
HAL Id: hal-04370979
https://hal.science/hal-04370979

Submitted on 3 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved Saddle Point Prediction in Stochastic
Two-Player Zero-Sum Games with a Deep Learning

Approach
Dawen Wu, Abdel Lisser

To cite this version:
Dawen Wu, Abdel Lisser. Improved Saddle Point Prediction in Stochastic Two-Player Zero-Sum
Games with a Deep Learning Approach. Engineering Applications of Artificial Intelligence, 2023, 126,
pp.106664. �10.1016/j.engappai.2023.106664�. �hal-04370979�

https://hal.science/hal-04370979
https://hal.archives-ouvertes.fr

Improved Saddle Point Prediction in Stochastic Two-Player Zero-Sum Games

with a Deep Learning Approach

Dawen Wua (dawen.wu@centralesupelec.fr), Abdel Lissera (abdel.lisser@l2s.centralesupelec.fr)

a Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette,

France

Corresponding Author:

Dawen Wu

Address: Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190,

Gif-sur-Yvette, France

Tel: (+33) 750798387

Email: dawen.wu@centralesupelec.fr

Improved Saddle Point Prediction in Stochastic Two-Player Zero-Sum
Games with a Deep Learning Approach

Dawen Wua,∗, Abdel Lissera

aUniversité Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France

Abstract

In this paper, we propose a novel deep learning approach for predicting saddle points in stochastic two-

player zero-sum games. Our method combines neurodynamic optimization and deep neural networks. First,

we model the stochastic two-player zero-sum game as an ordinary differential equation (ODE) system using

neurodynamic optimization. Second, we develop a neural network to approximate the solution to the ODE

system, which includes the saddle point prediction for the game problem. Third, we introduce a specialized

algorithm for training the neural network to enhance the accuracy of the saddle point prediction. Our

experiments demonstrate that our model outperforms existing approaches, yielding faster convergence and

more accurate saddle point predictions.

Keywords: Stochastic two-player zero-sum games, Saddle points, Neurodynamic optimization, Deep

learning, Ordinary differential equations

1. Introduction

In non-cooperative game theory, two-player zero-sum games are among the most fundamental models,

featuring two players, each with finite actions, and their payoffs add up to zero. A saddle point of such a

game represents a situation in which no player can increase his/her payoff by unilaterally changing his/her

strategy. von Neumann (1928) proved that there always exists a saddle point for any two-player zero-sum5

game. Later, Nash (1950) extended this result and proved that there always exists a Nash equilibrium for any

n-player general-sum game with finite actions. Charnes (1953) studied the two-player zero-sum games with

linear constraints, which can be formulated as linear programming problems. Recently, Singh & Lisser (2019)

studied a stochastic version of the two-player zero-sum games, namely stochastic two-player zero-sum games.

They demonstrated that a saddle point exists if the random vectors defining stochastic linear constraints10

follow elliptically symmetric distributions.

Neurodynamic optimization refers to a method that uses a first-order ODE system to model a nonlinear

optimization problem. Hopfield & Tank (1985) proposed the Hopfield network to solve the well-known

traveling salesman problem. The Hopfield network was extended to solve nonlinear convex programming

∗Corresponding author
Email address: dawen.wu@centralesupelec.fr, abdel.lisser@l2s.centralesupelec.fr (Abdel Lisser)

Preprint submitted to EAAI January 3, 2024

by introducing a penalty parameter (Kennedy & Chua, 1988). However, this method struggles to achieve15

an optimal solution because the true minimizer can only be achieved when the penalty parameter goes to

infinity. Since then, various types of neurodynamic optimization methods have been proposed without using

the penalty parameter, to solve various optimization problems, e.g., quadratic programming (Xia & Wang,

2000), nonlinear projection equations (Xia & Feng, 2007), second-order cone programming (Nazemi, 2019),

non-smooth optimization problems (Qin & Xue, 2014), pseudoconvex optimization problems (Xu et al., 2020).20

Wu & Lisser (2022b) proposed a neurodynamic optimization approach to model the stochastic two-player

zero-sum game problem using Karush–Kuhn–Tucker conditions.

Deep learning is a type of machine learning that uses deep neural networks, comprising many layers of

interconnected nodes, to learn complex patterns and relationships in data. Thanks to the exponential growth

of data and computing resources in recent years, deep learning has been applied successfully to a wide range25

of fields, including image processing (Raza et al., 2021), natural language processing (Tan & Zhang, 2020),

bioinformatics (Hu et al., 2020), game theory (Wu & Lisser, 2022d,c), and operations research (Wu & Lisser,

2022a; Nair et al., 2020; Bengio et al., 2021).

Research on utilizing neural networks to solve differential equations dates back to the 1990s, with the initial

concept involving training a neural network to satisfy both a given differential equation and its boundary30

conditions (Dissanayake & Phan-Thien, 1994). Advances in this field include the development of construction

methods that inherently satisfy initial and boundary conditions, with applications in ordinary and partial

differential equations (Lagaris et al., 1998, 2000; McFall & Mahan, 2009). The advent of deep learning has

revitalized the use of neural networks for solving differential equations, enabling researchers to address the

challenge of solving high-dimensional nonlinear PDEs (Han et al., 2017; Yu et al., 2018; Han et al., 2018) and35

leading to significant developments such as the introduction of physics-informed neural networks (PINNs)

(Raissi et al., 2019a). PINNs have found successful applications across various fields, including computational

mechanics (Anitescu et al., 2019; Samaniego et al., 2020), and have been modified to accommodate a range

of problem scenarios (Wang et al., 2021; Lu et al., 2021b; Zhang et al., 2020). The rapid progress in this

research direction has been facilitated by automatic differentiation tools that simplify the calculation of40

derivatives, gradients, and Jacobian matrices (Baydin et al., 2018; Paszke et al., 2019a), and it has been

demonstrated that the neural network approximator converges to the PDE solution as the number of hidden

units increases (Sirignano & Spiliopoulos, 2018). Currently, software packages are available that utilize deep

learning methods to solve differential equations (Lu et al., 2021a; Chen et al., 2020).

This paper addresses the saddle point problem in stochastic two-player zero-sum games (Singh & Lisser,45

2019). Previous research reformulated this problem as a problem of solving the state solution of an ODE

system (Wu & Lisser, 2022b). However, the existing solution method demands solving all intermediate states

in the ODE system to arrive at the final prediction, which can lead to computationally intensive and time-

consuming processes. To overcome these challenges, this paper aims to enhance the saddle point prediction

problem by incorporating advanced deep learning techniques for solving differential equations (Raissi et al.,50

2

2019b; Sirignano & Spiliopoulos, 2018). By developing an efficient approach to the stochastic two-player

zero-sum game problem, we address the current limitations and open new possibilities for solving various

game-theoretic problems. The proposed approach can encourage researchers to explore the use of deep

learning techniques in tackling other complex game-theoretic scenarios, contributing to advancements in the

field of game theory and optimization.55

It is important to note that the previous convolutional neural network (CNN) approach (Wu & Lisser,

2022d,c) employed to address two-player zero-sum games is not directly applicable to the stochastic two-

player zero-sum game considered in this paper. The aforementioned papers focused on classical two-player

zero-sum games without random variables, which could be represented by a matrix denoting payoffs and

subsequently used as input for the CNN. In contrast, the stochastic two-player zero-sum game examined in60

this paper incorporates random variables within the constraints, preventing a direct input of the game into

the CNN.

1.1. Key contributions

Our key contributions can be summarized as follows:

• We propose a novel method that combines neurodynamic optimization and deep learning to solve the65

stochastic two-player zero-sum game. To the best of our knowledge, this is the first time deep learning

has been applied to this problem.

• Our work transforms the stochastic two-player zero-sum game into a neural network training problem,

allowing us to solve the problem without the need for a standard numerical integration solver.

• Our method outperforms the state-of-the-art method presented in Wu & Lisser (2022b). In the specific70

game examples given in the experimental section, our method achieves an objective value of 5.48 and

maximum violation of constraints of 0.0827, respectively, outperforming the method of Wu & Lisser

(2022b).

1.2. Paper outline

The remaining sections are organized as follows. The background knowledge necessary to understand75

this paper is provided in Section 2, including an introduction to the stochastic two-player zero-sum game,

neurodynamic optimization, and numerical integration methods. Section 3 describes our proposed method

and how it solves the game problem. Section 4 presents experimental results and a discussion in which we

compare our method with the numerical integration methods. Section 5 summarizes this paper and outlines

future directions.80

1.3. Notation

Table 1 presents the notations list of this paper.

3

Notation Description

M = {1, . . . ,m} Action set of player 1; m denotes the number of pure strategies.
N = {1, . . . , n} Action set of player 2; n denotes the number of pure strategies.
x ∈ Rm Mixed strategy of player 1.
y ∈ Rn Mixed strategy of player 2.
J1 Index set of constraints for player 1.
J2 Index set of constraints for player 2.
α1 =

(
α1
k

)
k∈J1

Confidence levels for player 1’s constraints.

α2 =
(
α2
l

)
l∈J2

Confidence levels for player 2’s constraints.

G(α) Stochastic two-player zero-sum game with confidence level α; α = (α1, α2).
(x∗ ∈ Rm, y∗ ∈ Rn) Saddle point of G(α).
(x̂ ∈ Rm, ŷ ∈ Rn) Predicted saddle point.
Ellipd(µ,Σ, φ) d-dimensional elliptically symmetric distribution.
s ∈ Rns Decision variables; ns denotes the number of decision variables.
u ∈ Rnu Dual variables; nu denotes the number of dual variables.
Φ(·) ODE system.
[0, T] Time range.
r : [0, T]→ Rnr State solution of the ODE system.
r̂ : [0, T]→ Rnr Approximate state solution.
∥·∥ Euclidean norm.
∥·∥∞ Infinity norm.

Table 1: Summary of mathematical notations

2. Preliminaries

The stochastic two-player zero-sum game is introduced in Section 2.1. The neurodynamic optimization

method, which models the stochastic two-player zero-sum game as an ODE system, is presented in Section 2.2.85

Numerical integration methods, which are existing approaches for solving the game problem, are described

in Section 2.3.

2.1. Stochastic two-player zero-sum game

A two-player zero-sum game problem with linear constraints introduced by Charnes (1953) is characterized

as follows.90

• The game has two players in total, and players 1 and 2 have pure strategy sets of M = {1, . . . ,m}

and N = {1, . . . , n}, respectively. m and n denote the number of pure strategies of players 1 and 2,

respectively.

• The payoff of the game is represented by a matrix A = (aij) ∈ Rm×n. When player 1 chooses action

i ∈M and player 2 chooses action j ∈ N , players 1 and 2 receive payoffs of aij and −aij , respectively.95

• x ∈ X and y ∈ Y are mixed strategies of players 1 and 2, respectively. X =
{
x ∈ Rm | Bx ≤ b,1T

mx = 1, x ≥ 0
}

and Y =
{
y ∈ Rn | Dy ≤ d,1T

ny = 1, y ≥ 0
}

denote the feasible sets, where B ∈ Rp×m, b ∈ Rp,

D ∈ Rq×n, d ∈ Rq, 1T
m = [1, 1, . . . , 1] ∈ Rm, and 1T

n = [1, 1, . . . , 1] ∈ Rn. Let J1 = {1, 2 . . . , p}

and J2 = {1, 2 . . . , q} be the index sets of constraints of player 1 and 2, respectively.

4

Given a mixed strategy y of player 2, the objective of player 1 is to find a mixed strategy x that solves

the following linear programming problem, 

max
x

xTAy

s.t.

Bx ≤ b,

1T
mx = 1,

x ≥ 0.

(1)

Similarly, for a given strategy x of player 1, the aim of player 2 is to find a strategy y that solves the following

linear programming problem. 

min
y

xTAy

s.t.

Dy ≥ d,

1T
ny = 1,

y ≥ 0.

(2)

A strategy profile (x, y) is called a saddle point of this game if x and y are optimal solutions of (1) and (2),100

respectively. Charnes (1953) proved that there is always a saddle point for such a game.

Definition 1 (Elliptically symmetric distribution). A d-dimensional random vector ξ follows an ellipti-

cally symmetric distribution Ellipd(µ,Σ, φ), i.e., ξ ∼ Ellipd(µ,Σ, φ) if its characteristic function is given

by EeizT ξ = eiz
Tµφ

(
zTΣz

)
, where z ∈ Rd is the argument of the characteristic function, µ is the location

parameter, Σ is the scale matrix, and φ is the characteristic generator function.105

In this paper, we aim at solving the stochastic two-player zero-sum game introduced by Singh & Lisser

(2019), in which the matrices B and D are treated as random variables. A stochastic two player zero sum

game is characterized as follows.

• Let Bω and Dω denote random matrices that defines the constraints of player 1 and 2, respectively,

and ω denotes some uncertainty parameter.110

• We denote the k-th row vector of Bω as Bω
k and the l-th row vector of Dω as Dω

l . Both Bω
k and Dω

l

follow elliptical distributions, i.e., Bω
k ∼ Ellipm

(
µ1
k,Σ

1
k, φ

1
k

)
and Dω

l ∼ Ellipn
(
µ2
l ,Σ

2
l , φ

2
l

)
. The k-th

element of b is denoted as bk, and the l-th element of d is denoted as dl.

• α1
k ∈ [0, 1] denotes the confidence level for the k-th constraint of player 1, and α2

l ∈ [0, 1] denotes

the confidence level for the l-th constraint of player 2. Let α1 =
(
α1
k

)
k∈J1

, and α2 =
(
α2
l

)
l∈J2

, and115

α =
(
α1, α2

)
.

5

Therefore, the stochastic two-player zero-sum game can be written as:

max
x

xTAy

s.t.

P {Bω
k x ≤ bk} ≥ α1

k, ∀k ∈ J1

1T
mx = 1

x ≥ 0,

(3)

and 

min
y

xTAy

s.t.

P {Dω
l y ≥ dl} ≥ α2

l , ∀l ∈ J2

1T
ny = 1

y ≥ 0.

(4)

A mixed strategy (x∗, y∗) is said to be a saddle point of the stochastic two-player zero-sum game if it

simultaneously solves for both players’ optimization problems, as described in equations (3) and (4). In other

words, (x∗, y∗) represents the optimal strategies for each player, such that neither player can unilaterally

improve their outcome by deviating from these strategies.120

By the second-order cone constraint reformulation (Henrion, 2007; Van de Panne & Popp, 1963; Kataoka,

1963), the feasible sets of (3) and (4) are reformulated as

S1

(
α1

)
=

{
x ∈ Rm | 1T

mx = 1, x ≥ 0, xTµ1
k +Ψ−1

ξ1k
(α1

k)∥(Σ1
k)

1
2x∥ ≤ bk, ∀k ∈ J1

}
, (5)

and

S2

(
α2

)
=

{
y ∈ Rn | 1T

ny = 1, y ≥ 0,−yTµ2
l +Ψ−1

ξ2l
(α2

l)∥(Σ2
l)

1
2 y∥ ≤ −dl, ∀l ∈ J2

}
, (6)

respectively, where ξ1k =
Bω

k x−xTµ1
k∥∥∥∥(Σ1

k)
1
2 x

∥∥∥∥ , k ∈ J1, and ξ2l =
−Dω

l y+yTµ2
l∥∥∥∥(Σ2

l)
1
2 y

∥∥∥∥ , l ∈ J2 follow univariate standard elliptical

distributions, i.e., ξ1k ∼ Ellip
(
0, 1, φ1

k

)
, and ξ2l ∼ Ellip

(
0, 1, φ2

l

)
. Ψ−1

ξ1k

(
α1
k

)
and Ψ−1

ξ2l

(
α2
l

)
are the quantile

functions of 1-dimensional distribution functions induced by characteristic functions φ1
k and φ2

l , respectively.

We denote a stochastic two-player zero-sum game with a confidence level α as G(α).

Assumption 1.125

• S1(α
1) is strictly feasible, i.e., there exists an x ∈ Rm which is a feasible point of S1(α

1) and the

inequality constraints of S1(α
1) are strictly satisfied by x.

• S2(α
2) is strictly feasible, i.e., there exists an y ∈ Rn which is a feasible point of S2(α

2) and the

6

inequality constraints of S2(α
2) are strictly satisfied by x.

Theorem 1 (Singh & Lisser (2019), Theorem 3.5). Consider a stochastic two player zero sum game G(α),130

where the matrices Bw and Dw defining the constraints of both the players, respectively, are random. Let

the row vectors Bw
k ∼ Ellipm

(
µ1
k,Σ

1
k, φ

1
k

)
, k ∈ J1, and Dw

l ∼ Ellipn
(
µ2
l ,Σ

2
l , φ

2
l

)
, l ∈ J2. If all k ∈ J1 and

l ∈ J2, Σ1
k and Σ2

l are positive definite matrices. Then, there exists a saddle point equilibrium for the game

G(α) for all α ∈ (0.5, 1]p × (0.5, 1]q.

Theorem 2 (Singh & Lisser (2019), Theorem 3.7). Let Assumption 1 hold. (x∗, y∗) is the saddle point of the

stochastic two-player zero-sum game G(α) if and only if there exist
(
v1

∗
,
(
δ1k

∗)
k∈J1

, λ1∗
)
and

(
v2

∗
,
(
δ2l

∗)
l∈J2

, λ2∗
)

such that
(
y∗, v1

∗
,
(
δ1k

∗)
k∈J1

, λ1∗
)
and

(
x∗, v2

∗
,
(
δ2l

∗)
l∈J2

, λ2∗
)
are optimal solutions of the following primal-

dual pair of nonlinear optimization problems.

miny,v1,(δ1k)k∈J1
,λ1 v1 +

∑
k∈J1

λ1
kbk

s.t.

(i)Ay −
∑

k∈J1
λ1
kµ

1
k −

∑
k∈J1

(
Σ1

k

) 1
2 δ1k ≤ v11m

(ii)− yTµ2
l +Ψ−1

ξ2l

(
α2
l

) ∥∥∥(Σ2
l

) 1
2 y

∥∥∥ ≤ −dl, ∀l ∈ J2

(iii)
∥∥δ1k∥∥ ≤ λ1

kΨ
−1
ξ1k

(
α1
k

)
, ∀k ∈ J1

(iv)1T y = 1

(v)y ≥ 0

(vi)λ1
k ≥ 0, ∀k ∈ J1



(P)

maxx,v2,(δ2l)l∈J2
,λ2 v2 +

∑
l∈J2

λ2
l dl

s.t.

(i)ATx−
∑

l∈J2
λ2
l µ

2
l −

∑
l∈J2

(
Σ2

l

) 1
2 δ2l ≥ v21n

(ii)xTµ1
k +Ψ−1

ξ1k

(
α1
k

) ∥∥∥(Σ1
k

) 1
2 x

∥∥∥ ≤ bk, ∀k ∈ J1

(iii)
∥∥δ2l ∥∥ ≤ λ2

lΨ
−1
ξ2l

(
α2
l

)
, ∀l ∈ J2

(iv)1Tx = 1

(v)x ≥ 0

(vi)λ2
l ≥ 0, ∀l ∈ J2



(D)

135

We refer readers to Singh & Lisser (2019) for the proof and other details related to Theorems 1 and 2.

Additionally, we refer readers to Wu & Lisser (2022b) (Proposition 1) for the reformulation of a stochastic

two-player zero-sum game G(α) to (P) and (D).

7

2.2. Neurodynamic optimization

The neurodynamic optimization method introduced by Wu & Lisser (2022b) is used to model the stochas-140

tic two-player zero-sum game by a ODE system. Because (P) and (D) are a primal-dual pair, it is only

necessary to model (P). The optimal solution for (D) can be found in the dual solution of (P).

2.2.1. Reformulation of (P).

Let us denote the decision variables of (P) as s = (y ∈ Rn, v1 ∈ R, δ ∈ Rn∗p, λ ∈ Rp), where δ =

[δ11
T
, . . . , δ1p

T
]T , and λ = [λ1

1, . . . , λ
1
p]

T . Define ns = n+1+n ∗ p+ p as the number of decision variables, and

s ∈ Rns. We reformulate the equality constraint 1T
ny = 1 in (P) as two inequalities, i.e., 1T

ny − 1 ≤ 0 and

1− 1T
ny ≤ 0. The second-order cone constraints in (P) are not differentiable at the origin, so a smoothness

technique must be used to transform them into smooth functions. This technique is given by the following

expression

∥s∥smooth =
√
∥s∥2 + ϵ2, (7)

where ϵ is a small positive constant, typically chosen to be on the order of 10−6 or 10−8, and is set to ϵ = 10−6

in this paper. Then, the optimization problem (P) can be rewritten as

min
s

f(s)

s.t.

g(s) ≤ 0,

(8)

where the objective function f : Rns → R is denoted as

f(s) = v1 +
∑
k∈J1

λ1
kbk, (9)

and the constraints are denoted as

g(s) =



g1(s)

g2(s)

g3(s)

g41(s)

g42(s)

g5(s)

g6(s)


=



Ay − v1m −
∑

k∈J1

(
Σ1

k

) 1
2 δk −

∑
k∈J1

λkµ
1
k

(−yTµ2
l +Ψ−1

ξ2l

(
α2
l

) ∥∥∥(Σ2
l

) 1
2 y

∥∥∥
smooth

+ dl)l∈J2

(∥δk∥smooth −Ψ−1
ξ1k

(
α1
k

)
λk)k∈J1

1T
ny − 1

−1T
ny + 1

−y

−λ


, (10)

where g1 : Rn+1+n∗p+p → Rn, g2 : Rn+1+n∗p+p → Rq, g3 : Rn+1+n∗p+p → Rp, g41 : Rn+1+n∗p+p → R, g42 :

Rn+1+n∗p+p → R, g5 : Rn+1+n∗p+p → Rn, and g6 : Rn+1+n∗p+p → Rq. Let define nu = n+q+p+1+1+n+q145

as the number of constraints, and g : Rns → Rnu.

8

2.2.2. Karush–Kuhn–Tucker conditions

The Karush–Kuhn–Tucker conditions (KKT conditions) for the optimization problem (8) are

∇f(s) +
(
∂g

∂s
(s)

)T

u = 0,

g(s) ≤ 0, uT ≥ 0, uT g(s) = 0,

(11)

where u ∈ Rnu denotes the dual variables. ∇f(s) ∈ Rns denotes the gradient of the objective function at

point s. ∂g
∂s (s) ∈ Rnu×ns denotes the Jacobian matrix of the constraints at point s. The details of u ∈ Rnu,

∇f(s) ∈ Rns, and ∂g
∂s (s) ∈ Rnu×ns are given as follows

u =



u1 ∈ Rn

u2 ∈ Rq

u3 ∈ Rp

u41 ∈ R

u42 ∈ R

u5 ∈ Rn

u6 ∈ Rq


, ∇f(s) =


∇fy(s) ∈ Rn

∇fv(s) ∈ R

∇fδ(s) ∈ Rp∗n

∇fλ(s) ∈ Rp

 , (12)

∂g

∂s
(s) =

[
∂g
∂y (s) ∈ Rnu×n ∂g

∂v (s) ∈ Rnu×1 ∂g
∂δ (s) ∈ Rnu×n∗p ∂g

∂λ (s) ∈ Rnu×p
]
,

=



∂g1
∂y (s) ∈ Rn×n ∂g1

∂v (s) ∈ Rn×1 ∂g1
∂δ (s) ∈ Rn×n∗p ∂g1

∂λ (s) ∈ Rn×p

∂g2
∂y (s) ∈ Rq×n ∂g2

∂v (s) ∈ Rq×1 ∂g2
∂δ (s) ∈ Rq×n∗p ∂g2

∂λ (s) ∈ Rq×p

∂g3
∂y (s) ∈ Rp×n ∂g3

∂v (s) ∈ Rp×1 ∂g3
∂δ (s) ∈ Rp×n∗p ∂g3

∂λ (s) ∈ Rp×p

∂g41
∂y (s) ∈ R1×n ∂g41

∂v (s) ∈ R1×1 ∂g41
∂δ (s) ∈ R1×n∗p ∂g41

∂λ (s) ∈ R1×p

∂g42
∂y (s) ∈ R1×n ∂g42

∂v (s) ∈ R1×1 ∂g42
∂δ (s) ∈ R1×n∗p ∂g42

∂λ (s) ∈ R1×p

∂g5
∂y (s) ∈ Rn×n ∂g5

∂v (s) ∈ Rn×1 ∂g5
∂δ (s) ∈ Rn×n∗p ∂g5

∂λ (s) ∈ Rn×p

∂g6
∂y (s) ∈ Rq×n ∂g6

∂v (s) ∈ Rq×1 ∂g6
∂δ (s) ∈ Rq×n∗p ∂g6

∂λ (s) ∈ Rq×p


.

(13)

2.2.3. ODE system

Now, let s(·), y(·), v(·), δ(·), λ(·) and u(·) be time dependent functions, i.e., s : R → Rns, y : R → Rn, v :

R → R, δ : R → Rn∗p, and λ : R → Rp. Denote r(t) = (sT (t), uT (t))T = (yT (t), vT (t), δT (t), λT (t), uT (t))T ,

9

and r : R→ Rnr, where nr = ns+ nu. The following ODE system models the KKT conditions (11)

dr

dt
= Φ(r) =



dy
dt

dv
dt

dδ
dt

dλ
dt

du
dt


=



−
(
∇fy(s) +

(
∂g
∂y (s)

)T

(u+ g (s))
+

)
−
(
∇fv(s) +

(
∂g
∂v (s)

)T

(u+ g (s))
+

)
−
(
∇fδ(s) +

(
∂g
∂δ (s)

)T

(u+ g (s))
+

)
−
(
∇fλ(s) +

(
∂g
∂λ (s)

)T

(u+ g (s))
+

)
(u+ g (s))

+ − u


, (14)

where (u+ g (s))
+
= max{0, u+ g (s)}.

Definition 2 (State solution). Consider an ODE system dr
dt = Φ(r), where Φ(r) : Rnr → Rnr. Given an150

initial point r0 ∈ Rnr, a vector value function r(t) : R→ Rnr is called a state solution, if it satisfies the ODE

system dr
dt = Φ(r) and the initial condition r(0) = r0.

Definition 3 (Equilibrium point). Consider an ODE system dr
dt = Φ(r). A point r∗ is called an equilibrium

point if it satisfies Φ(r∗) = 0.

Theorem 3 (Wu & Lisser (2022b)). Let r∗ = (s∗, u∗)T . The point r∗ is an equilibrium point of the ODE155

system (14) if and only if (s∗, u∗) satisfy the KKT conditions (11).

Lemma 4 (Wu & Lisser (2022b)). The equilibrium point r∗ of the proposed ODE system (14) is unique.

Theorem 5 (Wu & Lisser (2022b)). The equilibrium point r∗ of the proposed ODE system (14) is globally

asymptotically stable, i.e., given any initial point r0, the state solution has limt→∞ r(t) = r∗.

Remark 1. The primary objective of the ODE system presented in (14) is to address the KKT conditions160

given in (11). As stated in Theorem 3, the equilibrium point in the ODE system coincides with to the KKT

conditions outlined in (11). As a result, by determining the equilibrium point of the ODE system, we can

effectively solve the KKT conditions and subsequently identify the saddle point of the stochastic two-player

zero-sum game.

Lemma 4 establishes the uniqueness of the equilibrium point in the ODE system, which is consistent with165

the notion that the stochastic two-player zero-sum game has a unique saddle point. Furthermore, Theorem

5 ensures that the state solution of the ODE system converges to the equilibrium point of the system as t

approaches infinity, implying that it converges to the saddle point of the stochastic two-player zero-sum game.

This means that we can solve the saddle point of the corresponding game by simply solving the state solution

of the ODE system.170

2.3. Numerical integration method

In this subsection, we briefly describe how existing methods solve for the state solution of an ODE system,

which will be compared with our proposed method in the experimental section. Since the considered ODE

system (14) is nonlinear, it cannot be solved analytically.

10

The existing methods for solving the state solution of an ODE system use numerical integration techniques175

to approximate the solution by discretizing the domain (Butcher, 2016). These methods, such as the Runge-

Kutta method, choose multiple time points in the domain, known as collocation points, and find a solution

that satisfies the ODE system at these points. However, these methods can be inefficient when only the final

state is of interest because the final state is only obtained after calculating all the intermediate collocation

points.180

Numerical integration methods are further divided into two categories: explicit and implicit methods.

Explicit methods, such as RK45, RK23, and DOP853, determine the state at a later time based on the

current state (Dormand & Prince, 1980; Bogacki & Shampine, 1989; Hairer et al., 1993). Implicit methods,

such as Radau and BDF, find the solution by solving equations involving the current and later states (Wanner

& Hairer, 1996; Shampine & Reichelt, 1997). Additionally, LSODA can switch automatically between stiff185

and nonstiff methods (Petzold, 1983). Scipy provides software implementations of these methods to make

them easier to use (Virtanen et al., 2020).

3. Method

In Section 3.1, we describe the problem setup and use an initial value problem to approximate the

stochastic two-player zero-sum game. Section 3.2 presents our proposed approach, which uses a neural190

network to solve the initial value problem and subsequently predict the saddle point of the game. The loss

function for training the neural network is discussed in Section 3.3, and an evaluation metric is given in

Section 3.4 to assess the model’s effectiveness at predicting saddle points. Finally, Section 3.5 provides a

complete pipeline for solving the game problem using our proposed neural network.

3.1. Problem setup195

This subsection provides a brief summary of how to reformulate a stochastic two-player zero-sum game as

an initial value problem based on Sections 2.1 and 2.2. As presented in Figure 1, the reformulation procedure

is as follows:

1. Reformulate the original game problem G(α), i.e., (3)-(4), as a primal-dual pair of nonlinear optimiza-

tion problems (P) and (D).200

2. Apply the smoothness technique (7) to derive the KKT conditions (11) of the primal problem (P).

3. Represent the KKT conditions using the ODE system (14), where the equilibrium point is unique and

globally asymptotically stable.

4. The desired saddle point (x∗, y∗) of the game is included in the equilibrium point r∗ of the ODE system.

In order to obtain the equilibrium point, we must construct an initial value problem (IVP), which consists

of (a) the ODE system (14), (b) an initial point r0, and (c) a time range [0, T]. The state solution r(t) of the

IVP satisfies the ODE system on the domain t ∈ [0, T] and the initial condition r(0) = r0. By Theorem 5,

11

Problem:
STPZSG NOPs KKT conditions ODE system

Solution:

Saddle point Optimal solution
 of NOPs

Optimal solution
of KKT conditions

Equilibrium
of ODE system

Figure 1: The upper part illustrates the workflow of modeling a stochastic two-player zero-sum game (STPZSG) using an
ODE system. The STPZSG is represented by equations (3) and (4), and the ODE system is represented by equation (14). The
nonlinear optimization problems (NOPs) in equations (P) and (D) and the KKT conditions in equation (11) are also shown.
The lower part demonstrates that the saddle point of the STPZSG is incorporated in the optimal solution of the NOPs and
KKT conditions, as well as the equilibrium point of the ODE system.

12

Fully connected network Fully connected network

Predicted state solution
When

Predicted saddle point
When

Figure 2: The left part of the figure shows the neural network model, r̂(t;w) =
(
1− e−t

)
N(t;w), t ∈ [0, T], acting as a

predicted state solution to the IVP. The right part of the figure illustrates that when the final time is selected (i.e., t = T),
r̂(t;w) contains the predicted saddle point.

given any initial point r0, the corresponding state solution r(t) will converge to the same equilibrium r∗ as

time t goes to infinity. Therefore, we set the initial point of the ODE system to all zeros, i.e.,

r0 = 0. (15)

The final state r(T) approximates the equilibrium point r∗, i.e.,

r(T) ≈ r∗. (16)

According to Theorem 5, the larger the provided time range [0, T], the closer the final state is to r∗. Our205

goal is to solve for the final state r(T) of the state solution r(t), t ∈ [0, T], given an adequate size of the time

range.

3.2. Neural network model

In this subsection, we present a model based on a fully connected neural network that is designed to

predict the state solution r(t) and its final state r(T). The proposed model is given as follows

r̂(t;w) =
(
1− e−t

)
N(t;w), t ∈ [0, T], (17)

where N(t;w) is a fully connected neural network with trainable parameters w. (1− e−t) is an auxiliary

function to ensure the satisfaction of the initial point, i.e., r̂(t = 0;w) = 0.210

As shown in Figure 2(Left), the model r̂(t;w) itself is used as a predicted state solution to the IVP, i.e.,

r̂(t;w) ≈ r(t), t ∈ [0, T]. (18)

13

By choosing the time t = T , we have

r̂(t = T ;w) ≈ r(T). (19)

Combining (16) with (19), we have

r̂(t = T ;w) ≈ r∗. (20)

As shown in Figure 2(Right), r̂(t = T ;w) contains the predicted saddle point of the considered game problem.

The effectiveness of the proposed neural network in solving stochastic two-player zero-sum game problems

is supported by two theorems: 1) Theorem 5, which ensures the convergence of the state solutions of the

ODE system to the saddle point of the game. 2) The universal approximation theorem for neural networks

(Hornik, 1991), which states that there always exists a neural network as a state solution for solving the ODE215

system.

3.3. Loss function

We define the loss function of the proposed model as

L(t,w) =

∥∥∥∥∂r̂(t;w)

∂t
− Φ(r̂(t;w))

∥∥∥∥ , (21)

where Φ(·) refers to the ODE system of (14), which corresponds to the game problem being studied. ∂r̂(t;w)
∂t

is the derivative of the model output r̂(t;w) with respect to the input time t, which can be computed

analytically by automatic differentiation tools, e.g., PyTorch or JAX (Paszke et al., 2019b; Bradbury et al.,220

2018).

We denote the objective function of the proposed model as

E(w) =

∫ T

0

L(t,w)dt. (22)

The objective function E(w) is an integral of the loss function over the pre-given time range [0, T]. The

loss value L(t,w) denotes the error of the model at the time t, and the objective function E(w) denotes the

overall error of the proposed model over the time range [0, T].

However, calculating E(w) is computationally difficult because of its integral part. In practice, we train

the model by minimizing the following batch loss

L(T,w) =
1

|T|
∑
t∈T
L(t,w), (23)

where T contains randomly sampled time points from the interval [0, T], and |T| denotes the size of the set.225

Following the approach used in previous studies (Sirignano & Spiliopoulos, 2018), we sample the time points

in T with a uniform distribution over the interval [0, T]. These time points are sampled in an independent

14

and identically distributed manner. The choice of probability distribution for sampling time points can

potentially affect the training performance, which warrants further investigation in future studies.

3.4. Evaluation metric230

To evaluate the performance of our model in predicting the final state r̂(t = T ;w), we propose the

following evaluation metric:

ϵ(r̂(T ;w)) =

f(ŝ) if ∥g(ŝ)∥∞ ≤ τ,

+∞ otherwise ,

(24)

where ϵ(r̂(T ;w)) is called the epsilon value of r̂(T ;w). ŝ is retrieved from the predicted final state, i.e.,

r̂(T ;w) = [ŝ, û]. f(·) and g(·) are defined in (9) and (10), respectively. τ is a positive constant that

represents a threshold parameter. When ∥g(ŝ)∥∞ ≤ τ , the epsilon value is set to the objective value f(ŝ);

otherwise, it is set to +∞.

3.5. Pipeline235

Algorithm 1: Enhancing neurodynamic optimization with deep learning for solving stochastic two-
player zero-sum games

Input : A stochastic two player zero sum game G(α), A time range [0, T]
Output: Predicted saddle point (x̂, ŷ)

1 Function Main:
2 Derive the ODE system Φ(·) corresponding to the game G(α).
3 Initialize a neural network model r̂(t;w).
4 Initialize ϵbest = ϵ(r̂(T ;w)).
5 while iter ≤ Max iteration do
6 T ∼ U(0, T): Uniformly sample a batch of t from the interval [0, T].
7 Forward propagation: Compute the batch loss L(T,w).
8 Backward propagation: Update w by ∇wL(T,w).
9 Compute the epsilon value: ϵtemp = ϵ(r(T ;w)).

10 if ϵtemp < ϵbest then
11 ϵbest = ϵtemp

12 Save the model with parameters w

13 end
14 Extract x̂ and ŷ from r(T ;w).
15 x̂← softmax(x̂), and ŷ ← softmax(ŷ)
16 return (x̂, ŷ)

17 end

Algorithm 1 integrates all the methods introduced in this section. This algorithm is an optimization

procedure that minimizes the objective function E(w) while considering the proposed evaluation metric (24).

First, the algorithm reformulates the game problem as an IVP for a given time range [0, T]. Next, it initializes

a neural network to solve this problem and trains the network to improve its accuracy. In training, each

iteration samples a batch of t uniformly from the time range [0, T] as a training dataset. The neural network240

then performs gradient descent on the batch loss L(T,w) to update its parameters w. Finally, x̂ and ŷ, which

15

are obtained from the predicted final state, need to be transformed into probability distributions using the

softmax function.

ϵbest represents the lowest epsilon value that the model has achieved so far. ϵtemp represents the epsilon

value that the model obtained at the most recent iteration. After each update of the model’s parameters,245

the algorithm calculates ϵtemp and compares it with ϵbest. If ϵtemp is lower than ϵbest, it indicates that the

model has found a better prediction after this iteration of parameter updates. In this case, the algorithm

sets ϵbest = ϵtemp and saves the current model. This idea is similar to the concept of early-stopping in deep

learning, but here, we consider the epsilon value rather than the loss value.

Algorithm 1 requires specifying a time range as a hyperparameter. According to Theorem 5, the larger250

the chosen time range, the closer the corresponding final state will be to the optimal solution. In practice,

however, a large time range can lead to training difficulties because the neural network has to approximate

the state solution over a larger time range. Therefore, the choice of the time range involves a trade-off. A

larger time range offers a higher maximum achievable accuracy but requires more training resources, whereas

a smaller time range allows for faster convergence with fewer training iterations but results in a weaker255

achievable accuracy. One should determine the most appropriate time range that strikes a balance between

accuracy and available training resources for their specific application.

In addition, the design of the neural network structure should be guided by two factors: 1) the chosen

time range and 2) the size of the stochastic two-player zero-sum game to be solved. The size of the stochastic

two-player zero-sum game is determined by the sizes of the action sets for both players and the number260

of constraints in their respective sets. The complexity of the neural network structure, which includes the

number of neurons and the number of hidden layers, should be tailored to accommodate these two factors.

4. Numerical results

In this section, we conduct experiments to evaluate the performance of our proposed neural network model

for solving the stochastic two-person zero-sum game. We first present the problem instance and describe the265

training process of our proposed model in Sections 4.1 and 4.2. Next, we compare our proposed method with

the numerical integration method in Section 4.3, and discuss the advantages and limitations of our method

in Section 4.4.

We use the Google Colab Pro+ platform to perform our experiments. The neural network model is

implemented using Pytorch 1.12.1 with CUDA 11.2 (Paszke et al., 2019b), and the ODE system is modelled270

with JAX (Bradbury et al., 2018). Our proposed method is compared with six numerical integration solvers,

namely RK45, RK23, DOP853, Radau, BDF, and LSODA (Dormand & Prince, 1980; Bogacki & Shampine,

1989; Hairer et al., 1993; Wanner & Hairer, 1996; Shampine & Reichelt, 1997; Petzold, 1983), which can be

accessed using Scipy (Virtanen et al., 2020).

16

4.1. Problem instance275

We consider a specific instance of the stochastic two-player zero-sum game as shown in (3) and (4). Both

players 1 and 2 have four pure strategies and one probabilistic constraint. Bω and Dω are 4-dimensional ran-

dom vectors following normal distributions, i.e., Bω ∼ N
(
µ1,Σ1

)
, Dω ∼ N

(
µ2,Σ2

)
, where µ1 and µ2 are the

means and Σ1 and Σ2 are the variances of the normal distributions. The problem data (A,Σ1,Σ2, µ1, µ2, b, d, α1, α2)

are given as follows:

A =


8.67 0.17 6.04 3.81

7.09 0.37 9.83 6.89

4.75 7.32 4.06 6.52

2.20 2.22 4.76 3.10

 , Σ1 =


1.10 0.00 0.00 0.00

0.00 1.40 0.00 0.00

0.00 0.00 1.38 0.00

0.00 0.00 0.00 1.43

 , (25)

Σ2 =


1.70 0.00 0.00 0.00

0.00 1.35 0.00 0.00

0.00 0.00 1.69 0.00

0.00 0.00 0.00 1.28

 , µ1 =


4.53

0.06

2.53

3.66

 , µ2 =


1.74

3.83

7.37

8.77

 , (26)

b = 7.03, and d = 4.53. The confidence levels of both players are set to α1 = α2 = 80%.

4.2. Model training

We construct the proposed model to solve the game instance, r̂(t;w) = (1− e−t)N(t;w), where N(t;w)

is a fully connected neural network with a hidden layer of 200 neurons and the activation function is Tanh.

The training hyperparameters are as follows: the maximum number of iterations is 100, 000, the optimizer is280

Adam (Kingma & Ba, 2014) with a learning rate of 0.001 and batch size of 128.

0 20000 40000 60000 80000 100000
Iteration

102

103

M
.S
.E
.l
os
s

Figure 3: The mean square error (M.S.E) loss plotted against the number of iterations.

We apply the ODE system (14) to model the game instance given in Section 4.1. The neural network

model is trained using Algorithm 1, with the time range set to [0, 10] and the threshold τ in equation (24)

17

set to 0.1. We use the MSE loss as a performance metric to evaluate the model’s ability to solve the derived

ODE system. Figure 3 shows the evolution of the MSE loss throughout the training process. The MSE loss285

decreases from an initial value of 4,557 to 53 after 100,000 iterations, indicating the transition of the neural

network from a naive approximation to an accurate state solution of the ODE system. It is important to

note that the reported loss values do not distinguish between training and testing losses, as the model trains

on a completely new randomly generated time set T in each iteration. This training strategy is consistent

with a range of deep learning methods for solving differential equations (Raissi et al., 2019b; Sirignano &290

Spiliopoulos, 2018).

4.3. Comparison with numerical integration methods

In this subsection, we compare the performance of our proposed method with the numerical integration

solvers on the stochastic two-player zero-sum game instance. We first show the predicted saddle points given

by the two types of methods and then evaluate the performance of these saddle points on two evaluation295

metrics.

The setup of the numerical solver involves dividing the time range [0, 10] into 100, 000 collocation points,

which corresponds to the number of training iterations of our method.

Our method Numerical integration method (RK45)
Iteration x̂ ŷ Collocation point x̂ ŷ
1 [0.225 0.41 0.366 0.] [0. 0.358 0.459 0.183] 1 [0.218 0.324 0.283 0.175] [0.078 0.182 0.327 0.412]
1000 [0. 0.384 0.566 0.05] [0. 0.272 0.005 0.724] 1000 [0.019 0.3 0.404 0.278] [0. 0.234 0.297 0.469]
10000 [0. 0.384 0.566 0.05] [0. 0.272 0.005 0.724] 10000 [0.002 0.087 0.31 0.601] [0. 0.096 0.186 0.718]
30000 [0.087 0.387 0.526 0.] [0.105 0.397 0.303 0.195] 30000 [0. 0.163 0.461 0.376] [0. 0.123 0.216 0.661]
50000 [0.087 0.387 0.526 0.] [0.105 0.397 0.303 0.195] 50000 [0. 0.274 0.63 0.096] [0. 0.208 0.359 0.434]
100000 [0.023 0.41 0.567 0.] [0.002 0.405 0.484 0.109] 100000 [0. 0.334 0.666 0.001] [0.303 0.278 0.258 0.16]

Table 2: The predicted saddle points (x̂, ŷ) produced by our method and the RK45 method.

Table 2(left) lists the predicted saddle points given by our proposed method at the 1st, 1000th, 10,000th,

30,000th, 50,000th, and 100,000th training iterations. Table 2(right) lists the predicted saddle points given300

by the RK45 method, a typical numerical integration solver, at the 1st, 1000th, 10,000th, 30,000th, 50,000th,

and 100,000th collocation points.

Our method Numerical integration methods

Iteration OBJ ↓ Collocation point
RK45 RK23 DOP853 Radau BDF LSODA
OBJ ↓ OBJ ↓ OBJ ↓ OBJ ↓ OBJ ↓ OBJ ↓

1 -1.6222 1 -0.0048 -0.0048 -0.0048 -0.0048 -0.0048 -0.0048
1000 17.7826 1000 -0.2288 -0.2293 -0.2318 -0.2289 -0.2289 -0.2289
10000 17.7826 10000 -2.6507 -2.6482 -2.6515 -2.6505 -2.6495 -2.6489
30000 5.7754 30000 0.317 0.317 0.3171 0.3171 0.3156 0.316
50000 5.7754 50000 1.6081 1.6081 1.6086 1.608 1.6074 1.6061
100000 5.4862 100000 5.5497 5.5496 5.55 5.5496 5.5488 5.5496

Table 3: Comparison of the objective (OBJ) value produced by our method and various numerical integration methods, including
RK45, RK23, DOP853, Radau, BDF, and LSODA. The table shows the OBJ values for different iterations and collocation points.

18

0 20000 40000 60000 80000 100000

Iteration/Collocation point

0

5

10

15

O
bj
ec
tiv
e
va
lu
e

Ourmethod
RK45

0 20000 40000 60000 80000 100000

Iteration/Collocation point

0

1

2

3

4

5

M
ax
im
um
vi
ol
at
io
n
of
co
ns
tr
ai
nt
s

Ourmethod
RK45

Figure 4: The objective value plotted against the number of iterations (left figure). The maximum violation of constraints
plotted against the number of iterations (right figure).

Our method Neurodynamic optimization

Iteration MVC ↓ Collocation point
RK45 RK23 DOP853 Radau BDF LSODA
MVC ↓ MVC ↓ MVC ↓ MVC ↓ MVC ↓ MVC ↓

1 8.6806 1 5.2964 5.297 5.2968 5.2973 5.2973 5.2973
1000 0.0976 1000 1.1898 1.1785 1.1364 1.1875 1.1874 1.1874
10000 0.0976 10000 1.2311 1.2374 1.229 1.2316 1.2315 1.2315
30000 0.0951 30000 0.8481 0.8481 0.848 0.848 0.8481 0.8481
50000 0.0951 50000 0.4881 0.4881 0.4881 0.4881 0.4883 0.4882
100000 0.0827 100000 0.1239 0.1239 0.1238 0.1239 0.1235 0.1238

Table 4: Comparison of the maximum violation of constraints (MVC) produced by our method and various numerical integration
methods, including RK45, RK23, DOP853, Radau, BDF, and LSODA. The table shows the MVC values for different iterations
and collocation points.

19

We evaluate the performance of our model using two metrics: the objective value (OBJ, lower is better)

and the maximum violation of constraints (MVC, lower is better). OBJ is defined as f(s), where f(·) is given

by equation (9) and here s represents the prediction from our method or a numerical integration method.305

MVC is defined as |g(s)|∞, where g(·) is given by equation (10).

Figure 4, Table 3, and Table 4 compare our method with numerical integration methods using the OBJ

and MVC metrics. Figure 4 shows the results in a continuous manner, while Tables 3 and 4 show the results

in a discrete manner at selected iterations or collocation points. Figure 4 only compares our method with

the RK45 method, while Tables 3 and 4 compare six numerical integration methods.310

The comparison results yield the following insights:

• Our method outperforms all numerical integration methods in terms of evaluation metrics OBJ and

MVC, as shown in Tables 3 and 4. Ultimately, our method achieves an OBJ of 5.48 and an MVC of

0.0827. Among the numerical integration methods, BDF attains the best results, with an OBJ of 5.54

and an MVC of 0.1235.315

• Our method converges faster than the numerical integration methods. Figure 4 shows that our method

obtains an almost exact solution at the 30,000th iteration, with an OBJ of 5.48 and an MVC of 0.0827.

In comparison, the results of the numerical integration methods at the 30,000th collocation point show

OBJ and MVC values of 0.317 and 0.8481, respectively, indicating a significant deviation from accuracy.

• Our proposed method can identify a solution that nearly satisfies the constraints in the early stages of320

solving. Table 4 shows that at the 1000th iteration, our method finds a solution with an MVC of less

than 0.1. In contrast, the numerical integration method fails to find solutions with MVC less than 0.1

even after 100,000 collocation points.

• Figure 3 shows a significant decrease in the MSE loss value during the first 20,000 iterations, with a

subsequent levelling off. Figure 4 shows that OBJ and MVC still improve significantly after 20,000325

iterations, although the decrease in loss value has become less pronounced. This suggests that the MSE

loss of the model is not entirely decisive for the OBJ and MVC indicators, although they are correlated.

• The performance of the six numerical integration methods does not differ significantly from each other.

4.4. Discussion

In Sections 4.2 and 4.3, we present experimental results that demonstrate the superiority of our proposed330

deep learning approach. The observed advantages are mainly due to three key aspects:

(i) During each iteration, the neural network can directly predict the saddle point of the game without

having to calculate all the intermediate states in the ODE system. This is in contrast to traditional

numerical integration methods, which require all intermediate states to be calculated sequentially in

order to make a prediction.335

20

(ii) In the algorithm 1, we incorporate several important designs that exploit the structure of the problem.

These include the use of softmax functions to ensure the feasibility of the mixed strategy and the

implementation of a mechanism that retains the best results from each iteration.

(iii) Our approach transforms the stochastic game problem into a neural network training problem, elimi-

nating the dependence on numerical integration solvers. This allows us to solve the problem using only340

deep learning infrastructure, taking advantage of the latest advances such as GPU parallel computing.

While our method demonstrates significant performance advantages, we must acknowledge its limitations:

• Our approach requires careful hyperparameter tuning of the neural network to achieve optimal per-

formance. In contrast, numerical integration methods are more straightforward and do not require

numerous algorithmic settings.345

• Our approach relies on training neural networks, which can be unstable. In some cases this instability

may lead to rapid convergence to a satisfactory solution, while in other cases it may take many iterations

to find an appropriate solution. Possible factors contributing to this inconsistency include the initial

state of the neural network and the learning rate setting. The underlying cause is due to the black-box

nature of neural networks and deserves further investigation.350

5. Conclusion

In this paper, we presented a novel approach to find the saddle point of stochastic two-player zero-sum

games by combining neurodynamic optimization and neural networks. This results in faster convergence and

superior solutions compared to traditional methods. Our work establishes a link between stochastic games

and deep learning, which can benefit the stochastic game theory given the rapid growth of the deep learning355

community.

However, there are limitations to our work, such as the stability and robustness of the method. Future

research should focus on: (a) using state-of-the-art machine learning and deep learning techniques to improve

our method, (b) exploring advanced neurodynamic optimization approaches for problem modelling, and (c)

extending our method to other stochastic game problems.360

Bibliography

Anitescu, C., Atroshchenko, E., Alajlan, N., & Rabczuk, T. (2019). Artificial neural network methods for

the solution of second order boundary value problems. Computers, Materials and Continua, 59 , 345–359.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation in

machine learning: a survey. Journal of machine learning research, 18 .365

21

Bengio, Y., Lodi, A., & Prouvost, A. (2021). Machine learning for combinatorial optimization: a method-

ological tour d’horizon. European Journal of Operational Research, 290 , 405–421.

Bogacki, P., & Shampine, L. F. (1989). A 3 (2) pair of runge-kutta formulas. Applied Mathematics Letters,

2 , 321–325.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,370

A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: composable transformations of

Python+NumPy programs. URL: http://github.com/google/jax.

Butcher, J. C. (2016). Numerical methods for ordinary differential equations. John Wiley & Sons.

Charnes, A. (1953). Constrained games and linear programming. Proceedings of the National Academy of

Sciences of the United States of America, 39 , 639.375

Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu, S., Agarwal, D., & Giovanni, M. D. (2020).

Neurodiffeq: A python package for solving differential equations with neural networks. Journal of Open

Source Software, 5 , 1931. URL: https://doi.org/10.21105/joss.01931. doi:10.21105/joss.01931.

Dissanayake, M. W. M. G., & Phan-Thien, N. (1994). Neural-network-based ap-

proximations for solving partial differential equations. Communications in Numer-380

ical Methods in Engineering , 10 , 195–201. URL: https://onlinelibrary.wiley.

com/doi/abs/10.1002/cnm.1640100303. doi:https://doi.org/10.1002/cnm.1640100303.

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.1640100303.

Dormand, J. R., & Prince, P. J. (1980). A family of embedded runge-kutta formulae. Journal of computational

and applied mathematics, 6 , 19–26.385

Hairer, E., Nørsett, S. P., & Wanner, G. (1993). Solving ordinary differential equations. 1, Nonstiff problems.

Springer-Vlg.

Han, J., Jentzen, A., & E, W. (2018). Solving high-dimensional partial differential equations using deep

learning. Proceedings of the National Academy of Sciences, 115 , 8505–8510.

Han, J., Jentzen, A. et al. (2017). Deep learning-based numerical methods for high-dimensional parabolic par-390

tial differential equations and backward stochastic differential equations. Communications in mathematics

and statistics, 5 , 349–380.

Henrion, R. (2007). Structural properties of linear probabilistic constraints. Optimization, 56 , 425–440.

Hopfield, J. J., & Tank, D. W. (1985). “neural” computation of decisions in optimization problems. Biological

cybernetics, 52 , 141–152.395

22

http://github.com/google/jax
https://doi.org/10.21105/joss.01931
http://dx.doi.org/10.21105/joss.01931
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303
http://dx.doi.org/https://doi.org/10.1002/cnm.1640100303
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.1640100303

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural networks, 4 ,

251–257.

Hu, Y., Chen, H., & Zhuang, F. (2020). Deep learning in bioinformatics: A comprehensive survey. Briefings

in Bioinformatics, 21 , 742–761.

Kataoka, S. (1963). A stochastic programming model. Econometrica: Journal of the Econometric Society ,400

(pp. 181–196).

Kennedy, M. P., & Chua, L. O. (1988). Neural networks for nonlinear programming. IEEE Transactions on

Circuits and Systems, 35 , 554–562.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 , .405

Lagaris, I., Likas, A., & Fotiadis, D. (1998). Artificial neural networks for solving ordinary and partial

differential equations. IEEE Transactions on Neural Networks, 9 , 987–1000. doi:10.1109/72.712178.

Lagaris, I. E., Likas, A. C., & Papageorgiou, D. G. (2000). Neural-network methods for boundary value

problems with irregular boundaries. IEEE Transactions on Neural Networks, 11 , 1041–1049.

Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2021a). Deepxde: A deep learning library for solv-410

ing differential equations. SIAM Review , 63 , 208–228. URL: http://dx.doi.org/10.1137/19M1274067.

doi:10.1137/19m1274067.

Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., & Johnson, S. G. (2021b). Physics-

informed neural networks with hard constraints for inverse design. SIAM Journal on Scientific

Computing , 43 , B1105–B1132. URL: https://doi.org/10.1137/21M1397908. doi:10.1137/21M1397908.415

arXiv:https://doi.org/10.1137/21M1397908.

McFall, K. S., & Mahan, J. R. (2009). Artificial neural network method for solution of boundary value

problems with exact satisfaction of arbitrary boundary conditions. IEEE Transactions on Neural Networks,

20 , 1221–1233.

Nair, V., Bartunov, S., Gimeno, F., von Glehn, I., Lichocki, P., Lobov, I., O’Donoghue, B., Sonnerat, N.,420

Tjandraatmadja, C., Wang, P. et al. (2020). Solving mixed integer programs using neural networks. arXiv

preprint arXiv:2012.13349 , .

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences,

36 , 48–49. doi:10.1073/pnas.36.1.48.

Nazemi, A. (2019). A new collaborate neuro-dynamic framework for solving convex second order cone425

programming problems with an application in multi-fingered robotic hands. Applied Intelligence, 49 ,

3512–3523.

23

http://dx.doi.org/10.1109/72.712178
http://dx.doi.org/10.1137/19M1274067
http://dx.doi.org/10.1137/19m1274067
https://doi.org/10.1137/21M1397908
http://dx.doi.org/10.1137/21M1397908
http://arxiv.org/abs/https://doi.org/10.1137/21M1397908
http://dx.doi.org/10.1073/pnas.36.1.48

von Neumann, J. (1928). Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100 , 295–320. doi:10.

1007/BF01448847.

Van de Panne, C., & Popp, W. (1963). Minimum-cost cattle feed under probabilistic protein constraints.430

Management Science, 9 , 405–430.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,

N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-

amkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019a). Pytorch: An impera-

tive style, high-performance deep learning library. In Advances in Neural Information Processing435

Systems 32 (pp. 8024–8035). Curran Associates, Inc. URL: http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,

N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-

amkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019b). PyTorch: An impera-440

tive style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,

F. d Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information Processing Sys-

tems. Curran Associates, Inc. volume 32. URL: https://proceedings.neurips.cc/paper/2019/file/

bdbca288fee7f92f2bfa9f7012727740-Paper.pdf. arXiv:1912.01703.

Petzold, L. (1983). Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential445

equations. SIAM journal on scientific and statistical computing , 4 , 136–148.

Qin, S., & Xue, X. (2014). A two-layer recurrent neural network for nonsmooth convex optimization problems.

IEEE transactions on neural networks and learning systems, 26 , 1149–1160.

Raissi, M., Perdikaris, P., & Karniadakis, G. (2019a). Physics-informed neural networks: A deep learning

framework for solving forward and inverse problems involving nonlinear partial differential equations. Jour-450

nal of Computational Physics, 378 , 686–707. URL: https://www.sciencedirect.com/science/article/

pii/S0021999118307125. doi:https://doi.org/10.1016/j.jcp.2018.10.045.

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019b). Physics-informed neural networks: A deep learn-

ing framework for solving forward and inverse problems involving nonlinear partial differential equations.

Journal of Computational Physics, 378 , 686–707.455

Raza, M., Khan, S. S., & Ali, M. (2021). Deep learning for computer vision: A comprehensive review. IEEE

Access, 9 , 62530–62558.

Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V. M., Guo, H., Hamdia, K., Zhuang, X., &

Rabczuk, T. (2020). An energy approach to the solution of partial differential equations in computational

24

http://dx.doi.org/10.1007/BF01448847
http://dx.doi.org/10.1007/BF01448847
http://dx.doi.org/10.1007/BF01448847
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://arxiv.org/abs/1912.01703
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.10.045

mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied460

Mechanics and Engineering , 362 , 112790.

Shampine, L. F., & Reichelt, M. W. (1997). The matlab ode suite. SIAM journal on scientific computing ,

18 , 1–22.

Singh, V. V., & Lisser, A. (2019). A second-order cone programming formulation for two player zero-sum

games with chance constraints. European Journal of Operational Research, 275 , 839–845.465

Sirignano, J., & Spiliopoulos, K. (2018). Dgm: A deep learning algorithm for solving partial differential

equations. Journal of computational physics, 375 , 1339–1364.

Tan, L., & Zhang, X. (2020). Deep learning for natural language processing: A review. IEEE Access, 8 ,

138913–138931.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,470

Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J.,

Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore,

E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris,

C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., & SciPy 1.0 Contributors (2020).

SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17 , 261–272.475

doi:10.1038/s41592-019-0686-2.

Wang, S., Teng, Y., & Perdikaris, P. (2021). Understanding and mitigating gradient flow

pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing ,

43 , A3055–A3081. URL: https://doi.org/10.1137/20M1318043. doi:10.1137/20M1318043.

arXiv:https://doi.org/10.1137/20M1318043.480

Wanner, G., & Hairer, E. (1996). Solving ordinary differential equations II volume 375. Springer Berlin

Heidelberg New York.

Wu, D., & Lisser, A. (2022a). A deep learning approach for solving linear programming problems. Neuro-

computing , .

Wu, D., & Lisser, A. (2022b). A dynamical neural network approach for solving stochastic two-player zero-485

sum games. Neural Networks, .

Wu, D., & Lisser, A. (2022c). Mg-cnn: A deep cnn to predict saddle points of matrix games. Neural Networks,

.

Wu, D., & Lisser, A. (2022d). Using cnn for solving two-player zero-sum games. Expert Systems with

Applications, (p. 117545).490

25

http://dx.doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1137/20M1318043
http://dx.doi.org/10.1137/20M1318043
http://arxiv.org/abs/https://doi.org/10.1137/20M1318043

Xia, Y., & Feng, G. (2007). A new neural network for solving nonlinear projection equations. Neural

Networks, 20 , 577–589.

Xia, Y., & Wang, J. (2000). A recurrent neural network for solving linear projection equations. Neural

Networks, 13 , 337–350.

Xu, C., Chai, Y., Qin, S., Wang, Z., & Feng, J. (2020). A neurodynamic approach to nonsmooth constrained495

pseudoconvex optimization problem. Neural Networks, 124 , 180–192.

Yu, B. et al. (2018). The deep ritz method: a deep learning-based numerical algorithm for solving variational

problems. Communications in Mathematics and Statistics, 6 , 1–12.

Zhang, D., Guo, L., & Karniadakis, G. E. (2020). Learning in modal space: Solving time-

dependent stochastic pdes using physics-informed neural networks. SIAM Journal on Scientific500

Computing , 42 , A639–A665. URL: https://doi.org/10.1137/19M1260141. doi:10.1137/19M1260141.

arXiv:https://doi.org/10.1137/19M1260141.

26

https://doi.org/10.1137/19M1260141
http://dx.doi.org/10.1137/19M1260141
http://arxiv.org/abs/https://doi.org/10.1137/19M1260141

	Introduction
	Key contributions
	Paper outline
	Notation

	Preliminaries
	Stochastic two-player zero-sum game
	Neurodynamic optimization
	Reformulation of (P).
	Karush–Kuhn–Tucker conditions
	ODE system

	Numerical integration method

	Method
	Problem setup
	Neural network model
	Loss function
	Evaluation metric
	Pipeline

	Numerical results
	Problem instance
	Model training
	Comparison with numerical integration methods
	Discussion

	Conclusion
	Bibliography

