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Abstract

While image segmentation is crucial in various computer vision applications, such as autonomous driving, grasping, and robot
navigation, annotating all objects at the pixel-level for training is nearly impossible. Therefore, the study of unsupervised im-
age segmentation methods is essential. In this paper, we present a pixel-level clustering framework for segmenting images into
regions without using ground truth annotations. The proposed framework includes feature embedding modules with an atten-
tion mechanism, a feature statistics computing module, image reconstruction, and superpixel segmentation to achieve accurate
unsupervised segmentation. Additionally, we propose a training strategy that utilizes intra-consistency within each superpixel,
inter-similarity/dissimilarity between neighboring superpixels, and structural similarity between images. To avoid potential over-
segmentation caused by superpixel-based losses, we also propose a post-processing method. Furthermore, we present an extension
of the proposed method for unsupervised semantic segmentation. We conducted experiments on three publicly available datasets
(Berkeley segmentation dataset, PASCAL VOC 2012 dataset, and COCO-Stuff dataset) to demonstrate the effectiveness of the
proposed framework. The experimental results show that the proposed framework outperforms previous state-of-the-art methods.
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1. INTRODUCTION

Image segmentation is an essential task in various computer
vision applications, where it groups the pixels of an input image
into segments that contain pixels belonging to the same object,
stuff, or component. This task plays a critical role in numerous
fields, including robot navigation, grasping, and autonomous
driving. Specifically, in robot navigation and autonomous driv-
ing, image segmentation is used to distinguish between ground,
objects, and air in an image, ensuring safe navigation. In robot
grasping, image segmentation helps in localizing the target ob-
ject among other objects.

While supervised semantic segmentation has attracted sig-
nificant attention from researchers because of its high accuracy
(Shelhamer et al., 2017; Kang and Nguyen, 2019; Shojaiee and
Baleghi, 2023), these methods typically require a large dataset
consisting of images and their pixel-level class labels, which is
expensive to obtain. Moreover, supervised semantic segmen-
tation methods have limitations in handling unknown object
classes since they are constrained to classify each pixel into
one of the predefined categories. For instance, when a robot
encounters an object that does not belong to any of the prede-
fined classes, it is impossible to segment the object correctly.

To avoid costly pixel-level annotations and limitations of pre-
defined classes, researchers have explored unsupervised image
segmentation and unsupervised semantic segmentation (Ji et al.,
2019a; Yadav and Saraswat, 2022). While unsupervised seman-
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tic segmentation usually requires a set of training images, un-
supervised image segmentation can operate with only one im-
age. This is because unsupervised semantic segmentation aims
to group pixels of the same object or stuff type across multiple
images. In this paper, we investigate an unsupervised image
segmentation method that can segment any object or stuff us-
ing only one image and without the limitations of predefined
classes.

Various pixel-level prediction tasks have achieved high ac-
curacy through CNN-based methods (Kang et al., 2018; Naka-
jima et al., 2019). Consequently, unsupervised image segmen-
tation methods have also incorporated CNNs (Xia and Kulis,
2017; Kanezaki, 2018). Since these methods lack access to an-
notations, Xia and Kulis (2017) proposed using image recon-
struction to guide feature embedding for an image. Alterna-
tively, Kanezaki (2018) proposed using superpixels to compute
a loss. Since then, various approaches have been proposed to
improve unsupervised image segmentation by avoiding using
superpixel segmentations (Kim et al., 2020; Kim and Ye, 2020),
utilizing both image reconstruction and superpixel segmenta-
tion (Lin et al., 2021), and by training an additional clustering
module (Zhou and Wei, 2020). However, they often suffer from
over-segmentation due to inconsistent features within an object
caused by the losses using either superpixels or only neighbor-
ing pixels.

To overcome these limitations, in this paper, we propose
a novel framework that can extract more discriminative and
consistent features by utilizing CNNs, image reconstruction,
and superpixel segmentation, as illustrated in Figure 1. Un-
like previous works, we introduce a feature embedding mod-
ule (FEM) to replace typical residual blocks in CNNs. The
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Figure 1: Illustration of the proposed framework. In training, an input image
is fed into both a clustering network and a superpixel segmentation algorithm.
Then, a loss is computed by using the segmentation result, superpixels, recon-
structed image, and input image. In testing, superpixel segmentation and image
reconstruction are not used. Hence, an input image is fed into only the cluster-
ing network to obtain an initial segmentation result. It is further processed by a
post-processing method to obtain the final segmentation result.

FEM employs a channel attention mechanism and a fused ac-
tivation function. Furthermore, we propose to explicitly ag-
gregate local and global context information. Lastly, we pro-
pose a novel loss function that utilizes both superpixel segmen-
tation and image reconstruction. The loss for image recon-
struction is computed using both structural similarity (SSIM)
and pixel-level similarity. The loss using superpixels consid-
ers both the internal consistency within each superpixel and the
inter-similarity/dissimilarity between neighboring superpixels
(see Figure 2). We evaluate the proposed framework on two
public benchmark datasets (BSDS dataset (Martin et al., 2001)
and PASCAL VOC 2012 dataset (Everingham et al., 2010)) for
unsupervised image segmentation. The experimental results
demonstrate that our proposed method outperforms the previ-
ous state-of-the-art method (Zhou and Wei, 2020).

The contributions of this paper are as follows:

• We introduce a pixel-wise clustering network that utilizes
a channel-wise attention mechanism and aggregates both
local and global contextual information to achieve high ac-
curacy.

• To train the network with only a single image and without
requiring any annotations, we propose a novel loss func-
tion. This function penalizes clustering pixels with similar
features in neighboring superpixels into different clusters.
It also penalizes classifying pixels within each superpixel
into different clusters. It also uses both multi-scale struc-
tural similarity (MS-SSIM) and L2 losses.

• We propose a method for using the statistics of both deep
and shallow features to measure the similarity of features
between neighboring superpixels.

• We demonstrate the extended value of the proposed
method by applying it to unsupervised semantic segmen-
tation.

(a) (b)

(c) (d)

Figure 2: (a) Input image; (b) Result of the proposed network trained by using
only intra-consistency Llocal within each superpixel; (c) Result of the proposed
network; (d) Result of the proposed framework including a graph-based post-
processing method.

2. RELATED WORKS

2.1. Unsupervised Image Segmentation

As various computer vision tasks have achieved high accu-
racy with CNN-based methods, unsupervised image segmenta-
tion methods have also employed CNNs. One of the earliest
works that utilized CNNs for unsupervised image segmenta-
tion was proposed by Xia and Kulis (2017). They introduced
the W-Net, which consists of an encoder and a decoder. The
network is trained by minimizing image reconstruction loss
and normalized cut loss. They also employed post-processing
techniques such as conditional random field (CRF) smoothing
(Krähenbühl and Koltun, 2011) and hierarchical merging (Ar-
beláez et al., 2011) to improve the segmentation results. An-
other early work based on CNNs was proposed independently
by Kanezaki (2018). While Xia and Kulis (2017) utilized an
image reconstruction loss, Kanezaki (2018) trained the network
using separately extracted superpixels. Both methods designed
their networks so that each channel of the output corresponds to
the probability of belonging to each cluster. Therefore, pixel-
level cluster labels are obtained by finding the maximum value
along the channels.

To overcome the limitations associated with losses dependent
on superpixel segmentations, Kim et al. (2020) and Kim and
Ye (2020) independently devised techniques that eliminate the
need for superpixels. Instead of relying on a superpixel-based
loss, Kim et al. (2020) employed a spatial continuity loss func-
tion that encourages neighboring pixels to be grouped together,
while Kim and Ye (2020) utilized a Mumford-Shah functional-
based loss function to train CNNs. Lin et al. (2021) and Zhou
and Wei (2020) improved upon the previous works that re-
lied on superpixel segmentations. Lin et al. (2021) proposed
a framework that employs both an autoencoder similar to (Xia
and Kulis, 2017) and superpixel segmentation like (Kanezaki,
2018). Zhou and Wei (2020) proposed a trainable clustering
module that iteratively updates cluster associations and cluster
centers.
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In this paper, we propose a CNN-based clustering frame-
work that utilizes both image reconstruction and superpixel
segmentation to compute a loss. To extract more discrimina-
tive and consistent representations for segmentation than pre-
vious works, we replace the typical residual block with the
proposed feature embedding module (FEM) and fuse local and
global information using explicit multi-scaling. The FEM em-
ploys a channel-attention mechanism and a fused activation
function. Unlike previous works (Xia and Kulis, 2017; Lin
et al., 2021), we compute the image reconstruction loss us-
ing both patch-wise structural differences and pixel-level dif-
ferences. For superpixel segmentation, unlike previous meth-
ods (Kanezaki, 2018; Zhou and Wei, 2020), we compute a loss
based on both inter-similarity/dissimilarity between neighbor-
ing superpixels and intra-identity within each superpixel. Com-
pared to the method by Lin et al. (2021), we propose additional
statistics to measure inter-similarity/dissimilarity. Experimen-
tal results demonstrate that the proposed method achieves about
10% relatively higher accuracy than the previous state-of-the-
art method.

2.2. Unsupervised Semantic Segmentation

Unsupervised image segmentation and unsupervised seman-
tic segmentation serve different purposes and have different re-
quirements. While unsupervised image segmentation clusters
pixels within an image into separate regions based on instances,
objects, and components, unsupervised semantic segmentation
classifies pixels based on semantic classes. Accordingly, the
latter usually requires a set of training images (patches) to han-
dle semantic classes while the former can be trained using only
a single image.

Despite their differences, we briefly summarize previous
works on unsupervised semantic segmentation since both tasks
aim to learn how to cluster pixels without ground-truth anno-
tations. Ji et al. (2019a) introduced a technique that extracts
common representations from the same objects while discard-
ing instance-specific features by employing random transfor-
mations and spatial proximity. Cho et al. (2021b) proposed
a method that uses both geometric and photometric transfor-
mations to generate multiple augmented versions of original
images. Van Gansbeke et al. (2021) proposed a method that
uses object mask proposals and a contrastive loss function. The
method first generates object masks and then uses them to train
feature embeddings. Most recently, Hamilton et al. (2022) in-
troduced STEGO, a method that uses a pre-trained and frozen
backbone to extract features, and then distills them into discrete
semantic labels using contrastive learning.

Since the two tasks share some commonalities, certain ap-
proaches can be applied to both. Therefore, following the pre-
vious literature by Kim et al. (2020), we compare our proposed
method to IIC (Ji et al., 2019a). Additionally, we present an
extension of the proposed method for unsupervised semantic
segmentation by fusing it with STEGO (Hamilton et al., 2022).

3. PROPOSED METHOD

3.1. Pixel-level Clustering Network

The proposed framework is designed to achieve accurate un-
supervised image segmentation by utilizing feature statistics,
fusing local and global context features, and employing atten-
tion mechanisms, image reconstruction, explicit multi-scaling,
and superpixel segmentation. An overview of the proposed
framework is shown in Figure 3.

To robustly determine the merging or separating of clus-
ters, feature statistics are computed for each superpixel using
extracted features from CNNs. These statistics are then uti-
lized to compare neighboring superpixels. The feature statistics
computing module, superpixel segmentation algorithm, and ex-
tracted superpixels are denoted as Z, E, and S, respectively,
in Figure 3. Further details of the feature statistics computing
module are described in Section 3.2.

The fusion of local and global context features is essential
to achieve accurate segmentation by considering both adjacent
regions and global circumstances. To accomplish this, we com-
bine feature maps extracted at input resolution with those ex-
tracted at half of the input resolution. We perform feature ex-
traction using four feature embedding modules (F1, F2, F3, F4
in Figure 3). Given an input image I, F1 extracts feature maps
at input resolution that correspond to relatively local features.
We use bicubic interpolation-based downsampling instead of a
strided convolution to explicitly downsample I by 2 and extract
feature maps from the downsampled image I0.5. The extracted
maps contain relatively global features. Then, we downsample
the output of F1 by 2 using max-pooling and concatenate (C) it
with the output of F2. The outputs of F1 and F2 complement
each other as the former provides more local information, and
the latter contains more global representation. F3 takes the con-
catenated maps and extracts representations that correspond to
global context information. We concatenate the output of F1
and the upsampled output of F3 and process them using F4.

The feature embedding module (FEM) combines the atten-
tion mechanism with the structure of a residual unit to achieve
accurate segmentation. The attention mechanism enables the
neurons to focus on significant features and suppress irrele-
vant representations, while the residual structure ensures stable
training. Together with the explicit fusion of local and global
features, these contribute to learning and extracting more robust
and meaningful features for unsupervised image segmentation.

Superpixel segmentation is used to compute a loss for train-
ing the network. First, an image I is passed through a super-
pixel segmentation algorithm E to obtain a set of superpixels S.
Assuming that the superpixel segmentation is accurate, a loss
is then computed to ensure that the pixels within a superpixel
are clustered together. As superpixels are not directly used to
segment an image, minor inaccuracy in superpixel segmenta-
tion is acceptable for computing a loss to train the network.
As mentioned earlier, the extracted superpixels are also used to
compute feature statistics to compare neighboring superpixels.

The image reconstruction modules (G1, G2) guide the clus-
tering network to encode sufficient information for robust clus-
tering. They force the network to consider the overall content of

3



Figure 3: The proposed framework during training. I, I0.5, and S represent an image, its downsampled image, and extracted superpixels, respectively. E and (F1, F2,
F3, F4) denote superpixel segmentation and four feature embedding modules, respectively. (G1, G2) and (Î, Î0.5) represent two image reconstruction modules and
reconstructed images, respectively. Z, R, C, ↓ 2, and ↑ 2 represent a feature statistics computing module, a cluster prediction module, concatenation, downsampling
by a factor of 2, and upsampling by a factor of 2, respectively. Llocal and Lglobal denote loss terms within a superpixel and between neighboring superpixels,
respectively. Lrec denotes an image reconstruction loss.

the image at intermediate stages, rather than making clustering
predictions at early layers. Each module consists of one 1 × 1
convolution layer, which reduces the number of channels to that
of color channels. We empirically demonstrate that the image
reconstruction modules improve accuracy.

The followings describe more details about the training of the
clustering framework. Firstly, given an image I, the superpixel
segmentation algorithm E is applied to obtain the superpixels S.
Since the superpixel segmentation is not dependent on the pa-
rameters in CNNs, the superpixel extraction is performed only
once per image. While any superpixel segmentation algorithm
can be used, we employ Multiscale Combinatorial Grouping
(MCG) (Arbeláez et al., 2014).

The clustering network is also given the image I. Firstly, the
image is downsampled by 2 using bicubic interpolation. Then,
F1 processes the original image, and F2 processes the down-
sampled image. The output of F1 is downsampled by 2 us-
ing max-pooling and concatenated with the output of F2. The
resulting concatenated feature maps are then processed by F3
and upsampled by a factor of 2 using transposed convolution.
Finally, the output of F1 and that of F3 are concatenated and
processed by F4. The outputs of F1, F2, F3, and F4 have 64,
64, 128, and 128 channels, respectively.

The FEM has a structure similar to that of a residual
block (He et al., 2016c,a). In Figure 4, the bottom connec-
tion corresponds to a shortcut connection, consisting of a 3 × 3
convolution layer and batch normalization (Ioffe and Szegedy,
2015). The middle connection is a typical stacked convolu-
tion module that contains two stacked blocks, each with batch
normalization, an activation function, and a 3 × 3 convolution
layer. We use a weighted summation of ReLU and tanh ac-
tivation functions (Li et al., 2020) for the activation function.
After the two stacked blocks, we apply an attention mechanism
similar to the Efficient Channel Attention (ECA) block (Wang
et al., 2020). The attention mechanism scales the output of

the stacked block by a predicted significance for each channel,
which is predicted by the layers presented at the top in Figure 4.
These layers consist of global average pooling, a 1D convolu-
tion layer, and a sigmoid activation function. Finally, the output
of the FEM is obtained by adding the output of the shortcut con-
nection and the significance-scaled output of the stacked convo-
lution module. Figures 4 and 5 show the structures of (F3, F4)
and (F1, F2), respectively. The main differences are the ab-
sence of batch normalization and an activation function at the
front of the middle connection in F1 and F2. Since F1 and F2
process images instead of feature maps, these modules do not
apply them at the front.

The output of F4 is used by R to predict the probability of
each pixel belonging to each cluster. To achieve this, a 1 × 1
convolution layer and batch normalization are employed. The
cluster label for each pixel is then determined by selecting the
cluster with the highest probability.

3.2. Loss Function
As pixels that are close in distance and have similar features

are likely to belong to the same cluster, we use the features
extracted using CNNs and the spatial distance to calculate a
loss. Additionally, because superpixel segmentation algorithms
have been extensively studied (Achanta et al., 2012; Arbeláez
et al., 2014), we use one of them as a guide to compute a loss.

The proposed loss function consists of three terms. The first
term aims to ensure that pixels within each superpixel belong
to the same cluster. The second term encourages neighboring
superpixels to belong to the same cluster if their corresponding
features are similar. The third term encodes image information
in the clustering network.

To train the clustering network, we first extract superpixels
from the input image I. Specifically, we use Multiscale Com-
binatorial Grouping (MCG) (Arbeláez et al., 2014) to extract
K superpixels {S k}

K
k=1. Then, we use the extracted superpix-

els to compute the loss. At each iteration, the proposed model
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Figure 4: Architecture of feature embedding module (FEM) for F3 and F4. Each line and each 3D volume correspond to an operation and a feature map(vector),
respectively. Black solid and dashed lines represent a convolution and an information flow, respectively. Blue dashed and orange dot-dash lines denote batch
normalization and ReLU+tanh activation function, respectively. Green dot-dot-dash, purple solid, and orange solid lines represent global average pooling, a 1D
convolution layer, and a sigmoid function, respectively.

Figure 5: Architecture of feature embedding module (FEM) for F1 and F2.
Notations are the same as Figure 4.

clusters the pixels in I into multiple segments (clusters). As-
suming that superpixel segmentation provides reliable results,
the pixels within each superpixel should belong to the same
cluster. Therefore, we find the most frequent cluster label for
each superpixel and consider it as the pseudo ground-truth. We
then compute the pixel-wise cross-entropy loss by comparing
the output of the proposed model with the pseudo ground-truth.

In more detail, given the result of superpixel segmentation
and that of the proposed model, for each superpixel S k, the most
frequent cluster cm

k is found as follows:

cm
k = c j where j = argmax

i
|ci

k | (1)

where |ci
k | denotes the number of pixels that belong to the cluster

ci and are in the superpixel S k. By utilizing the superpixel-
wise most frequent cluster label cm

k found by Eq. (1), we can
construct Cm

n,q that contains the pseudo ground-truth for each
pixel. Then, the cross-entropy loss is computed as follows:

Llocal = −

N∑
n=1

Q∑
q=1

1(Cm
n,q, q) ln Pn,q (2)

where Q denotes the number of channels of output, which cor-
responds to the maximum number of clusters. Pn,q represents
the output of the model at (n, q). 1(Cm

n,q, q) denotes an indicator
function that returns one if Cm

n,q and q are the same and zero

otherwise. N and n represent the total number of pixels in I and
the index for each pixel, respectively.

As Llocal considers pixels in each superpixel separately, we
also compute another loss term Lglobal to ensure that pixels are
clustered together if they belong to neighboring superpixels and
have similar features. The loss is computed by utilizing the
feature statistics computing module.

The extracted superpixels are first used to construct a graph
in which each superpixel corresponds to a node. The features
(vk, ek) of each node are then calculated using the output P
of the clustering network and the input image I, respectively.
Specifically, the deep feature vk ∈ RQ is computed by sum-
ming the mean and standard deviation of the features P of the
pixels that belong to the corresponding superpixel. The mean
and standard deviation of the features are calculated to consider
their distribution.

µk =
1
|S k |

∑
i∈S k

Pi,

σk =

√
1
|S k |

∑
i∈S k

(Pi − µk)2,

vk = µk + σk

(3)

where |S k | denotes the number of pixels in the superpixel S k.
The shallow feature ek ∈ R3 is computed using the same
method as vk, with P in the above equation is replaced by I.

Given the nodes corresponding to superpixels, the loss is
computed by taking into account the connectivity between
nodes and the similarity between their features. For connec-
tivity, nodes are connected by an edge if the corresponding
superpixels are neighboring. Specifically, if any two different
superpixels share a common border, the corresponding nodes
are connected by an edge. For similarity, an affinity matrix
A ∈ RK×K is computed as follows:

Ai, j =

 exp
(
−
∥vi−v j∥

2
2

α1
−
∥ei−e j∥

2
2

α2

)
, if Bi, j = 1

0, otherwise
(4)

where Bi, j is one if S i and S j are different and neighboring
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superpixels, and is zero otherwise. α1 and α2 are hyperparame-
ters.

Then, Lglobal is computed as follows:

Lglobal =
1
|A|

tr(HT A(1 − H)) (5)

where |A| denotes the summation of all elements in A com-
puted by Eq. (4). tr(·) represents a trace operation. H ∈ RK×Q

contains the probability of the superpixel at each row belong-
ing to the cluster at each column. Given P from the proposed
model, a softmax function is firstly applied for normalization.
Then, for each superpixel, the outputs of the softmax function
are averaged to obtain each row of H.

Image reconstruction loss Lrec consists of two MS-SSIM+ℓ2
losses introduced by Zhao et al. (2017) as follows:

Lrec = Lms-ssim+ℓ2 (I, Î) +Lms-ssim+ℓ2 (I0.5, Î0.5) (6)

where Î and Î0.5 denote the reconstructed images at the original
resolution and the half resolution, respectively. The two terms
on the right side are denoted by Lrec1 and Lrec2 , respectively,
in Figure 3. Lms-ssim+ℓ2 (·, ·) is described in Eq. (7).

MS-SSIM+ℓ2 loss is a weighted summation of a MS-SSIM
loss and a L2 loss. Lms-ssim+ℓ2 (I, Î) is computed as follows:

Lms-ssim+ℓ2 (I, Î)

= ηLms-ssim(I, Î) + (1 − η)GσM
G
∗ Lℓ2 (I, Î)

(7)

where η is a weighting coefficient to balance between the MS-
SSIM loss and the L2 loss. GσM

G
represents Gaussian filters with

the standard deviations of σM
G for varying scales M. σ1

G, σ2
G,

σ3
G, σ4

G, and σ5
G are 0.5, 1, 2, 4, and 8, respectively. ∗ denotes a

convolution operation. Lms-ssim(I, Î) is computed as follows:

Lms-ssim(I, Î) = 1 −MS-SSIM(I, Î) (8)

where MS-SSIM is computed by the method in (Wang et al.,
2003, 2004). We refer readers to (Zhao et al., 2017) for more
details.

Finally, the total loss L is computed by a weighted sum of
Llocal, Lglobal, and Lrec as follows:

L = Llocal + γ1Lglobal + γ2Lrec (9)

where γ1 and γ2 are weighting coefficients to balance three loss
terms. Llocal, Lglobal, and Lrec are computed by Eqs. (2), (5),
and (6), respectively.

3.3. Training Process
The training process is outlined in Algorithm 1. Given an

input image I, we begin by extracting superpixels S k. At each
iteration t, we forward-propagate I through the clustering net-
work with the current parameters W. The pixel-wise clustering
result I∗ is then obtained by finding the arguments of the max-
ima. The loss L in Eq. (9) is computed by utilizing the clus-
tering result I∗, the network’s output P, reconstructed images
(Î, Î0.5), and superpixels S k to update the parameters in the net-
work through back-propagation. The optimization method used
is stochastic gradient descent with momentum. The iteration is
repeated for a predetermined number of iterations.

Algorithm 1 Algorithm for training process
1: Input: Input image I ∈ RH×W×3

2: Output: Cluster label map I∗ ∈ ZH×W

3: Initialize the hyperparameters α1, α2, γ1, γ2,K
4: Initialize the network parameters W
5: Extract superpixels {S k}

K
k=1

6: for t = 1 to T do
7: Extract P from I using current W in the network.
8: Obtain I∗ by applying argmax to P.
9: Compute loss L using P, I∗, I, Î, and S k by Eq. (9).

10: Update W by minimizing L.
11: end for

3.4. Post-processing
As the proposed clustering network is trained using super-

pixels along with others, the network performs well in seg-
menting relatively small regions. However, the network may
struggle with accurately segmenting large regions, such as the
background. To address this issue, a post-processing method is
proposed, which involves constructing an undirected graph and
using graph cuts to obtain the final segmentation result. Each
cluster is represented as a node in the undirected graph, and
edge weights are computed using image gradients. Finally, the
edges are cut based on their weights to obtain the final segmen-
tation.

Given the pixel-wise clustering result I∗, an undirected graph
is constructed by considering each segment Ŝ in I∗ as a vertex.
To compute edge weights, the input image I is first converted to
the image Ĩ in the CIELAB color space. Gradients (Ix, Iy) are
then computed along the x- and y-axes using Ĩ.

Ix = |∇x Ĩ|, Iy = |∇y Ĩ| (10)

where ∇x and ∇y denote a gradient operation along x- and y-
axes, respectively. Then, edge weights are computed as follows:

∆i, j =

{
∥gx

i, j + gy
i, j∥1, if B̂i, j = 1

∞, otherwise
(11)

where gx
i, j and gy

i, j are computed by Eq. (12). B̂i, j is one if
Ŝ i and Ŝ j are different and neighboring segments, and is zero
otherwise. gx

i, j and gy
i, j are the average of the absolute difference

in the CIELAB color space between Ŝ i and Ŝ j along x- and
y-axes, respectively. They are computed as follows:

gx
i, j =

1
|S̃ x

i, j|

∑
(m,n)∈S̃ x

i, j

Ix
m,n

gy
i, j =

1
|S̃ y

i, j|

∑
(m,n)∈S̃ y

i, j

Iy
m,n

(12)

where S̃ x
i, j consists of the pixels at the boundaries between Ŝ i

and Ŝ j along x-axis. Hence, (m, n) ∈ S̃ x
i, j belongs to Ŝ i and its

neighboring pixel (m, n+1) belong to Ŝ j. Similarly, S̃ y
i, j consists

of the pixels at the boundaries between Ŝ i and Ŝ j along y-axis.
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Table 1: Quantitative results on the BSDS300 dataset (Martin et al., 2001).
Methods PRI VoI GCE BDE

FH (Felzenszwalb and Huttenlocher, 2004) 0.714 3.395 0.175 16.67
NCuts (Shi and Malik, 2000) 0.724 2.906 0.223 17.15

NTP (Wang et al., 2008) 0.752 2.495 0.237 16.30
MNCut (Cour et al., 2005) 0.756 2.44 0.193 15.10

KM (Salah et al., 2011) 0.765 2.41 - -
JSEG (Deng and Manjunath, 2001) 0.776 1.822 0.199 14.40

SDTV (Donoser et al., 2009) 0.776 1.817 0.177 16.24
Mean-Shift (Comaniciu and Meer, 2002) 0.796 1.973 0.189 14.41

TBES (Mobahi et al., 2011) 0.80 1.76 - -
CCP (Fu et al., 2015) 0.801 2.472 0.127 11.29

MLSS (Kim et al., 2013) 0.815 1.855 0.181 12.21
gPb-owt-ucm (Arbelaez et al., 2009) 0.81 1.68 - -

W-Net (Xia and Kulis, 2017) 0.81 1.71 - -
SAS (Li et al., 2012) 0.832 1.685 0.178 11.29

DIC (Zhou and Wei, 2020) 0.841 1.749 0.139 10.18
Proposed 0.867 1.399 0.163 8.832

Accordingly, (m, n) ∈ S̃ y
i, j belongs to Ŝ i and its neighboring

pixel (m+1, n) belong to Ŝ j. Ix
m,n and Iy

m,n are calculated by Eq.
(10).

The final segmentation result is obtained by using the graph
to cut the edges with high weights. This graph-cut process in-
volves comparing the edge weights to a predetermined thresh-
old, and each connected component in the resulting graph forms
a segment.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setting

We demonstrate the effectiveness of the proposed frame-
work using the Berkeley Segmentation Data Set (BSDS300 and
BSDS500) (Martin et al., 2001; Arbeláez et al., 2011) and the
PASCAL VOC 2012 dataset (Everingham et al., 2010). The
BSDS500 dataset contains 500 images, which are divided into
200 images for training, 100 for validation, and 200 for test-
ing. The BSDS300 dataset includes only the training and vali-
dation splits of the BSDS500 dataset. For evaluation, multiple
human annotators label each image in the BSDS dataset. As un-
supervised image segmentation methods predict segmentation
results using only a single image, they typically do not con-
sider training/validation/test splits separately. Following previ-
ous works (Kanezaki, 2018; Zhou and Wei, 2020; Kim et al.,
2020), we train and evaluate the proposed framework using
each image in the datasets. For the PASCAL VOC dataset, ob-
ject category labels are ignored following (Kim et al., 2020).
Then, the mean Intersection over Union (mIoU) is computed
by comparing the segments of the ground truth and those of the
predicted results.

Considering hyperparameters, the loss terms were weighted
using γ1 = 10−5 and γ2 = 0.1. The affinity matrix was com-
puted using α1 = 200 and α2 = 400. The output of the
ReLU+tanh activation function was obtained by the weighted
summation of the ReLU function and the tanh function, where

the weights were 1 and 0.4, respectively. For the stochastic gra-
dient descent optimization, the maximum iteration T , learning
rate, and momentum were selected as 150, 0.05, and 0.9, re-
spectively.

Following previous works (Zhou and Wei, 2020; Li et al.,
2012), we utilized optimal image scale (OIS). The proposed
framework was applied to each image using six different num-
bers of superpixels. Among the six results, the best one was
used for evaluation. The number K of superpixels were 50,
100, 150, 200, 250, and 300. Please note that superpixels were
only employed to train the clustering network.

4.2. Result

For the BSDS dataset (Martin et al., 2001), we utilize
five metrics that are Segmentation Covering (SC), Probabilis-
tic Rand Index (PRI), Variation of Information (VoI), Global
Consistency Error (GCE), and Boundary Displacement Error
(BDE) to compare results quantitatively. Considering SC and
PRI, higher scores represent better results. For VoI, GCE, and
BDE, lower values denote better segmentation. Following pre-
vious works (Xia and Kulis, 2017), we use PRI, VoI, GCE, and
BDE for the BSDS300 dataset and SC, PRI, and VoI for the
BSDS500 dataset. As the BSDS300 dataset is a part of the
BSDS500 dataset, corresponding results are quite related.

Table 1 shows quantitative results on the BSDS300
dataset (Martin et al., 2001). We compare the performance of
the proposed method to those of previous methods (Kim et al.,
2013; Li et al., 2012; Xia and Kulis, 2017; Fu et al., 2015;
Zhou and Wei, 2020). In the table, we use boldface and un-
derlines to denote the best and the second-best scores, respec-
tively. The proposed method achieves the best scores in PRI,
VoI, and BDE and the third-best score in GCE. The DIC method
by Zhou and Wei (2020) achieves the second-best scores in PRI,
GCE, and BDE. The CCP algorithm achieves the best score in
GCE (Fu et al., 2015). The gPb-owt-ucm method by Arbelaez
et al. (2009) achieves the second-best score in VoI.
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Table 2: Quantitative results on the BSDS500 dataset (Martin et al., 2001).
Methods SC PRI VoI

Backprop (Kanezaki, 2018) 0.50 0.77 2.15
NCuts (Shi and Malik, 2000) 0.53 0.80 1.89

CAE-TVL (Wang et al., 2017) 0.56 0.82 2.02
Mean-Shift (Comaniciu and Meer, 2002) 0.58 0.81 1.64

MLSS (Kim et al., 2013) 0.60 0.84 1.59
DSC (Lin et al., 2021) 0.60 0.83 1.62

W-Net (Xia and Kulis, 2017) 0.62 0.84 1.60
SF (Dollár and Zitnick, 2013) 0.65 0.851 1.43

gPb-owt-ucm (Arbelaez et al., 2009) 0.65 0.862 1.41
DIC (Zhou and Wei, 2020) 0.66 0.864 1.63

Proposed 0.712 0.894 1.305

Table 3: Quantitative results on the PASCAL VOC 2012 dataset (Everingham et al., 2010).
Methods mIoU

k-means clustering (k = 2) 0.3166
k-means clustering (k = 17) 0.2383

FH (Felzenszwalb and Huttenlocher, 2004) (τ = 100) 0.2682
FH (Felzenszwalb and Huttenlocher, 2004) (τ = 500) 0.3647

IIC (Ji et al., 2019a) (k = 2) 0.2729
IIC (Ji et al., 2019a) (k = 20) 0.2005
Backprop (Kanezaki, 2018) 0.3082

DFC (Kim et al., 2020) (µ = 5) 0.3520
Proposed 0.4103

(a)

(b)

(c)

(d)

(e)

Figure 6: Qualitative results on the BSDS500 dataset (Martin et al., 2001). (a) Image; (b) Ground truth; (c) FH (Felzenszwalb and Huttenlocher, 2004); (d) DIC
(Zhou and Wei, 2020); (e) Proposed method.
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(a)

(b)

(c)

(d)

(e)

Figure 7: Qualitative results on the PASCAL VOC 2012 dataset (Everingham et al., 2010). (a) Image; (b) Ground truth; (c) FH (Felzenszwalb and Huttenlocher,
2004); (d) DFC (Kim et al., 2020); (e) Proposed method.

Table 4: Ablation study on components of the proposed framework using the BSDS300 dataset (Martin et al., 2001).
Baseline ECA Lglobal Lrec Post-processing PRI VoI GCE BDE
√

0.801 1.931 0.152 11.162
√ √

0.813 1.792 0.160 10.914
√ √ √

0.821 1.786 0.162 10.764
√ √ √ √

0.822 1.755 0.162 10.694
√ √ √ √ √

0.830 1.613 0.170 10.256

Quantitative results on the BSDS500 dataset are shown
in Table 2. The proposed method is compared to previous
works (Wang et al., 2017; Kanezaki, 2018; Lin et al., 2021; Xia
and Kulis, 2017; Zhou and Wei, 2020). The proposed method
achieves the best scores in all metrics (SC, PRI, and VoI). The
DIC method by Zhou and Wei (2020) achieves the second-best
scores in SC and PRI. The gPb-owt-ucm method by Arbelaez
et al. (2009) achieves the second-best score in VoI.

We evaluated the proposed method on the PASCAL VOC
2012 dataset (Everingham et al., 2010) and computed the mean
Intersection over Union (mIoU) for quantitative comparison.
The results are shown in Table 3, which demonstrate that the
proposed method outperforms all other methods (Felzenszwalb
and Huttenlocher, 2004; Ji et al., 2019a; Kanezaki, 2018; Kim
et al., 2020).

Figure 6 shows qualitative results using the BSDS500
dataset. Each row, from top to bottom, shows an input image,
ground truth, and the results of FH (Felzenszwalb and Hutten-

locher, 2004), DIC (Zhou and Wei, 2020), and the proposed
method. Figure 7 shows qualitative results using the PASCAL
VOC 2012 dataset. Each row, from top to bottom, shows an
input image, ground truth, and the results of FH (Felzenszwalb
and Huttenlocher, 2004), DFC (Kim et al., 2020), and the pro-
posed method. Both qualitative results demonstrate that the
proposed method achieves accurate segmentation compared to
others (Felzenszwalb and Huttenlocher, 2004; Zhou and Wei,
2020; Kim et al., 2020). Moreover, the results show that the
proposed method segments images into a reasonable number of
clusters while other methods often produce unnecessarily over-
segmented results.

Table 4 presents an ablation study on the components of the
proposed framework using the BSDS300 dataset. The base-
line model in Table 4 represents the framework without the at-
tention mechanism (ECA), image reconstruction modules, and
post-processing step. Also, the baseline model is trained using
only Llocal. The first and second rows show the results of the
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Image Ground truth Superpixels

T = 50 T = 100 T = 150

Figure 8: Qualitative results at the varying number of iterations.

(a) Llocal (b) Lglobal

(c) Lrec

Figure 9: Change of loss values during training.

baseline model and the model with the attention module (ECA),
respectively. The third and fourth rows show the results of in-
cluding Lglobal and Lrec. The last row shows the result of the
proposed framework. Please note that the scores are different
from those in Table 1 because of OIS. The results in Table 1
include OIS, whereas those in Table 4 do not. In this ablation
study, the number of superpixels K is fixed at 100 for all the
images.

To analyze the optimization process, we show the results at

varying numbers of iterations in Figure 8. The figure shows the
input image, ground truth, superpixel segmentation result, and
results of the proposed network at 50, 100, and 150 iterations.
The results in this figure do not include post-processing. We
also demonstrate the convergence of loss terms by examining
three different images. Figure 9 shows the change in loss values
during training.

4.3. Extension to Unsupervised Semantic Segmentation

While the proposed method is designed for unsupervised im-
age segmentation, we show the additional value of the proposed
method by applying it to unsupervised semantic segmentation.
Specifically, we fuse the proposed method with one of the state-
of-the-art methods, STEGO (Hamilton et al., 2022), in unsu-
pervised semantic segmentation. We then demonstrate that the
fused method outperforms the previous state-of-the-art perfor-
mance using the COCO-Stuff dataset (Caesar et al., 2018).

The extended method first applies the proposed method to
each image to segment the image into multiple regions. Then,
the image is cropped into multiple patches using the bounding
boxes of segmented regions. The features of the cropped im-
ages are obtained by forward-propagating them through the pre-
trained PVTv2-B5 backbone (Wang et al., 2022) and by pro-
cessing mask-based pooling. The backbone is pre-trained us-
ing the self-supervised learning method by Caron et al. (2021)
without any human annotations. The mask-based pooling ag-
gregates extracted features over each segmented region. The
aggregated feature is then processed by a learnable segmenta-
tion head to reduce the dimension. Finally, the centers of the
k clusters are determined using the outputs of the segmenta-
tion head, where k is the number of semantic categories in the
dataset. For clustering, the similarities are computed by the
cosine distance. Unlike STEGO (Hamilton et al., 2022), con-
ditional random field (CRF)-based refinement is not employed
since the proposed method produces high-quality and detailed
segmentation masks.

For evaluation and visualization, the Hungarian matching al-
gorithm is applied to match clusters to ground-truth labels. Fol-
lowing STEGO (Hamilton et al., 2022), the pre-trained back-
bone is frozen during training while the segmentation head
is trained using the contrastive loss function. Positive and
negative samples are obtained by finding k-nearest neighbors
and by random sampling, respectively. We refer readers to
STEGO (Hamilton et al., 2022) for further details.

Following previous literature (Cho et al., 2021a), the fused
method is evaluated using the 27 classes in the COCO-Stuff
dataset (Caesar et al., 2018). Quantitative results demonstrate
that the fused method outperforms the previous state-of-the-art
method by achieving 59.1% accuracy and 33.6 mIoU, as shown
in Table 5. Qualitative results are shown in Figure 10. The
key difference between the fused method and STEGO (Hamil-
ton et al., 2022) is that the fused method utilizes aggregated
features over each segmented region while STEGO uses pixel-
level features. We believe that given high-quality image seg-
mentation results, the aggregated features are more consistent
within each class and more discriminative between categories
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(d)

Figure 10: Qualitative results on the COCO-Stuff dataset (Caesar et al., 2018). (a) Image; (b) Ground truth; (c) STEGO (Hamilton et al., 2022); (d) Proposed
method.

Table 5: Quantitative results on the COCO-Stuff validation dataset (Caesar
et al., 2018).

Methods Accuracy mIoU

ResNet50 (He et al., 2016b) 24.6 8.9
MoCoV2 (Chen et al., 2020) 25.2 10.4
DINO (Caron et al., 2021) 30.5 9.6

Deep Cluster (Caron et al., 2018) 19.9 -
SIFT (Lowe, 1999) 20.2 -

AC (Ouali et al., 2020) 30.8 -
InMARS (Mirsadeghi et al., 2021) 31.0 -

IIC (Ji et al., 2019b) 21.8 6.7
MDC (Cho et al., 2021a) 32.2 9.8
PiCIE (Cho et al., 2021a) 41.1 13.8

PiCIE + H (Cho et al., 2021a) 50.0 14.4
STEGO (Hamilton et al., 2022) 56.9 28.2

Proposed 59.1 33.6

than pixel-level features. Moreover, since the fused method uti-
lizes high-quality and detailed segmentation results from the
proposed method, it preserves the boundaries of regions/objects
better than the previous method (Hamilton et al., 2022), as
shown in Figure 10.

5. CONCLUSION

We presented a novel pixel-level clustering framework for
unsupervised image segmentation. The framework includes
four feature embedding modules, a feature statistics computing
component, two image reconstruction modules, and a super-
pixel segmentation algorithm. The proposed network is trained
by ensuring consistency within each superpixel, utilizing fea-
ture similarity/dissimilarity between neighboring superpixels,
and comparing an input image to reconstructed images from
encoded features. Additionally, we included a post-processing
method to overcome limitations caused by superpixels. Fur-
thermore, we presented an extension of the proposed method
for unsupervised semantic segmentation, which demonstrates
the additional value of our approach. The experimental results
indicate that the proposed method outperforms previous state-
of-the-art methods. As the proposed framework can segment
any given input image without any ground truth annotations or
pre-training, it can be utilized in various real-world scenarios.
For instance, it can help robots grasp unseen objects or discover
new objects from a scene. Moreover, it can reduce the effort re-
quired for pixel-level annotation in supervised learning.
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