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Abstract

Convolutional neural networks are now seeing widespread use in a va-
riety of fields, including image classification, facial and object recognition,
medical imaging analysis, and many more. In addition, there are applica-
tions such as physics-informed simulators in which accurate forecasts in
real time with a minimal lag are required. The present neural network
designs include millions of parameters, which makes it difficult to install
such complex models on devices that have limited memory. Compression
techniques might be able to resolve these issues by decreasing the size of
CNN models that are created by reducing the number of parameters that
contribute to the complexity of the models. We propose a compressed
tensor format of convolutional layer, a priori, before the training of the
neural network. 3-way kernels or 2-way kernels in convolutional layers are
replaced by one-way fiters. The overfitting phenomena will be reduced
also. The time needed to make predictions or time required for training
using the original Convolutional Neural Networks model would be cut sig-
nificantly if there were fewer parameters to deal with. In this paper1 we
present a method of a priori compressing convolutional neural networks for
finite element (FE) predictions of physical data. Afterwards we validate
our a priori compressed models on physical data from a FE model solving
a 2D wave equation. We show that the proposed convolutinal compres-
sion technique achieves equivalent performance as classical convolutional
layers with fewer trainable parameters and lower memory footprint.

1This work has been submitted to Elsevier for possible publication.
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1 Introduction
Convolutional neural networks (CNNs) have become an effective tool for a wide
range of tasks, such as image classification, object and facial recognition, medical
image analysis, and many other things. These applications are a good fit for
them because of their capacity to recognize and learn from complicated patterns
in data. Although real-time forecasts with no lag are necessary for numerous
applications such as autonomous driving cars and physics-informed simulators,
the high number of parameters in existing CNN designs can make it challenging
to deploy these models on systems with little memory. In order to overcome this
issue, compression algorithms have been developed to reduce the complexity and
amount of parameters in CNN models, hence shrinking their size. In Zdunek
and Gabor (2022) a tensor decomposition is propose to approximate N-way
kernels involved in convolutional layers. But this compression step is applied a
posteriori, after the training of the related neural network.
In this paper, we present an a priori method of compressing CNNs for finite
element (FE) method physical data. This method relies on a neural network
architecture that perform the decomposition of kernels in usual convolutional
layer. This neural network archtecture involves an adequate processing of the
data. Additionally, we explore approaches to optimize the data from FE models
for CNN training. The efficiency of the compressed models is validated on
physical data from a FE model solving a 2D wave equation. Our goal is to
improve the efficiency of CNNs in real-world applications where computational
resources are limited.
In many fields, the use of FE models is increasingly prevalent, as they provide
a means of predicting the behavior of physical systems. For example, in the
field of structural engineering, FE models are used to predict the response of
structures to various loads, such as wind and earthquakes. By using CNNs to
analyze FE data, we can gain insight into the behavior of these physical systems
and make predictions that can guide engineering design and decision-making.
Compression techniques can be broadly divided into two categories: weight
pruning and weight quantization. Such compression are preformed a posteriori,
after the training of the CNNs. Weight Pruning involves removing the least im-
portant weights or filters in a CNN, thereby reducing the number of parameters
and computational complexity of the model. For example, in Han et al. (2015),
the authors use pruning techniques to remove unimportant weights in a CNN,
reducing the number of parameters with minimal loss of accuracy. In Li et al.
(2016), the authors propose a filter pruning method to remove unimportant
filters from a pre-trained CNN, reducing the computational cost of the model
without sacrificing accuracy.
Weight Quantization, on the other hand, involves reducing the precision of the
weights in a CNN. This can be achieved by using fewer bits to represent each
weight, thereby reducing the size of the model. In Courbariaux et al. (2015), the
authors propose a method to quantize the weights of a CNN to binary values,
reducing the number of parameters and computational cost of the model while
maintaining accuracy. In Rastegari et al. (2016), the authors propose a method
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to quantize the weights of a CNN to binary and ternary values, achieving a
reduction in the number of parameters and computational cost of the model
with minimal loss of accuracy.
In addition to these methods, there are other compression techniques, such as
decomposition of weight matrices, that have been proposed to reduce the size
of CNNs. In Hameed et al. (2022), the authors use Kronecker product decom-
position to compress the weights of a CNN, reducing the number of parameters
and computational cost of the model. A Tucker decomposition of 4-way kernels
is proposed in Zdunek and Gabor (2022)
Compression techniques can provide significant benefits in terms of reducing the
size and computational cost of CNNs, making them more feasible for deployment
on devices with limited memory and computational resources. Additionally, by
reducing the number of parameters in a CNN, the risk of overfitting can be
reduced, leading to improved generalization performance.
In this paper we propose a different approach by reversing the paradigm: instead
of computing a decomposition of an already trained CNN, we propose to a priori
construct the CNN as a succession of decomposed convolutional layers and learn
each term of the decomposition by backpropagating gradients from the neural
network training.

2 Physical Data preprocessing
A boundary generator using a neural network is proposed, where physics-based
equations are inforced in a submodel driven by a neural network. This neural
network has to emulate the parametric predictions of a full finite element model,
over a domain Ω in Figure 1 for instance. The submodel is a finite element model
restrained to a zone of interest denoted by Ω′ in Figure 1. It is supplemented
by boundary conditions that are forecast by a neural network. This method
rely on the general principle which is a submodel formed of two weakly coupled
components:

• A neural network learning boundary conditions around a predetermined
zone of interest, related to the submodel.

• A finite element submodel in the zone of interest using boundary con-
ditions generated by the neural network. We assume that there is no
modeling error in the zone of interest covered by the proposed submodel.

For the validation of our approach, we choose to solve the 2D wave equation. We
define two 2D Cartesian space grids Ωh and Ω′h, with Ω′h ⊂ Ωh representing the
zone of interest. Ωh and Ω′h are triangular space discretization of sizes [Nx, Ny]
and [N ′x, N

′
y] of the domains [−Lx, Lx] × [−Ly, Ly] and [−L′x, L′x] × [−L′y, L′y].

And finally a temporal grid T is defined as discretization of size NT of the space
[0, Tfinal] and the time step ∆t =

Tfinal

NT−1 . The 2D wave equation is given as

3



follows: 
1

c2
∂2u

∂t2
−∆u = f on Ω ∀t > 0

u = 0 on ∂Ω ∀t > 0

u = u0 on Ω for t = 0

(1)

where u is the amplitude of the wave. A source point is determined for the
problem resolution where (xS , yS) are the source point coordinates, it is chosen
to be outside the zoom domain: i.e. (xS , yS) ∈ Ω\Ω′.
The source term at the right hand side of the wave equation is set as:

(∀t ∈ T ), f(x, y, t) = sin(ωt)δ(xS ,yS)(x, y) (2)

where δ(xS ,yS) denotes the 2D Dirac distribution centered at (xS , yS). A three-
dimensional parameter vector p = (ω, xs, ys) is chosen and determined then
sampled, (note that c is constant over all samples since it is a parameter needed
for the submodel). Sampling is done using latin hypercube sampling routines.
For every parameter vector p a simulation vector U(p) is generated using the
FE model. One sample of data is then (p, U(p)) where p ∈ Dp ⊂ R3 and
U(p)(t) ∈ Vh ⊂ RNX×NY .
Then, 2 datasets are generated from the same uniform distribution as the fol-
lowing:

• Training data set: 100 samples generated, used for training parametric
approach models.

• Test data set: 25 samples generated, used for testing the training process
of each neural network, and comparing the models we used in our study.

All generated data are scaled with a standard scaler, and restrained to Ω′.
These data are 3D (or 3-way) tensors that save the time-space evolution for
each instance of input parameters in the FE model. There is 2 indices for 2D
space coordinates, and one index for the time axis.

3 Proposed Approach

3.1 Background
Let us consider W = (wi,o) ∈ Rni,no the weight matrix for a fully connected
layer, bias vectors will be omitted in this section for simplification purpose,
however, we can easily extend this approach by taking into account the bias.
The output of a fully connected layer who takes as an input a vector x ∈ Rni is
a vector y ∈ Rno . y1

...
yno

 =

 w1,1 · · · w1,ni

...
. . .

...
wno,1 · · · wno,ni

×
 x1

...
xni

 (3)
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Figure 1: Visualization of the FE output on Ω and Ω
′

WhereW is a dense matrix, usually initialized as (∀(i, o) ∈ [|1, ni|]×[|1, no|])wi,o 6=
0.
In Mallat (2016) 2D convolutional layers are defined as follows, given an input
x ∈ Rnx×mx the output of the convolution of x with a kernel K ∈ Rk1×k2 is an
2D matrix y ∈ Rny×my :

y(i, j) = (x ? K)(i, j) =

k1∑
l=1

k2∑
h=1

x(l + i− 1, h+ j − 1)K(l, h) (4)

This approach can be generalized for higher dimension inputs with N-ways ker-
nels (N > 2). Thus, since a convolutional layer consists of a linear combination
of the outputs of multiple convolution kernels passed in parameter for a non lin-
ear activation function σ, we can write for an input x ∈ Rc×nx×mx , c being the
numbers of channels in the input, and a collection of kernels K ∈ Rck×nk×mk

where nk ≤ n and mk ≤ m and ck the number of Kernels defines the number
of channels for the output, which is usually called the feature map, which is a
tensor y ∈ Rck×ny×my :

(∀j ∈ [|1, ck|]) y[j, :, :] = σ(

c∑
i=1

x[i, :, :] ? K[j, :, :]) (5)

For visualization let us consider the example of one kernel (ck = 1), where
k1 = k1 = 2, ni = no = 3, developpements in this section are written in the
case of 2D convolutional kernels but can easily be generalized N-way kernels

(N > 2). Having : K =

[
k1,1 k1,2

k2,1 k2,2

]
and x =

 x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

, and
considering the flattened vector of x, the flattened output of this convolutional
layer is a vector y ∈ R4:
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y1,1

y1,2

y2,1

y2,2

 =


k1,1 k1,2 0 k2,1 k2,2 0 0 0 0
0 k1,1 k1,2 0 k2,1 k2,2 0 0 0
0 0 0 k1,1 k1,2 0 k2,1 k2,2 0
0 0 0 0 k1,1 k1,2 0 k2,1 k2,2

×



x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

x3,1

x3,2

x3,3


(6)

Thus convolutional layers can be considered as sparse fully connected layers that
have a lower computational complexity than dense layers.

3.2 Canonical Polyadic Decomposition of convolutional ker-
nels

Canonical Polyadic Decomposition (CPD) Kolda and Bader (2009); Evert et al.
(2022); Hitchcock (1927) describes a N-way tensor as a sum of rank one tensors.
In contrast to the matrix scenario, the CPD of a low rank tensor is unique given
mild assumptions. CPD’s intrinsic distinctiveness makes it a strong tool in
many applications, allowing for the extraction of component information from
a signal of interest. The generalized eigenvalue decomposition (GEVD), which
picks a tensor matrix subpencil and then computes the generalized eigenvectors
of the pencil, is a common approach for algebraic calculation of a CPD.

Figure 2: Canonical Polyadic Decomposition from Pham et al. (2018a)

Let us consider a CPD of the convolutional kernel k defined in Section 3.1 with
2 vectors Q,R:

K ≈ Q⊗RT =

[
q1,1

q1,2

]
⊗
[
r1,1 r2,1

]
=

[
q1,1r1,1 q1,1r2,1

q1,2r1,1 q1,2r2,1

]
(7)

Where ⊗ denotes the outer vector product. Determining the values of Q,R
will be discussed in a following section. Thus, considering Equation (7), the
Equation (6) can be rewritten:
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y1,1

y1,2

y2,1

y2,2

 = Q×R× x =


q1,1 0 q1,2 0 0 0
0 q1,1 0 q1,2 0 0
0 0 q1,1 0 q1,2 0
0 0 0 q1,1 0 q1,2

×

r1,1 r2,1 0 0 0 0 0 0 0
0 r1,1 r2,1 0 0 0 0 0 0
0 0 0 r1,1 r2,1 0 0 0 0
0 0 0 0 r1,1 r2,1 0 0 0
0 0 0 0 0 0 r1,1 r2,1 0
0 0 0 0 0 0 0 r1,1 r2,1

×



x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

x3,1

x3,2

x3,3



(8)

Where R is the matrix of the linear operation of applying the kernel R to every
row of x ∈ R3×3 andQ is the matrix of the linear operation of applying the kernel
Q to every column of the output of applying R to x, then we have rewritten
the 2D convolutional layer of x by the kernel K to successfully applying two 1D
kernels, induced by the CPD of K, to different dimensions of x.

3.3 Approximation of the CPD of convolutional layers
In the previous section we presented an approach to reduce the dimensionality of
a trained convolutional layer using CPD of each kernel, the main issue remaining
is determining the components of each decomposition. Generalized Eigenvalue
Decomposition Domanov and Lathauwer (2014) is the default go-to approach.
In this work we propose an equivalent approach relying on Singular Values
Decomposition of kernels. Let us first consider the case of 2D kernels, let K ∈
Rn1×n2 be a 2D kernel. The SVD of K is written as :

K ≈
r∑

i=1

σiK
(L)
i ⊗K(R)

i . (9)

Where r is the number of singular values considered, (σi)(i≤r) the singular values
and (K

(L)
i ,K

(R)
i ) respectively the left and right singular vectors. Equation (9)

can be rewritten as:

K ≈
r∑

i=1

K
′(L)
i ⊗K ′(R)

i . (10)

Where each vector K ′(.)i =
√
σiK

(.)
i , and by construction, (K

′(L)
i ,K

′(R)
i ) are

rank one vectors, thus we obtained a Polyadic Decomposition of a 2D kernel.
Depending on r, this decomposition may fulfill a precision criteria which is
sufficient for this application.
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Let us now consider the case of 3D kernels, let K ∈ Rn1×n2×n3 a 3-way tensor,
and let us consider Kl = K[:, :, l], K can be written as:

K =

n3∑
l=1

Kl ⊗ Il (11)

Where (Il)l≤n3
are the vector rows of the identity matrix in Rn3×n3 , and each

(Kl)l≤n3
is a 2D matrix, thus a decomposition in the form of (10) is possible.

Therefore K can be decomposed as:

K =

n3∑
l=1

Kl ⊗ Il ≈
n3∑
l=1

r∑
i=1

K
′(L)
i,l ⊗K

′(R)
i,l ⊗ Il. (12)

With straightforward work on sums indexes, one can rewrite this approximation
as a single sum of outer products of rank one vectors. Thus, we define a recursive
method to build decompositions of a tensor of any dimension.

3.4 A priori decomposed convolutional layers
Applying this decomposition formalism to every kernel of convolutional layer
leads to a compressed representation of the convolutional layer. We show that
the a priori decomposition requires intermediate reshape and transpose opera-
tions on data. The new convolution approach is detailled in what follows.
Let us first consider X ∈ RnB×nc×nt×nx a tensor of physical 2D data, formed
by nB instances (or samples of data) and nc channels (or features). In our
target application, for each sample, nt is the size of the temporal dimension
of the data and nx the size of the spatial dimension. Let K ∈ Rnf×nkt×nkx

where nf is the number of 2D kernels considered, nkt and nkx respectively the
kernels sizes in temporal and spatial dimension, and let Y, β ∈ RnB×nf×n′

t×n
′
x

being respectively the output and the biases of the convolutional layer. Using
the equation (4) defining the output of a convolution by a kernel we define the
output Y of the convolution of X by K and β as :

Y (i, j, h, l) =

nf∑
v=1

nkt∑
o=1

nkx∑
p=1

X(i, v, h+ o− 1, l+ p− 1)K(j, o, p) + β(i, j, h, l) (13)

In these developpements we consider the case where all inputs channels are con-
volved with all output channels and default values are set for other convolution
parameters (stride = 1, padding = 0, dilation = 1), generalizing these devel-
oppements for generic values or for higher dimension convolutional layers is a
straightforward work on indexes or data structure. Let us consider a formal
SVD of each kernel in K and only focusing on the first term of the sum (using
more singular values for the decomposition can be performed by using more
channels in the decomposed kernels):

j = 1, K[j, :, :] = Kt
j ⊗Kx

j +R[j, :, :] (14)
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where R is the residual tensor of the rank one approximation of K. Thus
we can extract two subsets of 1D kernels forming 2 differents temporal and
spatial 1D convolutional layers Kt

j ∈ Rnt and Kx
j ∈ Rnx . Let us consider

Ỹ ∈ RnB×nc×nt×n′
x the output of the spatial convolutional layer Kx

j on the
columns of X without combining the ouptuts, we obtain:

Ỹ (i, j, h, l) =

nkx∑
p=1

X(i, (j, h), l + p− 1)Kx
j (p) (15)

where (j, h) is a multi index obtained by reshaping the data. In the sequel, the
following transpose operation is also required:

Ỹ T (i, j, l, h) = Ỹ (i, j, h, l) (16)

Let us now consider Ŷ ∈ RnB×nf×n′
t×n

′
x the output of the temporal convolu-

tional layer Kt
j on the lines of Ỹ and combining the ouptuts and then adding

the same biases β ∈ RnB×nf×n′
t×n

′
x , we obtain:

Ŷ (i, ĵ, h, l) =

nf∑
j=1

nkt∑
o=1

Ỹ T (i, (j, l), h+ o− 1)Kt
j(o) + β(i, ĵ, h, l)

=

nf∑
j=1

nkt∑
o=1

(
nkx∑
p=1

X(i, j, h+ o− 1, l + p− 1)Kx
j (p)

)
Kt

j(o) + β(i, ĵ, h, l)

=

nf∑
j=1

nkt∑
o=1

nkx∑
p=1

X(i, j, h+ o− 1, l + p− 1)
(
Kx

j (p)Kt
j(o)

)
+ β(i, ĵ, h, l)

(17)
where Kx

j (p)Kt
j(o) is the rank-one tensor approximation of the 2D convolution

kernel. It follows that:

Y (i, ĵ, h, l)− Ŷ (i, ĵ, h, l) =
nf∑
j=1

nkt∑
o=1

nkx∑
p=1

X(i, j, h+ o− 1, l + p− 1)R(j, o, p)
(18)

Therefore the smaller R, the smaller the discrepancy between Y and Ŷ .
Thus, using decompositions of kernels of a 2D convolutinal layers we obtained
an approximation of the output of said layer by using the decomposed kernels
in two consecutive 1D convolutinal layers with index manipulations via data
reshaping and transpose operations.
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Similarly, the rank-one decomposition can be extended to d-way kernels:

Ŷ (i, ĵ, h1, . . . , hd) =

nf∑
j=1

nk1∑
p1=1

. . .

nkd∑
pd=1

X(i, j, h1 + p1 − 1, . . . , hd + pd − 1)

Πd
k=1K

k
j (pk)

+ β(i, ĵ, h1, . . . , hd)

(19)

Thus reducing the number of trainable parameters of the convolutional layer
from Πk=1dnkk

to
∑d

k=1 nkk. Therefore we decomposed a model which com-
plexity is exponentialy dependent on the dimension of the problem to a model
which complexity is linealy dependent on the dimension, thus alienating the
curse of dimensionality. In addition, since we approximate d-way kernels with
a decomposition of d 1D convolutional layer, we can consider each layer ap-
part and use activation functions after each 1D convolution, thus constructing
a non linear decomposition of d-way kernels. Indeed this a priori decomposition
of CNNs assume that parameters on each kernel are dimensionaly separable,
nevertheless the update of those parameters while training the CNN depends
on every dimension of the problem solved since the gradients backpropagated
depends on all dimensions, then the dimensional separability of the problem is
not a necessary hypothesis to perform such decomposition. Nevertheless, the
precision of such decomposition is not an indicator of the precision of training
models using this new form of convolutions. But it will rather be inforced by
solving the optimization problem related to the objective function.

4 Weight sharing
Weight sharing or layer coupling is a deep learning model order reduction
method in which multiple models which objective is to extract different fea-
tures from same inputs share the first extraction layers. In Xie et al. (2021)
the authors present an overview of different implementation and optimization
method of weight sharing, as for Pham et al. (2018b) in which the authors
present an approach to builds a large computational graph with each subgraph
representing a neural network design, requiring all architectures to share their
parameters. A policy gradient is used to train a controller to find the subgraph
that maximizes the reward on a validation set. Liu and Tuzel (2016) proposes
a weight sharing approach for Generative Adversarial Network to learn joint
distribution.
In our approach, weight sharing is a relevent choice, since the objective is to
predict different physical fields with respect to the same input parameters. Thus,
instead of training two different models, we train coupled models, therefore
reducing the number of parameters in the first layers by half. The weight of
the shared layers are updated with gradients induced by the minimization of
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the empirical risk for all physical fields predicted, the last regressive layers are
updated by gradients induced by the only physical field predicted.
Let us denote Md, Mv the models trained to approach the displacement and
its time derivative (the velocity) fields using weight sharing, let us denote Ns

the operation of applying the shared layers on a parameters vector input p, and
Nd, Nv the operation of applying the remaining layers for the displacement and
velocity models to the outputs of Ns. Outputs of both models can be written
as: {

Md(p) = Nd(Ns(p))
Mv(p) = Nv(Ns(p))

(20)

5 Time regularization
In our approach, since the objective is to predict dynamic physical fields, pre-
dicting fields that are dynamically linked is quite frequent, as for example pre-
dicting displacement and velocity fields. We propose an approach for time reg-
ularization of the predicted fields by adding a residual minimization in the cost
function, which is quite similar to the approaches in Physics Informed Neural
Network Raissi et al. (2017) in which the residual of the Partial Differential
Equation is minimized. Since for FE models access to the residual of the PDE
solved is intrusive and often infeasible, we rely on the temporal regularity of the
approximated physical fields.
Let us consider P and T sets of collocation points for the time residual comput-
ing, and let Mu and Mv be two neural networks which objective is to predict
displacement and velocity fields for the same FE models parameterized by p.
We define the time residual as :

E
p∈P

E
t′∈T
||∂Mu(p, t′)

∂t
−Mv(p, t′)||22 (21)

For convolutional layers, computing the derivative of the output with respect
to the inputs is not always feasible, so we approach the time derivative with
an Euler finite difference scheme. In the following this regularization will be
mentionned as the Euler regularization.

6 Developped models
All models in this following work can be categorized into 9 categories depending
on how they process each type of physical data and how spatial and temporal
information is used to update the weights at each training step. So for spatial
and temporal information we distinguish 3 categories each:

• Sampled: only one sample of spatial or/and temporal data is used to
update the weights, the models takes as inputs the spatial or temporal
coordinates or both.

11



• Local: only a local amount of spatial or/and temporal data is used to
update the weights, the model predicts the whole simulation but uses
convolutional layers to treat data localy.

• Global: the whole information across the spatial or temporal information
or both is used to update the weights, this is achieved in a convolutional
layer by considering the global dimension as the channels in the case where
the other dimension is not globaly processed, or with a fully connected
layer.

Figure 3: Model complexity evolution

Figure 3 shows the evolution of model complexity according to the approaches
considered spatialy and temporally, in green approaches that were considered
and developed in this work, in blue feasible approaches but not adapted to our
application and in orange non-feasible approaches.

6.1 Models annotations
Regarding our developed model, time sampled approaches or time conditioned
approaches will be suffixed by ”_t”, spatialy local approaches are the convolu-
tional networks that will be prefixed by ”Conv” followed by their dimension,
local and global temporal approaches can be distinguished by the dimension of
the convolutional net, for example using a 3D convolutional network to approach
a 2D spatial and 1D physical field is temporally local, using a 2D convolutional

12



layer to approach the same field is temporally global. All fully connected models
developed are spatialy global and temporally sampled. All of these models can
have multiple variants considering if convolutional decomposition is performed
a suffixe "N.5D" means that a convolutional layer of dimension N + 1 has been
decomposed using the a priori decomposition approach presented in this paper,
2.5D means that the model has been decomposed to a 2D spatial layer and a
1D temporal layer, 2.5Db means that a 3D model has been a priori decomposed
to three 1D layers. Additional variants appears depending on the regularization
technique used, Batch Normalization Ioffe and Szegedy (2015) is designated by
”BN”, Euler regularization by ”E”, Weight sharing or layer sharing by ”SL”,
”BASIC” will denote a network with no regularization applied. All these type
of regularization can be combined except for Batch Normalization and Euler,
since Batch Normalization makes the derivatives computed in Euler Regular-
ization erroneous.

7 Numerical results

7.1 Error indicator
We define a relative error indicator over the time and space grid of the interest
zone, in order to quantify the precision of our submodels as ε. For a submodel
M, a parameter vector p, and a time value t:

ε(M,p, t) =

E
(x,y)∈Ω′

[|M(p)(t, x, y)− U(p)(t, x, y)|]

max
x,y∈Ω′

|U(p)(t, x, y)|
(22)

For a comparison over the testing data set:

ε(M, t) = E
p∈PTest

[ε(M,p, t)] (23)

7.2 2D Wave propagation with one source point and early
stopping

We train all regression models defined in the previous section on FE prediction in
Ω′ as training data, for 1000 epoch using Adam Kingma and Ba (2014) optimizer
and a learning rate of 1e−3. In all tables, results in bold black indicate best
results in terms of accuracy, results in blue indicate results within an acceptable
threshold, and results in red indicate unacceptable results.
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Table 1: Number of trainable parameters (million parameters)

Basic BN E SL BN & SL E & SL
FC t 14.34 14.37 14.34 14.22 14.26 14.22

Conv2D 23.30 23.31 23.30 12.63 12.64 12.63
Conv2D t 1.52 1.52 1.52 0.81 0.81 0.81
Conv3D 7.25 7.25 7.25 3.83 3.83 3.83
Conv2.5D 2.72 2.72 2.72 1.46 1.46 1.46
Conv2.5Db 1.63 1.64 1.63 0.85 0.86 0.85

FC t Boundary 0.27 0.28 0.27 0.26 0.26 0.26
Conv1D Boundary 6.98 6.99 6.98 3.65 3.66 3.65
Conv1D t Boundary 0.45 0.45 0.45 0.24 0.24 0.24
Conv2D Boundary 2.19 2.19 2.19 1.13 1.13 1.13
Conv1.5D Boundary 1.18 1.19 1.18 0.61 0.62 0.61

Table 1 shows the number of trainable parameters for each model combined
with every regularization technique described before. As expected fully con-
nected layers and approaches using temporal dimension as feature maps have
the highest number of parameters, and our decomposition approach is efficient
in reducing the number of trainable parameters in each model. Sharing Layers
approach reduce drastically the number of parameters in convolutional layer,
fully connected layers cannot benefit from this approach since first layers have
the lowest number of parameters. Batch norm regularization only add a negli-
gible number parameters.

Table 2: Train error on full displacement

Basic BN E SL BN & SL E & SL
FC t 2.27 0.54 2.28 2.02 0.55 2.02

Conv2D 4.61 0.22 4.86 4.90 0.43 4.66
Conv2D t 26.91 0.41 26.91 26.91 0.31 26.92
Conv3D 5.87 0.24 5.76 6.08 0.27 5.86
Conv2.5D 4.64 0.34 5.11 4.55 0.37 5.35
Conv2.5Db 4.66 0.54 5.37 4.27 0.79 0.61
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Table 3: Train error on full velocity

Basic BN E SL BN & SL E & SL
FC t 2.26 0.63 2.42 2.27 0.60 2.25

Conv2D 4.30 0.18 4.55 4.55 0.22 4.31
Conv2D t 21.69 0.25 21.69 21.68 0.27 21.69
Conv3D 6.06 0.23 5.83 6.02 0.26 5.96
Conv2.5D 4.44 0.25 4.78 4.33 0.43 4.81
Conv2.5Db 4.47 0.63 4.80 4.18 0.58 0.54

Table 4: Test error on full displacement

Basic BN E SL BN & SL E & SL
FC t 1.34 0.37 1.37 1.24 0.46 1.29

Conv2D 3.25 0.24 3.15 3.22 0.31 3.46
Conv2D t 24.45 0.28 24.46 24.47 0.29 24.47
Conv3D 4.72 0.18 4.66 4.64 0.26 4.81
Conv2.5D 3.47 0.28 3.30 3.50 0.38 3.20
Conv2.5Db 3.33 0.43 2.81 3.72 0.73 0.53

Table 5: Test error on full velocity

Basic BN E SL BN & SL E & SL
FC t 1.60 0.43 1.61 1.55 0.48 1.55

Conv2D 3.02 0.18 2.88 2.95 0.24 3.19
Conv2D t 20.56 0.25 20.55 20.55 0.26 20.57
Conv3D 4.93 0.17 5.02 5.02 0.23 5.14
Conv2.5D 3.22 0.24 3.01 3.29 0.43 3.14
Conv2.5Db 2.92 0.58 2.60 3.30 0.54 0.48

Tables 2 and 3 show respectively the training error of each model variant for data
prediction on Ω′ considering all the possible regularization methods described in
the previous sections. The tables indicate that the model that achieves the best
accuracy in training is Conv3D with BatchNorm regularization and achieves
good generalization error as shown by Tables 4 and 5 where best compromise
between training error and generalization error is achieved by Conv3D, this
behavior can be explained by the overfitting occurring in Conv2D considering
the large amount of parameters within the model. Tables 2, 3, 4 and 5 show that
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the approaches using our convolutional decomposition presented in this paper
achieve comparable training precision and generalization error with much fewer
parameters as shown by Table 1. Only the models with the Batch Normalization
regularization could achieve acceptable error threshold for training with few
epoch and a high learning rate. Euler regularization shows no improvements on
the precision of the models, however combined with sharing layers it achieves
equivalent error threshold to the Batch Normalization results.

Table 6: Train error on displacement after zoom

Basic BN E SL BN & SL E & SL
FC t 2.01 0.49 2.06 1.83 0.47 1.88

Conv2D 4.75 0.13 4.80 4.74 0.17 4.61
Conv2D t 27.45 0.25 27.46 27.44 0.13 27.44
Conv3D 4.61 0.22 4.47 4.57 0.20 4.46
Conv2.5D 4.72 0.19 4.94 4.57 0.16 4.86
Conv2.5Db 4.69 0.28 5.07 4.43 0.51 0.29

FC t Boundary 1.59 0.48 1.64 1.58 0.41 1.48
Conv1D Boundary 4.62 0.19 4.80 4.70 0.14 4.84
Conv1D t Boundary 27.45 0.30 27.45 27.44 0.38 27.45
Conv2D Boundary 11.25 0.15 11.59 11.22 0.21 11.36
Conv1.5D Boundary 5.38 0.18 5.57 5.60 0.18 5.62

Table 7: Train error on velocity after zoom

Basic BN E SL BN & SL E & SL
FC t 2.80 0.65 2.85 2.64 0.65 2.71

Conv2D 4.42 0.12 4.47 4.41 0.15 4.29
Conv2D t 22.49 0.18 22.49 22.48 0.09 22.47
Conv3D 4.57 0.18 4.44 4.52 0.18 4.44
Conv2.5D 4.45 0.21 4.66 4.35 0.17 4.56
Conv2.5Db 4.42 0.39 4.66 4.23 0.55 0.37

FC t Boundary 2.35 0.62 2.42 2.28 0.54 2.21
Conv1D Boundary 4.30 0.16 4.45 4.37 0.13 4.48
Conv1D t Boundary 22.49 0.21 22.49 22.48 0.24 22.49
Conv2D Boundary 9.58 0.11 9.85 9.52 0.17 9.62
Conv1.5D Boundary 5.80 0.20 5.93 5.95 0.18 5.83
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Table 8: Test error on displacement after zoom

Basic BN E SL BN & SL E & SL
FC t 1.34 0.37 1.37 1.24 0.46 1.29

Conv2D 3.25 0.24 3.15 3.22 0.31 3.46
Conv2D t 24.45 0.28 24.46 24.47 0.29 24.47
Conv3D 4.72 0.18 4.66 4.64 0.26 4.81
Conv2.5D 3.47 0.28 3.30 3.50 0.38 3.20
Conv2.5Db 3.33 0.43 2.81 3.72 0.73 0.53

FC t Boundary 1.02 0.22 1.08 1.06 0.24 1.07
Conv1D Boundary 5.01 0.13 4.84 4.94 0.08 4.79
Conv1D t Boundary 25.27 0.26 25.28 25.27 0.36 25.28
Conv2D Boundary 13.28 0.12 13.17 13.04 0.13 13.21
Conv1.5D Boundary 5.99 0.29 6.19 6.16 0.14 6.03

Table 9: Test error on velocity after zoom

Basic BN E SL BN & SL E & SL
FC t 2.13 0.43 2.28 2.11 0.43 2.08

Conv2D 2.84 0.14 2.80 2.90 0.19 3.02
Conv2D t 21.76 0.09 21.77 21.76 0.09 21.74
Conv3D 3.90 0.13 3.98 3.99 0.10 4.02
Conv2.5D 3.00 0.17 2.97 3.06 0.13 3.11
Conv2.5Db 2.97 0.30 2.77 3.26 0.43 0.39

FC t Boundary 1.77 0.35 1.76 1.65 0.38 1.79
Conv1D Boundary 4.39 0.12 4.25 4.27 0.07 4.20
Conv1D t Boundary 21.76 0.16 21.77 21.76 0.24 21.76
Conv2D Boundary 11.51 0.12 11.38 11.26 0.12 11.40
Conv1.5D Boundary 6.29 0.29 6.38 6.46 0.15 6.42

Tables 6, 7, 8 and 9 show respectively the training error and generalization error
of each model variant after the submodeling operation in the area of interest
considering all the possible regularization methods described in the previous
sections. The tables indicate that the model that achieves the best training and
generalization are boundary generative models, achieving this results with even
fewer trainable parameters, the convolutional decomposition approaches achieve
equivalent results with fewer trainable parameters.
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Table 10: Average time of one epoch

Basic BN E SL BN & SL E & SL
FC t 0.49 0.49 0.53 0.42 0.46 0.51

Conv2D 0.60 0.63 0.72 0.43 0.44 0.53
Conv2D t 0.37 0.40 0.65 0.34 0.37 0.62
Conv3D 0.32 0.36 0.78 0.26 0.30 0.73
Conv2.5D 0.69 0.75 1.07 0.68 0.75 1.03
Conv2.5Db 1.10 1.21 1.67 1.05 1.08 1.53

FC t Boundary 0.20 0.21 0.26 0.19 0.20 0.25
Conv1D Boundary 0.35 0.36 0.46 0.29 0.30 0.40
Conv1D t Boundary 0.34 0.36 0.51 0.35 0.36 0.54
Conv2D Boundary 0.22 0.23 0.30 0.19 0.21 0.28
Conv1.5D Boundary 0.69 0.73 1.05 0.65 0.69 1.03

The table 10 shows the average time for each model to train for one epoch, it
indicates that the convolutional decomposition approaches have higher train-
ing time, this can be explained by comparing our first implementation with
optimized implementation of deep learning libraries, the objective to attain
comparable results with decomposed convolutional layers was achieved but the
optimization of training time is yet to be achieved.

7.3 2D wave propagation with one source point
We train all models defined in the previous section for 10000 epoch using Adam
Kingma and Ba (2014) optimizer and a learning rate of 1e−3 and learning rate
decay to achieve a learning rate of 1e−4 at the last epoch.

Table 11: Train error on full displacement

Basic BN E SL BN & SL E & SL
FC t 0.88 0.21 0.86 0.76 0.23 0.75

Conv2D 0.11 0.10 0.13 0.12 0.08 0.13
Conv2D t 0.22 0.19 0.24 0.25 0.21 0.28
Conv3D 0.12 0.09 0.12 0.14 0.11 0.15
Conv2.5D 0.15 0.15 0.14 0.13 0.12 0.17
Conv2.5Db 0.15 0.16 0.16 0.16 0.16 0.19
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Table 12: Train error on full velocity

Basic BN E SL BN & SL E & SL
FC t 0.82 0.28 0.83 0.83 0.24 0.80

Conv2D 0.12 0.08 0.12 0.11 0.08 0.11
Conv2D t 0.25 0.19 0.20 0.23 0.22 0.22
Conv3D 0.14 0.10 0.13 0.13 0.12 0.15
Conv2.5D 0.14 0.16 0.13 0.13 0.13 0.16
Conv2.5Db 0.15 0.17 0.12 0.16 0.18 0.18

Table 13: Test error on full displacement

Basic BN E SL BN & SL E & SL
FC t 0.92 0.27 0.90 0.80 0.28 0.78

Conv2D 1.12 0.77 1.22 1.13 0.79 1.11
Conv2D t 0.24 0.22 0.26 0.27 0.23 0.31
Conv3D 0.23 0.20 0.24 0.23 0.19 0.24
Conv2.5D 0.55 0.64 0.54 0.53 0.58 0.51
Conv2.5Db 0.66 0.63 0.63 0.54 0.68 0.68

Table 14: Test error on full velocity

Basic BN E SL BN & SL E & SL
FC t 0.86 0.34 0.86 0.87 0.30 0.82

Conv2D 1.12 0.81 1.24 1.09 0.74 1.11
Conv2D t 0.26 0.21 0.22 0.25 0.23 0.24
Conv3D 0.28 0.21 0.32 0.22 0.20 0.24
Conv2.5D 0.54 0.63 0.50 0.49 0.55 0.48
Conv2.5Db 0.70 0.72 0.76 0.50 0.64 0.64

Tables 11 and 12 shows respectively the training error of each model variant for
data prediction considering all the possible regularization methods described in
the previous sections. The tables indicate that the model that achieves the best
accuracy in training is Conv2D with BatchNorm regularization, but achieves
poor generalization error as shown by Tables 13 and 14 where best compromise
between training error and generalization error is achieved by Conv3D, this
behavior can be explained by the overfitting occuring in Conv2D considering
the large amount of parameters within the model. Tables 11, 12, 13 and 14
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show that the approaches using the convolutional decomposition presented in
this paper achieve comparable training precision and generalization error with
much fewer parameters as shown by Table 1. Results here show that all model
could converge thanks to the higher number of epochs and learning rate decay,
thus combining Batch Normalization within our decomposition approach allow
the models to learn and have good generalization error with high learning rate
and few epochs.

Table 15: Train error on displacement after zoom

Basic BN E SL BN & SL E & SL
FC t 0.79 0.17 0.75 0.64 0.19 0.61

Conv2D 0.04 0.03 0.05 0.05 0.03 0.05
Conv2D t 0.12 0.10 0.12 0.13 0.11 0.16
Conv3D 0.06 0.04 0.05 0.06 0.06 0.08
Conv2.5D 0.07 0.08 0.05 0.07 0.06 0.09
Conv2.5Db 0.07 0.08 0.07 0.08 0.07 0.12

FC t Boundary 0.55 0.17 0.56 0.52 0.17 0.51
Conv1D Boundary 0.03 0.02 0.03 0.04 0.02 0.05
Conv1D t Boundary 0.09 0.08 0.07 0.12 0.11 0.11
Conv2D Boundary 0.04 0.06 0.06 0.06 0.06 0.05
Conv1.5D Boundary 0.05 0.02 0.04 0.05 0.03 0.04

Table 16: Train error on velocity after zoom

Basic BN E SL BN & SL E & SL
FC t 1.23 0.24 1.18 1.05 0.27 0.99

Conv2D 0.05 0.04 0.06 0.05 0.03 0.06
Conv2D t 0.12 0.12 0.12 0.16 0.13 0.17
Conv3D 0.07 0.05 0.06 0.07 0.06 0.09
Conv2.5D 0.08 0.07 0.07 0.09 0.07 0.10
Conv2.5Db 0.09 0.10 0.10 0.11 0.10 0.12

FC t Boundary 0.90 0.25 0.92 0.84 0.25 0.84
Conv1D Boundary 0.03 0.02 0.03 0.03 0.02 0.04
Conv1D t Boundary 0.09 0.09 0.08 0.11 0.11 0.12
Conv2D Boundary 0.04 0.05 0.06 0.06 0.07 0.05
Conv1.5D Boundary 0.05 0.03 0.05 0.05 0.04 0.05
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Table 17: Test error on displacement after zoom

Basic BN E SL BN & SL E & SL
FC t 0.92 0.27 0.90 0.80 0.28 0.78

Conv2D 1.12 0.77 1.22 1.13 0.79 1.11
Conv2D t 0.24 0.22 0.26 0.27 0.23 0.31
Conv3D 0.23 0.20 0.24 0.23 0.19 0.24
Conv2.5D 0.55 0.64 0.54 0.53 0.58 0.51
Conv2.5Db 0.66 0.63 0.63 0.54 0.68 0.68

FC t Boundary 0.60 0.23 0.62 0.58 0.25 0.58
Conv1D Boundary 1.51 1.42 1.55 1.57 1.33 1.45
Conv1D t Boundary 0.13 0.11 0.11 0.16 0.14 0.15
Conv2D Boundary 0.30 0.24 0.28 0.25 0.23 0.25
Conv1.5D Boundary 0.78 1.07 1.03 0.96 0.85 1.02

Table 18: Test error on velocity after zoom

Basic BN E SL BN & SL E & SL
FC t 1.25 0.30 1.21 1.08 0.33 1.01

Conv2D 1.01 0.85 1.08 0.95 0.88 1.09
Conv2D t 0.16 0.16 0.15 0.19 0.17 0.20
Conv3D 0.18 0.18 0.19 0.19 0.16 0.20
Conv2.5D 0.61 0.76 0.58 0.60 0.69 0.54
Conv2.5Db 0.76 0.77 0.74 0.61 0.84 0.82

FC t Boundary 0.93 0.31 0.96 0.88 0.33 0.88
Conv1D Boundary 1.42 1.35 1.46 1.48 1.26 1.36
Conv1D t Boundary 0.14 0.13 0.12 0.16 0.14 0.16
Conv2D Boundary 0.31 0.24 0.29 0.25 0.23 0.25
Conv1.5D Boundary 0.75 1.03 0.96 0.90 0.80 0.95

Tables 15, 16, 17 and 18 show respectively the training error and generalization
error of each model variant after the submodeling operation in the area of inter-
est considering all the possible regularization methods described in the previous
sections. The tables indicate equivalent results from the previous experiment,
in the exception of all models achieve equivalent performance as previously ex-
plained. Models relying on Euler regularization achieve the best error threshold.
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8 Conclusion
In this work, we presented a novel method of compressing convolutional neural
networks for FE physical data and approaches to optimize data from FE models
for CNN training. Our compression approach can also be applied to learning
data in higher dimensions since the complexity of the models is linearly depen-
dent on the dimension and actual deep learning code library only allow up to
3D data learning. After that, we validated our compressed models on physical
data derived from a FE model that was used to solve a 2D wave equation, we
combined each approach with different regularization approaches, and showed
that our convolutinal compression technique achieves equivalent performance as
classical convolutional layers with fewer trainable parameters, 7 millions param-
eters for the classical approach versus 1 million parameters for the decomposed
approach.
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