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Abstract

Intent-detection and slot-filling are the two main tasks in natural language

understanding. In this study, we propose CTRAN, a novel encoder-decoder

CNN-Transformer-based architecture for intent-detection and slot-filling. In the

encoder, we use BERT, followed by several convolutional layers, and rearrange

the output using window feature sequence. We use stacked Transformer encoders

after the window feature sequence. For the intent-detection decoder, we utilize

self-attention followed by a linear layer. In the slot-filling decoder, we introduce

the aligned Transformer decoder, which utilizes a zero diagonal mask, aligning

output tags with input tokens. We apply our network on ATIS and SNIPS, and

surpass the current state-of-the-art in slot-filling on both datasets. Furthermore,

we incorporate the language model as word embeddings, and show that this

strategy yields a better result when compared to the language model as an

encoder.
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1. Introduction

With the rapid growth of smartphones, digital assistants are becoming more

involved in our life. They make routine tasks easier and improve our quality

of life. Dialogue systems are the backbone of digital assistants. Moreover,

goal-driven dialogue systems are used in banking, website customer support,

and travel guidance. Natural language understanding (NLU), a critical part of

dialogue systems, is a prime issue in human-machine interaction. NLU has two

sub-tasks. The first is to understand the intent that the user has in mind, and

the second is to extract the semantic information from the sentence. The first

task is called intent-detection (ID), and the latter is referred to as slot-filling

(SF). ID can be defined as a classification problem, and SF can be considered as

a sequence labeling problem. Table 1 shows an example of the ATIS dataset,

which contains the user’s question, intent, and target labels.

We spotted three significant issues affecting the performance of the existing mod-

els. Recurrent neural networks (RNNs) like long short-term memory (LSTM)[9]

have been widely adopted in the structure of networks proposed to solve SF

and ID tasks[4, 11]. The First problem is that RNNs cannot capture the deep

bidirectional meaning of a sentence since their output vector is a concatenation

of two unidirectional RNNs[3]. Transformer [25] addressed this problem with

self-attention and positional embeddings. The second issue is that previous works

used convolutional layers with kernel sizes of 2 or more [27, 32]. We argue that

the output of the convolutional layer may still have the embedding of the word

present, but the one-to-one relation of input to output tokens needs to be explicit.

The third issue is that BERT is mostly used as an encoder, and the embeddings

are not further encoded in most existing NLU models. We investigate the best

strategy for using a language model in the architecture of an NLU model. In this

paper, we propose CTRAN, a novel CNN-Transformer-based encoder-decoder

network. For the encoder, we experiment with both BERT and ELMo as our

word embedding. We use CNN on word embeddings and restructure its output

using window feature sequence (WFS). The final part of the encoder is stacked
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user’s question what is the abbrevation d10
target label O O O O B-aircraft_code
target intent atis_abbreviation

Table 1: Example input, target label and intent in ATIS dataset.

Transformer encoders. The decoder uses self-attention and a linear layer to

classify the user’s intent. For the SF task, we propose the aligned Transformer

decoder followed by a fully connected layer. In short, our contribution has four

folds.

1. We propose a novel joint intent-detection and slot-filling architecture for

natural language understanding, achieving state-of-the-art for slot-filling

on both ATIS and SNIPS.

2. We introduce alignment in the Transformer decoder to keep the one-to-one

relationship between input tokens to output tags.

3. We propose using convolutional layers with the kernel size of 1 to preserve

the original one-to-one relationship while fusing the word embedding with

adjacent words.

4. We use the language model as word embeddings and show that this strategy

performs better when compared to employing the language model as an

encoder.

The rest of this paper is ordered as follows: We discuss related works in section 2.

Section 3 describes our proposed network. In section 4, we specify our experiment

setup. Section 5 contains our results and analysis, and in Section 6, we conclude

our study and discuss future work.

2. Related Work

Although there are several statistical models, neural networks have proven

to be more accurate. In the past, ID and SF tasks were carried out separately

[14, 30]. However, recent studies have shown that the joint training of two tasks

yields a better result[27, 7, 31, 19].
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Traditional models mostly used pre-trained fixed vector embeddings such as

GloVe [17] and Word2Vec [15] for the word representation. CoBiC uses CNN

to process the embeddings of the input tokens [11]. The output of the CNN is

fed to a bi-directional LSTM, and then a conditional random field (CRF) layer

is used to generate the output labels. CoBiC uses the hidden state of the last

unit to produce intents. Yang et al. [29] introduced AISE, using a bi-directional

LSTM as a shared encoder. For ID, AISE uses multi-head attention pooling.

Additionally, Yang et al. [29] introduced the position-aware multi-head masked

attention mechanism for their SF decoder. E et al. [4] proposed Reinforce Vector

as a solution for intent-slot integration. They utilize a shared Bi-LSTM as the

encoder. They concatenate the last hidden state of the encoder with their novel

Intent Reinforce Vector followed by softmax for intent prediction. Furthermore,

Slot Reinforce Vector is concatenated with the encoder’s hidden state, which is

then fed to a CRF layer for slot generation.

In recent years, pre-trained language models have become progressively adopted

as they are proven to be beneficial for many downstream tasks [21]. NLU models

either use the language model as word embeddings or use the structure of the

language model as their encoder and only propose a decoder. As of latter, the

model relies primarily on fine-tuning the language model. For example, Chen

et al. [1] used BERT as an encoder, harnessed [CLS] token with a softmax layer

for ID and rest of the token outputs with a softmax for generation of target

slots. Wang et al. [26] introduced SASGBC, which utilized BERT to embed

words into vectors. BERT’s [CLS] token is then integrated into each slot, and

then applied the self-attention mechanism after it. In the end, they used a CRF

layer to produce final labels for each slot. In the case of language model as word

embeddings, Huang et al. [10] introduces multi-view encoder to be used after

BERT, which is consisted of several encoders, namely position-wise encoder, local

encoder, global encoder, and time-series encoder. Furthermore, they propose

federated learning, meaning the encoder share parameters between 4 different

tasks (ID, SF for Snips and ATIS). Qin et al. [20] restructured encoder-decoder

into encoder - Co-Interactive module - decoder to build bidirectional connection
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[SEP]
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Figure 1: CTRAN’s architecture. Note that it is required for BERT to add the [CLS] and
[SEP] tokens to the beginning and end of the sentence.

between SF and ID. They also used BERT as a word embedding, followed by

coding.

3. CTRAN

In this section, we explain different components of our proposed joint network.

Figure 1 shows a detailed overview of our proposed encoder-decoder architecture.

CTRAN comprises three main components: A shared encoder, an SF decoder,

and an ID decoder. SF and ID tasks use the same encoder, meaning both tasks

use the vector produced by the encoder, and the subsequent losses are summed

before calculating the gradients. Hence, CTRAN benefits from joint learning.

3.1. Shared Encoder

The proposed encoder consists of a pre-trained language model, CNN, window

feature sequence structure, and stacked Transformer encoders. First, as shown in

Figure 1, tokens are fed to BERT, which outputs a contextualized embedding that

we further process in our network. Then, convolution operation with different

kernel sizes takes place over the embedded words. It is usual to use operations

like max-pooling after convolutions. However, intending to conserve the original
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order of tokens, we used WFS, in which we transpose and concatenate the

values related to each word into a single vector. The final piece is stacked

Transformer encoders, which we use to capture the new representation provided

by the WFS structure. Following subsections describe the different parts of our

shared encoder.

3.1.1. Pre-Trained Language Model

Pre-trained language models such as ELMo [18] and BERT have proven to

be effective in improving the performance of the downstream NLP tasks [5]. We

employ both language models in our architecture and compare the results. BERT

consists of several bi-directional Transformer encoders. BERTbase has 12 and

BERTlarge is made of 24 layers. Input to the BERT is the sum of WordPiece

token embeddings [28], positional embedding, and segment embedding. The

latter does not affect our case since we only provide one sentence to the model. For

the given input sentence X = [x1, x2, x3, ..., xL], BERT provides contextualized

embeddings H = [h1, h2, h3, ..., hL]. Note that WordPiece tokenization treats

punctuations as separate tokens, breaking words containing punctuation marks

into several tokens. This issue causes token clutter and out-of-order tokens. We

solved this issue by removing all punctuation marks. ELMo is comprised of CNN

for character embedding and bi-directional LSTM, which are trained on a large

corpus. The main idea behind ELMo is that word embeddings are a function

of other words in the sentence, meaning the embedding of a word depends on

the context of the sentence in which it is used. ELMo is a sequence-to-sequence

model that uses non-contextual character-based word representation. The benefit

of such representation is the ability to deal with word misspellings and unseen

words.

3.1.2. Convolutional Layer

In [27] and [32] CNN was used to cover the shortcomings of LSTM. We use

Transformer encoder instead of an LSTM network. While Transformer rectifies

said flaws, we argue that CNN on Transformer can still be beneficial. We use
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CNN to put an emphasis on the meaning of adjacent tokens. We utilize several

convolutional layers with different kernel sizes and initial values to fuse the

embedding of each token with neighboring tokens. Assume that d represents

embedding dimension. If input sentence has L tokens, the input sentence would

be defined as x ∈ RL×d and embedding vector for the i-th token is shown by

xi ∈ Rd. Let k be a filter size and f ∈ Rk×d denote a filter-map. Then for each

position i in the sentence, there is a window wi containing k token vectors as

wi = [xi, xi+1, xi+2, ..., xi+k−1]. � is element-wise multiplication, b is bias and

A is an activation function. Hence, the convolution operation ci for each window

wi is given by:

ci = A (wi � f + b) (1)

This operation is done over all available indexes i, so the result of f convolving

over x is represented by C = [c1, c2, c3, ..., ci, ..., cL]. Note that we use zero

padding, so the convolutional layer’s input and output always have the same

length.

3.1.3. Window Feature Sequence

It is usual to use pooling operations after a convolutional layer, but the

discontinuous sampling will lose some of the information, and subsequently, such

operations will destroy sequential data. We use WFS to retain the original order

of words.

Let V be the total number of filters with different kernel sizes and initial values

for the convolutional layer, and j denotes the index referring to j-th filter. Ri

defined in Equation 2, shows final embedding vector of the word i and Cj
i

indicates i-th element of the j-th filter,

Ri = C1
i ⊕ C2

i ⊕ C3
i ⊕ ...⊕ C

j
i ⊕ ...⊕ C

V
i (2)

Where ⊕ represents concatenation, therefore Ri concatenates all of the convolu-

tional values belonging to index i for all of the filter-maps. This operation is

done over all indexes until all the word vectors are produced for the input words.
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These vectors are then fed to stacked Transformer encoders to produce the final

word representations.

3.1.4. Transformer Encoder

Directly accessing all of the positions in the sentence helps the Transformer

encoder overcome information loss. Stacked Transformer encoders consist of

several layers where each layer’s output is used as the next layer’s input. We

utilize stacked Transformer encoders to generate a new representation for the

words that incorporates an emphasis on the neighboring words. We use 2 layers

of Transformer encoders which is smaller relative to BERT, in the light that this

layer of the network only has one objective and general meaning of the word is

provided through BERT. Transformer encoder is the final part of our shared

encoder architecture. The vector provided by this layer will be used in both ID

and SF decoders.

3.2. Intent-Detection Decoder

As shown in Figure 1, ID decoder consists of a self-attention layer with

residual connection and layer normalization, followed by a linear feed-forward

network with softmax applied for classification. Accordingly, output for the ID

self-attention layer is determined by following:

S = e+ LN(MultiHead(e)) (3)

Where e ∈ RL×dmodel is encoder output, and LN denotes Layer-Normalization.

Moreover, MultiHead(e) denotes the MultiHead attention function defined

by Vaswani et al. [25] where Q,K, V are transformed from e. Furthermore, S

represents output of the operation. Finally, probability distribution between

intents is computed with Equation 4.

Pintent = softmax(W · S + b) (4)

Note that b and W are parameters to be learned at training time.
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3.3. Slot-Filling Decoder

The proposed SF decoder is made of two parts: an aligned Transformer

decoder and a linear layer to bring down the dimension to the number of tags.

Since the input to output tags have a one-to-one relationship, The Transformer

decoder needs to be aligned. The proposed alignment happens in the cross-

attention segment. In this section, keys and values are generated from the

encoder’s output which we call memory. A matrix with the size of (T, S) is

needed for masking the memory, where T and S are the target and source length.

Since input and output have the same shape, the mask will be in the shape

of (S, S). We aligned the Transformer decoder by applying a zero diagonal

mask for the memory. Hence, every position in the memory except for t = s

is masked out where s is the row index, and t is the column index. Thus,

all the keys related to positions other than the position of generating token

would change to zero. Consequently, the Transformer decoder only considers the

corresponding embedding vector for each predicting token. In order for masking

to be applied on MultiHead, it is altered to equation 5. In this equation,

Q ∈ RS×dk ,K ∈ RS×dk , V ∈ RS×dv and M ∈ RS×S represent query, key, value

and mask matrices, and d denotes dimension.

MultiHeadMasked(Q,K, V,M) = softmax(Q.K
T

√
dk

+M).V (5)

Similar to the original Transformer decoder, the aligned Transformer decoder

can be divided into three segments based on functionality. Considering Query,

Key, and Value transformed from target token embeddings D ∈ RS×dmodel , first

segment which utilizes self-attention to perceive the relations between previously

generated tokens is defined as following:

Cd = D + LayerNorm(MultiHeadMasked(Q,K, V,Mupper)) (6)

Note that Mupper is a strictly upper diagonal matrix where all entries above the

main diagonal are −inf . This mask changes the attention score for positions
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ahead to zero. Thus, the attention mechanism will not be dependent on future

tokens.

Considering Ke ∈ RS×dk , V e ∈ RS×dv as key and value transformed from

memory, the second segment utilizes cross-attention to use information from the

encoder is given by:

F d = Cd + LayerNorm(MultiHeadMasked(Cd,Ke, V e,Mzerodiag)) (7)

Note that Mzerodiag is a zero diagonal matrix in which the main diagonal is

zero and all other entries are −inf . When the softmax function is applied, the

off-diagonal entries would change to zero. Consequently, only the value vector

for corresponding positions in the memory is added to the Cd matrix.

With FFN representing the position-wise feed-forward network, the output of

the aligned Transformer decoder is Od = LayerNorm(FFN(F d)) +F d. Finally,

the tag probability distribution is calculated by P = softmax(W ·Od + b) where

both W and b are trainable parameters.

4. Experiments and Setup

In this section, the datasets used to evaluate CTRAN are introduced, and

then, the hyper-parameters in our experiments are specified.

4.1. Datasets

We conduct experiments on two well-known datasets, namely ATIS and

SNIPS, to measure the performance of our proposed network. We train the

network on the train set, tune it on the dev set and report the final results on

the test set. Some of the tags in the dev and test sets may not appear during

training phase. In that case, we have assigned them the Unknown class.

ATIS benchmark [8] which is widely adopted in the evaluation of NLU models,

is a dataset regarding people asking questions about flight information and reser-

vations. It contains 4478, 500, and 893 for train, dev, and test set, respectively.

Moreover, ATIS has 127 slot types and 21 intents.
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Layer\Parameter α γ ρ

BERT base
large

10-4

10-5 0.96 0.1

ELMo 10-4 0.96 0.5
CNN & WFS 10-3 0.96 0.0
Transformer Encoder 10-4 0.96 0.1
ID Decoder 10-4 0.96 0.5
SF Decoder 10-4 0.96 0.5

Table 2: Hyper-parameters used in training phase. Learning-rate α, scheduler rate γ and
dropout probability ρ used for each layer while training our model.

SNIPS benchmark [2] is a dataset from SNIPS personal assistant containing

13084, 700, and 700 utterances for training, test, and dev sets, respectively.

Furthermore, it consists of 7 types of intents and 72 types of slots. In contrast

to ATIS, SNIPS is more complicated, containing several domains and a more

extensive vocabulary.

4.2. Experimental Settings

Hyper-parameters have an essential role in the performance of a neural

network model. Since each component of CTRAN uses a distinct kind of neural

network, we used different learning rates α with AdamW optimizer [13] for each

layer. We adjust the learning rate with the StepLR scheduler, which reduces the

learning rate of each parameter by decrease rate γ. Also, dropout [23] is applied

to the layers to decrease the amount of overfitting. We also found that using

gradient clipping [16] with the value of 0.5 helps the final performance of the

model. Table 2 shows the α, γ and ρ for each layer. Also, the batch size in all

datasets was 16. We tried 1, 2, 3, [1,3], [1,3,5], [2,3,5], and [1,2,3,5] as kernel

sizes where brackets denote multiple kernel sizes used. The cumulative filter

count is always 512, and the number of filters is evenly spread between different

kernels. We ran our model 10 times, each having 50 epochs, and recorded the

best results for each task. We reported the median value as the result for each

experiment.
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Model ID acc SF f1
SASBGCβ
[26] 98.21 96.69

Joint Bertβ
[1] 97.50 96.10

CNN-BLSTM-Aligned
[27] 97.17 97.76

CharEmbed+CNN-LSTM-CRF
[6] 99.09 97.32

Elmo+BiLSTM+CRF
[22] 97.42 95.62

Bi-directional Interrelated
[4] 97.76 95.75

Co-interactive Transformerβ
[20] 98.00 96.10

Federated Learningβ
[10] 98.28 96.41

CoBiC
[11] 99.43 97.82

CTRANβ 98.07 98.46

Table 3: A comparison between other well-known models and the proposed model on ATIS
dataset. β denotes BERT used.

4.3. Results and Analysis

As the models reach near 100% accuracy, improvements become smaller

and harder to achieve. Table 3 compares our results with current well-known

best-performing models on ATIS. CTRAN+BERTlarge outperforms the current

state-of-the-art model on ATIS with 0.64% improvement and sets a new record in

the SF task. Furthermore, for the intent-detection task, our proposed structure

showed improvement over Wang et al. [27] which used CNN-WFS similar to us.

To inspect the generalization capacity of our model, we also applied CTRAN

on SNIPS. Table 4 compares well-known models with CTRAN. We improve

near 1% upon previous state-of-the-art for the SF task on SNIPS. Also, our

intent-detection accuracy is near current state-of-the-art but not surpassing it.

In the following subsections, we will investigate how much each idea improved

CTRAN.
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Model ID acc SF f1
SASBGCβ
[26] 98.86 96.43

Joint Bertβ
[1] 98.60 97.00

CM-netβ
[12] 99.32 97.31

Masked Graph+CRFβ
[24] 99.70 97.20

Elmo+BiLSTM+CRF
[22] 99.29 93.90

Co-interactive Transformerβ
[20] 98.80 97.10

Federated Learningβ
[10] 99.33 97.20

AISEβ
[29] 98.70 97.20

CTRANβ 99.42 98.30

Table 4: Comparing the proposed model with other well-known models on SNIPS dataset.β
denotes BERT used.

Dataset ATIS SNIPS
Model ID acc SF f1 ID acc SF f1
CNN-WFS-TE 97.95 98.39 99.42 98.21

TE only 97.88 98.36 99.01 97.91

Table 5: A comparison between CNN-WFS-TE and Transformer encoder only. Experiments
were done on BERTbase.

4.3.1. The Effect of Convolutional Layer With Transformer Encoder

Since previous models used CNN to treat the inherent deficiency of the

LSTM, the adoption of Transformer encoder may alleviate the importance of

the convolutional layer. Our goal for incorporating CNN-WFS with Transformer

encoder is to fuse the adjacent token embeddings. Table 5 compares the per-

formance of a Transformer encoder with our proposed CNN-WFS-Transformer

Encoder. For both ATIS and SNIPS the SF f1 and ID accuracy improved

with CNN-WFS-Transformer encoder architecture. The results corroborate our

intuition about the importance of adjacent tokens.
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Dataset ATIS SNIPS
Size ID acc SF f1 ID acc SF f1
1 97.61 98.39 98.69 98.14
2 97.73 98.37 98.84 98.13
3 97.84 98.35 98.84 98.13
[1,3] 97.84 98.40 98.98 98.15
[1,3,5] 97.95 98.43 99.13 98.25
[1,2,3,5] 98.07 98.46 99.13 98.30
[2,3,5] 98.07 98.38 98.98 98.20

Table 6: The result of different kernel sizes in the convolutional layer. Bracket denotes multiple
kernel sizes.

4.3.2. Kernel Size

Kernel size specifies the width in which local semantic information is extracted.

Furthermore, kernel size in convolutions can be viewed as n-grams, in that a

size of 2 is similar to bigram. To the best of our knowledge, the kernel size of 1

was not used in similar papers which adopted convolutional layers for NLU. We

include 1, to explicitly keep the token embeddings of each word while bringing

down the embedding dimension to match the other kernel sizes. This helps the

model fuse adjacent word embeddings while keeping explicit embeddings of each

word. Table 6 shows the effect of different kernel sizes on the performance of

CTRAN. Amongst single kernel sizes, 1 performs the best for the SF task. The

reason is that a kernel size of 1 saves the unigram embeddings, which does not

interfere with the one-to-one relation of the input to output tags. Moreover,

comparing [2,3,5] to [1,2,3,5] confirms our previous statement. Based on our

results, we can conclude that using multiple kernel sizes is better than a single

kernel size. Furthermore, we can conclude that using multiple kernel sizes is

better than a single kernel size. At the endnote, [1,2,3,5] achieves the best

accuracy in SF and ID tasks.
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Dataset
ATIS SNIPS

Model
Aligned LSTM with attention 98.30 98.10
Regular Transformer decoder 97.42 97.37
Aligned Transformer decoder 98.40 98.21

Table 7: The efficacy of TD alignment. Numbers show the SF f1 score of each model.
Experiments were conducted on BERTbase.

4.3.3. The Transformer Decoder Alignment

A regular Transformer decoder does not use any key-maskings other than

the padding masks in cross-attention segment; meaning, in the generation of

each target token, the key vector transformed from all context positions are

used in the computation of the cross-attention. In contrast, in an aligned

Transformer decoder, only the key generated from the context corresponding to

each predicting token affects the cross-attention output. In order to corroborate

the effectiveness of the proposed alignment, we also combined CTRAN’s encoder

with a regular Transformer decoder, and in another experiment, with an aligned

LSTM with attention mechanism as described by Wang et al. [27]. Table 7

compares the SF f1 of the three experiments in which the proposed alignment

shows an average of 0.9% improvement over the regular Transformer decoder.

Furthermore, comparing the proposed aligned Transformer decoder with the

Wang et al. [27] SF decoder shows 0.1% improvement, stating it is overall a

better architecture for the SF task.

4.3.4. Language Model Incorporation Strategy

Table 8 compares two strategies: language model as an encoder and language

model as word embeddings. In the former, we only use CTRAN’s decoder

after the language model. In the latter, we use both encoder and decoder of

the CTRAN. Also, we experiment with two different language models for each

strategy. Using ELMo as the encoder with CTRAN’s decoder already surpasses

previous SF state-of-the-art on ATIS. We observe an increase in SF f1 and ID
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Dataset ATIS SNIPS
Strategy Model ID acc SF f1 ID acc SF f1
Language model
as
encoder

ELMo + CTRAN’s decoder 97.54 98.17 97.25 96.01
BERT base + CTRAN’s decoder 97.99 98.44 98.86 98.00
BERT large + CTRAN’s decoder 97.99 98.43 98.86 98.18

Language model
as
word embeddings

CTRAN + ELMo 97.88 98.25 97.73 96.68
CTRAN + BERT base 97.95 98.40 99.42 98.21
CTRAN + BERT large 98.07 98.46 99.13 98.30

Table 8: Two strategies used for finding the most suitable model. We used F-score for SF and
accuracy for the ID task.

accuracy when ELMo is used as word embeddings instead of an encoder. Using

BERTbase as word embeddings with CTRAN, had a better performance on SNIPS

when compared to BERTbase as encoder. In contrast, Language model as word

embedding did not do well on ATIS as it did not cause any improvement in results.

It may be because ATIS is a smaller dataset; thus, having additional network

layers can cause the final model to overfit. For BERTlarge Language model

as word embeddings did well on both datasets. Furthermore, our architecture

with BERTlarge achieved maximum performance. Although our results indicate

that the complete architecture shows superior performance, it introduces extra

computational costs. See Appendix Appendix A for details. Our experiments

show that although BERT performs better related to ELMo in all cases, ELMo

can be used for domain-specified datasets with nearly the same accuracy while

having lower computational complexity and training time. This case may be

due to goal-driven datasets not having a diverse vocabulary, thus making the

presence of a pre-trained language model less significant. Also BERTbase and

BERTlarge do not have an advantage over each other in our implementation for

intent-detection task. Their difference is shown in SF, where BERTlarge shows

superiority over BERTbase for all datasets.
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5. Conclusion and Future Work

In this paper, we proposed CTRAN a novel CNN-Transformer-based archi-

tecture for joint intent-detection and slot-filling. The proposed model uses the

encoder-decoder architecture. We use BERT as word embeddings and apply

CNN with the window feature sequence structure to fuse local semantic informa-

tion. Next, stacked Transformer encoders are used to provide the final encoder

output. For the intent-detection task, we used self-attention followed by a fully

connected layer. Additionally, We used a stack of aligned Transformer decoders

for the slot-filling decoder. We compared our network with the well-known mod-

els, and the results show that our proposed CNN-Transformer model achieves

state-of-the-art on slot-filling task. We also show that using language models as

word embeddings is a better strategy than incorporating them into the structure.

Using additional encoding after the language model introduces new parameters to

the network, which comes with a small computational cost at training time and

negligible inference delay. In the future, possible solutions to directly integrate

predicted intent to slots and vice-versa can be explored in our architecture. Fur-

thermore, we used pre-trained embeddings in a CNN-Transformer architecture.

Future research can train a CNN-Transformer language model from scratch and

remove the additional encoder altogether. Also, a more thorough language model

comparison might be necessary.
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Dataset ATIS SNIPS
LM LM as En. Additional En. LM as En. Additional En.
ELMo 42.51 47.55 (11%) 92.37 103.51 (11%)
BERT base 42.40 46.71 (10%) 110.39 119.50 (8%)
BERT large 73.57 79.44 (7%) 182.42 194.24 (6%)

Table A.9: Additional training time caused by the proposed CNN-Transformer encoder. Values
show how many seconds it takes for the entire model to be trained for one epoch over the
noted dataset. The value in parentheses indicates the percentage increase. LM is short for
Language Model, and En. indicates encoding.

Dataset ATIS SNIPS
LM LM as En. Additional En. LM as En. Additional En.
ELMo 208 211 (1.5%) 192 195 (1.5%)
BERT base 178 181 (1.5%) 177 179 (1%)
BERT large 186 189 (1.5%) 184 187 (1.5%)

Table A.10: Comparing inference time before and after additional encoding is applied. Values
show how many milliseconds it takes for a single example to be inferred. The value in
parentheses indicates the percentage increase. LM is short for Language Model, and En.
indicates encoding.

Appendix A. Computational Burden

The computational burden of additional encoding after the language model is

a valid concern since more parameters are introduced to the network. Noting that

we used a single RTX 3080 10GB for our computations, Table A.9 shows training

time before and after using additional encoding. Our measurements show that

between 6-14% extra time is needed to converge the model. For this calculation,

we ran each model 10 times for 10 epochs and reported the median value. Table

A.10 shows the inference time of the model. For this experiment, we ran the

model 10 times for 200 instances and reported the mean values. Albeit a small

gain in training time, the increase in inference time is negligible. Comparing

before and after using additional encoding, we observe between 1-1.5% extra

delay in inference. We anticipated this increase in training and inference time,

since it is reasonable for a model with more parameters to have an extra delay.
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