection of GAN detectors at a high probability and 2) has the same visual appearance 

as the corresponding GAN image. Since GAN detectors generally work by capturing generation 

fingerprint, GAN images will be attacked by removing their inherent GAN fingerprint via an autoencoder 

network. Such a network is effectively trained by our proposed GAN image-orient contrastive 

perturbation method. A novel training sample set including plentiful pairs of GAN and simulated real 

images is constructed elaborately. 

A. Attack via Encoder-Decoder Network 

An overview of the proposed black-box attack model is illustrated in Fig.1. As inspired by the prior 

work [23], the attack is implemented by a simple yet effective encoder-decoder network, which includes 

an encoder E followed by a decoder D as 

                                  
,
A

E I Y
D Y I .
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� �

����

����
                                  (1) 

Here, the latent feature Y is extracted from an input GAN image I by the encoder E. Then the attacked 

image I 
A is reconstructed from such a latent feature by the decoder D.  

The meaning of each layer of the network is shown in the dotted box in the bottom of Fig.1. Different 

colors represent different operating layers. The number in the color block representing the convolutional 

layer indicates the number of convolution kernels. In the encoder E, four convolutional layers each 

followed by ReLU activations [24] are used to extract features from H WI ��� �� , where H×W denotes the 

spatial dimension. The fourth convolutional layer is a dilated convolutional layer, and the size of all the 

convolution kernels is 3×3. Three max-pooling layers are used progressively to decrease the size of feature 

map to C×28×28, where the channel number C of the latent feature Y is set as 32 to default and the pooling  



4

 
Fig. 1. Network architecture of the proposed attack scheme against GAN-generated image detectors. I represents the 
GAN-generated image, IR represents the simulated real image paired with I, and I 

A represents the attacked image. 

stride is 2 × 2. Inspired by prior seminal networks [25], a multi-stage stacking structure is applied to 

en/decoder modules. It helps to extract a pyramidal structure of hierarchical multi-scale features, which 

are useful in reconstructing input images.

The decoder D recovers a high-resolution representation of reconstructed images progressively. A 

dilated transposed convolutional layer is used firstly to restore the channel number of the feature map to 

128. Three max-unpooling layers are used to gradually increase the size of feature maps, resulting in a 

three-channel color image, and the pooling stride is 2 × 2. To avoid checkerboard artifacts [26] incurred 

by transposed convolution, a convolutional layer followed by a max-unpooling layer is used to upsample 

the input feature maps in the first three transposed convolution layers. The last stage merely includes a 

transposed convolutional layer for generating an attacked image with the same size as the input, and the 

size of all the transposed convolution kernels is 3×3. 

B. Contrastive Perturbation Training 

In this subsection, we propose a contrastive perturbation-based method to train the encoder-decoder 

network. In terms of intrinsic attributes, the attacked image I 
A is expected to approach a real image and 

keep away from the input GAN image I. Such a goal could be achieved by supervised learning from pairs 

of visually indistinguishable real and GAN image samples, which enjoy the same visual content and 

appearance. However, as pointed out in [21], such pairs of image samples could not be collected directly 
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since the GAN images are typically random and different from real-world photograph images at pixel 

level. As a result, we have to recur to image simulation methodology. Different from the recent work [21], 

we propose to simulate the real images, instead of GAN images, by removing the generation artifacts from 

GAN images. Such a simulation strategy could directly address the attacking target, i.e., GAN images, 

from which the output I 
A would be far away. 

For a candidate GAN image I, let its corresponding simulated real image be denoted by IR, which 

owns indistinguishable visual appearance with I. In order to form saliently contrastive labels, I and I 
R are 

expected to be classified as GAN and real images respectively by GAN detectors at a high probability. In 

model training, generation of the attacked image I 
A is guided by a contrastive loss function defined as 

                                 
A RN

A
i

I I
loss

N I I��

��
�

�
�                                 (2) 

where N denotes the number of GAN and simulated real image pairs in the training sample set. To 

minimize the loss function, the resulting I 
A reconstructed by the autoencoder should be close to I 

R and 

away from I gradually. Since GAN fingerprint has been removed from the simulated real image I 
R but 

intactly exist in the GAN image I, the attacked image I 
A would be misclassified as real by GAN detectors. 

After training, the contrastive perturbation � between the input I and output I 
A can be learned by the 

anti-forensics model as 

                                    AI I �� �                                     (3) 

It implies that a GAN image can be attacked by adding such contrastive perturbation � , which is 

enforced by the autoencoder network. It should be mentioned that mean absolute error (MAE) or mean 

square error (MSE) are unsuitable to be used as loss function. Although they enable the model to converge 

quickly and yield images with acceptable visual quality, it is difficult to eliminate GAN fingerprint fully 

due to limited adjustment to the input image. 

C. Generation of Simulated Real Image Samples 

 
Fig. 2. Generation pipeline of simulated real image samples IR. GAN images are selected, fingerprint-removed and 
realism-checked sequentially in Stages 1-3, respectively. PGAN denotes the probability of being classified as a GAN-
generated image by a GAN image detector. 
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In this subsection, we propose an effective method for generating the simulated real image samples IR 

used for model training. As illustrated in Fig. 2, GAN images are selected, fingerprint-removed and 

realism-checked in three stages, respectively. Firstly, we use the GAN-generated image detector [16] to 

select the GAN images which are classified to be GAN type with a high probability, i.e., PGAN >T1. Here, 

PGAN represents the probability of being classified as a GAN-generated image by the detector, and T1 is a 

threshold. The GANPrintR method [23] is then adopted to remove GAN fingerprint of the selected images 

in the second stage. In order to yield more deceptive samples, the GAN detector [16] is reused to screen 

the simulated real images in the third stage with PGAN <1-T2. It is appropriate to set the thresholds T1=0.8 

and T2=0.7 experimentally for collecting enough GAN and simulated real images. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, extensive experiments are performed to verify effectiveness of the proposed attack 

scheme against GAN-generated image detectors. 

A. Datasets and GAN-Generated Image Detectors 

The training sample set consists of 14000 pairs of GAN-generated and corresponding simulated real 

face images for StarGAN2, StyleGAN and StyleGAN2, respectively. Such pairs of samples are collected 

according to the procedure proposed in Section II-C. The testing set is collected with total 36000 face 

images generated by 6 different GANs, where 6000 samples for each. The ProGAN, StyleGAN and 

StyleGAN2 images are downloaded from the public datasets shared by Nvidia Research Lab [27, 28, 31]. 

The StarGAN, StarGAN2 and StyleGAN3 images are created by public pre-trained generators [29, 30, 

32]. All the involved sample images are uniformly resized to 224×224 pixels for benefiting to implement 

and assess the attack schemes, which could also be adapted to other spatial resolutions by feeding proper 

training samples.  

The following three state-of-the-art GAN-generated image detectors are attacked in tests. 

1) Wang detector [14]. It is a ResNet50 network trained on ProGAN and real images with strong data 

enhancement including compression and blur, which ensures generalization capability and robustness of 

the detector. 

2) Gragnaniello detector [16]. It uses a variant Resnet50 backbone trained on ProGAN and real images 

with various content, such as human faces, animals and paintings. Compared with Wang detector [14], 

the generalization performance is further improved by applying suitable training strategy and network 

architectural changes, for example, removing downsampling operation from the first layer.  

3) Kitware detector [33]. It is trained on StyleGAN2 and real images. Varied image representations 

(raw pixels and residual images) and deep learning backbones (ResNet, EfficientNet [34] and VGG [35]) 

have been compared experimentally and achieved approximate performance. ResNet101 is lastly adopted 
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as backbone network. 

B. Experimental Settings and Performance Metrics 

The proposed attack scheme is trained with AdamW optimizer and the batch size is 32. The initial 

learning rate is set as 1×10�3 and decreases to 1×10�6 with cosine annealing strategy. All experiments run 

on a PC with Intel Xeon W-2245 CPU and one NVIDIA RTX 3090 GPU.  

As for the test sample set, the detection rates Pd of GAN image detectors before and after attack are 

computed and compared to evaluate the attack effect. Pd is defined as the rate of accurately detected GAN-

generated images in the testing set or its attacked versions. In order to evaluate the influence of attacks on 

visual quality of resulting images, PSNR and SSIM [36] between the naive and attacked GAN images are 

computed. 

C. Quantitative Evaluation Results 

We perform quantitative statistical testing for the proposed attack scheme in this subsection. All GAN-

generated images in the testing set are first processed by an anti-forensic attack method. Both original 

GAN and the resulting attacked images are then identified by the Wang, Gragnaniello and Kitware 

detectors, respectively. The following attack methods are compared detailedly. 

i) Gaussian filtering. Gaussian low-pass filtering with a 3×3 or 5×5 kernel is enforced. 

ii) Median filtering. Median filtering with a 3×3 or 5×5 kernel is enforced. 

iii) Resizing. The GAN images are upsized to 256×256 or 512×512 pixels with bicubic interpolation. 

iv) GANPrintR [23]. It is an autoencoder-based GAN fingerprint removal model trained merely on 

real face images. 

Tables 1-3 show the detection rates Pd of different detectors on each type of GAN images against 

varied attack methods. For the original GAN images without attack, Wang, Gragnaniello and Kitware 

detectors all gain high Pd values on most types of GAN. Gragnaniello behaves the best with average Pd 

of 99.47%. Such results indicate high detection accuracy and good generalization capability of the 

detectors. Note that the generalization performance of Kitware detector is slightly weak, since its Pd for 

StarGAN is only 10.57%. That may attribute to the low visual quality of StarGAN-generated images. 

As for the attack methods, the results show that the Gaussian filtering (3×3, 5×5), Median filtering (3×3, 

5×5) and Resizing (256×256, 512×512) incur little influence on detection performance, which also 

demonstrates good robustness of the detectors. For example, Gragnaniello detector achieves average Pd 

of 99.34%, 99.34%, 99.05%, 99.17%, 97.41%, 99.41% under such six attacks, which correspond to drops 

of 0.13%, 0.13%, 0.42%, 0.30%, 2.06%, 0.06%, respectively. The prior attack method GANPrintR [23] 

shows better performance than the common image manipulations. Gragnaniello detector achieves average 

Pd of 98.18%, 82.68%, 76.55%, 96.78%, 94.58%, 98.37% for six GANs against GANPrintR attack. 
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Table 1. Detection rate Pd of Wang detector [14] on different types of GAN-generated images under different attack 
methods. GF and MF denote Gaussian low-pass and median filtering, respectively. Digitals are in percentage. 

Attack methods 
GAN Type 

ProGAN StarGAN StarGAN2 StyleGAN StyleGAN2 StyleGAN3 Average
Without attack 100 90.95 97.73 95.45 92.42 82.70 93.21 
GF (3×3) 94.98 81.07 92.23 72.20 71.45 84.52 82.74 
GF (5×5) 95.32 79.12 91.27 73.82 73.30 82.75 82.60 
MF (3×3) 95.42 82.50 93.53 68.90 71.32 85.83 82.92 
MF (5×5) 97.58 80.92 93.40 75.32 79.08 85.73 85.34 
Resizing (256×256) 98.97 87.03 96.85 74.83 74.55 88.65 86.81 
Resizing (512×512) 99.95 99.37 100 89.05 89.52 95.50 95.57 
GANPrintR [23] 86.37 93.78 85.60 54.52 52.07 71.42 73.96 
Proposed 82.38 90.48 79.95 45.05 42.98 67.82 68.11 

 

Table 2. Detection rate Pd of Gragnaniello detector [16] on different types of GAN-generated images under different 
attack methods. GF and MF denote Gaussian low-pass and median filtering, respectively. Digitals are in percentage. 

Attack methods 
GAN Type 

ProGAN StarGAN StarGAN2 StyleGAN StyleGAN2 StyleGAN3 Average
Without attack 100 99.65 100 99.00 98.60 99.57 99.47 
GF (3×3) 100 98.55 100 98.90 98.73 99.88 99.34 
GF (5×5) 100 98.55 100 98.90 98.73 99.88 99.34 
MF (3×3) 100 97.97 100 98.30 98.13 99.87 99.05 
MF (5×5) 100 95.93 100 99.57 99.52 99.98 99.17 
Resizing (256×256) 99.98 99.32 100 95.02 92.88 97.25 97.41 
Resizing (512×512) 100 100 100 98.12 98.52 99.82 99.41 
GANPrintR [23] 96.78 98.37 98.18 82.68 76.55 94.58 91.19 
Proposed 93.58 97.80 94.70 79.28 74.43 93.35 88.86 

 

Table 3. Detection rate Pd of Kitware detector [33] on different types of GAN-generated images under different 
attack methods. GF and MF denote Gaussian low-pass and median filtering, respectively. Digitals are in percentage. 

Attack methods 
GAN Type 

ProGAN StarGAN StarGAN2 StyleGAN StyleGAN2 StyleGAN3 Average
Without attack 97.15 10.57 96.50 97.73 99.33 68.72 78.33 
GF (3×3) 78.82 1.85 47.30 80.85 86.30 18.98 52.35 
GF (5×5) 78.82 1.85 47.30 80.85 86.30 18.98 52.35 
MF (3×3) 90.63 12.22 87.60 91.67 97.05 56.02 72.53 
MF (5×5) 79.30 9.58 60.13 80.28 88.18 42.08 59.93 
Resizing (256×256) 96.27 5.43 88.93 94.15 98.63 59.70 73.85 
Resizing (512×512) 95.97 3.90 84.20 93.55 98.35 52.33 71.38 
GANPrintR [23] 88.02 37.98 85.75 87.32 96.32 50.75 74.36 
Proposed 84.73 34.32 81.57 85.22 95.73 58.40 73.33 
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Table 4. PSNR (dB) of the different types of GAN-generated images altered by different attack methods. GF and 
MF denote Gaussian low-pass and median filtering, respectively. 

Attack methods 
GAN Type 

ProGAN StarGAN StarGAN2 StyleGAN StyleGAN2 StyleGAN3 Average

GF (3×3) 31.6 40.7 38.3 31.9 31.5 37.7 35.3 
GF (5×5) 29.7 36.8 35.1 30.0 29.6 34.7 32.7 
MF (3×3) 31.0 41.2 38.8 31.2 30.9 37.9 35.2 
MF (5×5) 28.6 35.1 33.6 28.9 28.5 33.3 31.4 
GANPrintR [23] 32.4 38.7 38.5 31.9 31.6 38.1 35.2 
Proposed 32.0 37.3 37.2 31.5 31.2 36.9 34.4 

 

Table 5. SSIM of the different types of GAN-generated images altered by different attack methods. GF and MF 
denote Gaussian low-pass and median filtering, respectively. 

Attack methods 
GAN Type 

ProGAN StarGAN StarGAN2 StyleGAN StyleGAN2 StyleGAN3 Average

GF (3×3) 0.920  0.988  0.976  0.917 0.921  0.975  0.949 
GF (5×5) 0.880  0.972  0.952  0.877 0.882  0.952  0.919 
MF (3×3) 0.892  0.986  0.972  0.889 0.895  0.970  0.934 
MF (5×5) 0.835  0.949  0.921  0.830 0.836  0.924  0.882 
GANPrintR [23] 0.933  0.979  0.977  0.914 0.920  0.978  0.950 
Proposed 0.929  0.972  0.972  0.910 0.915  0.974  0.945 

 

Compared with GANPrintR, our proposed attack scheme forms more serious threat, which incurs 

lower detection rates for detectors. As for Wang, Gragnaniello and Kitware detectors, the average Pd 

values of our attack scheme are lower than those of GANPrintR by 5.85%, 2.33% and 1.03%, respectively. 

Meanwhile, Tables 4-5 report the visual quality of the test GAN images attacked by different methods 

respectively. Gaussian filtering with a 3×3 kernel achieves average PSNR of 35.3 dB and SSIM of 0.949 

on test set, which are better than that with 5×5 kernel. The same fact is true for Median filtering. However, 

filtering incurs little drop on the detection performance of detectors. Our proposed attack scheme achieves 

average PSNR of 34.4 dB and SSIM of 0.945, which are comparative with GANPrintR and imply 

unnoticed visual change. In summary, the quantitative assessing results show that the attack effect of our 

proposed scheme outperforms GANPrintR and general manipulations on all three state-of-the-art GAN 

detectors, while keeping high visual quality of the resulting images. 

D. Qualitative Evaluation Results 

To qualitatively evaluate the performance of different attack methods, six example images generated 

by different GANs are analyzed illustratively. Fig. 3 shows such GAN images and their corresponding 

attacked versions. It can be seen that our attack scheme preserves high visual quality without leaving 
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Fig. 3. Visual examples of GAN-generated images without and with different attacks. The columns a-f are for 

ProGAN, StarGAN, StarGAN2, StyleGAN, StyleGAN2 and StyleGAN3, respectively. 

visible abnormal traces. GANPrintR also keeps high visual quality, while the manipulation attacks, i.e., 

GF and MF, cause apparent blurriness to some extent. Such visual results can also be validated 

consistently by the corresponding PSNR and SSIM measurements reported in Table 6. 
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Table 6. PSNR (dB) and SSIM of the six example GAN-generated images altered by different attack methods. GF 
and MF denote Gaussian low-pass and median filtering, respectively. 

Attack methods 
GAN-generated image 

a b c d e  f 
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

GF (3×3) 30.6 0.875 39.4 0.987 35.7 0.978 34.5 0.941 34.8 0.935 35.6 0.959
GF (5×5) 29.1 0.822 35.5 0.971 32.4 0.956 32.3 0.913 32.7 0.899 32.8 0.919
MF (3×3) 29.4 0.824 41.7 0.987 37.3 0.976 34.7 0.923 34.1 0.915 35.5 0.953
MF (5×5) 27.8 0.756 35.8 0.955 32.1 0.935 32.3 0.890 31.3 0.852 31.0 0.864
GANPrintR [23] 30.5 0.876 38.0 0.978 36.1 0.970 34.6 0.935 35.2 0.945 36.6 0.973
Proposed 30.3 0.874 36.7 0.971 34.8 0.961 34.0 0.928 34.8 0.944 35.5 0.969

 

Table 7. PGAN of Gragnaniello detector [16] on six example GAN-generated images under different attack methods. 
GF and MF denote Gaussian low-pass and median filtering, respectively. Digitals are in percentage. 

Attack methods 
GAN-generated image 

a b c d e f 
Without attack 99.99 83.91 99.99 100 100 87.26 
GF (3×3) 100 86.62 100 100 100 99.93 
GF (5×5) 100 80.98 100 100 100 100 
MF (3×3) 99.99 66.66 99.99 100 100 99.71 
MF (5×5) 100 83.53 100 100 100 100 
GANPrintR [23] 96.39 83.09 93.13 59.72 62.36 59.49 
Proposed 11.18 14.83 79.44 27.28 57.28 19.03 

 

Table 7 shows PGAN of Gragnaniello detector [16] on the six example images. The GF and MF 

manipulations bring little decrease to the GAN detection performance, which keeps consistent with the 

quantitative evaluations. Compared with GANPrintR [23], our proposed attack scheme could fool the 

Gragnaniello GAN detector at higher probability. For example, PGAN achieves 99.99% on the unattacked 

example GAN image a, and is reduced to 96.39% by GANPrintR. In contrast, such PGAN is significantly 

reduced to 11.18% by our proposed attack. Such results verify the effectiveness and performance 

advantage of our proposed attack scheme. 

IV. CONCLUSION 

In this paper, we propose a novel black-box attack method to reduce the forensic accuracy of GAN-

generated image detectors. As positive and negative samples, GAN images and their simulated real 

counterparts are constructed to train the attack model under a contrastive loss function. Imperceptible 

contrastive perturbation is applied to synthetic images for removing GAN fingerprint. Experimental 

results verify that our proposed black-box attack method has effectively reduced the accuracy of three 
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state-of-the-art GAN detectors on six popular GANs. Meanwhile, high visual quality of attacked images 

is achieved. How to further reduce the forensic accuracy of GAN detectors and ensure the visual quality 

of attacked images simultaneously will be investigated in the future work. 
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