
Reinforcement Learning with Formal Performance Metrics for Quadcopter Attitude
Control under Non-nominal Contexts

Nicola Berninia, Mikhail Bessaa, Rémi Delmasa, Arthur Golda, Eric Goubaultb,∗, Romain Penneca, Sylvie Putotb,
François Silliona

aUber ATCP, Paris, France
bLIX, Ecole polytechnique, CNRS, IP-Paris, Palaiseau, France

Abstract

We explore the reinforcement learning approach to designing controllers by extensively discussing the case of a quadcopter
attitude controller. We provide all details allowing to reproduce our approach, starting with a model of the dynamics
of a crazyflie 2.0 under various nominal and non-nominal conditions, including partial motor failures and wind gusts.
We develop a robust form of a signal temporal logic to quantitatively evaluate the vehicle’s behavior and measure the
performance of controllers. The paper thoroughly describes the choices in training algorithms, neural net architecture,
hyperparameters, observation space in view of the different performance metrics we have introduced. We discuss the
robustness of the obtained controllers, both to partial loss of power for one rotor and to wind gusts and finish by drawing
conclusions on practical controller design by reinforcement learning.

Keywords: Reinforcement learning,control,quadcopter dynamics,performance metrics,temporal logics

1. Introduction

Neural net based control is now widely used in con-
trol. For instance, reinforcement learning is known to be
linked to optimal control [1]. Very impressive real-life ex-
periments have shown how practical reinforcement learn-
ing and privileged learning can be [2], but have somehow
masked the enormous amount of experiments and heuris-
tics that had to be learned in the process. Indeed, we are
still in need for a full understanding of what advantages
and performances we can gain from learning-based control,
and what level of formal guarantees we can reach, either
at design or at verification time.

This paper extends our HSCC 2021 article [3] with a
more complete description of several aspects including the
modeling, lessons that have been learned, and most impor-
tantly the description of the logic that has been used for
evaluating performances of our neural net controllers, as
well as new results concerning some spurious correlations
that appeared in all attitude controllers that we trained.

We concentrate here on low-level controls, and more
specifically attitude control for quadcopters. These con-

∗Corresponding author
Email addresses: nicola.bernini@gmail.com (Nicola Bernini),

mikhail.bsa@gmail.com (Mikhail Bessa),
remi.delmas.3000@gmail.com (Rémi Delmas),
arthur.gold.ag@gmail.com (Arthur Gold),
goubault@lix.polytechnique.fr (Eric Goubault),
romain.pennec@gmail.com (Romain Pennec),
putot@lix.polytechnique.fr (Sylvie Putot),
francois.sillion@gmail.com (François Sillion)

trollers have the advantage of being understandable - per-
formances being easily measurable -, well studied in the lit-
erature, and essential to all higher-level controls and path
tracking algorithms. We focus on reinforcement learning
(RL) methods, which are close to control and more partic-
ularly optimal control. Furthermore, RL has experienced
tremendous progress over the past few years, with mod-
ern continuous state and action spaces training algorithms
such as Soft Actor Critic (SAC) [4] and Twin-Delayed
Deep Deterministic Policy Gradients (TD3) [5].

A common belief is that learning-based control would
be more robust to perturbations than e.g. PIDs, or at
least could be trained to be more robust. Indeed, even a
rather small neural net can encode a much more complex
feedback control function than a simple PID, but this is
commonly believed to be at the expense of formal guar-
antees. Also, the current zoology of training methods and
architecture choices makes it difficult to fully understand
the range of possible results.

This paper studies some of these aspects on the funda-
mental case of an attitude controller for the crazyflie 2.0
[6] quadcopter. We first present in Section 3 a non-linear
ODE model for simulating the dynamics of a quadcopter,
and extend it to account for partial motor failures, aero-
dynamic effects and wind gusts. We then present a flexi-
ble training platform with various neural net architectures
and algorithms in Section 4, discuss performance evalua-
tion using a robust signal temporal logic in Section 6, and
describe our experimental setup in Section 7. Finally we
discuss experimental results in Section 8.

This paper develops in detail the following research

Preprint submitted to Elsevier July 28, 2021

ar
X

iv
:2

10
7.

12
94

2v
1

 [
cs

.A
I]

 2
7

Ju
l 2

02
1

items:

1. we develop a neural-net based control study case,
after modeling a quadcopter’s dynamics, including
aerodynamic effects and partial power loss on motors

2. we discuss the effect of the chosen training algo-
rithm, neural net architecture, reduced observable
state spaces and hyperparameters on the performance
of the controller, and on the RL training process

3. we present our experimental platform, which allowed
us to compare more than 16,000 parameter choices

4. we develop Signal Temporal Logic observers to assess
controller performance in a precise manner

5. we demonstrate high-quality attitude control using
RL, for a relevant set of queries

6. we show that these controllers have a certain built-
in robustness in non-nominal cases, with respect to
partial failures of actuators and perturbations such
as wind gusts.

7. we discuss in details the lessons learned in reinforce-
ment learning, while applying it to the problem of
synthesizing quadcopter attitude controllers

2. Related work

This paper is based on, and compared with, the follow-
ing work:

RL in control. Reinforcement learning in control has been
advertised, since [7], for the possibility to be more adapta-
tive than classical methods in control such as PIDs. RL’s
close relationship with optimal control (the reward func-
tion is dual to the objective function) also makes it par-
ticularly appealing for applications to control, see e.g. [1].

Recently model-based reinforcement learning has been
successfully used to train controllers without any initial
knowledge of the dynamics and in a data-efficient way.
For instance, in [8], a learning-based model predictive con-
trol algorithm has been used to synthesize a low level con-
troller. In [9], a hybrid approach is proposed, combining
the model based algorithm PILCO [10] and a classic con-
troller like a PD or a LQR controller.

In this paper, we focus on model-free algorithms be-
cause of their generality and because we have high fidelity
models available for quadrotors, such as the crazyflie 2.0
[6]. More specifically we concentrate on actor-critic learn-
ing which has undergone massive improvements over the
last few years with DDPG [11], SAC [4], TD3 [5], and
compare it with the popular PPO method [12].

The high dimensionality of the full Markovian obser-
vation space is a challenge for training, prompting for a
study of different choices for the sets of states observed
by RL: we consider sub-spaces of the full Markovian ob-
servation space, where we leave out the states which have
the least effect on the dynamics of the quadcopter. This
is linked to partially observed Markov Decision Processes
and Non Markovian learning, see e.g. [13].

We also study the robustness of our neural nets, as
well as the specific training of the neural net controller to
be able to handle disturbances (wind gusts, partial motor
failures). These issues may be linked to robust MDPs [14],
but we have stuck to the classical (PO)MDP approach
here, for which we have a wealth of tools and techniques
available.

RL for quadcopters, and attitude control. Most papers have
been focusing on higher-level control loops, with the no-
table exception of [15], which serves as the basis of our
work. We improve the results of [15] by considering more
recent training algorithms (SAC and TD3), finer perfor-
mance measures, and refined physical models (in particu-
lar perturbations due to partial motor failures and wind
gusts). The closest other works related to attitude control
for quadcopter are [16], [17], [18] and [19].

In [16], the goal is to stabilize a quadcopter in hover
mode, from various initial conditions (including initial an-
gular rates). The authors also consider perturbations to
the dynamics, which are more predictable than ours: mo-
tor lag and noise on sensors.

In [17], the objective is to control a quadcopter under
cyber-attacks targeting its localization sensors (gyroscope
and GPS) and motors. The authors consider (partial) mo-
tor failure (a limit on its maximal power, just like we do),
but not wind gusts. Contrarily to most approaches includ-
ing ours, their controller combines a classical controller
and a neural net.

In [18] the authors discuss the training of a neural net
controller for both attitude and position. They observe
that it is difficult to train both aspects at the same time,
whereas separating control in hover mode (acting mostly
on the attitude) and control in position seems to work
better. The learning process is based on a full state obser-
vation plus the difference with the target state. We extend
this work first in discussing the simplification of the ob-
served states, then in more rigorously defining observation
metrics for offsets and overshoots.

In [19], the author considers neural nets for controlling
roll, pitch, yaw rate and thrust, which is similar to the
problem we are studying here, and attempts to train the
controller such that it can accommodate motor and mass
uncertainties within given bounds. In contrast, we deal
with uncertainties such as wind gusts and motor failures,
following known parametric models.

Signal Temporal Logics. The study of reinforcement learn-
ing under temporal logic specifications has gained a lot of
interest in recent years. In a discrete and finite state set-
ting, in [20] a linear-time temporal logics (LTL) property
observer automaton is composed with the system MDP to
allow blocking unsafe actions during training. In [21, 22]
rewards are modulated depending on the observer state,
and a model-free approach is proposed in [23] using Limit
Deterministic Büchi Automata. Shielding [24] simultane-
ously trains an optimal controller and a shield that corrects

2

the LTL-formula violating actions. The method requires
a fully explicit model of the environment MDP and builds
the product of the orignal MDP with the property moni-
tor. Later works extend shielding to the continuous [25, 26]
and online [27] cases, assuming an embeddable predictive
environment model is available, but only handle simple
state invariants.

Temporal logics with quantitative semantics such as
Metric Interval Temporal Logic (MITL) [28], Signal Tem-
poral Logic (STL) [29] . . . , have been studied in relation
with reinforcement learning. Robust interpretation yields
a real number indicative of the distance to the falsification
boundary. STL has seen numerous extensions improving
expressiveness and signal classes [30, 31, 32, 33] as well as
smooth differentiable semantics [34, 35, 36]. Solutions to
well known dimension and magnitude mismatch in robust
STL interpretation were proposed recently in [37] but have
not yet been used in a RL setting. STL usages are var-
ied: In [38], Q-learning is used to train a policy maximiz-
ing both the probability of satisfaction and the expected
robustness of a given STL specification; The approach re-
quires storing previously visited states in the MDP in addi-
tion to the original MDP state, yielding a high dimensional
system and limiting learning efficiency. In [39] the authors
derive barrier functions from robust temporal logic speci-
fications, either to modulate rewards during training or to
control the switch from an optimal and potentially unsafe
controller to a safe backup controller [40].

In summary, existing methods focused on the training
phase either suffer from dimensionality and combinatorial
explosion, require expected robustness approximations, or
are strongly tied to the Q-learning algorithms.

Considering our goal is to study a large hyper-parameter
space for training controllers and we need to quantify con-
troller performance rigorously, we used an expressive yet
tractable variant of STL [32] to specify properties and as-
sess trained controllers offline, separately after training.
The next steps will be to start using STL-derived reward
signals during training on the most promising architec-
tures.

3. Modelling and control of a crazyflie 2 quadrotor

In this section, we present the dynamical model of the
crazyflie quadrotor [41, 42] and we augment it with partial
motor failures and wind gusts modelling.

3.1. Nominal model

We study the dynamics on the vertical axis and the
pitch rate, roll rate and yaw rate control (4 degrees of
freedom), with the following state variables: the vertical
position in the world frame z, the linear velocity of the
center of gravity in the body-fixed frame with respect to
the inertial frame (u, v, w), the angular orientation repre-
sented by the Euler angles (φ, θ, ψ) where φ is the roll angle
θ is the pitch angle and ψ is the yaw angle, the attitude

(a) Motors’ controls (b) Principal axes

Figure 1: Crazyflie 2.0 – source: http://www.bitcraze.io [43] CC
BY-SA 3.0

or angular velocity with respect to the body frame (p, q, r)
with p the roll rate, q the pitch rate and r the yaw rate.

The Crazyflie 2.0 linear velocities are controlled through
the angular velocities and the angular velocities are con-
trolled through rotor thrust differential. For instance, to
increase the pitch rate q, Motor2 and Motor3 rotor speeds
should be higher than Motor1 and Motor4 (see Figure 1a).
As there is symmetry, it works similarly for the roll rate
p (with Motor4 and Motors3 vs. Motor1 and Motor2 in-
stead). However, the yaw rate r is controlled through the
gyroscopic effect. To make the quadcopter rotate clock-
wise in the x-y plane, the rotor speeds of the clockwise
rotating motors (Motor2 and Motor4) should be higher
than those of the counterclockwise rotating ones (Motor1
and Motor3).
Using Newton’s equations given a thrust force and mo-
ments Mx, My and Mz exerted along the three axes of
the quadcopter, and using the rotation matrix R from the
body frame to the inertial frame,

R =

cψcθ cψsθsφ − cφsψ sψsφ + cψcφsθ
cθsψ cψcφ + sψsθsφ cφsψsθ − cψsφ
−sθ cθsφ cθcφ


(and R−1 is the transpose of R) the Translation-Rotation
kinematics and dynamics [42] lead to a 10-dimensional
non-linear dynamical system:

ż = −sθu+ cθsφv + cθcφw θ̇ = cφq − sφr
u̇ = rv − qw + sθg ψ̇ =

cφ
cθ
r +

sφ
cθ
q

v̇ = −ru+ pw − cθsφg ṗ =
Iy−Iz
Ix

qr + 1
Ix
Mx

ẇ = qu− pv − cθcφg + F
m q̇ = Iz−Ix

Iy
pr + 1

Iy
My

φ̇ = p+ cφtθr + tθsφq ṙ =
Ix−Iy
Iz

pq + 1
Iz
Mz

(1)
writing cx as a short for cos(x), sx for sin(x) and tx for
tan(x). F is the sum of the individual motor thrusts, and
Ix, Iy, Iz are the quadcopter’s moments of inertial around
the x, y and z axes, respectively.

Instead of controlling directly each rotor speed, the four
commands thrust, cmdφ, cmdψ and cmdθ are used to de-
duce the PWM (Pulse Width Modulation)values to apply
to each motor, Equation (2):

3

PWM =


PWM1

PWM2

PWM3

PWM4

 =


1 −1/2 −1/2 −1
1 −1/2 1/2 1
1 1/2 1/2 −1
1 1/2 −1/2 1



thrust
cmdφ
cmdθ
cmdψ


(2)

PWMs are linked to rotation rates Ω: Ω = [ω1 ω2 ω3 ω4]> =
C1PWM+C2. Finally, we deduce the input force and mo-
ments from the squared rotation rates, Equation (1), with
force and momentum equations [F Mx My Mz]

> equal to:


CT
(
C2

1 (cmd2θ + cmd2φ + 4cmd2ψ + 4thrust2)

+ 8C1C2thrust+ 4C2
2

)
4CT d

(
C2

1 (cmdφthrust− cmdθcmdψ) + C1C2cmdφ
)

4CT d
(
C2

1 (cmdθthrust− cmdφcmdψ) + C1C2cmdθ
)

2CD
(
C2

1 (4cmdψthrust− cmdφcmdθ) + 4C1C2cmdψ
)


(3)

The physical and constant parameters we are using for the
crazyflie are obtained by merging data from [42] and [6]
and listed in Table 1:

3.2. Motor failure

We suppose that the quadcopter may experience a power
loss on motor 1. This partial failure is modeled as a sat-
uration of the maximum PWM, with a factor between 0.8
and 1.

Since quadcopter controls rely on differential thrust be-
tween motors, motor failures are very difficult to cope with.
In order to keep a constant yaw when one motor is failing,
the gyroscopic effect must be made equal to zero, for in-
stance by having the two motors rotating in the opposite
direction match the saturation of the faulty motor. The
same idea applies to pitch and roll axes.

Therefore, if the failure is not too harsh, and the target
states are not too demanding, it is a priori feasible to
recover some control of the faulty quadrotor by saturating
all four motors in the same way.

In this paper, we will look at two potential solutions
to control in the presence of partial motor failure. The
first one is to look at how robust a controller that has
been designed for nominal cases (i.e. without partial mo-
tor failures) is. The other one is to train, using reinforce-
ment learning, a controller optimized for a variety of non-
nominal situations.

3.3. Wind gusts

3.3.1. Aerodynamic effects

In Equation (1), we neglected all aerodynamic effects.
When we take into account aerodynamic forces, an extra
force F a is exerted on the quadcopter that depends on the
wind speed and direction relative to the quadcopter, the
angular velocities of the rotors and extra moments Ma

x ,
Ma
y and Ma

z . We follow the full aerodynamic model of [6]

with the coefficients measured for a crazyflie 2.0, where
the effect of the wind on the structure is neglected with
respect to the effect on the rotors, and the blade flipping
effect (due to elasticity of the rotor) is also neglected.

The extra force F a can be decomposed as the sum of
the four extra aerodynamic forces on rotor i (i = 1, . . . , 4),
that can be modelled as depending linearly on the rotors
angular velocities, and linearly on the wind relative speed
with respect to rotors. Other models [44] include blade
flipping and other drag effects, but the induced drag we
are modelling is the most important one for small quadro-
tors with rigid blades. We use f i = ΩiKW

r
i for the aero-

dynamic force exerted on rotor i in the inertial frame,
where K is the drag coefficients matrix, W r

i is the rela-
tive wind speed as seen from rotor i, in the body frame,
i.e. W r

i = (ui, vi, wi)−RTWa with Wa the absolute wind
speed in the inertial frame, (ui, vi, wi) being the linear ve-
locities of the rotors in the body frame, R is the rotation
matrix from the body frame to the inertial frame (RT is
its inverse, i.e. its transpose here), and Ωi is the absolute
value of the angular velocity of the i-th rotor.

The drag coefficients we are using for the crazyflie are
one of the models of [6]:

K =

−9.1785 0 0
0 −9.1785 0
0 0 −10.311

 10−7kg.rad−1

For the crazyflie, Ωi = C1PWMi + C2, where the ex-
pression PWMi depends on thrust, cmdφ, cmdθ and cmdψ
as given by Equation (2).

The linear velocities of rotors can be computed as fol-
lows:ujvj
wj

 =

pq
r

×
dcjdsj
h

+

uv
w

 =

 qh− rdsj + u
−ph+ rdcj + v
pdsj − qdcj + w


(u, v, w) are the linear velocities of the center of mass of
the quadrotor in the body frame, (p, q, r) are the angular
velocities of the quadrotor (see Section 3.1). d is the length
of the arm linking the center of the drone to any of the four
motors, and for j ∈ {1, 2, 3, 4}, cj = sin

(
π
2 (j − 1) + 3π

4

)
and sj = cos

(
π
2 (j− 1) + 3π

4

)
are such that (cj , sj , h) is the

coordinate of rotor j in the body frame, with the center of
mass being the origin.

Now, we add to the second term of Equation (1) for u̇,
v̇, ẇ the aerodynamic force F a = (F ax , F

a
y , F

a
z) divided by

m, and to moments of Equation (3), the aerodynamic mo-
ments Ma = (Ma

x ,M
a
y , M

a
z) with F a = f1+f2+f3+f4 and

Ma = (dc1, ds1, h)∧ f1 + (dc2, ds2, h)∧ f2 + (dc3, ds3, h)∧
f3 + (dc4, ds4, h) ∧ f4.

We derive the full dynamics of the quadcopter consider-
ing aerodynamic effects, and only write below the modified

4

Param Description Value Unit

Ix Inertia about x-axis 1.657 171× 10−5 kg ·m2

Iy Inertia about y-axis 1.665 560 2× 10−5 kg ·m2

Iz Inertia about z-axis 2.926 165 2× 10−5 kg ·m2

m Mass 0.028 kg
g Gravity 9.81 m · s−2
CT Thrust Coefficient 1.285× 10−8 N · rad−2 · s2
CD Torque Coefficient 7.645× 10−11 N · rad−2 · s2
C1 PWM to Ω factor 0.040 765 21 -
C2 PWM to Ω bias 380.8359 -
h z rotor wrt CoG 0.005 m

d Arm length 0.046/
√

2 m
pmax Maximum motor PWM 65 535 -

Table 1: Parameters for the crazyflie 2.0 model

equations: 

u̇ = rv − qw + sθg +
Fax
m

v̇ = −ru+ pw − cθsφg+
Fay
m

ẇ = qu− pv − cθcφg+
F+Faz
m

ṗ =
Iy−Iz
Ix

qr + 1
Ix

(Mx +Ma
x)

q̇ = Iz−Ix
Iy

pr + 1
Iy

(My +Ma
y)

ṙ =
Ix−Iy
Iz

pq + 1
Iz

(Mz +Ma
z)

(4)

3.3.2. Wind models

There are two main types of models in the literature,
represented by e.g. Discrete Wind Gust and von Kármán
Gust or Dryden Gust models. Von Kármán gusts and
Dryden gusts are stochastic gust models (homogeneous
and stationary gaussian processes) characterized by their
power spectral densities for the wind’s three components,
Dryden gusts being an approximation of Von Kármán gusts.

The Discrete Wind Gusts model consists in a explicit
and deterministic representation of wind gusts as half pe-
riod cosine perturbations ([45], eq. (45)). We focus on
this model because it is widely used for aircraft certifi-
cation (using dozens of discrete wind gusts with different
magnitudes and scales).

A discrete wind gust is characterized by its fixed di-
rection, magnitude and scale, and lasts for a half period
during which wind speed increases until it reaches its max-
imum intensity. The absolute wind velocity is given as a
function of time as, using the same notations as in Sec-

tion 3.3.1: Wa(t) =
Ag
2

(
1− cos

(π(t−t0)
δ

))
Vd if t0 ≤ t ≤

t0 + 2δ, 0 otherwise, where Ag is the maximal magnitude
of the wind gust, δ is the half life of the gust, and Vd is
a normalized vector in R3, which is the wind (absolute)
direction.

3.4. PID Control

As in [15], the objective is to train only the attitude
controller, and not the altitude one. We therefore use a

PID for controlling z. We will also need some idea of what
a standard PID controller may achieve in terms of per-
formance, and robustness to wind gusts and failures. For
this, we will primarily use one of the altitude and attitude
PID controller implemented in the crazyflie 2.0. Given
setpoints zsp, psp, qsp and rsp, the quadrotor is controlled
using a PID controller (called PID1 in the sequel) which
is the one of [41]:

thrust = 1000
(
25(2(zsp − z)− w)

+ 15 ∫(2(zsp − z)− w) dt
)

+ 36000

cmdφ = 250(psp − p) + 500 ∫(psp − p) dt

cmdθ = 250(qsp − q) + 500 ∫(qsp − q) dt

cmdψ = 120(rsp − r) + 16.7 ∫(rsp − r) dt

(5)

But as we will see, the attitude controller implemented
in the crazyflie 2.0 is not very reactive, most probably
for ensuring that the altitude is very securely controllable
(since too much reactivity in pitch and roll means sudden
loss of vertical speed). In order to give an idea of what
we could observe as best performance, we also designed a
specific PID for attitude, that we call PID2, which is much
more reactive:



thrust = 3000(zsp − z)
+ 300 ∫(zsp − z) dt− 500ż + 48500

cmdφ = 1000(psp − p) + 400 ∫(psp − p) dt− 40ṗ

cmdθ = 1000(qsp − q) + 400 ∫(qsp − q) dt− 40q̇

cmdψ = 2000(rsp − r) + 1000 ∫(rsp − r) dt− 100ṙ

(6)

4. Training

4.1. Underlying Markov decision process

Reinforcement learning is designed to solve Markov de-
cision problems. At each discrete time step k = 1, 2, . . .,
the controller observes the state xk of the Markov process,
selects action ak, receives a reward rk, and observes the

5

next state xk+1. As we are dealing with Markov processes,
the probability distributions for rk and xk+1 depend only
on xk and ak. Reinforcement learning tries to find a con-
trol policy, i.e. a mapping from states to actions, in the
form of a neural net, that maximizes at each time step the
expected discounted sum of future reward.

For the attitude control problem at hand, the set of
Markovian states is thrust, p, q, r, errp = psp − p, errq =
qsp − q, errr = rsp − r (where (psp, qsp, rsp) is the tar-
get state, or ”plateau” we want to reach), in the nominal
case (similarly to what is done in e.g. [18]). We will also
consider partially observed Markov processes, with only
subsets of states for improving sampling over smaller di-
mensional states, by leaving out those states which should
have less influence on the dynamics: our first candidate
is to leave out thrust, which appears only as second or-
der terms in the moments calculation, Equation (3), and
also, p, q, r that are second order in the formulation of the
angular rates, again in Equation (3). We do not consider
here adding past information, classical in non Markovian
environments [13], that has been used for attitude control
in e.g. [15], but increases the dimension by a large amount.

In the case of partial motor failure, we add the knowl-
edge of the maximum thrust for faulty motor 1, as a con-
tinuous variable between 80% and 100%. In the case of
aerodynamic effect and wind gusts, we add the knowledge
of the maximal magnitude and direction (in the inertial
frame) of the incoming wind. In both cases, it can ef-
fectively be argued that it is possible to detect failures in
almost real time, and to measure (or be given from ground
stations) maximum winds and corresponding directions, in
almost real time as well. In the case of wind-gusts, Marko-
vian states include also the linear velocities u, v and w,
since wind gusts are only defined in the inertial frame,
and the induced aerodynamic effects depend on relative
wind speed.

With a view to solving optimal control problems (or
Model-Predictive like control), we choose to use a reward
function which is a measure of the distance between the
current attitude (p, q, r) with (psp, qsp, rsp), the target at-
titude (similar to the one used in [15]):

r(s) = −min
(

1,
1

3Ωmax
‖Ω∗ − Ω‖

)
Ωmax being the maximal angular rate that we want to
reach for the quadcopter, and Ω is the angular rate vector
(p, q, r) which is part of the full state s of the quadcopter.

4.2. Neural net architecture

Neural nets, such as multiple layer perceptrons (MLP)
with RELU activation, can efficiently encode all piecewise-
affine functions [46]. It is also known [47] that the solu-
tion to a quadratic optimal control (MPC) problem for
linear-time invariant system is piecewise-affine. Further-
more, there are good indications that this applies more
generally, in particular for non-linear systems [48]. This

naturally leads to thinking that MLPs with RELU net-
works are the prime candidates for controlling the atti-
tude with distance to the objective as cost (or reward). In
some ways, the resulting piecewise-affine function encodes
various proportional gains that should be best adapted
to different subdomains of states, so as to reach an opti-
mal cumulated (and discounted, here with discount rate
γ = 0.991) distance to the target angular rates, until the
end of training.

In theory [49], one could find a good indication of the
architecture of the neural net in such situations, but the
bounds that are derived in [49] are not convenient for such
a highly complex system. It is by no means obvious what
architecture will behave best, both for training and for ac-
tual controller performance, although a few authors argue
that deeper networks should be better, see e.g. [50].

Architectures that have been reported in the literature
for similar problems are generally alike. In [16], the neural
net is a Multi-Layer Perceptron (MLP) with two layers of
64 neurons each, and with tanh activation function. In
[17], the part of the controller which is a neural net is a
MLP with two layers of 96 neurons each and tanh activa-
tion function, whose input states (observation space) are
all states plus the control. In [18], the hover mode neu-
ral net controller, which is the most comparable to our
work, is a MLP with two layers of 400 and 300 neurons
respectively, with RELU activation for hidden layers and
tanh for the last layer. In [19], the resulting architecture
is a two layers MLP with 128 neurons on each layer, and
RELU activation function.

We will report experiments with one to four layers,
and with 4, 8, 16, 32 or 64 neurons per layer, with RELU
activation function (except for the rescaling of the output,
using tanh). We limit the reporting of our experiments to
these values since we observed that these were enough to
find best (and worst) behaviours.

4.3. Training algorithms

The first three algorithms we are discussing in Sec-
tion 7, DDPG [11], SAC [4] and TD3 [5] are all off-policy,
actor-critic methods, which are generally considered to
be better suited for control applications in robotics [7]
(DDPG is used for instance in [17]). Because of its effec-
tiveness in practice, observed by many authors, e.g. [15]
for attitude control, we also compare with the on-policy
Proximal Policy Optimisation [12], also used for similar
applications in [16] and in [19].

DDPG is the historical method for continuous obser-
vation and action space applications to control, SAC and
TD3 being improvements of DDPG. For instance, SAC
regularizes the reward with an entropy term that is sup-
posed to reduce the need to fine hyper-parameter tuning.

1All other parameters, learning rates in particular are the stan-
dard ones of Stable Baselines 2.7.0

6

Let us now describe the training mechanism: we call
query signal the function describing the prescribed angu-
lar rates at any given time. We model this signal by a
constant plateau, of magnitude chosen randomly between
-0.6 and 0.6 radians per second, and duration chosen ran-
domly between 0.1 and 1 second. We are training over a
time window of 1 second (a training episode) during which
the query signal is a constant plateau followed by a value
of 0 until the end of the episode. We chose to report on
training where these query signals are used independently
on pitch, roll and yaw. We tested joint queries as well but
do not report specifically the corresponding results since
we observed no significant difference.

Controls are updated every 0.03 seconds, and we simu-
late the full state of the quadrotor, using a Runge Kutta of
order 4 on Equation (1) with a time step of 0.01 seconds.

The evaluation of the controller is made on similar
query signals, but on time windows that last 20 seconds,
with a query signal generated according to a more gen-
eral class of queries (see below). Query signals on such
longer time windows could also be considered for training
: [15] refers to this approach as ”continuous mode” and re-
ports much poorer performance compared to the ”episodic
mode” with 1 second queries. We therefore decided to re-
port only on episodic mode training.

Variable Unit Lower Bound Higher Bound

z m -1000 +inf
u m · s−1 -30 30
v m · s−1 -30 30
w m · s−1 -30 30
φ rad −π π
θ rad −π π
ψ rad −π π
p rad · s−1 −5π 5π
q rad · s−1 −5π 5π
r rad · s−1 −5π 5π
cmdφ PWM -400 400
cmdθ PWM -400 400
cmdψ PWM -1000 1000
F N 0 52428

Table 2: State and action space bounds

Such query classes are characterised by three distri-
butions A, D and S for respectively the amplitude and
duration of stable plateaus, and the step amplitude be-
tween successive stable plateaus. These distributions are
the same for each axis. We define three different classes
of queries (where U(a,b) denotes the Uniform distribution
of support [a,b]): easy (A = U(-0.2, 0.2), D = U(0.5, 0.8),
S = U(0, 0.3)), medium (A = U(-0.4, 0.4), D = U(0.2,
0.5), S = U(0, 0.6)) and hard (A = U(-0.6, 0.6), D =
U(0.1, 0.2), S = U(0, 0.9)). Our query generator actually
changes the joint distribution of amplitude and duration of
stable plateaus by filtering out those queries which would

make the roll, pitch and yaw go through singular values in
the Euler angles description of the dynamics.

The initial states are sampled in rather large intervals
of values. These values as well as the maximal magnitudes
of states are given in Table 2:

5. Robust Signal Temporal Logic with Aggregates

To formalize the behavioral properties of the closed-
loop system we defined our own flavor of Signal Temporal
Logic [51]. Our logic is mainly inspired by two preexist-
ing works [52] and [53]. From [52] we reuse the notion
of aggregate operators over sliding windows and extend
it with a robust quantitative semantics, where the origi-
nal paper only defined a classic Boolean semantics for the
language. From [53] we reuse the idea of time-averaged
robustness, and propose a new Until operator which com-
bines both spatial robustness (instantaneous falsification
margin at time t) and temporal robustness (robustness of
the property to time delays over signals).

In this logic formulas are interpreted over piecewise-
constant signals, whereas they were interpreted over piece-
wise-linear signal traces in [52]. Our logic’s semantics can
however be extended to piecewise-linear signals without
significant issue.

5.1. Abstract Syntax

Terms, Formulas and Aggregates:

τ ::= c | x | f(τ1, . . . , τn) (7)

| ite(φ, τ1, τ2) (8)

| On[a,b] ψR (9)

| ψR UdR
[a,b] φ (10)

| τ ↓UdR
[a,b] φ (11)

φ ::= > | ⊥ (12)

| τ > 0 (13)

| ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 (14)

| On[a,b] ψB (15)

| ψB UdB
[a,b] φ (16)

| φ1 ↓UdB
[a,b] φ2 (17)

| φ1 Ū[a,b] φ2 (18)

ψR ::= Min τ | Max τ (19)

ψB ::= Forall φ | Exists φ (20)

with (a, b) ∈ R2 and a ≤ b, dR ∈ R, dB ∈ B.
A term τ is either: a constant c, a signal x or a com-

binatorial function f applied to a number of terms (7); an
if-then-else selection of a term based on a Boolean condi-
tion 8; a value computed from a time interval [a, b] using
some numeric aggregate ψR (9); an “aggregate until” term
ψR UdR

[a,b] φ which computes a real value over a time interval

[a, b] using a numeric aggregate ψR (10); or a “time-point

7

until” τ ↓UdR
[a,b] φ, which samples the value of a term when

a formula becomes true (11).
A formula φ is either: a logical constant true > or false

⊥ (12); the comparison of a term to zero (13); the nega-
tion of a formula, or the conjunction or disjunction of a
formula (14); an aggregate computed from a time interval
[a, b] using some logic aggregate ψB (15); an aggregate until
formula ψB UdB

[a,b] φ which computes a truth value over a

time interval [a, b] using a logical aggregate ψB (16); a sam-
ple until φ ↓Ud

[a,b] φ, which samples the value a formula

when some formula becomes true (17); or an average until
of a formula φ1 computed over time interval [a, b] until φ2
becomes satisfied (18). A numeric aggregate ψR is either
the min or max of a term τ (19). A logic aggregate ψB is
either the Forall or Exists of a formula φ (20).

In addition to these core operators, the logic provides
a number of derived operators defined in terms of the core
operators.

The term lookup operator is defined as follows:

Dd
aτ = τ ↓Ud

[a,a] > (21)

The formula lookup operator is defined as follows:

Dd
aφ = φ ↓Ud

[a,a] > (22)

The original STL’s Globally, Finally and Until opera-
tors are defined as follows:

F[a,b]φ = On[a,b] Exists φ (23)

G[a,b]φ = On[a,b] Forall φ (24)

φ1 USTL
[a,b] φ2 = (Forall φ1) U⊥[a,b] φ2 (25)

5.2. Interpretation Structures

Terms and formulas are interpreted over total piecewise-
constant functions σ : R → Rn, which assign a value to
a tuple of signals X = (x1, . . . , xn) of size n at any time
t ∈ R. However, for practical reasons we only consider
total piecewise-constant functions defined by a finite se-
quence of breakpoints:

Bkpts = J(tj , Xj) | j ∈ [0,M − 1], (tj , Xj) ∈ (R,Rn), K

where tj < tj+1 for all j, and by a default value Xd ∈ Rn,
as follows:

σ(t) =


Xd if t ∈ (−∞, 0)

Xj if t ∈ [tj , tj+1)

XM−1 if t ∈ [tM−1,+∞)

(26)

We use the following notations:

• Tσ = Jtj | j ∈ [0,M−1]K is its sequence of timesteps,

• σ(xi, t), by abuse of notation, is the ith coordinate
of σ(t), i.e. the value of signal xi at time t.

5.3. Standard Semantics

5.3.1. Term Semantics

Assuming some fixed trace σ, the interpretation func-
tion for terms

sem() : τ → R→ R (27)

is defined inductively as follows:

sem(c)(t) = c (28)

sem(xi)(t) = σ(xi, t) (29)

sem(f(τ1, . . . , τn))(t) = f(sem(τ1)(t), . . . , sem(τn)(t))
(30)

sem(ite(φ, τ1, τ2))(t) =

{
sem(τ1)(t) if sem(φ)(t)

sem(τ2)(t) otherwise
(31)

sem(On[a,b] ψR)(t) = sem(ψR)([t+ a, t+ b]) (32)

sem(ψR Ud
[a,b] φ)(t) =


sem(ψR)([t, t′]),where

t′ ∈ [t+ a, t+ b] smallest

instant st. sem(φ)(t′) = >
d if no such t′ exists.

(33)

sem(τ ↓Ud
[a,b] φ)(t) =


sem(τ)(t′),where

t′ ∈ [t+ a, t+ b] smallest

instant st. sem(φ)(t′) = >
d if no such t′ exists.

(34)

The semantics of numeric aggregates is defined over
intervals as follows:

sem(Min τ)([a, b]) = mint∈[a,b]∩Tσ (sem(φ)(t)) (35)

sem(Max τ)([a, b]) = maxt∈[a,b]∩Tσ (sem(φ)(t)) (36)

Since traces are total piecewise-constant functions, de-
fined by a finite number of samples, and all operators have
default values and are hence total, interpretation func-
tions are also total function, and evaluating a numeric or
logic aggregates requires inspecting only a finite number
of timesteps and yields an exact result.

5.3.2. Formula Semantics

Assuming a fixed trace σ, formula semantics is given
by the function:

sem() : φ→ R→ B (37)

defined inductively as follows:

8

sem(>)(t) = > (38)

sem(⊥)(t) = ⊥ (39)

sem(τ > 0)(t) = sem(τ)(t) > 0 (40)

sem(¬φ)(t) = > iff sem(φ)(t) = ⊥ (41)

sem(φ1 ∧ φ2)(t) = >
{

iff sem(φ1)(t) = >
and sem(φ2)(t) = >

(42)

sem(φ1 ∨ φ2)(t) = >
{

iff sem(φ1)(t) = >
or sem(φ2)(t) = > (43)

sem(On[a,b] ψB)(t) = sem(ψB)([t+ a, t+ b]) (44)

sem(ψB Ub
[a,b] φ)(t) =


sem(ψB)([t, t′]), where t′

in [t+ a, t+ b] smallest

timestep st. sem(φ)(t′) = >
b if no such t′ exists.

(45)

sem(φ1 ↓Ub
[a,b] φ2)(t) =


sem(φ1)([t, t′]), where t′

in [t+ a, t+ b] smallest

timestep st. sem(φ2)(t′) = >
b if no such t′ exists.

(46)

The classic semantics for the average until operator
φ1 Ū[a,b] φ2 is defined exactly as the original STL Until
semantics.

The semantics of logic aggregates is defined over inter-
vals [a, b] as follows:

sem(Forall φ)([a, b]) =
∧

t∈[a,b]

sem(φ)(t) (47)

sem(Exists φ)([a, b]) =
∨

t∈[a,b]

sem(φ)(t) (48)

5.4. Robust semantics

The robust semantics

ρ() : φ→ R→ R (49)

only concerns Boolean formulas, and is defined inductively
as follows:

ρ(>)(t) = +∞ (50)

ρ(⊥)(t) = −∞ (51)

ρ(τ > 0)(t) = sem(τ)(t) (52)

ρ(¬φ)(t) = −ρ(φ)(t) (53)

ρ(φ1 ∧ φ2)(t) = min(ρ(φ1)(t), ρ(φ2)(t)) (54)

ρ(φ1 ∨ φ2)(t) = max(ρ(φ1)(t), ρ(φ2)(t)) (55)

ρ(On[a,b] ψB)(t) = ρ(ψB)([t+ a, t+ b]) (56)

ρ(ψB Ub
[a,b] φ)(t) =


ρ(ψB)([t, t′]) where t′ in

[t+ a, t+ b] is the smallest

timestep st. sem(φ)(t′)

ρ(b) if no such t′ exits.

(57)

ρ(φ1 ↓Ub
[a,b] φ2)(t) =


ρ(φ1)(t′) where t′ in

[t+ a, t+ b] is the smallest

timestep st. sem(φ2)(t′)

ρ(b) if no such t′ exits.

(58)

ρ(φ1 Ū[a,b] φ2)(t) =



(b− t′) ∗ ρ(On[t,t′] Forall φ1)(0)

where t′ ∈ [t+ a, t+ b]

is the smallest timestep

st. sem(φ2)(t′)

−∞ if no such t′ exists.

(59)

(60)

The robust semantics for logic aggregates is defined as
follows:

ρ(Forall φ)([a, b]) = mint∈[a,b]ρ(φ)(t) (61)

ρ(Exists φ)([a, b]) = maxt∈[a,b]ρ(φ)(t) (62)

The robust interpretation of terms is just their stan-
dard interpretation, except for timepoint until and ag-
gregate until operators where instead of recursing on the
standard interpretation of Boolean formulas, we recurse
on their robust interpretation.

5.5. Implementation

We implemented a code generator for the logic, which
generates highly efficient python code allowing to com-
pute the standard and robust semantics of STL formu-
las on traces. Given an STL formula (or term) as input,
the code generator produces a Python 3.x class definition
which implements the standard and robust semantics eval-
uation rules for that formula. The class takes a trace as
constructor argument (i.e. a piecewise constant function
specified a sequence of breakpoints and a default value as
defined in section 5.2), and offers an eval method allow-
ing to compute the standard or robust semantics of the
formula at any time step.

9

The generated code uses a number of techniques for
efficiency:

• Constant folding,

• When translating a specification containing several
formulas and terms, the code generator implements
common subformulas and subterms sharing between
all toplevel formulas.

• We leverage the fact that in practice, a same formula
will be evaluated on sequences of strictly increasing
timesteps, and use an incremental method for the
evaluation of sliding window aggregates: when eval-
uating a Max aggregate (resp. Min, Forall or Exists)
at time t, the aggregate term is evaluated on interval
[t+a, t+b] and we cache the result (tMax, xMax), in-
dicating at which instant the Max value was reached
in [t+a,t+b]. When the aggregate is evaluated again
at t′ > t, we distinguish the following cases:

– if tr ∈ [t′ + a, t + b], we evaluate the aggregate
on [t+b, t′+b] and return Max(xMax, xMax

′),
cache new result,

– if tr ∈ [t+ a, t′ + a], we evaluate the aggregate
on the full window [t′ + a, t′ + b] and cache the
result.

• Last, the generated code uses numpy arrays exclu-
sively and contains Numba annotations for all data
structures and classes, allowing to use Numba to JIT
the evaluation code using LLVM. This JIT optimiza-
tion provides a 10x to 20x performance boost over
the interpreted python version.

6. Formal performance criteria

Designing a controller for a specific application requires
balancing multiple criteria such as rising time, overshoot,
steady error, etc. In order to quantify rigorously the per-
formance of the learned controller, we formalized require-
ments using the logic presented in section 5.

A first set of formulae allows to identify instants when
a query signal q becomes stable for T time units, and
whether q goes up or down at any instant (with ε and
d two small constants), and the step size:

stable(q) = (On [0,T] Max q)− (On [0,T] Min q) < d
(63)

stableup(q) = (D⊥−ε ¬stable(q)) ∧ stable(q) (64)

up(q) = q − (D0
−ε q) > 0 (65)

down(q) = q − (D0
−ε q) ≤ 0 (66)

step(q) = ite(stableup(q), q −D0
−εq, 0) (67)

We consider an angular rate signal x as acceptable if
it does not overshoot a stable query q by more than α%

of the step size on [0, T1], and does not stray away from a
stable query q by more than β% of the step size on [T1, T]:

stableup(q) ∧ up(q) =⇒
On [0,T1] Max (x− q) < αstep(q) (68)

stableup(q) ∧ down(q) =⇒
On [0,T1] Max (q − x) < αstep(q) (69)

stableup(q) =⇒ On [T1,T] Max ‖x−q‖ < βstep(q) (70)

We define the rising time RT as the time it takes for x
to first reach q within γ%:

ite(stableup(q), t− (t U+∞
[0,T] ‖(x− q)‖ < γq),+∞) (71)

Figure 2 illustrates the formalised notions and param-
eters.

Figure 2: Property parameters T1, T , RT , α, β, γ.

Using observers code generated from these specifica-
tions, we compute statistics about property violations and
associated robustness margins on angular rate signals and
queries on pitch, yaw and roll axis of the system, ac-
quired at regular intervals during the training of the con-
troller. For evaluation each property P (x, q) is wrapped
in a globally modality over the episode length yielding
G[0,episode length] P (x, q). Automating the computation of
these behavioral metrics is essential in allowing to scale
up the hyper-parameter space exploration and identify the
best controller according to objective measurements.

7. Experimental setup

7.1. Implementation

We have developed a platform2 with the purpose of
running experiments in a reproducible and scalable way,
becoming an integration layer between the different mov-
ing parts in both training and testing. From a technolog-
ical standpoint the platform is based on the Stable Base-
lines 2.7.0 reinforcement learning library [54] itself based

2The full code is available as open source at https://github.

com/uber-research/rl-controller-verification.

10

on Tensorflow [55], all of our code is in Python and we
used Bazel [56] as build system. We used Tensorboard
to monitor losses and the internal dynamics of the neural
networks during the training.

One intermediate goal was to explore the large com-
binatorial hyperparameter space efficiently, to be able to
identify the best hyperparameters values with respect to
the STL metrics we defined and to get a better under-
standing of their impact.

With 4 different algorithms, 20 possible configurations
for the network architecture and 3 sets of observed states,
our hyperparameters space contains a total of 240 points
that need to be trained and tested. The corresponding
jobs are dispatched on our Kubernetes cluster [57] where
they can run in parallel. Disposing of 1 vCPU on the
Cascade Lake platform (base frequency of 2.8 GHz), the
3 millions iterations of a single training job take between
3 and 8 hours to complete. The cluster autoscales with
the workload and allowed us to run 1,200 hours worth of
training in half a day.

The container images that end up running on the clus-
ter are created, uploaded and finally dispatched in a repro-
ducible manner thanks to the Bazel rules of our Research
Platform. Those rules are built on top of the Bazel Image
Container Rules [58] and the Bazel Kubernetes Rules [59]
and specially designed to generate all the experiment jobs
of the hyperparameters analysis.

The training and testing results are automatically up-
loaded on our cloud storage where they can be browsed
for quick inspections, or fed as input for the next pipeline
stage. We saved 30 checkpoints per experiment (each file
containing 100k training iterations weights between 10KB
and 100KB). Including the TensorFlow logs, the training
results amount to over 100GB of data.

Each of the 30 × 240 checkpoints was then evaluated
on 100 queries computed by the Query Generator, produc-
ing the same number of concrete traces representing the
commands and the states over the whole episode. Each
set of such traces is about 600k hence it yields total of
60MB per checkpoint. Finally each of the 30 × 240 ×
100 traces was evaluated with STL properties observer to
compute synthetic metrics: aggregating the 100 traces of a
single checkpoint produced a 150KB file and required ap-
proximately 45 minutes. The checkpoint-specific CSV files
were further aggregated in experiment-specific and round-
specific checkpoints for final visual inspection.

7.2. Interactive browsing of the experiments database

We want to understand what correlations exist between
controller performance and the way it has been trained,
and for this, we used Hiplot [60] for browsing through the
enormous number of parameters and data generated. We
show in Figure 3 how we used Hiplot in an interactive
manner for verifying our hypotheses. Each parameter and
performance measure is represented by a column in the
graph generated by Hiplot from our database. For each

parameter, either fixed or free, choosing intervals of val-
ues for each performance measure creates lines that link
parameter values to performance values within the cho-
sen intervals. The number of entries in the database (i.e.
the number of controllers) that satisfy the constraints is
also shown, as well as the table of all their corresponding
parameters and performance values.

For instance, we used Hiplot to select the ”best” net-
works, filtering the data set of controllers, only retaining
the ones with better success in offset, overshoot and rising
times altogether, with respect to the best PIDs. This re-
sulted in two neural nets with much better performances
than the PIDs on offset and on rising time, as we will
discuss in Section 8.

8. Experimental results

8.1. Performance metrics

Each controller is evaluated on a hundred evaluation
episodes using STL observers defined in Equations (68)
to (71), where parameters are set to α = 10%, β = 5% and
γ = 5%, T = 0.5s, T1 = 0.25s, ε = 0.01s, d = 0.005. For
each evaluation episode the following statistics are com-
puted over all stable query plateaus:

• average and maximum overshoot percentage relative
to the query step size,

• average and maximum offset percentage relative to
the query step size,

• average and maximum rising time values in seconds
(only for plateaus where the signal actually reaches
γ% of the query within [0, T]).

For each metric (overshoot, offset, rising time), we com-
pute the success percentage % OK, i.e. the percentage of
stable plateaus of the episode for which the controller be-
haviour satisfies the specification.

Then, episode-level statistics are further averaged, yield-
ing results presented in the tables of the following sections,
where columns represent:

• avg (resp. max) overshoot: is the per-episode-average
of the average (resp. maximum) overshoot values,

• avg (resp. max) offset: is the per-episode-average of
the average (resp. maximum) offset values,

• avg (resp. max) rising time: is the per-episode-
average of the average (resp. max) rising time,

• % OK offset (resp. overshoot, rising time): is the
per-episode-average of the success percentage for the
offset (resp overshoot, rising time) metric.

11

Figure 3: Hiplot interactive session

Figure 4: PID2 controller query tracking

8.2. Performance of nominal-trained networks in nominal
test case

8.2.1. Overall best performance comparison

The PID performance metrics in the nominal case are
reported in the first two lines of Table 3 to serve as a
reference point for neural controller evaluation. Examples
of query tracking behavior are given in Section 8.2.1 for
reference.

PID2 reaches within 5% of the target state for about
70% of the queries, and is relatively slow with an average
rising time of 0.44s. PID1 in comparison reaches within 5%
of the target state for only 8% of the queries, with a (very
slightly) better rising time. Overshoot success rates are
really good for both PIDs (95-100% OK). Offset success
rates are bad (1-3% OK), due to their slow convergence.

We will hence use PID2 as a reference for discussing neural
controller performance.

The comparison between the best networks and the
PIDs is also reported in Table 3.

We see that our neural nets provide much quicker controls,
with an average rising time of about a fourth to a fifth of
the rising time for the two PIDs, although with a negligible
offset. This is at the expense of a slightly less good per-
formance on the maximum overshoot at least for SAC and
DDPG trained networks, with respect to PID2 (our neu-
ral nets are still much better than PID1). Results are far
less good, in particular concerning overshoots, with PPO
and TD3 trained networks. This is also visible when com-
paring signals between Figure 5 and Section 8.2.1. Some-
how, neural nets exhibit extreme reactivity as well as good
asymptotic convergence, but show some very short-lived
”spikes”, as in the sample trajectory shown in Figure 5.

When we filter the neural nets meeting or exceeding
the performances of PID2, many networks remain, among
which the best are:

• DDPG 64 × 64 × 64 × 64 trained for 1,500,000 it-
erations (and also DDPG 32 × 32, 400,000 itera-
tions) on the three-dimensional observation space
(p− psp, q − qsp, r − rsp)

• SAC 32×32×32×32 (and SAC 32×32 and 16×16
trained for 3,000,000 iterations coming very close)
trained for 2,900,000 iterations on the same three-
dimensional observation space

12

algo OK OK OK avg avg avg max max max
rising t. off. overshoot rising t. off. overshoot rising t. off. overshoot

PID2 70.52 0.52 100.00 0.41 20.22 0.00 0.48 25.26 0.00
PID1 7.73 3.44 94.88 0.33 58.93 3.91 0.38 138.44 50.56
SAC 97.35 99.54 96.55 0.08 0.12 0.50 0.21 2.44 6.21
DDPG 99.05 98.59 98.21 0.08 0.21 0.23 0.17 3.97 3.91
PPO 96.96 97.26 91.98 0.08 0.43 1.41 0.19 7.08 11.93
TD3 96.70 86.80 88.16 0.09 2.40 2.13 0.22 18.08 20.09

Table 3: PIDs and overall best networks performance (all in % except rising t. in seconds)

Figure 5: Neural controller behaviour (sac, 2 layers, 16 neurons per
layer, 3M iterations)

8.2.2. Training algorithm influence

We observe in Table 3 that PPO and TD3 do not show
as good performance as SAC (and even DDPG), moder-
ating the conclusion of [15], and the common belief that
TD3 should improve performance of neural net control.
We have for now no explanation for this, largely because
we have not been able (which is also the case in [15]) to
get rid of the overshoot spikes, even using SAC which does
some amount of regularization, or TD3 which should lead
to more stable solutions, potentially at the expense of a
slower convergence rate. In terms of optimal control, if
the neural net controller were trained with correctness ob-
jectives3, these spikes would certainly be much smaller and
appear only at the very beginning of plateaus.

8.2.3. Convergence of the training algorithms

We show in Figure 6 the evolution of the three main
performance measures, the OK overshoot, OK offset and
OK rising time, for one of the best network architecture
and training algorithm, SAC 32 × 32 neurons. The three
metrics improve quickly and almost stabilize in the first
1,000,000 iterations.

3Future work to cope with this phenomenon includes improving
the reward function using our STL observers, and adding some more
regularization during training.

Figure 6: Performance of SAC 32x32 on dim 3 observation space
trained neural nets w.r.t. the number of iterations

8.2.4. Observation state influence

Of course, for a given number of iterations, smaller-
dimensional observation states yield better quality of the
sampling. Still, we observe that using a Markovian state or
the simpler three-dimensional state space (errp, errq, errr)
does not change significantly the performance of the best
neural nets obtained, see Table 4, although the 3-dimensio-
nal observation space gives slightly better performance
overall. In fact, we even get a worse performance with
the 7-dimensional full state, mostly because of the diffi-
culty to sample this higher dimensional space, and identify
the subtle second-order effects of some of these states on
angular rates.

8.2.5. Neural net architecture influence

First, we observe that almost none of the single-layer
neural nets seem to converge to a correct controller (see
e.g. Figure 7). At 64 neurons, 1 hidden layer networks
seem to exhibit some good behaviour, but still far from
any of the e.g. two-layers neural nets.

Still, 3-layers and even 4-layers networks do not seem
to exhibit much better behaviour than the ”best” 2-layers
networks, with 16 or 32 neurons each, although they con-
verge faster. Recently Sinha et al. in [61] empirically ob-
served the performance of SAC have a peak using 2 layers
MLP and their explanation for this result relies on the

13

algo dim OK OK OK avg avg avg max max max
rising t. off. overshoot rising t. off. overshoot rising t. off. overshoot

SAC 3 98.88 98.01 98.58 0.09 0.28 0.18 0.19 5.01 3.28
SAC 6 97.24 98.70 94.82 0.09 0.25 0.81 0.19 4.72 8.07
SAC 7 94.26 94.57 97.79 0.09 0.80 0.33 0.25 11.56 5.75

Table 4: Influence of the observable space dimension (all in % except rising t. in seconds)

Figure 7: OK rising t. for our best SAC network wrt number of
training iterations for different architectures

Data Processing Inequality hence the fact that mutual in-
formation between layers decreases with depth. This will
have to be further investigated in our framework.

8.3. Performance of nominal-trained networks in non-nominal
test cases

We now assess the robustness of our PIDs and ”best”
neural nets (trained in nominal situations as discussed in
Section 8.2) to perturbed, non-nominal conditions, with-
out training the neural nets nor changing the gains of PIDs
to cope specifically for the new situation. We report the
same performance measures as the ones used in the nom-
inal case, in the test cases where a perturbation can hap-
pen, at the start of any new plateau along the 20 second
episodes that we are observing (which can contain about
30 different target angular states, or plateaus, to reach
within a short time). We take maxima and averages of
these measures on 100 such queries as before.

8.3.1. Robustness to partial motor failures

We report in Table 5 results where the perturbation is a
partial power loss of motor 1, down to 80% of its maximal
power.

For this case of partial motor failure, our best SAC
trained neural net behaves much better than our two PIDs:
it keeps on reaching plateaus within 0.5 seconds for about
94% of the time, whereas even the best PID goes down
to less than 60% success rate. Our network is even bet-
ter when it comes to satisfying offset constraints (82% of
the time) whereas the PIDs almost never comply. Perfor-
mances concerning overshoot are comparable, even though
the PIDs are very slightly better, but this only concerns

cases where PIDs actually reach the target state, which is
the case much less often. Essentially, the best neural nets
that have been trained under nominal conditions show very
little degradation of performance when a partial failure oc-
curs.

8.3.2. Robustness to wind gusts

We present in Table 5 results where the perturbation is
the occurence of randomly chosen wind gusts (as described
in Section 3.3.1) of magnitude up to 10 m.s−1 from any
fixed direction in the inertial frame.

The PIDs and the neural nets exhibit the same kind of
minor loss of performance, and the nominal trained neural
nets are still far superior to the two PIDs.

8.4. Performance of non-nominal-trained networks

8.4.1. Training under partial motor failures

In what follows, we train the attitude controller to sus-
tain partial motor failures adding the magnitude of the
power loss (1 extra dimension) to the observation states
discussed in Section 4.1. We report the performance mea-
sures obtained in the non-nominal case in Table 6. The
concern one may have is that, training the neural net in
more various conditions (nominal and non-nominal), the
resulting controller may exhibit lower performance. We
thus report the same performance measures for neural nets
trained with potential motor failures, in nominal situa-
tions, e.g. when no power loss happens, see Table 7

We see that we still achieve much better performance
than PIDs, but that we are only similar and even slightly
worse than the neural nets trained in nominal conditions,
both in nominal conditions (compare Table 7 to Table 3)
and in non-nominal conditions (compare Table 6 to Ta-
ble 5). Understanding this non intuitive behaviour and
improving the training in this case is left for future work.

8.4.2. Training under wind gusts

In what follows, we train the attitude controller to sus-
tain wind gusts up to 10 m.s−1 in any direction, adding
to the observation states we discussed in Section 4.1 the
wind gust magnitude and directions (4 additional dimen-
sions) plus the linear velocities of the quadcopter (u, v

14

mode algo OK OK OK avg avg avg max max max
rising t. off. overshoot rising t. off. overshoot rising t. off. overshoot

windgust SAC 98.50 97.40 98.48 0.09 0.41 0.22 0.17 6.78 3.81
windgust PID2 70.32 0.65 100.00 0.41 20.16 0.00 0.48 24.25 0.00
windgust PID1 6.55 2.97 94.28 0.33 60.23 4.43 0.38 146.00 57.65
saturation SAC 94.20 81.58 92.85 0.12 17.63 6.04 0.33 145.91 81.25
saturation PID2 58.24 2.94 93.98 0.39 34.33 4.66 0.48 129.36 58.46
saturation PID1 14.50 3.71 92.13 0.30 64.83 5.67 0.40 166.82 70.45

Table 5: Robustness of the best networks and PIDs in case of wind gusts and motor saturation (all in % except rising t. in seconds)

algo OK OK OK avg avg avg max max max
rising t. off. overshoot rising t. off. overshoot rising t. off. overshoot

DDPG 89.40 73.82 90.53 0.13 20.61 6.84 0.37 156.87 87.98
SAC 90.93 79.00 90.45 0.12 20.36 7.18 0.35 164.34 95.79

Table 6: Best networks trained for partial motor failures, tested under potential motor failures situations (all in % except rising t. in seconds)

and w, 3 additional dimensions) since they are necessary
for determining the relative wind velocity.

We report the performance measures that we get in
the non-nominal case in Table 8 and in the nominal case
in Table 9.

We see that the SAC and DDPG controller trained
with potential wind gusts still behave about as well as the
nominal controller (compare Table 9 to Table 3). Surpris-
ingly, the best (SAC) network behaves slightly worse than
the nominal-trained SAC network under wind gusts (com-
pare Table 8 to Table 5), where we can see a slight drop
of performance in e.g. OK off. and OK overshoot: it does
not seem to be able to learn correctly how to stay close
enough to the target plateau, in some cases.

9. Lessons learned

Sampling. First, we observed that we should restrict to
a “good” subspace of the (full quadcopter) states that is
sufficiently low dimensional for efficient sampling and such
that it avoids potentially spurious correlations, while still
providing sufficient information for learning. For instance,
in the nominal case, the observation space (errp, errq, errr)
was found to be the optimal choice. Training depends of
course on sampling data, that has to be done on represen-
tative data, and on sampling initial states in a large enough
space. In order to do this, for better results, we developed
a specific query generator, and we sampled initial states
in quite large spaces.

Training algorithms. SAC gives very good results as ex-
pected. It is most probably more efficient due to entropy
regularization that partially cancels spurious correlations,
but this has still to be confirmed in more general situa-
tions. A lesson for us was that TD3 was not behaving

as well as expected. Our current guess is that TD3 suf-
fers from too much bias on the Q-function estimation at
some point in our training environment, or that TD3 needs
many more iterations to converge in our case due to bad
exploration performance. Recent papers have suggested
that action clipping in TD3 can result in poor exploration
performance on problems with bounded action spaces (ac-
tions on the boundary are too frequently sampled) which
has been shown to be remedied by the entropy regular-
ization of SAC or other output scaling and replay buffer
sampling approaches that simulate entropy regularization,
[62, 63]. Another newly documented [64] undesired behav-
ior of TD3 is to have all Critics converge to a same point
in parameter space and degenerate into single-Q-network
performance. Without further experiments we cannot say
if poor performance is due to action clipping, to critic di-
versity collapse, or both. Considering SAC works a lot
better and also uses dual Q-networks like TD3, it seems
more likely that clipping and bad exploration are to blame
than diversity collapse.

Quality of deep and shallow controllers. It is actually hard
to find good attitude controllers using RL, probably ex-
plaining why papers in this area generally only discuss a
single neural net controller: we found only 9 out of about
5000 controllers which complied with our specifications.
The very last 5% performance seems to be very hard to
get because of “spikes” we observed, due to spurious corre-
lations in the fully connected neural net controllers we have
been considering. We also note that small and rather shal-
low (two or three hidden layers) networks were observed
to be best trained and to be behaving best for attitude
control.

Spurious correlations. Even if the STL metrics gives excel-
lent results for some networks, there are still some spikes,
as shown with the behavior of one of our best networks on
a simple roll rate query in Figure 8, that we identified to
be due to spurious correlations between the errors on one
axis and the command on another axis.

15

algo OK OK OK avg avg avg max max max
rising t. off. overshoot rising t. off. overshoot rising t. off. overshoot

SAC 95.35 95.42 97.47 0.09 0.66 0.34 0.22 9.35 5.30
DDPG 94.21 95.17 94.69 0.09 0.83 0.80 0.21 11.29 10.51

Table 7: Performance of best networks trained with potential motor failures, and tested in nominal situations (all in % except rising t. in
seconds)

algo OK OK OK avg avg avg max max max
rising t. off. overshoot rising t. off. overshoot rising t. off. overshoot

DDPG 99.13 90.04 95.28 0.09 1.75 0.79 0.21 17.46 11.40
SAC 97.67 89.58 92.97 0.10 1.52 1.01 0.28 13.91 11.65

Table 8: Best networks trained for wind gusts conditions, tested under wind gusts conditions (all in % except rising t. in seconds)

algo OK OK OK avg avg avg max max max
rising t. off. overshoot rising t. off. overshoot rising t. off. overshoot

DDPG 96.53 91.43 94.83 0.09 1.76 0.96 0.23 17.47 12.41
SAC 95.96 97.09 96.77 0.09 0.42 0.45 0.21 5.57 6.34

Table 9: Best networks trained for wind gusts conditions, tested in nominal conditions (all in % except rising t. in seconds)

Figure 8: Spikes in roll rate control, with one of our best trained
neural nets

These spurious correlations can be exposed by training
a controller on a single axis, here the roll axis, and showing
that they indeed do not appear in that case where corre-
lations cannot possibly be made. This new controller was
trained with only the error on the roll rate as input, with
the objective of controlling only cmdφ. During training,
we have been controlling cmdψ and cmdθ by PIDs. We see
in Figure 9 that the controller on roll rate is now almost
perfect, showing no spikes.

Another way to expose the spurious correlations is to
examine the connections between the neurons of our con-
troller, and in particular to show which ones are above a
certain threshold, for a given input. In Figures 10a and
10b, we depicted the case of a 16×16 neural net controller
for the roll, pitch and yaw rates, with two different inputs.
The red arc is the same connection in the two figures,
between some neuron of the second hidden layer and the
neuron governing the roll rate output. In both cases it has

Figure 9: Behaviour of a controller trained on roll only.

a high value (weight), but in the first case, Figure 10a,
it shows a good correlation with the input that is used,
while in the other, Figure 10b, it shows a spurious correla-
tion. The correlation of Figure 10b is deemed “good”, or
correct, since the second input linked to the second axis is
connected to the second output (on the same axis - connec-
tions between neurons are highlighted in the corresponding
figures) and the correlation of Figure 10b is deemed spuri-
ous because it happens when the third input linked to the
third axis is connected to the second input (an error on
the pitch axis should not influence an action on the yaw
axis).

During the training phase, i.e. gradient descent, the
weight of the connection will never converge to something
sensible enough: when the network sees the first type of

16

input, it will increase the importance of this connection
while for the second input, it will reduce the importance
of the same connection.

(a) A case of good correlation between the input and the roll rate
output

(b) A case of spurious correlation between the input and the roll
rate output

Figure 10: Two different types of correlations during training

Training for nominal and non-nominal situations. We also
observed that there is some amount of robustness built in
neural net controllers, suitably trained in nominal condi-
tions, to certain non-nominal situations. We believe this
is due to the fact that the controllers which are trained
in the nominal case, are actually trained in many differ-
ent states that appear in non-nominal situations, for the
same neural net inputs (e.g. angular rate errors), by using
a very wide distribution of initial states during training.

Similar observations on robustness by training from wide
initial state distributions were made in [65].

Finally, training neural net controllers to both nominal
and non-nominal situations is not an easy endeavor and
should be further studied. The difficulty lies in training
on sufficiently many non-nominal data, as well as avoiding
over-fitting to non-nominal cases: reward distributions can
become multi-modal and expectation maximization could
be bad in such cases.

For instance, when we saturate a motor, we lose a de-
gree of freedom and we can just hope for, for instance, a
good control on the roll and pitch axis, at the expense of
some degradation for controlling the yaw rate. Indeed, it
is much harder for the quadcopter to generate a moment
on the yaw axis than on the roll or on the pitch axis.

When the controller has only been trained in nominal
mode (i.e. without any saturation), it can stay for a rather
long time far from the query, when used in non-nominal
mode (here, with one motor saturated to a portion of its
power, as explained in Section 3.2), as shown in Figure
11. When the controller is trained in non-nominal mode,
it learns to overcompensate and does not remain far from
the query for a long time, see Figure 12. Indeed, when one
motor is saturated, the command on one axis will create
a moment on another axis that needs to be compensated.
This is what the drone successfully learns when trained
with a saturated motor.

10. Conclusion

We have presented a complete study of learned attitude
controls for a quadcopter using reinforcement learning. In
particular we extend previous results by modeling partial
motor failure as well as wind gusts, and generating exten-
sive tests of various network architectures, training algo-
rithms and hyperparameters using a flexible and robust
experimental platform. We also present a precise eval-
uation mechanism based on robust signal temporal logic
observers, which allows us to characterize the best options
for training attitude controllers. Results show that learned
controllers exhibit high quality over a range of query sig-
nals, and are more robust to perturbations than PID con-
trollers.

The immediate next step will be to start using STL-
derived reward signals during training on the most promis-
ing architectures, and try to improve training under non-
nominal situations.

Finally, because we use an explicit ODE model, we
can hope to discuss formal reachability properties of the
complete controlled system, using or elaborating on ap-
proaches such as [66] and [41].

References

[1] D. Bertsekas, Reinforcement Learning and Optimal Control,
Athena Scientific optimization and computation series, Athena
Scientific, 2019.
URL https://books.google.fr/books?id=ZlBIyQEACAAJ

17

Figure 11: Controller trained in nominal mode and tested with motor saturation

Figure 12: Controller trained with motor saturation and tested with motor saturation

[2] E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun,
D. Scaramuzza, Deep drone acrobatics, CoRR abs/2006.05768
(2020).
URL https://arxiv.org/abs/2006.05768

[3] N. Bernini, M. Bessa, R. Delmas, A. Gold, E. Goubault, R. Pen-
nec, S. Putot, F. cois Sillion, A few lessons learned in reinforce-
ment learning for quadcopter attitude control, in: In ACM In-
ternational Conference on Hybrid Systems: Computation and
Control, 2021.

[4] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, S. Levine, Soft
actor-critic algorithms and applications, CoRR abs/1812.05905
(2018).
URL http://arxiv.org/abs/1812.05905

[5] S. Fujimoto, H. van Hoof, D. Meger, et al., Addressing func-
tion approximation error in actor-critic methods, Proceedings
of Machine Learning Research 80 (2018).

[6] Förster, Julian, System Identification of the Crazyflie 2.0 Nano
Quadrocopter, B.S. Thesis, Institute for Dynamic Systems and
Control, Swiss Federal Institute of Technology (ETH) Zurich
(August 2015).

[7] R. S. Sutton, A. G. Barto, R. J. Williams, Reinforcement learn-
ing is direct adaptive optimal control, IEEE Control Systems
Magazine 12 (2) (1992) 19–22.

[8] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Ca-
landra, K. S. J. Pister, Low-level control of a quadrotor with
deep model-based reinforcement learning, IEEE Robotics and
Automation Letters 4 (4) (2019) 4224–4230.

[9] J. Yoo, D. Jang, H. J. Kim, K. H. Johansson, Hybrid rein-
forcement learning control for a micro quadrotor flight, IEEE
Control Systems Letters 5 (2) (2020) 505–510.

[10] M. Deisenroth, C. Rasmussen, PILCO: A model-based and
data-efficient approach to policy search, in: ICML, 2011.

[11] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, D. Wierstra, Continuous control with deep reinforce-
ment learning, CoRR abs/1509.02971 (2016).

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
O. Klimov, Proximal policy optimization algorithms, CoRR
abs/1707.06347 (2017).

[13] M. Gaon, R. I. Brafman, Reinforcement learning with non-
markovian rewards, in: The Thirty-Fourth AAAI Conference

on Artificial Intelligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, Febru-
ary 7-12, 2020, AAAI Press, 2020, pp. 3980–3987.

[14] A. Nilim, L. E. Ghaoui, Robust markov decision processes with
uncertain transition matrices, Ph.D. thesis, USA, aAI3165509
(2004).

[15] W. Koch, R. W. Renato Mancuso, A. Bestavros, Reinforcement
Learning for UAV Attitude Control, ACM Trans. Cyber-Phys.
Syst. 3, 2, Article 22 ((February 2019)).

[16] A. Molchanov, T. Chen, W. Hönig, J. A. Preiss, N. Aya-
nian, G. S. Sukhatme, Sim-to-(multi)-real: Transfer of low-
level robust control policies to multiple quadrotors, CoRR
abs/1903.04628 (2019). arXiv:1903.04628.
URL http://arxiv.org/abs/1903.04628

[17] F. Fei, Z. Tu, X. Deng, Learn-to-recover: Retrofitting uavs with
reinforcement learning-assisted flight control under cyberphysi-
cal attacks, in: ICRA, 2020.

[18] T. Koning, Developing a self-learning drone (april 2020).
[19] L. Bjarre, Learning for quadcopter control (Dec. 2019).
[20] M. Wen, R. Ehlers, U. Topcu, Correct-by-synthesis rein-

forcement learning with temporal logic constraints, in: 2015
IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2015, Hamburg, Germany, September 28 - Oc-
tober 2, 2015, IEEE, 2015, pp. 4983–4990. arXiv:1503.01793,
doi:10.1109/IROS.2015.7354078.
URL https://doi.org/10.1109/IROS.2015.7354078

[21] Q. Gao, D. Hajinezhad, Y. Zhang, Y. Kantaros, M. M. Za-
vlanos, Reduced variance deep reinforcement learning with tem-
poral logic specifications, in: X. Liu, P. Tabuada, M. Pajic,
L. Bushnell (Eds.), Proceedings of the 10th ACM/IEEE Inter-
national Conference on Cyber-Physical Systems, ICCPS 2019,
Montreal, QC, Canada, April 16-18, 2019, ACM, 2019, pp. 237–
248. doi:10.1145/3302509.3311053.
URL https://doi.org/10.1145/3302509.3311053

[22] M. Hasanbeig, Y. Kantaros, A. Abate, D. Kroening, G. J. Pap-
pas, I. Lee, Reinforcement learning for temporal logic control
synthesis with probabilistic satisfaction guarantees, in: 58th
IEEE Conference on Decision and Control, CDC 2019, Nice,
France, December 11-13, 2019, IEEE, 2019, pp. 5338–5343.

18

doi:10.1109/CDC40024.2019.9028919.
URL https://doi.org/10.1109/CDC40024.2019.9028919

[23] M. Hasanbeig, D. Kroening, A. Abate, Towards verifiable and
safe model-free reinforcement learning, in: N. Gigante, F. Mari,
A. Orlandini (Eds.), Proceedings of the 1st Workshop on Ar-
tificial Intelligence and Formal Verification, Logic, Automata,
and Synthesis, co-located with the 18th International Confer-
ence of the Italian Association for Artificial Intelligence, OVER-
LAY@AI*IA 2019, Rende, Italy, November 19-20, 2019, Vol.
2509 of CEUR Workshop Proceedings, CEUR-WS.org, 2019,
p. 1.
URL http://ceur-ws.org/Vol-2509/invited.pdf

[24] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum,
U. Topcu, Safe reinforcement learning via shielding, in: S. A.
McIlraith, K. Q. Weinberger (Eds.), Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, AAAI Press, 2018, pp.
2669–2678.
URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/

paper/view/17211

[25] W. Zhang, O. Bastani, MAMPS: safe multi-agent reinforcement
learning via model predictive shielding, CoRR abs/1910.12639
(2019). arXiv:1910.12639.
URL http://arxiv.org/abs/1910.12639

[26] O. Bastani, Safe reinforcement learning with nonlinear dynam-
ics via model predictive shielding (2020). arXiv:1905.10691.

[27] O. Bastani, Safe reinforcement learning via online shielding,
CoRR abs/1905.10691 (2019). arXiv:1905.10691.
URL http://arxiv.org/abs/1905.10691

[28] G. E. Fainekos, G. J. Pappas, Robustness of temporal logic
specifications for continuous-time signals, Theor. Comput. Sci.
410 (42) (2009) 4262–4291. doi:10.1016/j.tcs.2009.06.021.
URL https://doi.org/10.1016/j.tcs.2009.06.021

[29] A. Donzé, On signal temporal logic, in: A. Legay, S. Bensalem
(Eds.), Runtime Verification - 4th International Conference, RV
2013, Rennes, France, September 24-27, 2013. Proceedings, Vol.
8174 of Lecture Notes in Computer Science, Springer, 2013, pp.
382–383. doi:10.1007/978-3-642-40787-1 27.
URL https://doi.org/10.1007/978-3-642-40787-1_27

[30] L. Brim, P. Dluhos, D. Safránek, T. Vejpustek, Stl: Extending
signal temporal logic with signal-value freezing operator, Inf.
Comput. 236 (2014) 52–67. doi:10.1016/j.ic.2014.01.012.
URL https://doi.org/10.1016/j.ic.2014.01.012

[31] T. Akazaki, I. Hasuo, Time robustness in MTL and expressivity
in hybrid system falsification, in: D. Kroening, C. S. Pasareanu
(Eds.), Computer Aided Verification - 27th International Con-
ference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part II, Vol. 9207 of Lecture Notes in Computer
Science, Springer, 2015, pp. 356–374. doi:10.1007/978-3-319-
21668-3 21.
URL https://doi.org/10.1007/978-3-319-21668-3_21

[32] A. Bakhirkin, N. Basset, Specification and efficient monitoring
beyond STL, in: T. Vojnar, L. Zhang (Eds.), Tools and Al-
gorithms for the Construction and Analysis of Systems, Vol.
11428 of Lecture Notes in Computer Science, Springer, 2019,
pp. 79–97.

[33] H. Abbas, Y. V. Pant, R. Mangharam, Temporal logic robust-
ness for general signal classes, in: N. Ozay, P. Prabhakar (Eds.),
Proceedings of the 22nd ACM International Conference on Hy-
brid Systems: Computation and Control, HSCC 2019, Mon-
treal, QC, Canada, April 16-18, 2019, ACM, 2019, pp. 45–56.
doi:10.1145/3302504.3311817.
URL https://doi.org/10.1145/3302504.3311817

[34] I. Haghighi, N. Mehdipour, E. Bartocci, C. Belta, Con-
trol from signal temporal logic specifications with smooth
cumulative quantitative semantics, in: 58th IEEE Confer-
ence on Decision and Control, CDC 2019, Nice, France,
December 11-13, 2019, IEEE, 2019, pp. 4361–4366.

doi:10.1109/CDC40024.2019.9029429.
URL https://doi.org/10.1109/CDC40024.2019.9029429

[35] N. Mehdipour, C. I. Vasile, C. Belta, Arithmetic-geometric
mean robustness for control from signal temporal logic speci-
fications, in: 2019 American Control Conference, ACC 2019,
Philadelphia, PA, USA, July 10-12, 2019, IEEE, 2019, pp. 1690–
1695.
URL http://ieeexplore.ieee.org/document/8814487

[36] Y. Gilpin, V. Kurtz, H. Lin, A smooth robustness measure of
signal temporal logic for symbolic control, IEEE Control. Syst.
Lett. 5 (1) (2021) 241–246. doi:10.1109/LCSYS.2020.3001875.
URL https://doi.org/10.1109/LCSYS.2020.3001875

[37] Z. Zhang, I. Hasuo, P. Arcaini, Multi-armed bandits for
boolean connectives in hybrid system falsification, in: I. Dil-
lig, S. Tasiran (Eds.), Computer Aided Verification - 31st In-
ternational Conference, CAV 2019, New York City, NY, USA,
July 15-18, 2019, Proceedings, Part I, Vol. 11561 of Lec-
ture Notes in Computer Science, Springer, 2019, pp. 401–420.
doi:10.1007/978-3-030-25540-4 23.
URL https://doi.org/10.1007/978-3-030-25540-4_23

[38] D. Aksaray, A. Jones, Z. Kong, M. Schwager, C. Belta, Q-
learning for robust satisfaction of signal temporal logic speci-
fications, in: 55th IEEE Conference on Decision and Control,
CDC 2016, Las Vegas, NV, USA, December 12-14, 2016, IEEE,
2016, pp. 6565–6570. doi:10.1109/CDC.2016.7799279.
URL https://doi.org/10.1109/CDC.2016.7799279

[39] X. Li, C. Belta, Temporal logic guided safe reinforcement learn-
ing using control barrier functions (2019). arXiv:1903.09885.

[40] L. Lindemann, D. V. Dimarogonas, Control barrier functions
for signal temporal logic tasks, IEEE Control. Syst. Lett. 3 (1)
(2019) 96–101. doi:10.1109/LCSYS.2018.2853182.
URL https://doi.org/10.1109/LCSYS.2018.2853182

[41] E. Goubault, S. Putot, Inner and Outer Reachability for the
Verification of Control Systems, HSCC (April 2019).

[42] C. Luis, J. Le Ny, Design of a Trajectory Tracking Controller
for a Nanoquadcopter, Tech. rep., Mobile Robotics and Au-
tonomous Systems Laboratory, Polytechnique Montreal (Au-
gust 2016).

[43] Bitcraze, https://store.bitcraze.io/.
[44] M. Bangura, R. Mahony, Nonlinear dynamic modeling for high

performance control of a quadrotor, in: Australasian Conference
on Robotics and Automation, 2012.

[45] C. Poussot-Vassal, F. Demourant, A. Lepage, D. Le Bihan,
Gust load alleviation: Identification, control, and wind tun-
nel testing of a 2-d aeroelastic airfoil, IEEE Transactions
on Control Systems Technology 25 (5) (2017) 1736–1749.
doi:10.1109/TCST.2016.2630505.

[46] R. Arora, A. Basu, P. Mianjy, A. Mukherjee, Understand-
ing deep neural networks with rectified linear units, CoRR
abs/1611.01491 (2016).
URL http://arxiv.org/abs/1611.01491

[47] A. Bemporad, M. Morari, V. Dua, E. N. Pistikopoulos, The
explicit linear quadratic regulator for constrained systems, Au-
tomatica 38 (1) (2002) 3–20.

[48] J. Ferlez, X. Sun, Y. Shoukry, Two-level lattice neural net-
work architectures for control of nonlinear systems, CoRR
abs/2004.09628 (2020).
URL https://arxiv.org/abs/2004.09628

[49] J. Ferlez, Y. Shoukry, Aren: assured relu NN architecture for
model predictive control of LTI systems, in: HSCC, ACM, 2020,
pp. 6:1–6:11.

[50] S. Lucia, B. Karg, A deep learning-based approach to robust
nonlinear model predictive control, IFAC-PapersOnLine 51 (20)
(2018) 511 – 516, 6th IFAC Conference on Nonlinear Model
Predictive Control NMPC 2018.

[51] A. Donze, Monitoring temporal properties of continuous sig-
nals, International Conference on Computer Aided Verification
(2010) 167–170https://link.springer.com/chapter/10.1007/
978-3-642-14295-6_17.

[52] A. Bakhirkin, N. Basset, Specification and efficient monitoring
beyond stl, in: T. Vojnar, L. Zhang (Eds.), Tools and Algo-

19

rithms for the Construction and Analysis of Systems, Springer
International Publishing, Cham, 2019, pp. 79–97.

[53] T. Akazaki, I. Hasuo, Time robustness in mtl and expressiv-
ity in hybrid system falsification, International Conference on
Computer Aided Verification (2015) 356–374https://arxiv.
org/pdf/1505.06307.pdf.

[54] A. Hill, A. Raffin, M. Ernestus, A. Gleave, R. Traore, P. Dhari-
wal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Rad-
ford, J. Schulman, S. Sidor, Y. Wu, Stable Baselines, https:

//github.com/hill-a/stable-baselines (2018).
[55] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., Tensorflow:
A system for large-scale machine learning, in: 12th {USENIX}
Symposium on Operating Systems Design and Implementation
({OSDI} 16), 2016, pp. 265–283.

[56] Bazel Documentation, https://docs.bazel.build/.
[57] Kubernetes Documentation, https://kubernetes.io/docs/

reference/.
[58] Bazel Container Image Rules, https://github.com/

bazelbuild/rules_docker.
[59] Bazel Kubernetes Rules, https://github.com/bazelbuild/

rules_k8s.
[60] D. Haziza, J. Rapin, G. Synnaeve, Hiplot, interactive high-

dimensionality plots, https://github.com/facebookresearch/
hiplot (2020).

[61] S. Sinha, H. Bharadhwaj, A. Srinivas, A. Garg, D2rl:
Deep dense architectures in reinforcement learning (2020).
arXiv:2010.09163.

[62] C. Wang, Y. Wu, Q. Vuong, K. Ross, Striving for simplicity and
performance in off-policy DRL: Output normalization and non-
uniform sampling, in: Proceedings of the 37th International
Conference on Machine Learning, Vol. 119 of Proceedings of
Machine Learning Research, 2020, pp. 10070–10080.

[63] N. Rao, E. Aljalbout, A. Sauer, S. Haddadin, How to make deep
rl work in practice (2020). arXiv:2010.13083.

[64] H. U. Sheikh, L. Bölöni, Reducing overestimation bias by in-
creasing representation dissimilarity in ensemble based deep q-
learning (2020). arXiv:2006.13823.

[65] D. Reda, T. Tao, M. van de Panne, Learning to locomote: Un-
derstanding how environment design matters for deep reinforce-
ment learning, in: Motion, Interaction and Games, MIG, Asso-
ciation for Computing Machinery, 2020.

[66] S. Dutta, X. Chen, S. Sankaranarayanan, Reachability analy-
sis for neural feedback systems using regressive polynomial rule
inference, in: 22nd ACM International Conference on Hybrid
Systems: Computation and Control, HSCC ’19, ACM, New
York, NY, USA, Montreal, QC, Canada, April 16-18, 2019,
https://doi.org/10.1145/33025043313351.

20

