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Abstract 

The application of unsupervised domain adaptation (UDA)-based fault diagnosis methods 

has shown significant efficacy in industrial settings, facilitating the transfer of operational 

experience and fault signatures between different operating conditions, different units of a fleet 

or between simulated and real data. However, in real industrial scenarios, unknown levels and 

types of noise can amplify the difficulty of domain alignment, thus severely affecting the 

diagnostic performance of deep learning models. To address this issue, we propose an UDA 

method called Smart Filter-Aided Domain Adversarial Neural Network (SFDANN) for fault 

diagnosis in noisy industrial scenarios. The proposed methodology comprises two steps. In the 

first step, we develop a smart filter that dynamically enforces similarity between the source 

and target domain data in the time-frequency domain. This is achieved by combining a 

learnable wavelet packet transform network (LWPT) and a traditional wavelet packet transform 

module. In the second step, we input the data reconstructed by the smart filter into a domain 

adversarial neural network (DANN). To learn domain-invariant and discriminative features, 

the learnable modules of SFDANN are trained in a unified manner with three objectives: time-

frequency feature proximity, domain alignment, and fault classification. We validate the 

effectiveness of the proposed SFDANN method based on two fault diagnosis cases: one 

involving fault diagnosis of bearings in noisy environments and another involving fault 

diagnosis of slab tracks in a train-track-bridge coupling vibration system, where the transfer 

task involves transferring from numerical simulations to field measurements. Results show that 

compared to other representative state of the art UDA methods, SFDANN exhibits superior 

performance and remarkable stability. 

Keywords: Intelligent fault diagnosis, unsupervised domain adaptation, learnable wavelet 

packet transform, noisy industrial scenarios.
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1. Introduction 

Intelligent fault diagnosis technology has recently received significant attention and has 

been widely applied to detect and monitor the health status of mechanical equipment and 

engineering structures [1-3]. Deep learning algorithms have become a popular choice for 

intelligent fault diagnosis tasks, with their extensive application being a notable development 

in this field [4]. Compared to traditional machine learning algorithms that require manual 

feature engineering, deep learning algorithms can automatically learn meaningful features from 

raw signals and often achieve better fault diagnosis performance. In particular, deep learning 

algorithms such as Long Short-term Memory Networks (LSTMs) [5], Generative Adversarial 

Networks (GANs) [6], and Variational Autoencoders (VAEs) [7] are increasingly gaining 

prominence in the field of intelligent fault diagnosis. Moreover, in few-shot fault diagnosis 

scenarios, meta-learning [8] and generative models [9] have recently showcased their 

effectiveness by learning directly from limited samples and providing data augmentation 

capabilities, respectively. 

Although deep learning-based methods have achieved remarkable success in intelligent 

fault diagnosis, they still face several challenges that particularly arise from real world 

limitations [10, 11]. One of the major challenges faced by deep learning-based methods for 

intelligent fault diagnosis is the difficulty in obtaining sufficient amounts of labeled data. This 

is particularly due to the fact that faults in safety-critical systems are rare. Insufficient training 

data can result in overfitting of deep learning models, which limits their applicability in real-

world deployments. To address the challenge of limited labeled data availability, one potential 

approach is to use domain adaptation techniques between a labeled source dataset and an 

unlabeled target dataset, which may be similar but still exhibit a domain gap due to differences 

in their distributions [12, 13]. In the context of fault diagnosis, domain adaptation has been 

employed either between different units of a fleet [14, 15], different operating conditions [16-

18], or between simulated and real data [19-22]. 

Unsupervised domain adaptation (UDA) techniques provide an effective method to 

address these challenges in fault diagnosis without requiring any labels in target domain [4, 23-

25]. The goal of using these techniques is to align the distributions of the source and target 

datasets, making the features learned from them indistinguishable between the two domains. 

Leveraging a classifier trained through either the process of feature alignment or based on 

learned domain-invariant features can be applied to both domains. This approach leads to better 

fault diagnosis performance in the target domain compared to directly applying models trained 
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on the source domain. In a comprehensive review paper, various UDA methods were 

compared, showcasing their strong performance in tackling fault diagnosis challenges 

associated with domain-shifts [10]. Among these methods, those employing adversarial 

training techniques have shown significant effectiveness in enhancing classification accuracy 

and have found widespread application across various domains. 

While the majority of developed transfer learning approaches has been focusing on 

closing the domain gap between data captured under real conditions for different operating 

conditions or different units of a fleet, recently, there has been an increasing emphasis on 

closing the domain gap between real and simulated data [19, 20, 22, 26]. In the context of 

simulation-to-real transfer, there are two main directions: one where labels are available in both 

the source and target domains [26], and another scenario where labels are only available in the 

source (simulated) domain [22]. Domain transfer from a fully controlled simulated dataset to a 

real dataset presents several challenges, including unknown class imbalance between different 

fault types [22] and unknown noise levels. Such challenges can significantly impact the 

performance of UDA algorithms, and unfortunately, they have not yet been sufficiently 

addressed. To address the impact of unknown noise, the deep negative correlation multisource 

domains adaptation networks [27] and marginal denoising autoencoders [28] have been 

proposed. However, these methods are either tailored for multiple source domain situations or 

rely on noise-free signals, which limits their broad applicability in real-world industrial 

settings. 

Given that noise can significantly impact the analysis of time-frequency characteristics in 

signals, one potential approach to mitigate domain gaps is to dynamically modify raw signals 

in the time-frequency domain during the training of domain adaptation models. This training 

approach aims to facilitate the learning of shared features between the source and target 

domains. In the field of signal processing, the recently proposed Denoising Sparse Wavelet 

Network (DeSpaWN) [29] and the Learnable Wavelet Packet Transform network (LWPT) [30] 

have shown superior performance in automatically learning meaningful and sparse features 

from raw signals. This makes them well-suited for unsupervised signal denoising. DeSpaWN 

primarily emphasizes low-frequency denoising and feature representation, while LWPT evenly 

prioritizes all frequency ranges. Inspired by these advancements in signal processing, we 

recently proposed a framework for acoustic signal denoising based on DeSpaWN [31]. By 

considering vibration signals as denoised variants of acoustic signals, we proposed an effective 

acoustic signal filtering technique. Additionally, we discovered that by guiding the signal 

representations, both DeSpaWN and LWPT can approximate one set of signals to another in 
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the time-frequency domain, thereby achieving signal denoising or enhancement. However, it 

is worth noting that our recently proposed framework requires target labels, which reduces its 

feasibility in many real-world applications. 

In this research, our primary focus is on tackling the challenge of bridging the domain gap 

between two noisy datasets of high frequency condition monitoring signals, where we only 

have labels for the source dataset but not for the target dataset. These datasets are characterized 

by unknown levels and types of noise that are different between the two domains. This 

significantly affects the alignment between source and target datasets. Specifically, we address 

the problem of UDA within the context of simulated-to-real domain gap scenarios. In this 

setup, the source (simulated) dataset would be either noise-free or would only contain 

controlled and known noise levels, while the target (real) dataset could be severely impacted 

by noise which is not known a priori. To address this challenge, we propose an unsupervised 

domain adaptation method called the Smart Filter-Aided Domain Adversarial Neural Network 

(SFDANN). SFDANN starts with two main components: a learnable wavelet packet transform 

(LWPT) network and a traditional wavelet packet transform (WPT) module to effectively 

handle the substantial gap between two domains with different noise levels. By feeding the raw 

signals from the noisy target domain into the LWPT module, specific coefficients that generate 

a filtered version of the input signals are produced. Conversely, the raw signals from the source 

domain are inputted into the WPT module. It gives traditional wavelet coefficients and 

reconstructs the raw input signals. Then, we introduce a guidance loss that acts on the learnable 

wavelet coefficients to promote a closer frequency content between the source and (noisy) 

target domains during the training process. Finally, we input the reconstructed signals of the 

source and target domains into the latter part of the SFDANN, a typical domain adversarial 

neural network (DANN) [32], which includes three main parts: a feature extractor, a domain 

discriminator, and a classifier. The feature extractor extracts features from the source and target 

domains using a convolutional neural network, the domain discriminator forces the extracted 

features to lose domain discriminability, and the classifier is trained using the features and 

labels of the source domain data to classify the aligned source and target domain data. The task 

of DANN becomes easier due to the similarity in frequency content of both source and target 

signals, which is achieved with the aid of our proposed smart filter. The proposed SFDANN 

builds the smart filter, feature extractor, domain discriminator, and classifier in a unified deep 

neural network framework, allowing the training process of each learnable module to be 

conducted simultaneously. The main contributions of our research are summarized as follows: 

(1) We propose a smart filter that combines the LWPT and WPT techniques with our 
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developed guidance loss. This smart filter dynamically enforces the similarity between the 

source and (noisy) target domain signals in the time-frequency domain during the training 

process. To the best of the authors' knowledge, it is the first time that the LWPT and WPT 

techniques are used in the context of UDA to denoise signals. 

(2) Our proposed UDA method utilizes the smart filter to enhance the performance of the 

domain adversarial neural network for end-to-end intelligent fault diagnosis. This approach 

effectively captures aligned features between the source and target domains, especially in noisy 

industrial scenarios. 

(3) In our extensive evaluations, we specifically focus on two main application scenarios 

that have been rarely studied: (a) UDA between two datasets with different levels and types of 

noise impact in the source and target domain signals, and (b) UDA between a noise-free 

simulated dataset and a real-world dataset with an unknown level and type of noise. In our 

application, we consider the train-track-bridge coupling system as a specific case study. 

The remaining content of this paper is structured as follows. In Section 2, we provide the 

background on the DANN and the LWPT. Section 3 presents our proposed method, SFDANN. 

In Section 4, we demonstrate the effectiveness of SFDANN in cross-domain fault diagnosis 

through two case studies. Section 4 also includes ablation studies on SFDANN and explores 

the specific role of the smart filter. Finally, in Section 5, we present the main conclusions of 

our work. 

2. Background 

2.1. Domain adversarial neural network (DANN) 

DANN is a neural network inspired by generative adversarial networks and has found 

widespread applications in various fields, including fault diagnosis [33] and prognosis [34], 

speech recognition [35], and sentiment analysis [36]. It comprises a feature extractor (GF), a 

domain discriminator (GD), and a classifier (GC) as depicted in Fig. 1 [32]. DANN captures 

transferable features that are invariant to domain changes through a minimax game between 

GD and GF. It learns features that are effective for classification by leveraging the relationship 

between GC and GF. Consequently, DANN can extract features that are both discriminative for 

classification tasks and invariant to domain changes, making it well-suited for various cross-

domain fault diagnosis applications. 
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Fig. 1. Architecture of classic DANN. 

The labeled data from the source domain is defined as {𝑥𝑖
s; 𝑦𝑖

s}𝑖=1
𝑁s , and the unlabeled data 

from the target domain is defined as {𝑥𝑖
t}𝑖=1
𝑁t . Here, 𝑥𝑖

s, 𝑦𝑖
s, and 𝑥𝑖

t represent the i-th sample 

from the source domain, the corresponding label for the i-th sample from the source domain, 

and the i-th sample from the target domain, respectively. 𝑁s and 𝑁t represent the number of 

samples from the source domain and target domain. DANN uses a loss function to minimize 

classification error and maximize domain discrimination error, thereby improving the 

classification ability of models and reducing the differences in domain distribution of extracted 

features. This loss function consists of the classification loss 𝐿C, defined by the cross-entropy 

loss, and the domain discrimination loss 𝐿D, defined by the binary cross-entropy loss. It can be 

expressed as: 

𝐿(𝜃F, 𝜃C, 𝜃D) = 𝐿c(𝜃F, 𝜃C) − 𝜆𝐿D(𝜃F, 𝜃D)                                        (1) 

𝐿C(𝜃F, 𝜃C) = −
1

𝑁s
∑  
𝑁s
𝑖=1 ∑  𝐶−1

𝑐=0 𝐼[𝑦𝑖
𝑠 = 𝑐]log(GC(GF(𝑥𝑖

s; 𝜃F); 𝜃C))                          (2) 

𝐿D(𝜃F, 𝜃D) = −
1

𝑁s
∑  
𝑁s
𝑖=1 log(GD(GF(𝑥𝑖

s; 𝜃F); 𝜃D)) −
1

𝑁t
∑  
𝑁t
𝑖=1 log(1 − GD(GF(𝑥𝑖

t; 𝜃F); 𝜃D))       (3) 

where 𝜃F , 𝜃C , and 𝜃D  are the parameters of GF , GC , and GD , respectively; 𝜆  is a trade-off 

parameter; 𝐼[·] is a symbol function that takes a value of 1 if the true label of 𝑥𝑖
s is 𝑐, and 0 

otherwise; and 𝐶 is the number of class labels. 

2.2. Learnable wavelet packet transform network (LWPT) 

LWPT is a recently proposed deep learning framework that draws inspiration from WPT 

and aims to automatically learn meaningful and sparse representations of raw signals [30]. Fig. 

2 depicts the cascade algorithm associated with WPT, which serves as the fundamental 

architecture of LWPT. This algorithm decomposes the input signal into detail and 

approximation coefficients by applying a low-pass and a high-pass filter, followed by a sub-

sampling step. In a recursive manner, the detail and approximation coefficients of the previous 
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layer are decomposed using a similar process. The detail and approximation coefficients of the 

final decomposition layer form the time-frequency representation of the input signal. By using 

the inverse WPT, the input signal can be perfectly reconstructed from the obtained 

representation. 

 

Fig. 2. Architecture of the cascade algorithm related to the WPT. 

 

Fig. 3. Encoding blocks of the WPT and the LWPT. 

LWPT adopts an encoder-decoder architecture that sequentially applies learnable signal 

decomposition and learnable signal reconstruction. It incorporates a fully learnable version of 

the cascade algorithm, enabling the learning of the kernel shared by both filters at each layer. 

The resulting detail and approximation coefficients from each layer are then passed through 

learnable hard thresholding (HT) activation functions originally proposed for DeSpaWN [29]. 

Fig. 3 illustrates the encoding blocks of WPT and LWPT, with elements shared with Fig. 2. 

The HT activation function is a combination of two sigmoid functions with opposite 

characteristics, and it is mathematically expressed as follows: 

HT(𝑥) = 𝑥 [
1

1+exp(10(𝑥+𝑏))
+

1

1+exp(−10(𝑥−𝑏))
]                                       (4) 

where 𝑏 is the learnable bias acting as the thresholds on both sides of the origin. 

The decoding blocks of LWPT exhibit a reverse architecture compared to the encoding 

blocks but without the HT activation functions. In each layer, the learnable HT activation 

functions operate independently to automatically denoise the wavelet coefficients in the 
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encoding blocks. However, due to the denoising effect of HT activation function, achieving 

perfect signal reconstruction with the decoding part of LWPT is not feasible anymore. 

3. Proposed method 

3.1. Overall framework of the proposed method 

When the signals are significantly affected by high levels of noise, current domain 

adaptation methods may face challenges in effectively learning the shared features between the 

source and target domains, leading to misclassification of a significant number of samples in 

the target domain. In this research, we focus on high frequency condition monitoring signals. 

To facilitate the learning of domain-invariant and discriminative features, we propose 

dynamically enforcing the similarity between the source and target domain signals in the time-

frequency domain during the training process while learning to filter the noisy target domain 

signals. The overall framework of our proposed SFDANN is depicted in Fig. 4, comprising 

four modules: a smart filter, a feature extractor, a domain discriminator, and a classifier. To 

clarify the operation mechanism of the SFDANN, the architecture in Fig. 4 is divided into two 

parts: Part A and Part B. Part A comprises the data input and the smart filter, which can filter 

signals without requiring neither labels nor ground truth noise-free signals. Part A inputs the 

source domain data into the WPT module and the (noisy) target domain data into the LWPT 

module. We also evaluate the opposite data input strategy, where we input the (noisy) target 

domain signals into the WPT and the source domain data into the LWPT. It is important to note 

that Fig. 4 displays only the first of the data input strategies. The optimal data input strategy 

will be further discussed in the ablation study section based on the evaluation of the obtained 

results. Part B involves the typical DANN architecture. During the training stage, the data from 

the source and target domains undergo filtering in Part A before being passed to Part B. 

Additionally, loss functions in Part B affect the parameter learning in Part A through error 

backpropagation. 

As depicted in Fig. 4, firstly, raw signals from the source domain are input into the WPT 

module’s encoder for signal decomposition, while the raw signals from the target domain are 

input into the LWPT module’s encoder for signal decomposition. This process generates 

traditional wavelet coefficients and learnable wavelet coefficients, respectively. Next, the 

traditional wavelet coefficients and learnable wavelet coefficients are reconstructed into time-

domain signals by the decoders of the WPT module and the LWPT modules. Guided by the 

guidance loss, the features of the learnable wavelet coefficients dynamically converge towards 

those of the traditional wavelet coefficients during the learning process. This convergence 
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enforces the similarity between the source and target domain signals in the time-frequency 

domain while filtering noisy signals. 

After being processed by the smart filter in Part A, the time-domain signals from the 

source and target domains are fed into the Part B of SFDANN. Part B consists of three typical 

components found in a DANN: feature extractor, domain discriminator, and classifier. The 

feature extractor utilizes a convolutional neural network to extract features from the source and 

target domains. The domain discriminator, guided by the domain discrimination loss, 

encourages the extracted features to lose domain distinction and become indistinguishable 

between the two domains. Meanwhile, the classifier is trained to minimize the misclassification 

loss associated with the source domain data. Moreover, the learning process of the smart filter 

is also guided by the domain discrimination loss and the classification loss, ensuring that the 

filter adjusts the time-frequency characteristics to facilitate the learning of domain-invariant 

and discriminative features. 

  

Fig. 4. Architecture of the proposed SFDANN. 

3.2. Smart filter 

The smart filter Gs consists of two modules: Gs−WPT (WPT module) and Gs−LWPT (LWPT 

module). Two distinct data input strategies are viable for the smart filter, the optimal of which 
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will be discussed in the ablation study section. For simplicity, we will explain the functioning 

of the smart filter using an example where data from the source domain is fed into Gs−WPT, and 

data from the target domain is fed into Gs−LWPT, consistent with depicted in Fig. 4. 

First, 𝑥𝑖
s  is decomposed into traditional wavelet coefficients {{𝑐𝑖,𝑗,𝑘

s }
𝑘=1

𝐾
}
𝑗=1

2𝐿

  using the 

encoder in Gs−WPT, which follows an L-layer signal decomposition framework. Similarly, 𝑥𝑖
t 

is decomposed into learnable wavelet coefficients {{𝑐𝑖,𝑗,𝑘
t }

𝑘=1

𝐾
}
𝑗=1

2𝐿

  using the encoder in 

Gs−LWPT, which also has an L-layer signal decomposition framework. Here, 𝐾 is the number 

of wavelet coefficients. The determination of the number of decomposition layers L is 

influenced by the sampling frequency 𝐹𝑠 and the frequency bandwidth 𝐹𝑟, which are important 

for fault diagnosis of the input signal, as stated in [29, 30]. The determination of 𝐹𝑟 is dependent 

on the inherent characteristics of the fault diagnosis object and will be further discussed in the 

case studies section. It is essential to highlight that when increasing the number of signal 

decomposition layers L, it directly adds complexity to the convolutional neural network. While 

this can result in finer decomposition of source and target domain signals, encouraging 

similarity in these smaller frequency bands, it is crucial to note that these fine-grained 

frequency bands do not possess specific physical significance for fault diagnosis. 

Consequently, they do not contribute to improving the smart filter's performance. On the 

contrary, the augmented learnable parameters can elevate the learning difficulty due to potential 

overfitting effect, especially when the dataset has limited samples. 

In real industrial scenarios, significant differences in time-frequency features between the 

source and target domain signals often arise due to factors such as noise interference. These 

differences typically stem from the distinct environments of each domain. Consequently, it is 

desirable to achieve overall similarity in the time-frequency characteristics of source and target 

domain samples. The expectation of the features of all samples from the source domain 

provides an overall representation of the data characteristics in that domain. However, during 

training, deep learning models typically process data in batches rather than the entire dataset at 

once. A batch size, which is smaller than the total number of samples, is determined, and a 

random batch of samples is selected for each training iteration. To ensure that the expectation 

of the features in a batch approximates that of the entire dataset, the ratio of samples 

corresponding to each class in the batch should be roughly equivalent to that in the whole 

dataset. According to the law of large numbers (specifically, Bernoulli’s law of large numbers), 

it is important to ensure that the batch size is not too small. Further details regarding the 
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appropriate batch size will be presented in the case studies section. 

Assuming that the batch size of SFDANN is B, we define a guidance loss to encourage 

the expectation of the learnable wavelet coefficients {{{𝑐𝑖,𝑗,𝑘
t }

𝑘=1

𝐾
}
𝑗=1

2𝐿

}
𝑖=1

𝐵

 for a batch of target 

domain samples {𝑥𝑖
t}𝑖=1
𝐵  to be close to the expectation of the traditional wavelet coefficients 

{{{𝑐𝑖,𝑗,𝑘
s }

𝑘=1

𝐾
}
𝑗=1

2𝐿

}
𝑖=1

𝐵

  for a batch of source domain samples {𝑥𝑖
s}𝑖=1

𝐵  . The guidance loss is 

expressed as follows: 

𝐿G(𝜃S) =
1

2𝐿
∑ (E [{{𝑐𝑖,𝑗,𝑘

s }
𝑘=1

𝐾
}
𝑖=1

𝐵

] − E [{{𝑐𝑖,𝑗,𝑘
t }

𝑘=1

𝐾
}
𝑖=1

𝐵

])

2

2𝐿

𝑗=1                                    (5) 

E [{{𝑐𝑖,𝑗,𝑘
s }

𝑘=1

𝐾
}
𝑖=1

𝐵

] =
1

𝐵
∑

1

𝐾
∑ |𝑐𝑖,𝑗,𝑘

s |𝐾
𝑘=1

𝐵
𝑖=1                                                 (6) 

E [{{𝑐𝑖,𝑗,𝑘
t }

𝑘=1

𝐾
}
𝑖=1

𝐵

] =
1

𝐵
∑

1

𝐾
∑ |𝑐𝑖,𝑗,𝑘

t |𝐾
𝑘=1

𝐵
𝑖=1                                                 (7) 

where 𝜃S represents the parameters of the smart filter Gs; 𝑘 is the wavelet coefficient number, 

which is related to time.  

While being guided by the guidance loss 𝐿G(𝜃S) and obtaining a similar signal content 

representation between source and target, the traditional wavelet coefficients 

{{{𝑐𝑖,𝑗,𝑘
s }

𝑘=1

𝐾
}
𝑗=1

2𝐿

}
𝑖=1

𝐵

 and learnable wavelet coefficients {{{𝑐𝑖,𝑗,𝑘
t }

𝑘=1

𝐾
}
𝑗=1

2𝐿

}
𝑖=1

𝐵

 are input into 

the separate decoders with L-layer signal reconstruction frameworks in Gs−WPT and Gs−LWPT, 

respectively, to generate reconstructed signals {�̂�𝑖
s}𝑖=1

𝐵  and {�̂�𝑖
t}𝑖=1
𝐵  in the source and target 

domains. Then, {�̂�𝑖
s; 𝑦𝑖

s}𝑖=1
𝐵  and {�̂�𝑖

t}𝑖=1
𝐵  are input into the subsequent DANN framework. 

3.3. Objective function 

To facilitate the learning of domain-invariant and discriminative features, our SFDANN 

is trained using three loss functions: the guidance loss, classification loss, and domain 

alignment loss. These loss functions directly and individually impact the smart filter, classifier, 

and domain discriminator components of SFDANN, as depicted in Fig. 4. 

3.3.1. Guidance loss 

The guidance loss serves the purpose of dynamically aligning the time-frequency features 

of the source and target domains, facilitating the learning of shared features between them. The 

expression for the guidance loss is shown in Eq. (5). 



12 

3.3.2. Classification loss 

The classification loss is calculated using cross entropy loss, which measures the 

discrepancy between the predicted label and the true label. This loss function guides the 

classifier to improve its classification performance and make accurate predictions. The 

expression for the classification loss is provided in Eq. (2). However, in our proposed 

SFDANN, the input 𝑥𝑖
s in Eq. (2) is replaced by �̂�𝑖

s, which corresponds to GS(𝑥𝑖
s; 𝜃S). As a 

result, 𝐿C(𝜃F, 𝜃C) in Eq. (2) is modified to 𝐿C(𝜃S, 𝜃F, 𝜃C). 

3.3.3. Domain alignment loss 

The domain alignment loss is calculated using binary cross-entropy loss, which quantifies 

the discrepancy between the source and target domain labels. Its objective is to ensure that the 

features extracted by the feature extractor are distinguishable by the domain discriminator. The 

expression for the domain alignment loss is presented in Eq. (3). However, in our proposed 

SFDANN, the terms 𝑥𝑖
s and 𝑥𝑖

t in Eq. (3) are substituted by �̂�𝑖
s and �̂�𝑖

t, respectively, denoting 

the outputs of GS(𝑥𝑖
s; 𝜃S) and GS(𝑥𝑖

t; 𝜃S). As a result, 𝐿D(𝜃F, 𝜃D) in Eq. (3) is modified to 

𝐿D(𝜃S, 𝜃F, 𝜃D). 

3.3.4. Overall objective function 

The overall objective function of SFDANN is a combination of the three loss functions 

and can be expressed as follows:  

𝐿(𝜃S, 𝜃F, 𝜃D, 𝜃C) = 𝐿C(𝜃S, 𝜃F, 𝜃C) − 𝜆𝐿D(𝜃S, 𝜃F, 𝜃D) + 𝜇𝐿G(𝜃S)                          (8) 

where 𝜆 and 𝜇 are the trade-off parameters.  

By assigning higher importance to 𝐿G than 𝐿D in the initial stages of training, we can 

facilitate the alignment of time-frequency features between the source and target domains and 

create favorable conditions for extracting shared features from them. Following the approach 

proposed by [37], we introduce a weight expression for 𝐿D, denoted as 𝜆, which increases from 

0 to 1 as the training progresses:  

𝜆 =
2

1+𝑒−10𝑝
− 1                                                                (9) 

where 𝑝  is the ratio of the current epochs to the total number of epochs in the training 

procedure. 

4. Case studies 

4.1. Introduction of case studies 

We validate the effectiveness of the proposed SFDANN for fault diagnosis in industrial 

scenarios with unknown types and levels of noise through two cases. The first case study 
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focuses on fault diagnosis of bearings, where the source and target domain data are constructed 

with a modified version of CWRU dataset [38] to match the case of significantly different 

levels of noise interference. The second case study involves the recognition of the health states 

of slab track in a train-track-bridge coupling system, where the source data are obtained from 

numerical simulation and target domain data comprise field measurements. In both cases, the 

data utilized consists of acceleration signals. 

To evaluate the performance of SFDANN, we compare it with five other UDA methods: 

joint adaptation networks (JAN) [39], multi kernels maximum mean discrepancy (MK-MMD) 

[40], correlation alignment (CORAL) [41], DANN [32], and conditional DANN (CDANN) 

[42]. To ensure fair and effective comparisons, we use a unified testing framework and 

consistent parameter settings for all methods, following the structure outlined in the review 

paper by [10]. A four-layer CNN serves as the feature extractor for all methods, and we also 

use this feature extractor in combination with a classifier as a baseline for comparison with 

UDA methods. In the case of the SFDANN method, unless stated otherwise, the source domain 

data is input into the WPT module and target domain data into the LWPT module, as depicted 

in Fig. 4. Since the classes in both case studies are balanced, the performance evaluation metric 

used in this paper is the overall accuracy of classification, calculated as the number of 

accurately classified samples divided by the total number of samples. To minimize result 

variability, we perform calculations with five random seeds and report the average and standard 

deviation of the classification results. 

4.1.1. Case Study 1: bearing fault diagnosis 

(1) Data description  

The CWRU dataset has been one of the most commonly used open-source datasets in 

UDA research. A diagram illustrating the experimental setup is provided in Fig. 5 [38]. In this 

research, we use the 12 kHz drive-end bearing data, with detailed parameters provided in Table 

1. The bearing data consists of four different operating conditions, each corresponding to a 

different combination of load and rotational speed parameters. The dataset contains 10 different 

health conditions of the bearing, including one healthy state and three different fault types 

(inner ring faults (IF), outer ring faults (OF) and ball faults (BF)) with three different fault sizes 

each. 

However, unlike previous studies, our case considers the impact of environmental noise 

on the target domain data, which is considered more realistic for industrial applications. In 

practical industrial settings, various levels of noise interference are unavoidable, and UDA 
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techniques always involve generalizing data to unknown levels of noise. To simulate real-

world scenarios, we add Gaussian white noise to target domain data, resulting in noisy signals 

with signal-to-noise ratios (SNRs) of 0 or -5. The SNR is defined as follows: 

SNRdB = 10 log10
𝑃s

𝑃n
                                                            (10) 

where 𝑃s and 𝑃n are the power of the signal and noise, respectively. 

 
Fig. 5. Diagram of the test rig for collecting CWRU data. 

 

Table 1. Parameters for the CWRU dataset. 

Operation 

condition 

Rotational 

speed (RPM) 

Class label  

(Fault type-severity 

in mm) 

0 1797 0(NA), 1(IF-7), 

2(BF-7), 3(OF-7), 

4(IF-14), 5(BF-14), 

6(OF-14), 7(IF-21), 

8(BF-21), 9(OF-21) 

1 1772 

2 1750 

3 1730 

 

(2) Parameter settings 

In this study, the Z-score normalization method is used to normalize the data. The 

normalized signal is then segmented into samples using a sliding window with a window length 

of 2048, which coincides with the approach and parameters adopted by [43] and [44]. The 

segmentation process does not involve any overlap between the samples. Consequently, each 

fault state contains approximately 60 samples, while the healthy state contains approximately 

120 samples under operation condition 0 and 240 samples under other operation conditions. 

For both the source and target domains, 80% of the total samples are used for training, and 

20% are reserved for testing. The cross-domain task of 0→1 is denoted as T01, indicating that 

the model is trained using labeled training data from operation condition 0 and unlabeled 

training data from operation condition 1, and subsequently tested using testing data from 

operation condition 1.   

The model training process is conducted over a total of 300 epochs. The initial learning 

rate is set to 0.001, which is reduced by a factor of 0.1 at epochs 150 and 250 to facilitate 

learning rate decay. To ensure the inclusion of meaningful frequency bandwidth for bearing 

fault diagnosis, the smart filter is configured with five signal decomposition layers, resulting 

in a frequency resolution of 12000/2/25 = 187.5Hz. The batch size is set to 64. The trade-
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off parameter 𝜆 is determined using Eq. (9), while the value of 𝜇 is adjusted based on the 

severity of the noise. Specifically, 𝜇 is set to 1 when no Gaussian white noise is present, 2 at a 

SNR of 0, and 10 at a SNR of -5. 

4.1.2. Case Study 2: State recognition of slab tracks 

Slab track has been increasingly built in urban rail transit and high-speed railways. The 

mortar layer, which connects the slab track and the foundation, is susceptible to degradation 

due to train dynamic loads, temperature fluctuations, and other factors. Recognizing the state 

of the slab track is crucial for ensuring the safe operation of trains. However, acquiring an 

adequate amount of labeled data from field measurements poses challenges. Moreover, 

measurements are usually taken under noisy environments. Therefore, conducting numerical 

simulation and then applying the UDA methods to transfer from labeled and noise-free 

numerical simulation data to unlabeled and noisy measurement data is very important. 

(1) Field measurements 

Since the primary cause of slab track deterioration is the degradation of the mortar layer, 

which alters the support conditions of the slab track, we have chosen three different support 

conditions of slab track from a railway test line to represent three different deterioration states, 

as depicted in Fig. 6. The connections between the three track slabs and the foundation are 

supported by mortar, rubber, and discrete spring, respectively, representing the healthy state, 

moderate deterioration state, and severe deterioration state. 

 
Fig. 6. Three types of slab track with different support conditions. 

 

The railway test line is installed on simply supported girder bridges. A six-vehicle metro 

train with a total length of 140 meters operates on the railway test line. Acceleration signals 

are collected from acceleration sensors installed on the three types of slab track, as depicted in 

Fig. 7. The signals are sampled at a frequency of 20 kHz. The train operates at speeds of 20, 

40, 60, and 80 km/h, and six passes are conducted at each speed. 

 
Fig. 7. Placement of acceleration sensors. 
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(2) Numerical simulation 

To obtain the numerical simulation signals of slab track vibration, a coupling vibration 

numerical model is established based on the mechanical parameters of the train, track, and 

bridge obtained from the field experiment. The model development is divided as two steps to 

reduce computational costs. Firstly, the numerical model of the train, steel rail, and bridge is 

established using ANSYS software with the beam elements, as depicted in Fig. 8. To generate 

track irregularity, we use the irregularity spectrum from ISO 3095-2013 [45] and then obtain 

the wheel-rail force time-history data using the modal superposition method [46] when the train 

travels at the four different speeds. 

 
(a) 

  
(b) 

Fig. 8. Numerical models with beam element: (a) Single vehicle of metro train; (b) Rail and bridge. 

Secondly, a refined numerical model of the steel rail, slab track, and bridge is developed 

using the ABAQUS software. Beam elements are used to model the steel rails, while solid 

elements are used to model the slab track and bridge structures, as illustrated in Fig. 9. The 

wheel-rail force time-history data obtained previously is loaded onto the numerical model in 

ABAQUS as a moving load. The simulated acceleration signals of the slab track are then 

calculated corresponding to the placement position of the acceleration sensors in the field 

measurement. 

  
Fig. 9. Refined numerical models of rail, slab track and bridge. 

(3) Parameter Settings 

In the time domain, the acceleration signal of the slab track exhibits six cycles of 

waveforms due to the continuous excitation caused by the six vehicles of the metro train. To 

enhance the dataset, each measured or simulated sample is divided into six sub-samples based 

on the time when each vehicle passes through the slab track. Consequently, for both measured 

and simulated data, there are a total of 36 sub-samples for each track state at each speed. 
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In the frequency domain, the computational cost significantly increases when calculating 

high-frequency vibrations. Therefore, we set the maximum frequency of the numerical 

simulation to 800Hz. To ensure consistency with the frequency range of the numerical 

simulation signal, we apply a bandpass filter to the measured signal and retain the frequency 

components below 800Hz. 

For data normalization, we use the Z-score normalization method to globally normalize 

the data, using the numerical simulation as the source domain and the field measurement as the 

target domain. In both domains, 75% of the total samples are allocated for the training set, 

while the remaining 25% are assigned to the testing set. To approximate more realistic 

scenarios, sub-samples from the same train ride are either all included in the training dataset or 

all included in the testing dataset. 

In this case study, we use healthy and faulty acceleration signals generated from numerical 

simulations as input source domain data, while healthy and faulty signals collected from 

acceleration sensors during field experiments serve as input target domain data. The resulting 

output of the SFDANN provides classification labels. The model training parameters are the 

same as those used in Case Study 1. The smart filter includes six signal decomposition layers, 

which corresponds to a frequency resolution of 800/26 = 12.5Hz. The batch size is set to 27, 

ensuring that it can be evenly divided by 36 × 3 × 75% = 81 training samples at each speed. 

The trade-off parameter 𝜆 is set according to Eq. (9), and 𝜇 is set to 5. 

4.2. Results and analysis 

4.2.1. Diagnosis results 

(1) Diagnosis results of Case Study 1 (Bearing dataset) 

Diagnosis results in the Case Study 1 are obtained considering noise added in the target 

domain data with SNRs of 0 and -5. Given the extensive diagnosis results obtained through 

experiments conducted with various noise levels and based on different UDA methods, we 

selectively focus on a subset of transfer tasks. Specifically, we present transfer diagnosis results 

from operating condition 0 to other operating conditions, as well as from operating condition 

1 to other operating conditions. This subset constitutes half of all transfer tasks and provides a 

suitable basis for comparing the performance of different UDA methods. Tables 2 showcases 

these results. The findings in Tables 2 clearly demonstrate the superior fault diagnosis accuracy 

achieved by the SFDANN method proposed in this paper. When using the original noise-free 

CWRU dataset, all UDA methods attain fault diagnosis accuracy close to 100%, indicating the 

effective resolution of domain transfer challenges through conventional UDA methods in the 
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original CWRU dataset. However, the introduction of noise interference into the target domain 

dataset adversely impacts the performance of all fault diagnosis methods. At an SNR of 0, the 

SFDANN method exhibits an average diagnostic accuracy of 96.3%, surpassing other fault 

diagnosis methods by 2.0%-50.8%. At the SNR of -5, the superiority of the SFDANN method 

over other fault diagnosis methods becomes more pronounced. Despite the average diagnostic 

accuracy of the SFDANN method decreasing to 83.9%, it continues to outperform other fault 

diagnosis methods by 10.7%-52.9%. These results underscore the exceptional diagnostic 

performance of the SFDANN method in noisy environments. 

Table 2. Bearing fault diagnosis accuracy considering various transfer tasks and noise levels. 

Noise 

level 
Task CNN CORAL MK-MMD JAN DANN CDANN SFDANN 

No noise 

T01 99.4%±1.3% 100.0%±0 100.0%±0 99.9%±0.3% 99.9%±0.3% 100.0%±0 99.9%±0.3% 

T02 99.6%±0.3% 99.9%±0.3% 99.8%±0.3% 99.7%±0.3% 99.8%±0.3% 99.6%±0.3% 99.7%±0.3% 

T03 86.5%±2.5% 100.0%±0 99.9%±0.3% 99.7%±0.4% 99.8%±0.3% 99.8%±0.3% 99.7%±0.3% 

T10 98.9%±1.1% 99.7%±0.4% 99.8%±0.3% 99.5%±0.4% 99.8%±0.3% 99.5%±0.4% 99.9%±0.3% 

T12 99.5%±0.3% 99.7%±0.3% 99.7%±0.3% 99.7%±0.3% 99.9%±0.3% 99.9%±0.3% 99.9%±0.3% 

T13 97.1%±1.2% 99.8%±0.3% 100.0%±0 99.9%±0.2% 99.8%±0.2% 100.0%±0 99.9%±0.3% 

Average 96.8%±1.1% 99.9%±0.2% 99.9%±0.2% 99.7%±0.3% 99.8%±0.3% 99.8%±0.2% 99.8%±0.3% 

SNR=0 

T01 43.1%±12.7% 31.1%±21.0% 93.4%±2.3% 93.8%±1.2% 95.5%±1.8% 93.6%±2.4% 96.1%±1.0% 

T02 43.1%±8.1% 56.1%±24.1% 93.7%±3.3% 94.8%±1.7% 95.1%±1.6% 93.1%±1.8% 97.1%±1.0% 

T03 30.3%±5.2% 22.7%±5.1% 75.8%±2.8% 90.5%±3.0% 91.9%±4.5% 88.3%±4.1% 96.2%±1.3% 

T10 50.6%±10.7% 58.6%±1.5% 82.9%±2.9% 77.9%±4.9% 93.9%±2.3% 88.9%±2.4% 94.0%±0.8% 

T12 60.8%±2.6% 82.4%±2.3% 95.1%±2.0% 95.7%±2.1% 96.1%±1.1% 95.6%±0.8% 97.8%±1.3% 

T13 45.3%±4.5% 48.8%±10.4% 94.3%±1.7% 96.0%±0.6% 93.4%±1.4% 93.4%±1.6% 96.7%±1.2% 

Average 45.5%±7.3% 50.0%±10.7% 89.2%±2.5% 91.5%±2.3% 94.3%±2.1% 92.2%±2.2% 96.3%±1.1% 

SNR=-5 

T01 40.3%±9.9% 35.2%±4.3% 56.4%±8.5% 59.1%±2.8% 74.5%±5.5% 58.0%±6.1% 86.1%±2.4% 

T02 37.2%±4.0% 38.0%±5.6% 44.8%±6.4% 57.5%±6.5% 79.7%±2.0% 79.5%±5.0% 85.1%±1.9% 

T03 16.8%±1.9% 36.3%±3.5% 49.3%±1.3% 58.9%±5.3% 62.4%±2.0% 47.9%±2.9% 80.8%±1.7% 

T10 31.5%±3.1% 35.3%±3.3% 35.7%±2.2% 49.1%±7.2% 73.3%±2.4% 35.1%±1.7% 87.5%±1.8% 

T12 31.9%±7.9% 34.1%±3.8% 81.4%±3.6% 80.8%±1.4% 79.1%±2.5% 45.3%±4.1% 82.7%±2.0% 

T13 28.4%±5.4% 38.9%±7.0% 38.8%±5.4% 55.6%±4.4% 70.2%±3.9% 46.7%±6.4% 81.3%±0.9% 

Average 31.0%±5.4% 36.3%±4.6% 51.1%±4.6% 60.2%±4.6% 73.2%±3.1% 52.1%±4.4% 83.9%±1.8% 

 

To visualize the extracted features and validate the domain alignment capability of 

different methods, we used the t-distributed stochastic neighbor embedding (t-SNE) method 

[47]. Fig. 10 illustrates the visualization results of the feature distribution on a randomly 

selected task T01 using various methods, with an SNR of -5 for the target domain data. For 

clarity, we only display the results from four methods. Different fault types are represented by 

different colors, while different domains are distinguished by different shapes. This transfer 

learning task is particularly challenging due to the presence of severe noise interference. As 

depicted in Fig. 10, conventional UDA methods exhibit significant domain misalignment, 
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indicating a difficulty in aligning the feature distributions between the source and target 

domains due to the noise impact. In contrast, the SFDANN method demonstrates a remarkable 

ability to align the domains and perform accurate classification. The visualization confirms the 

strong domain alignment and classification capabilities of the SFDANN method in the face of 

challenging noise interference. 

 

  

(a) CORAL                                                         (b) MK-MMD 

  

(c) DANN                                                           (d) SFDANN 

Fig. 10. Visualization of features using t-SNE for the bearing case with transfer task T01. 

 

(2) Diagnosis results of Case Study 2 (Slab track dataset) 

Table 3 presents the diagnosis results for Case Study 2, where the UDA methods are 

applied on transfer tasks from labeled numerical simulation data (source domain) to unlabeled 

field measurement data (target domain) at different train speeds. The proposed SFDANN 

method achieves the highest fault diagnosis accuracy across all transfer tasks. SFDANN 

demonstrates an average accuracy of 96.1% for all cross-domain tasks, surpassing the best 

performing method by 13.3% and the worst performing method by 26.3%. These results 

illustrate the exceptional fault diagnosis performance of the SFDANN method in transferring 

knowledge from simulation scenarios to real-world scenarios in complex industrial systems. 
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Table 3. Recognition accuracy of slab track health state. 

Speed CNN CORAL MK-MMD JAN DANN CDANN SFDANN 

20 km/h 60.0%±8.2% 83.7%±9.3% 79.3%±3.8% 73.3%±3.6% 63.0%±7.4% 68.2%±3.0% 100.0%±0 

40 km/h 71.1%±4.3% 80.0%±10.1% 77.8%±12.6% 77.8%±8.4% 72.6%±1.8% 69.6%±3.6% 96.3%±4.1% 

60 km/h 68.2%±3.0% 81.5%±8.1% 78.5%±6.4% 70.4%±5.7% 79.3%±6.0% 80.0%±5.0% 96.3%±4.1% 

80 km/h 80.0%±4.4% 85.9%±3.6% 84.4%±5.4% 90.4%±1.8% 85.2%±6.6% 85.2%±5.2% 91.9%±2.8% 

Average 69.8%±5.0% 82.8%±7.8% 80.0%±7.1% 78.0%±4.9% 75.0%±5.5% 75.8%±4.2% 96.1%±2.8% 
 

  

(a) CORAL                                                         (b) MK-MMD 

  

(c) DANN                                                         (d) SFDANN 

Fig. 11. Visualization of features using t-SNE for the slab track case at a train speed of 60km/h. 

Similar to Case Study 1, we used the t-SNE method to evaluate the domain alignment 

capabilities of different methods by visualizing the extracted features. To ensure clarity, in Fig. 

11, we only present the results for four methods, using the case of train speed 60km/h as an 

example. As observed from the figure, the conventional UDA methods fail to achieve complete 

domain alignment. However, the SFDANN method demonstrates robust domain alignment and 

classification capability. 

4.2.2. Ablation study 

To assess the influence of the LWPT and WPT modules on the performance of the 

SFDANN model, we conducted an ablation study in this section. In the Section 4.2.1, we 

already compared SFDANN with a variant that uses two WPT modules instead of the 
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combination of LWPT and WPT modules, which corresponds to the classical DANN. In this 

section, we introduce another variant of SFDANN, referred to as SFDANN-v, where the 

combination of LWPT and WPT modules in SFDANN is replaced with two LWPT modules. 

Moreover, we added different levels of Gaussian white noise to source domain of CWRU 

dataset as a supplement of Case study 1, where the noisy environments is only considered for 

target domain. The performance of SFDANN with two distinct data input strategies is 

evaluated in this section to analyze the impact of data input strategy on the alignment of two 

domains.  

Table 4. Fault diagnosis accuracy using CWRU dataset in ablation study. 

Task SFDANN-v 
SFDANN 

S→LWPT T→LWPT 

No noise 

T01 99.7%±0.3% 99.9%±0.3% 99.9%±0.3% 

T02 99.7%±0.3% 99.9%±0.3% 99.7%±0.3% 

T03 99.9%±0.3% 99.7%±0.3% 99.7%±0.3% 

T10 99.7%±0.3% 99.9%±0.3% 99.9%±0.3% 

T12 99.7%±0.3% 99.7%±0.3% 99.9%±0.3% 

T13 99.8%±0.3% 99.9%±0.2% 99.9%±0.3% 

Average 99.8%±0.3% 99.8%±0.3% 99.8%±0.3% 

SNR=0 

Source 

T01 98.1%±0.6% 98.4%±0.5% 98.1%±1.1% 

T02 98.7%±1.1% 98.8%±1.0% 98.4%±0.8% 

T03 99.5%±0.5% 99.2%±0.5% 97.7%±1.9% 

T10 96.2%±2.1% 96.3%±0.9% 95.5%±0.9% 

T12 97.6%±1.1% 98.3%±0.9% 98.6%±0.6% 

T13 99.5%±0.6% 99.9%±0.3% 99.7%±0.3% 

Target 

T01 94.4%±2.1% 95.4%±1.0% 96.1%±1.0% 

T02 95.8%±1.7% 96.3%±1.1% 97.1%±1.0% 

T03 93.4%±1.5% 93.7%±2.5% 96.2%±1.3% 

T10 94.4%±1.4% 93.8%±1.3% 94.0%±0.8% 

T12 96.9%±1.4% 96.7%±0.5% 97.8%±1.3% 

T13 95.8%±0.8% 96.4%±2.2% 96.7%±1.2% 

Average 96.7%±1.2% 96.9%±1.1% 97.2%±1.0% 

SNR=-5 

Source 

T01 91.0%±0.9% 97.0%±1.0% 95.5%±0.7% 

T02 87.6%±3.2% 96.5%±0.7% 94.4%±1.8% 

T03 91.1%±1.1% 94.2%±1.9% 92.5%±0.7% 

T10 88.8%±2.0% 93.9%±1.1% 90.9%±1.5% 

T12 92.2%±0.6% 96.2%±1.5% 93.4%±1.4% 

T13 92.5%±0.9% 97.2%±1.1% 93.5%±2.7% 

Target 

T01 79.6%±4.7% 83.5%±3.0% 86.1%±2.4% 

T02 74.7%±3.3% 81.3%±1.0% 85.1%±1.9% 

T03 72.1%±5.7% 78.7%±1.0% 80.8%±1.7% 

T10 83.2%±1.5% 84.6%±1.5% 87.5%±1.8% 

T12 78.2%±1.7% 80.3%±1.7% 82.7%±2.0% 

T13 77.1%±4.0% 79.1%±3.2% 81.3%±0.9% 
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Average 84.0%±2.5% 88.5%±1.6% 88.6%±1.6% 

Note: “S→LWPT” indicates the data input strategy of feeding the source domain data into the LWPT module of smart filter; “T→LWPT” 

indicates the data input strategy of feeding the target domain data into the LWPT module of smart filter; “Source” means that the noise is 
added to the source domain; “Target” means that the noise is added to the target domain. 

 

Table 5. Fault diagnosis accuracy using slab track dataset in ablation study. 

Speed SFDANN-v 
SFDANN 

S→LWPT T→LWPT 

20 km/h 87.4%±5.5% 99.3%±1.5% 100.0%±0 

40 km/h 75.6%±1.8% 91.1%±6.5% 96.3%±4.1% 

60 km/h 82.2%±1.5% 91.9%±8.2% 96.3%±4.1% 

80 km/h 86.7%±3.8% 89.6%±1.5% 91.9%±2.8% 

Average 83.0%±3.2% 93.0%±4.4% 96.1%±2.8% 

Note: “S→LWPT” indicates the data input strategy of feeding the source domain data into the LWPT module of smart filter; “T→LWPT” 
indicates the data input strategy of feeding the target domain data into the LWPT module of smart filter. 

 

The experimental results of SFDANN-v and SFDANN on the bearing dataset and the slab 

track dataset are presented in Table 4 and 5. These results demonstrate that the overall 

performance of SFDANN is superior to that of SFDANN-v. On the bearing dataset, when there 

is no Gaussian white noise in the data, both SFDANN and SFDANN-v exhibit nearly identical 

fault diagnosis accuracy. However, in the presence of Gaussian white noise in either the source 

domain or the target domain, SFDANN consistently outperforms SFDANN-v in most cases. 

For the slab track dataset, SFDANN demonstrates better domain adaptation ability compared 

to SFDANN-v. This suggests that preserving either the source domain data or the target domain 

data, and promoting the other domain data to resemble the preserved data, yields improved 

domain alignment results compared to using two LWPT modules to align both domains 

simultaneously. This observation can be attributed to the fact that the combination of LWPT 

and WPT modules has fewer learnable parameters compared to two LWPT modules. As a 

result, it reduces training difficulty and enhances training stability, leading to better 

performance in SFDANN. 

Table 4 additionally exhibits the fault diagnosis results of bearings using two data input 

strategies with the SFDANN method. It can be observed that the diagnostic accuracy is similar 

when there is no Gaussian noise in the dataset, regardless of the input strategy employed. 

However, when noise is present in the source domain, the overall diagnostic accuracy is higher 

when the noisy source domain data is inputted into the LWPT module of the smart filter, while 

the noise-free target domain data is inputted into the WPT module. Conversely, when noise 

exists in the target domain, the diagnostic performance is generally better when the noisy target 

domain data is inputted into the LWPT module. This phenomenon can be attributed to the 

guidance loss, which drives the time-frequency characteristics of the input data in the LWPT 
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module to closely align with those of the input data in the WPT module. If the data inputted to 

the WPT module is less affected by noise, the data inputted to the LWPT module will undergo 

a certain level of denoising during the model training process, leading to improved fault 

diagnosis performance compared to conventional UDA methods. However, if the data inputted 

to the WPT module is heavily impacted by noise, the data inputted to the LWPT module 

experiences a certain level of noise augmentation during training. While the SFDANN with 

this data input strategy still outperforms conventional UDA methods in most cases, the degree 

of performance improvement is not as significant as that achieved by the data input strategy 

capable of denoising the noisy data.  

Similar phenomenon can be observed in the state recognition results of slab tracks. Table 

5 indicates that the state recognition accuracy obtained by inputting the field measurement data 

into the LWPT module of the smart filter and the numerical simulation data into the WPT 

module is higher than that obtained by the other data input strategy. This is mainly because 

numerical simulation signals are purer and easier to be classified correctly by the classifier than 

field measurement signals. Therefore, promoting the field measurement signals similar to the 

numerical simulation signals is more conducive to fault diagnosis than promoting the numerical 

simulation signals similar to the field measurement signals. As a result, it can be concluded 

from Table 4 and 5 that the optimal data input strategy for SFDANN is to feed the data from 

the noisier domain into the LWPT module of the smart filter, while inputting the data from 

another domain into the WPT module of the smart filter. 

4.2.3. Effect of smart filter 

To further investigate the effectiveness of the smart filter in SFDANN, we analyzed the 

spectral changes of data passing through the smart filter. We focused a UDA task from 

operation condition 0 to 2 in the bearing case study, where the Gaussian white noise was added 

to the target domain data to create noisy signals with an SNR of -5. In this analysis, we input 

noisy target domain data (i.e., data from operation condition 2) into the LWPT module, while 

the source domain data (i.e., data from operation condition 0) was input into the WPT module. 

After training the SFDANN model, we selected the original source domain data, original target 

domain data, reconstructed source domain data, and reconstructed target domain data 

corresponding to label 2 as examples to explore the effect of the smart filter. To assess the 

impact of the smart filter, we calculated the mean frequency spectra for these four groups of 

data and plotted them in Fig. 12(a), while the corresponding one-third octave spectra were 

shown in Fig. 12(b). 
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(a) Frequency spectra                                  (b) One-third octave spectra 

Fig. 12. Source and target domain data corresponding to label 2 from CWRU dataset: “Rec” denotes 

“Reconstructed”. 

The frequency spectra of the original and reconstructed source domain data completely 

overlap in Fig. 12, indicating that there is no change in the source domain data before and after 

passing through the smart filter. However, the original target domain data is severely distorted 

by noise, leading to a significant deviation in its frequency spectrum compared to that of the 

source domain data. The reconstructed target domain data exhibits a frequency spectrum shape 

that is closer to that of the source domain data when compared to the original target domain 

data. This suggests that the target domain data has increased similarity with the source domain 

data after passing through the smart filter. Such alignment between the source and target 

domains is beneficial for subsequent feature extractors to capture shared features and further 

improve fault diagnosis accuracy. 

   

(a) Frequency spectra                                  (b) One-third octave spectra 

Fig. 13. Source and target domain data corresponding to label 2 from slab track dataset: “Rec” denotes 

“Reconstructed”. 

For the slab track case, we select a UDA task with a train speed of 60 km/h as an example. 

In this case, the measurement data serves as the target domain data and is input into the LWPT 

module, while the numerical simulation data serves as the source domain data and is input into 
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the WPT module. After the model training, we obtain original and reconstructed data with label 

2 for both domains. Their mean frequency spectra and corresponding one-third octave spectra 

are plotted in Fig. 13. From Fig. 13(b), it is evident that, at the one-third octave scale, the shape 

of the reconstructed source domain data is closer to that of the target domain data compared to 

the original source data. This demonstrates the effectiveness of the smart filter in promoting 

the similarity between the data from the two domains. This increased similarity is beneficial 

for SFDANN model to learn domain-invariant and discriminative features, leading to improved 

performance in fault diagnosis tasks. 

5. Conclusion 

We propose SFDANN, an unsupervised domain adaptation method to address the 

challenge of domain misalignment in fault diagnosis scenarios characterized by different noise 

levels. SFDANN consists of a smart filter based on LWPT and WPT, a feature extractor, a 

domain discriminator, and a classifier. The effectiveness of SFDANN is demonstrated through 

case studies on bearing fault diagnosis in noisy environments and on simulation to real transfer 

of slab track fault diagnosis in a train-track-bridge coupling vibration system. The latter case 

study involves the transfer of models from labeled numerical simulations to unlabeled field 

measurements. Furthermore, this study analyzes the impact of two data input strategies, (1) 

inputting source and target domain data separately into LWPT and WPT modules, and (2) the 

reverse input strategy, on fault diagnosis results.  

The results indicate that the designed smart filter can dynamically approximate the source 

and target signals in the time-frequency domain, allowing SFDANN to learn domain-invariant 

and discriminative features. Inputting the data from the domain with more severe noise 

interference into the LWPT module of the smart filter, and the data from the other domain into 

the WPT module, proves more beneficial for improving the overall final fault diagnosis 

accuracy. Furthermore, the proposed SFDANN method outperforms other UDA methods in 

terms of domain adaptability and diagnostic performance in industrial scenarios with unknown 

types and levels of noise. 

In comparison to other UDA methods, the primary drawback of our proposed method is 

the additional computational cost incurred during the training of the newly introduced module, 

smart filter. However, it is important to note that the increase in the computational cost is only 

significant when the number of signal decomposition layers becomes excessively large. Our 

future research will focus on partial domain adaptation for fault diagnosis. Additionally, we 

plan to evaluate the performance of SFDANN on other challenging fault knowledge transfer 



26 

tasks, such as utilizing signals measured by different types of sensors. The proposed SFDANN 

algorithm is very versatile and flexible which makes it applicable across a wide range of 

potential applications, especially those susceptible to noise interference. This applicability 

extends beyond the specific fault diagnosis scenarios showcased in this study. Illustrative 

examples include transfer learning tasks in noisy speech recognition and health-oriented 

applications, particularly involving the processing of electroencephalogram (EEG) and 

electrocardiogram (ECG) data. 
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