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Abstract

Traffic forecasting is essential for the traffic construction of smart cities in
the new era. However, traffic data’s complex spatial and temporal depen-
dencies make traffic forecasting extremely challenging. Most existing traffic
forecasting methods rely on the predefined adjacency matrix to model the
Spatio-temporal dependencies. Nevertheless, the road traffic state is highly
real-time, so the adjacency matrix should change dynamically with time.
This article presents a new Multi-Spatio-temporal Fusion Graph Recurrent
Network (MSTFGRN1) to address the issues above. The network proposes
a data-driven weighted adjacency matrix generation method to compensate
for real-time spatial dependencies not reflected by the predefined adjacency
matrix. It also efficiently learns hidden Spatio-temporal dependencies by per-
forming a new two-way Spatio-temporal fusion operation on parallel Spatio-
temporal relations at different moments. Finally, global Spatio-temporal
dependencies are captured simultaneously by integrating a global attention
mechanism into the Spatio-temporal fusion module. Extensive trials on four
large-scale, real-world traffic datasets demonstrate that our method achieves
state-of-the-art performance compared to alternative baselines.
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1. Introduction

Rapid urban population expansion has provided a substantial challenge
to the urban road traffic infrastructure in light of increased urbanization[1].
In the modern era, developing an efficient, intelligent transportation system
(ITS[2]) has become necessary for constructing smart cities. As an integral
part of ITS, traffic forecasting[3] has evolved into an active research topic that
has the potential to improve the operational efficiency and decision-making
of traffic systems[4, 5, 6]. Nevertheless, complex Spatio-temporal correlations
in traffic networks make traffic forecasting a difficult undertaking.

The objective of traffic forecasting is to predict the future state of the
road traffic system by analyzing historical traffic state data (e.g., traffic flow,
speed, and lane occupancy)[7]. Therefore, the early studies considered traffic
forecasting a general time series forecasting task. Many traditional research
methods have been heavily applied in traffic forecastings, such as History
Average model (HA), Vector Auto-Regression (VAR[8]), and an Autoregres-
sive Integrated Moving Average (ARIMA[9]). All of these methods, how-
ever, require the assumption of smoothness[10] in time series, which leads
to numerous errors in forecasting time series data with large fluctuations
and multiple missing values. In recent years, prediction approaches based on
deep learning[11, 12] for time series correlation analysis have improved fore-
cast performance. However, they continue disregarding the intricate spatial
dependence between road nodes in traffic networks. Researchers[7, 13, 14]
are increasingly turning to integrated models based on Graph Convolutional
Networks (GCN[15, 16]) and Recurrent Neural Networks (RNN[17]) to de-
scribe spatial and temporal dependency, respectively, to capture the Spatio-
temporal dependence in traffic flow data. Even though GCN-based traffic
forecasting approaches have yielded remarkable results, we believe that two
crucial factors are still being neglected.

On the one hand, the GCN-based spatial modeling approach first requires
graph convolution operations through predefined adjacency matrices[18] to
capture spatial dependencies. However, the spatial dependence of the traffic
road network is dynamic and largely dependent on the real-time traffic state
and the traffic network’s topology[19]. Therefore, the spatial dependency
information of the traffic road network cannot be fully represented by relying
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solely on the predefined adjacency matrix. On the other hand, the chain
structure[20] design of RNN and its variant models (e.g., Long Short-Term
Memory (LSTM[21, 22]) networks and Gated Recurrent Unit (GRU[23]))
renders it incapable of learning global features[24] and gradient disappearance
or gradient explosion may occur when dealing with long-term time series
data[25, 26]. In additione, there are typical contextual correlations[27, 28] in
traffic events. For instance, the state information of traffic flow will change
rapidly if unanticipated events[29, 30] such as traffic accidents and special
events. Consequently, the analysis of contextual correlation among traffic
data is advantageous for better capturing the Spatio-temporal dependence
of traffic data.

To solve the difficulties above, we offer a new Spatio-temporal data fore-
casting method based on metropolitan road networks for traffic forecasting
tasks. Our primary contributions are the following four:

1. We propose a new Semi-autonomous Generation Spatial Adjacency
Matrices (SAGSAM). This module autonomously generates weighted
adjacency matrices of graphs from real-time traffic data while semi-
autonomously generating spatial adjacency matrices for each period in
combination with predefined adjacency matrices.

2. We propose a new Semi-autonomous Generative Spatial Graph Convo-
lutional Network (SAGS-GCN). The module overlays multiple layers of
GCNs to process the generated spatial adjacency matrix, dynamically
capturing the spatial dependencies on each period.

3. We present a Spatio-temporal Fusion Graph Recursive Network (STF-
GRN). This module replaces the gating unit of GRU with SAGS-GCN
to recursively fuse the parallel spatial dependence information on each
period to capture the latent local Spatio-temporal dependence.

4. We present a Multi-Spatio-temporal Fusion Graph Recurrent Network
(MSTFGRN). This module models the spatial-temporal interdepen-
dence of traffic data using a bidirectional STFGRN to identify contex-
tual correlations. In addition, a global temporal attention technique[31]
is employed to identify global temporal relationships.

The remaining sections of the paper are organized as follows: In Section
2, we reviewed research and work on traffic prediction challenges. Section 3
discusses the proposed MSTFGRN’s structure and implementation in depth.
Then, in Section 4, we conduct extensive comparison tests between MSTF-
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GRN and various baseline models across multiple datasets, including abla-
tion studies and parameter investigations. The paper is finally summarized
in Section 5.

2. Related Works

Due to the complex geographical correlation between traffic road net-
works, traffic forecasting approaches that merely consider temporal correla-
tion have failed to estimate road traffic conditions on roadways effectively. In
recent years, Convolutional Neural Networks (CNN)[32] and Graph Neural
Networks (GNN)[16] has been used to capture spatial dependence and has
achieved good results in many works[7, 13, 33]. Based on the above analysis,
we will present some working methods for related traffic forecasting in terms
of both time and Spatio-temporal dependence.

Temporal dependency modeling: Most such studies[21, 22, 23] rely
on the recursive structure of LSTM or GRU to sequentially process traffic
sequence data to capture the time dependence. M-B-LSTM[28] mitigates
the overfitting and gradient disappearance and gradient explosion problems
that occur in traditional recurrent networks during feature learning by con-
structing online self-learning networks and introducing bidirectional long-
short memory networks. Unlike recurrent neural networks, some works use
temporal convolutional networks (TCN[34, 35]), allowing the models to uti-
lize less time to process longer sequential information. In recent works[36, 37],
the introduction of Transformer-based[31] time series prediction models can
effectively capture the long-term time dependence between the output and
input of long time series.

Spatiotemporal dependency modeling: Modeling traffic data’s spa-
tial and temporal dependence is central to traffic forecasting. In some works[33,
38], traffic road networks are described as two-dimensional grids, and CNNs
are used to model the spatial dependence of the two-dimensional grid regions.
However, the partitioning of topologically structured traffic road networks
using two-dimensional grids may cause the problem of edge feature loss. In
order to develop traffic forecasting methods generalized to graph topologies,
more and more researchers have turned to investigating GCN-based Spatio-
temporal prediction methods in recent years. Among them, DCRNN[14] cap-
tures spatial and temporal dependencies in traffic flow data utilizing GCN
and GRU. Following DCRNN, ASTGCN[13] and STSGCN[39] further add
Spatio-temporal attention mechanisms to capture dynamic Spatio-temporal

4



dependencies. However, they both model the spatial dependencies of traffic
data using predefined adjacency matrices. Therefore Graph Wavenet[40] and
AGCRN[33] use an adaptive adjacency matrix that can capture spatial de-
pendencies without a predefined adjacency matrix. In addition, STFGNN[41]
proposes a data-driven method for generating temporal graphs to compen-
sate for spatial dependency information that a predefined adjacency matrix
may not reflect. In recent works, STGODE[42] measures the semantic sim-
ilarity of each time series using Dynamic Time Warping (DTW[43]), which
is then used as the weight in the semantic adjacency matrix to identify more
significant spatiotemporal relationships. z-GCNETs[44] incorporate the con-
cepts of time-aware zigzag persistence into time-aware GCN and produce an
excellent performance on traffic forecasting.

In contrast to the above work, our proposed model can dynamically gen-
erate spatial adjacency matrices for corresponding moments based on real-
time traffic state information on individual roads, and accurately capture
the Spatio-temporal dependence of the captured traffic data through a new
Spatio-temporal fusion network.

3. Methods

3.1. Problem Definition

Definition 1: The information describing the topological structure of
the traffic road network is represented in graph G = (V,E,A). The set
V = {v1, v2, · · · , vN} represents all road nodes on the road network topology
graph, whereas N denotes the total quantity of road nodes. E represents
the set of edge-to-node connection relationships. A ∈ RN×N denotes the
adjacency matrix of graph G, which contains only two numbers, 0 and 1.
That is, for any road node vi and vj, when two nodes are connected: A(i, j) =
A(j, i) = 1, and vice versa is 0.

Definition 2: Using the traffic information on the traffic routes as the
feature characteristics in the network nodes, the feature matrix X ∈ RN×T×1

is built, where T represents the length of the historical time series, Xt ∈ RN×1

represents the collection of traffic speed statistics at the time t for N road
nodes in the traffic network.

With the formulation above, the traffic prediction problem can be under-
stood using the traffic network topology graph G and the feature matrix X
to anticipate the traffic state information for the following T time steps via
the mapping function f(·).
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[Xt+1, · · · , Xt+T ] = f(G; (Xt−T , Xt−(T−1), · · · , Xt)) (1)

3.2. The Model Architecture

This unit will describe how to implement the traffic forecasting task us-
ing the MSTFGRN. As shown in Figure 1, the model has three primary
components: 1) SAGS-GCN layer: seeks to capture the spatial dependence
between traffic road network nodes at each time; 2) MSTFGRN layer: its
objective is to comprehensively capture the Spatio-temporal dependence of
traffic data by fusing parallel Spatio-temporal relationships at each instant;
3) Prediction layer: a neural network with full connectivity is employed to
output prediction results.

SAGS-GCN

SAGSAM

SAGS-GCN

SAGSAM

SAGS-GCN

SAGSAM

tXt TX − t ( 1)TX − −

…

Bi-STFGRN Bi-STFGRN Bi-STFGRN

Time Attention

…

Prediction Layer

t+1 t+2 t+T, , ,X X X

Adjacency matrix Adjacency matrix Adjacency matrix

…

MSTFGRN

Figure 1: The Proposed Multi-Spatio-temporal Fusion Graph Recurrent Network Frame-
work.
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3.2.1. Spatial Dependency Modeling

Weighted Adjacency Matrix

Figure 2: Semi-automatically Generated Spatial Adjacency Matrix.

As illustrated in Figure 2, we propose a Semi-autonomous Generation
Spatial Adjacency Matrix (SAGSAM) to effectively capture the spatial rela-
tionships of individual time steps. SAGSAM can autonomously generate the
weighted adjacency matrix for the corresponding moment based on the traf-
fic state information on the road at different moments and integrate it with
the predefined adjacency matrix to dynamically generate the weighted adja-
cency matrix specific to different moments. The specific calculation process
is shown in Eq. 2.

Ã = softmax(ReLU(EA · ET
A)) · A (2)

Where EA ∈ RN×d indicates that all nodes can learn the Embedded dic-
tionary, d is the node embedding dimension. softmax is the normalized
exponential function, and ReLU is the nonlinear activation function. ET

A

denotes the transpose matrix of EA. Ã ∈ RN×N is the generated spatial
adjacency matrix.

Meanwhile, we further propose the Semi-autonomous Generative Spa-
tial Graph Convolution Network (SAGS-GCN) by combining the SAGSAM
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module with NAPL-GCN[33] to capture the spatial dependence at each par-
allel time step. Specifically, the weighted adjacency matrix Ãt generated by
SAGSAM at any time step t and the feature information Xt ∈ RN×C of all
nodes at the corresponding moment are used as the input information of
SAGS-GCN, and the output Zt ∈ RN×F is computed by Eq. 3.

Zt = (IN + softmax(ReLU(EAt · ET
At)) · A)XtEAt ·WAt + EAt · bAt (3)

Where C denotes the input feature dimension of each node and F is the final
output feature dimension after graph convolution operation. EAt is the node
embedding matrix. IN ∈ RN×N is the diagonal matrix. WAt ∈ Rd×C×F is
the shared weight pool, and the weight parameter Wt ∈ RN×C×F of all nodes
can be obtained by EAt · WAt. correspondingly, bAt ∈ Rd×F is the shared
offset term pool, and the offset term bt ∈ RC×F of all nodes can be obtained
by EAt · bAt.

3.2.2. Multi-Spatio-temporal Dependency Modeling

tanh

SAGS-GCN

SAGS-GCN




 +

1-

 
+ 1th

tanh

SAGS-GCN

SAGS-GCN




 +

1-

 
- 1th

tanh

SAGS-GCN

SAGS-GCN

 





1-


trt - 1r t + 1r + 1z ttzt - 1z
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tX
t-1X

t+1XAA A

th1th −

1th − th

1th +

concate

sigmoid

+


1th +

Figure 3: Spatiotemporal Fusion Graph Recurrent Network.

To simultaneously capture traffic data’s Spatio-temporal dependencies
simultaneously, we propose a Spatio-temporal Fusion Graph Recursive Net-
work (STFGRN). As shown in Figure 3, this network replaces the gating unit
of GRU with SAGS-GCN. The STFGRN recursively performs a new fusion
operation on the parallel Spatio-temporal dependencies at each adjacent time
step to efficiently learn the hidden local Spatio-temporal dependencies in the
traffic data. Meanwhile, to capture contextual Spatio-temporal correlations
between traffic events, we model the Spatio-temporal dependencies of traffic
networks using forward and reverse STFGRN. To facilitate the description,
we introduce the computational process of STFGRN using the forward STF-
GRN as an example. Specifically, at any moment t, the given Xt at the
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current time and the output
−→
h t−1 ∈ RN×F ′

of STFGRN at the previous mo-
ment is concatenated as the input information of the current moment, and
then the following calculation is performed.

Ã = IN + softmax(ReLU(EAt · ET
At)) · A

zt = σ(Ã[Xt,
−→
h t−1]EAt ·Wzt + EAt · bzt)

rt = σ(Ã[Xt,
−→
h t−1]EAt ·Wrt + EAt · brt)

h̃t = tanh(Ã[Xt, rt �
−→
h t−1]EAt ·Wh̃t + EAt · bh̃t)

−→
ht = zt �

−→
h t−1 + (1− zt)� h̃t

(4)

Where σ(·) is the sigmoid activation function, EAt, Wzt, Wrt, Wh̃t, bzt, brt,

and bh̃t are learnable parameters. h̃t is the candidate’s hidden layer state.
−→
ht ∈ RN×F ′

is the output at the current moment. [·] denotes the concate
operation in the feature dimension, and � denotes the multiplication by
elements. Waiting for the last step to complete the operation, we get the

forward output result
−→
H = [

−→
h t−T ,

−→
h t−(T−1), · · · ,

−→
h t],

−→
H ∈ RN×T×F ′

. The
reverse operation is the same as the forward operation, and the forward
and reverse outputs are concatenated by Eq. 5 to obtain the output result
H ∈ RN×T×2F ′

of the network finally.

H =
−→
H ||

←−
H (5)

Besides, to simultaneously capture the global Spatio-temporal dependen-
cies, we add a global attention mechanism after Bi-STFGRN to form the
proposed Multi-Spatio-temporal Fusion Graph Recurrent Network (MSTF-
GRN). Specifically, after capturing the local Spatio-temporal dependence,
we impose a self-attentive mechanism[45] on each node and then aggregate it
with the original information to capture the global Spatio-temporal depen-
dence by processing the entire sequence data on the nodes in parallel. For
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any node vi, the specific calculation procedure is shown in Eq. 6.

Qvi = Hvi,:,:Wq + bq

Kvi = Hvi,:,:Wk + bk

Vvi = Hvi,:,:Wv + bv

Avi,:,: = softmax(
QviK

T
vi√

d
)Vvi

H̃vi,:,: = normLayer(Avi,:,: +Hvi,:,:)

(6)

where Hvi,:,: ∈ RT×2F ′
is the full time series information of the node, Qvi ,

Kvi , and Vvi are querry, key, and value, respectively, Wq, Wk, Wv, bq, bk
and bv are learnable parameters, and

√
d is the scale set. H̃vi,:,: ∈ RT×2F ′

is the output information of the node, and normLayer is the normalization
operation. Until all nodes finish the computation, we get the final output
H̃ ∈ RN×T×2F ′

.

3.3. Multi-step Traffic Forecasting

Finally, we implement the multi-step traffic prediction task by performing
linear variations of H̃ ∈ RN×T×2F ′

by a fully connected neural network.

Y ′ = Wf · H̃ + bf (7)

Where Wf and bf are the weight matrix and bias terms, and Y ′ ∈ RN×T×1

is the final prediction result.
The objective of the training is to narrow the gap between the actual road

traffic speed, Y , and the expected value, Y ′. In this paper, the L1 loss func-
tion is chosen for backpropagation-based neural network model optimization.
The specific calculating method is illustrated in Eq. 8.

loss =
1

T

T∑
i=1

|Yt+i − Y ′t+i| (8)

4. Experiment

4.1. Datasets

To prove the efficacy of the proposed framework, we conducted exper-
iments using PeMS03, PeMS04, PeMS07, and PeMS08, four public traffic
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network datasets. All traffic flow information is received from the Caltrans
Performance Measurement System (PeMS), which compiles data gathered
every five minutes by roadway sensors. Table 1 summarizes some critical
statistics for these four datasets.

Table 1: Datasets statistics

Datasets Sensors Edges Unit Time Steps
PeMS03 358 547 5 min 26208
PeMS04 307 340 5 min 16992
PeMS07 883 866 5 min 28224
PeMS08 170 295 5 min 17856

4.2. Baseline Methods

MSTFGRN was compared to some of the most advanced baseline models.
The following is a summary of these baselines.

• HA: The predicted outcome used by the model is the average of past
traffic data.

• VAR[8]: The model is a standard time series model that captures the
pairwise temporal dependence between time series.

• FC-LSTM[21]: An LSTM with a fully connected layer is used to ac-
complish the traffic prediction task.

• TCN[34]: The model uses inflated convolution to obtain a larger per-
ceptual field with less cost.

• DCRNN[14]: The model incorporates spatial correlation through bidi-
rectional random wandering on the graph and temporal correlation
through GUR.

• ASTGCN[13]: The model further introduces spatial and temporal at-
tention mechanisms to dynamically model spatial and temporal depen-
dencies.

• STSGCN[39]: The model uses local Spatio-temporal subgraph modules
to model local correlations independently.
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• AGCRN[33]: The model captures the fine-grained Spatio-temporal cor-
relation of specific nodes in a traffic sequence.

• STFGNN[41]: The approach provides a temporal graph based on the
similarity of time series and includes a CNN with gated expansion to
capture local and global relationships.

• STGODE[42]: The model proposes a continuous representation that
increases the GCN’s depth, expanding the GCN’s perceptual field to
capture deeper Spatio-temporal dependencies.

• Z-GCNETs[44]: The model develops a zigzag topology layer for time-
aware graphical convolutional networks to capture the complex Spatio-
temporal dependencies.

4.3. Experimental Settings

We normalize all datasets with Z-score and divide each dataset into train-
ing sets of 60%, validation sets of 20%, and test sets of 20%. Then, a T + T
window is slid over the separated datasets (T consecutive time steps are
utilized to predict the traffic situation information for the subsequent T con-
secutive time steps.). Here, we set the size of T to 12. The embedding
dimension of our model’s nodes is set to 10, and the size of all hidden layers
is set to 64. The batch size is set to 64, the learning rate is set to 0.001, and
the Adam optimizer is used to optimize the model with a maximum of 100
iterations.

All comparison experiments are configured according to their open-source
code and optimal hyperparameter values in theory, all on a server with
Ubuntu 18.04.6 with an Intel Core i5-10500 @ 3.10GHz CPU and NVIDIA
GeForce 2080Ti GPU 11GB. In addition, we use the following three metrics
to measure the model’s predictive performance.

• Mean Absolute Error(MAE):

MAE =
1

K

K∑
i=1

|Yi − Y ′i | (9)

• Root Mean Squared Error(RMSE):
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RMSE =

√√√√ 1

K

K∑
i=1

(Yi − Y ′i ) (10)

• Mean Absolute Percentage Error(MAPE):

MAPE =
100%

K

K∑
i=1

|Yi − Y
′
i

Yi
| (11)

Where K denotes the total number of samples. The lower the values of
the three indicators above, the greater the model’s predictive accuracy. We
conduct each experiment five times and then calculate the mean value as the
test result.

4.4. Experiment Results and Analysis

Table 2: Comparison of MSTFGRN and baseline models’ performance on the PeMS03,
PeMS04, PeMS07, and PeMS08 datasets

Model
Dataset PeMS03 PeMS04 PeMS07 PeMS08

Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 31.74 51.79 33.49% 39.87 59.04 27.59% 45.32 65.74 23.92% 35.16 59.74 28.35%

VAR 23.75 37.97 24.53% 24.61 38.61 17.54% 49.89 75.45 32.13% 19.21 29.84 13.13%

FC-LSTM 20.96 36.01 20.76% 25.01 41.42 16.18% 33.26 59.92 14.32% 23.49 38.89 14.55%

TCN 19.32 33.55 19.93% 23.22 37.26 15.59% 32.27 42.23 14.26% 22.72 35.79 14.03%

DCRNN 17.48 29.19 16.83% 21.22 33.44 14.17% 24.69 37.88 10.80% 16.82 26.32 10.92%

ASTGCN 17.65 29.63 16.94% 22.03 34.99 14.59% 24.01 37.87 10.73% 18.36 28.31 11.25%

STSGCN 17.48 29.21 16.78% 21.19 33.65 13.90% 24.26 39.03 10.21% 17.13 26.80 10.96%

AGCRN 15.97 28.11 15.23% 19.83 32.26 12.97% 21.13 35.20 8.96% 15.95 25.22 10.09%

STFGNN 16.77 28.34 16.30% 20.18 32.41 13.94% 22.07 35.80 9.21% 16.64 26.25 10.60%

STGODE 16.32 27.23 16.25% 20.95 32.66 14.95% 22.90 37.54 10.14% 16.81 25.97 10.62%

Z-GCNETs 16.64 28.15 16.39% 19.50 31.61 12.78% 21.77 35.17 9.25% 15.76 25.11 10.01%

MSTFGRN 15.10 26.54 14.07% 19.03 30.95 12.76% 20.34 34.29 8.53% 15.43 24.77 9.97%

Table 2 displays the performance metrics of MSTFGRN compared to
11 other models for 12-time step (60-minute) predictions on the PeMS03,
PeMS04, PeMS07, and PeMS08 datasets. The results show that our proposed
MSTFGRN achieves optimal results compared to each of the baseline mod-
els, demonstrating the feasibility of MSTFGRN as a novel Spatio-temporal
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prediction model for traffic forecasting tasks. At the same time, the analysis
of our experimental findings permits us to notice the following phenomena:

(a). Performance of prediction for every horizontal line in the PeMS03 dataset.

(c). Performance of prediction for every horizontal line in the PeMS08 dataset.

(b). Performance of prediction for every horizontal line in the PeMS04 dataset.
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Figure 4: Metrics on PeMS03, PeMS04, and PeMS08 dataset.

1) Spatiotemporal modeling capabilities: According to Table 2, mod-
els based on deep learning typically have higher prediction accuracy
than statistical models (such as HA and VAR models). In addition,
the prediction accuracy of Spatio-temporal correlation modeling-based
approaches (such as DCRNN, ASTGCN, and STSGCN) is much higher
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than that of temporal correlation modeling-based methods (LSTM and
TCN). Similarly, MSTFGRN achieves the best prediction performance
across all assessment measures among all Spatio-temporal prediction
models. Among them, MSTFGRN has a 5.45% year-on-year reduction
in MAE, 2.53% year-on-year reduction in RMSE, and 7.62% year-on-
year reduction in MAPE on PeMS03 compared to the best results in
other baseline models. On the PeMS07 dataset, which has the high-
est number of nodes and the most complex data, MSTFGRN shows a
3.75% reduction in MAE, 2.50% reduction in RMSE, and 4.80% reduc-
tion in MAPE compared to the optimal results of other models. This
proves that the MSTFGRN model has better Spatio-temporal modeling
capability than other advanced Spatio-temporal prediction models.

2) Long − term forecasting ability: As shown in Figure 4, which com-
pares the prediction performance of MSTFGRN to that of other Spatio-
temporal prediction models on various Horizons, the three performance
curves of MSTFGRN exhibit relatively tiny oscillation trends on each
data set, showing that our proposed technique is insensitive to the
prediction horizons and the prediction performance is relatively sta-
ble. This permits the MSTFGRN model to be utilized for short-term
and long-term forecasting. To verify the long-term prediction ability
of MSTFGRN, we selected the AGCRN for comparison. We visualized
the predicted output of MSTFGRN and AGCRN for 288 consecutive
time steps (i.e., 24 hours) with the actual values at any of the same
nodes. From Figure 5, we can observe that MSTFGRN usually fits
the actual values better than AGCRN and learns the traffic flow data
variation pattern relatively well when the actual value curve fluctuates
more drastically. This proves that the MSTFGRN model has good
Spatio-temporal modeling capability in long-time forecasting tasks.
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Figure 5: Traffic forecasting visualization on PeMS03, PeMS04, PeMS07, and PeMS08
dataset.

4.5. Ablation Study on Model Architecture

To further study the influence of MSTFGRN’s various modules, we cre-
ated four variants of the MSTFGRN-based model and compared MSTFGRN
to these four variants on the PeMS04 and PeMS08 datasets. Below are the
distinctions between these four model kinds.

1 w/o node embedding: The model removes the node embedding opera-
tion from the SAGSAM module and uses only the predefined adjacency
matrix.

2 w/o adjacency matrix: The model removes the predefined adjacency
matrix from the SAGSAM module and utilizes only the adaptive adja-
cency matrix.

3 w/o reverse STFGRN : The model uses only the positive STFGRN
to capture Spatio-temporal correlations.

4 w/o attention: The model removes the global temporal attention mech-
anism based on MSTFGRN.

As shown in Table 3, the comparison results of the prediction performance
of MSTFGRN with its four variants of the model on the PeMS04 and PeMS08
datasets are shown. We can observe that the metrics of w/o node embedding
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Table 3: Results of ablation experiments on PeMS04 and PeMS08

Model
Dataset PeMS04 PeMS08

Metrics MAE RMSE MAPE MAE RMSE MAPE

w/o node embedding 19.72 31.38 13.12% 15.86 25.72 10.03%

w/o adjacency matrix 19.20 31.51 12.68% 15.78 25.21 9.92%

w/o reverse STFGRN 19.52 31.62 13.35% 15.66 25.18 10.00%

w/o attention 20.33 32.61 13.21% 16.40 25.84 10.36%

MSTFGRN 19.03 30.95 12.79% 15.43 24.77 9.97%

are larger than those of w/o adjacency matrix, which indicates that the self-
generated weighted adjacency matrix can reflect more spatial dependency
information compared with the predefined adjacency matrix. However, the
metrics of w/o adjacency matrix are still larger than that of MSTFGRN,
which indicates that the self-generated weighted adjacency matrix can be
effectively normalized using the predefined adjacency matrix. We can also
observe a significant increase in the metrics of w/o reverse STFGRN com-
pared to MSTFGRN, which indicates that capturing the contextual rele-
vance in Spatio-temporal prediction networks is essential. In addition, we
can observe that the metrics of w/o attention are larger. This indicates that
the global temporal attention mechanism can effectively capture the global
Spatio-temporal dependence and improve the model to prediction perfor-
mance. Meanwhile, we compared the prediction performance of MSTFGRN
with the above four model variants over various periods on the PeMS04
dataset. As shown in Figure 6, MSTFGRN achieved the best short-term
prediction performance (15 MiN) and long-term prediction performance (60
Min).
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Figure 6: Ablation study on the PeMSD4 dataset.
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Besides, the dimensionality of node embedding is an essential parameter
in the SAGSAM module, which affects the quality of the spatial adjacency
graph and determines whether MSTFGRN can genuinely and effectively cap-
ture the spatial correlation of the traffic road network. Figure 7 compares
the effects of different embedding dimension numbers on the prediction per-
formance of MSTFGRN using the PeMS04 dataset. MSTFGRN operates
most efficiently with an embedding dimension of 10. When node embedding
dimensions are too tiny or too high, performance degrades. This may be be-
cause when the embedding dimension is small, the information that can be
contained in the node embedding module is also relatively small and cannot
effectively help SAGSAM accurately derive the spatial dependence between
nodes. In contrast, when the node embedding dimension is too large, the
number of module parameters increases dramatically, making it impossible
to optimize the model. Overall, finding the appropriate node embedding di-
mension is crucial to the Spatio-temporal capture capability of MSTFGRN.
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Figure 7: Impact of embedding dimensions on the PeMS04

5. CONCLUSION

This study introduces a novel paradigm for Spatio-temporal prediction
using graph neural networks. The model combines an autonomously gen-
erated weighted adjacency matrix with a preset adjacency matrix and uses
graph convolution techniques to capture spatial dependencies at every time
step. In addition, the system offers a Spatio-temporal component to break
parallel spatial dependencies on each successive time step. In conclusion,
local and global Spatio-temporal dependencies are captured by imposing a
global attention mechanism on each graph node. Experiments on four public
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transportation datasets showed that MSTFGRN produced the best predic-
tion results overall. In our future efforts, we will concentrate on the two
areas listed below: (1) Further application of the proposed framework to
other Spatio-temporal prediction tasks (e.g., climate and traffic accidents);
and (2) Expand the Spatio-temporal modeling capabilities of the framework
for traffic prediction tasks by evaluating the incorporation of other external
influences (e.g., weather, holidays, and vehicle flow) into the model to further
enhance the forecast performance.
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