
High performance encapsulation and networking in

Casanova 2

Francesco Di Giacomo1, Mohamed Abbadi1, Agostino Cortesi1, Pieter

Spronck2, Giulia Costantini3 and Giuseppe Maggiore3

1Ca'Foscari University, Venice
2Tilburg University, Tilburg

3Hogeschool Rotterdam, Rotterdam

Abstract:
Background. Encapsulation is a programming technique that helps developers keep-

ing code readable and maintainable. However, encapsulation in modern object oriented
languages often causes signi�cant runtime overhead. Thus, developers, including video
games developers, must choose between clean encapsulated code or fast code. Since, in
the application domain of computer games speed of execution is of most importance, de-
velopers usually decide for fast code. Similar problems are noticeable in other aspects of
game development such as the one of networking, where developers, due to a lack of an
e�ective support of networking primitives by the adopted tools, have to write complex
networking code. This often results in overlaps with the networking logic and the game
logic, thus a�ecting the code maintainability.

Aim. This article explores to what extent game development would bene�t from the
use of encapsulation in code and other games abstractions such as networking.

Method. In this work we discuss how encapsulation is embedded in the Casanova
2 game development language, and show how Casanova 2 allows developers to write
encapsulated game code that, thanks to extensive optimization, achieves high levels of
performance. Furthermore, we show that the abstractions provided by Casanova 2 so
far cover no more than the tip of the iceberg: we document a further extension in the
traditionally challenging domain of networking.

Results. Code compactness has been measured to evaluate the quality of our pro-
posed methods: encapsulation in code and embedded networking. Moreover, the speed
of Casanova 2 has been evaluated in comparison with the speed of code written in repre-
sentative languages for game development.

1

This evaluation demonstrates that Casanova 2 runs faster than or at a comparable
level to the other languages.

Conclusions. By means of domain abstraction and domain optimization the resulting
Casanova 2 code is compact (even in the presence of networking considerations), maintain-
able (due to encapsulation), and fast (thanks to our optimizer); all aspects that improve
productivity.

Keywords:
Domain Speci�c Language, Encapsulation, Networking, Games

1 Introduction

The video games industry is an ever growing sector with sales surpassing 20 billion dollars
in 2014 [2]. Video games are not only built for entertainment purposes, but they are also
used for Edutainment, Higher Education, Health Care, Corporate, Military, Research, and
other [1, 33]. These so-called serious games usually do not enjoy the budgets available
in the entertainment industry [40]. Therefore, developers of serious games are interested
in tools capable of overcoming the coding di�culties associated with the complexity of
games, and reducing the long development times.

Video games are composed of several inter-operating components, which accomplish
di�erent and coordinated tasks, such as drawing game objects, running the physics sim-
ulation of bodies, and moving non-playable characters using arti�cial intelligence. These
components are periodically activated in turn to update the game state and draw the
scene. When game complexity increases, this leads to an increase in size and complexity
of components, which, in turn, leads to an increase in the complexity of developing and
maintaining them, and thus an increase of development costs.

A possible approach to reduce development costs is to use game development tools
(e.g., GameMaker, Unity3D, or UnrealEngine [32]), which tend to produce simple games
that are hard to customize and bound to a speci�c genre.To provide some level of cus-
tomization, game developers rely on general-purpose languages (GPL's) [27]. GPL's are
typically unable to provide domain speci�c abstractions and constructs. This means that
when developing games by means of a GPL the resulting code will be complex and expen-
sive to maintain [36, 41]. According to [9], the typical life cycle of software implemented
by means of a GPL is: (i) building a prototype; (ii) designing a version which code is
readable and maintainable; and eventually (iii) refactoring, after obtaining con�dence
with the context and the problem, the code from the previous point, so as to realize the
last (often non-functional) requirements.

We can see that the just introduced cycle is applicable to game development as well: (i)
building a game prototype is always necessary to take con�dence with the context of the
problem and the chosen tool; (ii) designing game code that is maintainable and readable
requires developers to abstract the problem and to focus more on the high-level interac-
tions of the game and its data structures. Software development techniques have been
studied to improve software maintainability and tackle complexity [15]. Encapsulation,

2

which consists of isolating a set of data and operations on those data within a module and
providing precise speci�cations for the module [24], is an example of a technique aimed
at increasing code maintainability and readability; and (iii) refactoring is a common pro-
cess in game development, see for example the case of performance optimization, which
is of high importance for games, since it is strictly connected to game smoothness, i.e.,
to the game's frame rate, and smoothness strongly in�uences the perceived quality of a
game [14]. Indeed developing a game is a high dynamic process [43] involving a wide
variety of team members with di�erent roles, such as designers, programmers, etc. Design
very often changes during the development stage, as proven in several examples from the
industry, such as Starcraft, Duke Nuke'em Forever, and Final Fantasy XV [31]. Small
changes at abstract level design translates into considerable amount of code, which might
a�ect the overall architecture, thus every stage of the above life cycle requires e�ort and
is time consuming. An example of this is when using encapsulation [47] in the code. Since
a game may feature many small entities, encapsulation forces those entities to interact
through speci�c interfaces. When calling methods of the interfaces, overhead is added
due to dynamic dispatching [47]. Such overhead ultimately a�ects the performance of
games at runtime negatively, so a complete refactoring that accommodates performance
becomes necessary. Similar negative e�ects come from various design patterns, which all
add layers of indirection. These e�ects impact negatively cache coherency and force CPU
prediction failures [5]. Traditional networking in games is another example that typically
breaks encapsulation as the what to send over the network is dependent on the game
logic, thus small changes in the game structure could a�ect heavily the networking layer.

What seems ideal is to have the advantages coming from both stages (ii) and (iii):
game code that is well maintainable and readable, and at the same time with a fast run-
time. For this purpose, we investigated this problem and developed a solution that allows
developers to write encapsulated code, which through extensive automated optimization
turns source code into a high-performance executable, therefore relieving developers from
refactoring important design structures by hand, thus reducing the chances to make mis-
takes.

To sum up, in this paper we present a solution to the loss of performance in encap-
sulated games. We present our solution as an extension for a domain speci�c language
for games, called �Casanova 2�, which allows developers to write high quality games at
reduced development costs.

We start with a discussion about the focus of this paper1 and related works (Section 2).
Then we start with a discussion of encapsulation and typical optimizations (which break
encapsulation) and their complexity, by introducing a case study. We use the case study to
identify issues in using both encapsulation and faster implementation for games (Section
3). We introduce our idea for dealing with encapsulation without losing performance
(Section 4). We propose a speci�c implementation, with corresponding semantics, within
the Casanova 2 language (Section 5). We discuss a further extension of Casanova 2 in the
domain of networking and show how the language can also provide signi�cant improvement

1This paper is an extended version of a conference paper that appeared as [4]. The key additions of
this journal version are: an extended related works session, and a new section on networking within the
Casanova language.

3

in productivity (Sections 6 and 7). We then evaluate the e�ectiveness of our approach
in terms of performance and compactness (Section 8), and round o� with conclusions
(Section 9).

2 Focus of the work and related works

The focus of this paper lies exclusively within the restricted, non-general-purpose �eld
of game development (and its sibling, real-time simulations). This greatly narrows the
scope of the problem, but also severly constrains the spectrum of possible solutions. To
understand this, consider that on one hand we have the deep complexity of the underlying
mathematics of the physical aspects of the game and the highly concurrent nature of the
discrete logic; on the other hand, we have the fundamental, pervasive non-functional re-
quirement that no single update/draw cycle may ever take more than 1/60th of a second
in total. Whereas in other soft-real-time domains one might occasionally accept a degra-
dation of performance, provided that the variance of the distribution of computational
cycles is acceptably low, the game becomes a clear failure if any frame is delayed.

This very strict performance requirement automatically excludes a large number of
(admittedly beautiful and powerful) frameworks that in and of themselves would solve
many architectural issues that games do need to face. This brings us to try to address
the focus of the paper without tackling the general issue. We do believe that tackling the
general issue of separation of concerns and real-time performance as required for games
is still outside of the boundaries of what can be achieved with modern tools and as such
limited work like the present paper explores an interesting direction of investigation.

The general purpose frameworks that might be used in our present context can be
classi�ed in two broad areas: runtime dynamic machinery, and compile-time code gener-
ators.

2.1 Runtime dynamic machinery

Highly dynamic frameworks typically make use of mechanisms that either feature large
amounts of dynamic/virtual calls, or rely on re�ection. The use of of dynamic/virtual
calls within a big hierarchy of objects has dramatic e�ect on performance [45] because
it severely disrupts cache coherency. This is unfortunate, as it rules out the widespread
use of design patterns such as decorators, and in the functional programming world the
extensive use of monads.

Re�ection mechanisms (for example re�ection in .NET [35]) tend to be even less e�ec-
tive than mechanisms with large amounts of dynamic/virtual calls , as they combine the
same number of cache disruptions with the need to box/unbox everything and constantly
check for the correct types of boxed arguments. Among the frameworks that use this
technique, we �nd (i)Proxies in C#, an aspect oriented library supported by the .NET
framework, and (ii) netty.io, an event driven framework for networking. The overhead of
these techniques makes it unfortunately very easy to exceed the maximum allotted time
of 1/60th of a second per frame, or requires to dramatically reduce the number of entities
processed by the game, which in turn results in a poorer game experience.

4

2.2 Compile-time code generators

A more promising venue of investigation is that of compile-time code generators, which
make it possible to implement sophisticated, reusable meta-patterns such as those dis-
cussed above, but without having to rely on expensive forms of dynamism. Examples of
such generators are Haskell templates, C++ templates, and macros in Lisp. The perfor-
mance of these generators is clearly bound to the performance of the underlying language.
As we already discussed, performance is a very strict and stringent requirement within
our domain of focus, and so this immediately excludes frameworks based on languages
such as Haskell or Java that have less control on performance because of large amounts
of boxing (in Haskell laziness induces boxing). Other frameworks o�er less disciplined
meta-structures. For example, C++ templates lack a higher kinded type system that
would allow us to constrain type parameters and get some measure of control on error
messages. While this might seem trivial, C++ templates are very unwieldy to use and
debug because the untyped replacement mechanism generates pages of errors in otherwise
correct libraries only because they have been instantiated with the wrong parameters.

Moreover, hybrid frameworks, such as Treecc (an Aspect-Oriented approach to writing
compilers), force patterns on the generated code which make too much use of polymor-
phism. This partially defeats the point of compile-time code generators for games, as it
still causes performance issues such as those outlined in [45].

It is true that meta-programming approaches would bring discipline to our work, which
we are actively working on improving. We consider our work so far as a fundamental proof
of concept that high-performance, highly maintainable code can be achieved in the domain
of games, but perhaps also further employed in other areas. We are actively developing
a meta-compiler that generates predictable, high-performance code that makes very little
to no use of dynamic constructs. This meta-compiler features a programmable, higher
kinded type system which feeds an aggressive code inliner. Our meta-compiler is designed
to be agnostic with respect to the architecture of one's library for generating code: it could
be used for AOP, the inlining of monad transformers, query optimizations, and even other
forms of static code analysis such as abstract interpretation of model checking. Such work
is unfortunately very complex and as such is not yet in a state to be used in practice with
the results of the current paper. We plan on rebuilding the existing Casanova compiler,
and all of its optimizations, within the meta-compiler itself. A preliminary result can be
found in [17].

3 Encapsulation in games

In this section we discuss �rst common issue arising from traditional facilities for game
development. We then introduce a short example to explain the problem of encapsulation
in games. Eventually, we discuss the advantages and disadvantages of using encapsulation
when designing a game.

5

3.1 Common issues

In the panorama of game development the two main approaches to game development are
either the use of tools, or the use of languages [28].

Tools are environments where developers are assisted in the creation of games through
visual instruments and built-in features (such as physics). Tools are generally focused on
speci�c genres. A typical aspect of these tools is that they o�er developers prede�ned
functionalities (such as path �nding, collision detection, and rendering), which would take
a lot of time to develop and debug. These functionalities are often available in the shape
of menu objects in the development environment. The goal of tools, in general, is to allow
developers to quickly prototype and deploy games, while relieving them from common
tasks in game development. Typical tools, such as GameMaker, Corona, Unity3D, and
RPGmaker, provide an easy-to-use interface and shortcuts for dealing with entity behav-
ior. As long as the developer limits himself to using the components provided, the tools
produce high-performance game code, because of their speci�c application in the domain
of games. For behaviors that are not expressed natively by the tool components, tools
often o�er scripting languages that allow developers to de�ne custom behaviors. Unfortu-
nately, the expressiveness of such scripting languages is a�ected by the mechanics of the
tools to which they are adapted. Thus, in order to e�ectively use these languages devel-
opers are supposed to make a considerable e�ort with understanding the mechanics of the
chosen tool and to adapt their solutions accordingly. Moreover, the scripting languages
used by tools are usually interpreted (like LUA and JavaScript [6]), which considerably
a�ects performance.

General purpose languages (GPL's) are languages that provide powerful, composable,
abstractions for expressing general data structures and algorithms. These properties al-
low such GPL's to express solutions for di�erent kinds of applications the one of game
development. C#, Python, and Objective-C are typical examples of languages used for
game development. A typical limitation in using GPL's is in expressing performance pat-
terns [12]. Performance in games is very important, since it is strongly related ot the
perceived quality of it. Due to this lack of support by GPL's, a game featuring com-
plex data structures and algorithms will require developers to implement optimization
by hand, thus increasing the costs on implementing them. Unless the developers have
access to large �nancial resources, the use of a GPL for game development is not a good
choice. However, developers can use domain speci�c languages (DSL's) for implementing
their games, since they are capable not only of expressing domain speci�c abstractions
easily, but also to perform domain speci�c optimization. For instance: the Conceptual
Domain Modeling Language (CDML) [10], supports an e�cient parallel implementation
of a producer/consumer pattern; Inform [34], Ren'Py [20] and Zillions of Games [30]
provide domain speci�c abstractions focused on the de�nition of speci�c genres, such as
storytelling or board games; Monadic frameworks have been developed to tackle common
problems of game development such as combining and de�ning behaviors that depend on
the �ow of time and their e�cient implementation, to integrate within game engines [29]
and reduce code complexity [42]. The only issues of such languages is that in many cases
they are prototypes and supported by small communities, which translates into the fact
that code that is supposed to work actually does not because of compiler issues. Moreover,

6

every DSL has its own learning curve, since similarities between DSL's are few(unlike for
GPL's): every DSL comes with its own philosophy, constructs, primitives, etc.

3.2 Running example

To illustrate the discussions hereafter, we now present a game that contains typical el-
ements that are often encountered in game development. The game consists of a set of
planets linked together by routes. A player can move �eets from his planets to attack
and conquer enemy planets. Fleets reach other planets by using the provided routes.
Whenever a �eet gets close enough to an enemy planet it starts �ghting the defending
�eets orbiting the planet. The game can be considered the basis for a typical Planet Wars
strategy game (such as Galcon [3]). We de�ne a frame to be a single update cycle of all
the game's data structures.

In our running example, we assume that a Route is represented by a data structure
containing (i) the start and end point as references to Planets, and (ii) a list of Fleets
travelling via such route. Planet is a data structure containing (i) a list of defending
Fleets, (ii) a list of attacking Fleets, and (iii) an Owner. Each �eet has an owner as
well. Each data structure contains a method called Update, which updates the state of
its associated object at every frame. Furthermore, we assume that all the game objects
have direct access to the global game state, which contains the list of all routes in the
game scenario.

According to the de�nition of encapsulation, data and operations on them must be
isolated within a module and a precise interface must be provided. Moreover, each entity
is responsible for updating its own �elds in such a way that it maintains its own invariant.

3.3 Design techniques and operations

In our running example the modules are the Planet and Route classes de�ned above, data
are their �elds. To support encapsulation, in the following implementation each entity is
responsible for updating its �elds with respect to the world dynamics. The operations for
each entity are the following:

Planet: Takes the enemy �eets travelling along its incoming routes, which are close
to the planet, and moves them into the attacking �eets list;

Route: Removes the travelling �eets, which have been placed in the attacking �eets
of the destination planet from the list of travelling �eets.

class Route

Planet Start , Planet End ,
List<Fleet> TravellingFleets ,
Player Owner

void Update ()
foreach fleet in TravellingFleets

if End . AttackingFleets . Contains (fleet)
this . TravellingFleets . Remove (fleet)

7

class Planet

List<Fleet> DefendingFleets ,
List<Fleet> AttackingFleets

void Update ()
foreach route in GetState () . Routes

if route . End = this then

foreach fleet in route . TravellingFleets
if distance (fleet . Position , this . Position) < min_dist &&

fleet . Owner != this . Owner then

this . AttackingFleets . Add (fleet)

An alternative design, which does not use encapsulation, allows the route to move the
�eets close to the destination planet directly into the attacking �eets by writing into the
planet �elds. In this scenario the route is modifying data related to the planet and the
route is writing into a reference to a planet.

class Route

Planet Start , Planet End ,
List<Fleet> TravellingFleets

void Update ()
foreach fleet in this . TravellingFleets

if distance (fleet . Position , this . Position) < min_dist &&
fleet . Owner != End . Owner then

this . TravellingFleets . Remove (fleet)
End . AttackingFleets . Add (fleet)

3.4 Discussion

In our running example a programmer is left with the choice of (i) either using the
paradigm of encapsulation, which improves the understandability of programs and eases
their modi�cation [39], or (ii) breaking encapsulation by writing directly into the planet
�elds from an external class, which, as we will show below, is more e�cient but potentially
dangerous [18].

As far as performance is concerned, in the encapsulated version, the planet queries the
game state to obtain all routes which endpoints are the planet itself, and for every route
selects the enemy travelling �eets that are close enough to the planet. At the same time,
a Route checks the list of attacking �eets of its endpoints and removes the �eets that
are contained in both lists from the travelling �eets. If we consider a scenario containing
m planets, n routes, and at most k travelling �eets per route, each planet should check
the distance condition for O(nk) ships, thus the overall complexity is O(mnk). The non-
encapsulated version checks for each route the distance for a maximum of k ships and
then directly moves those close to the planet, for which the overall complexity is O(nk).
Therefore, the performance on the non-encapsulated version is better. One could argue
that adding a spatial index in the planet containing the incoming routes could lead to
higher performance, however this would break the SOLID principle of Design Patterns,

8

as a planet would contain information on the topology of part of the map. In particular
the Single Responsibility is violated, as the task of the planet is less deducible.

As far as maintainability is concerned, in a game containing planets, many entities
might need to interact with each planet (such as �eets, upgrades, and special weapons).
Assume that a special action freezes all the activities of a planet. We have to propagate
this behavior into the code of all the entities in the game that may interact with a planet,
disabling such interactions when the planet is frozen. In the encapsulated version of the
code, such behavior needs only be implemented in one place, namely in the planet. In
the non-encapsulated version, it must be implemented in each and every entity that may
interact with a planet. Moreover, if the developer forgets to make this change even in
just one of the entities, the game no longer functions correctly; i.e., bugs associated with
planets might actually �nd their cause in other entities. It is clear that the maintainability
of the encapsulated version of the code is much better than the maintainability of the non-
encapsulated version.

The main advantage of using encapsulation is related to the maintainability of code,
because encapsulated operations that alter the state of an entity are strictly de�ned within
the entity de�nition. This helps to reduce the amount of code to maintain in case the
entity changes the normal behavior of an entity. In our scenario all the activities that
alter the planet are inside the planet, so if we remove (or disable) a planet then all its
operations are suspended.

What we desire to achieve is the maintainability of encapsulated game code, combined
with the performance of non-encapsulated code. In the following sections, we show how
this can be achieved with Casanova.

4 Optimizing encapsulation

In this section we introduce the idea of a code transformation technique that changes
encapsulated programs into semantically equivalent but more e�cient implementations.

4.1 Optimizing lookup

In our running example, the main drawback of the encapsulated version is that each
planet has to check all the �eets to see if they are close enough to move into the list of
attacking �eets. An optimization can be achieved by maintaining an index FleetIndex

in Planet, containing a list of those Fleets that satisfy the attacking property, i.e., being
owned by a di�erent player and close enough to the planet. When an enemy Fleet is
close enough to a Planet, it is moved into FleetIndex by the Route, which stores a list
of travelling �eets. When FleetIndex changes, it noti�es Planet, so that Planet can
update AttackingFleets.

A predicate is a conditional statement based on one or more �elds of an object of a
class A. We can generalize the aforementioned situation by saying that encapsulation
su�ers from loss of performance whenever an object B needs to update one of its �elds
depending on a predicate. B stores an index IA that is used to keep track of all possible
objects of class A satisfying the predicate. Any object of A has a reference to B and is

9

tasked with updating the index IA of B. B checks IA every time it needs to interact with
the instances of A satisfying the predicate.

4.2 Optimizing temporal/local predicates

If we take into consideration the fact that predicates belong to (potentially hundreds or
thousands) entities in a simulation that exhibit similar behaviors (ships, bullets, asteroids,
etc.) [16], we can expect that some predicates will exhibit some sort of temporal locality
on their values. We can group those predicates, and their respective block of code, and
apply an optimization that (i) keeps their code block inactive in a fast wake-up collection,
and (ii) activate only those blocks of which the predicate has changed. In general, this
would yield a higher performance without asking developers to write the optimization
code themselves.

4.3 Language level integration

The process described above can be automated at the compiler level as code transfor-
mation, since the index creation and management always follows the same pattern, and
thus the compiler itself can create and update the required data structures. Casanova 2,
which is a game development oriented language, ensures that variables are only changed
through speci�c statements; this makes it possible for the Casanova 2 compiler to identify
patterns in code that are suitable for optimization. The Casanova 2 compiler applies
transformations to the code that preserve the program semantics and optimize the encap-
sulated implementation by creating and maintaining the required indices. This way the
code written by the programmer will gain the bene�ts of readability and maintainability
that encapsulated code brings, without su�ering from loss of performance or the necessity
to break encapsulation to manage the optimization data structures. In the next session
we present the compiler architecture and the transformation rules.

The Casanova 2 compiler is written in F# and o�ers a modular extensible architecture
made of a series of distinct layers, each performing a transformation task. Transformations
initially add new information by means of analysis and inference. After analysis the
compiler starts removing information in preparation for code-generation step. This is the
synthetic part of the compiler. To let the compiler support our technique, we need to
implement and add a new layer whose task is to provide the compiler with information
regarding the dependencies (necessary to implement the idea above), which is then used
during the code-generation step. A further improvement would be to extend the Casanova
compiler with MPS's (meta programming systems)[44] that accept as input a clean high-
level description of our technique (expressed for example in denotation semantics) and
automatically generates a layer able to retrieve the dependencies necessary to the code
generation step. In this regard we are investigating the potentials of such approach and
its advantages by using a metacompiler called Metacasanova [17].

10

5 Implementation Details

In this section we introduce the syntax of the Casanova 2 language and show how to select
the predicates and the associated blocks of code that can be optimized.

Most games represent simulations of some sort. A property of simulations is a certain
temporal locality of behaviors [16]. This translates to the fact that some predicates tend
to have a high chance of no value change between frames. To reduce the amount of
interactions and achieve better performance, we optimize those predicates that exhibit
temporal locality (the selection is based on manual annotation).

We will refer to a predicate on �elds that do not change at every frame as Interesting
Conditions (ICs). These predicates are stored in a data structure called the Interesting
Condition Data Structure (ICDS).

Dealing with ICs adds an additional layer of complexity to the game. The execution
of game mechanics tends to be very frequent (we may expect that some mechanics will
be executed potentially hundreds of times per second), so interacting frequently with ICs
a�ects the game performance due to the complexity of the data structure.

ICs are used to identify, which blocks of code can be suspended and resumed with
little overhead. We use ICs at compile time to generate code that is able (through the
support of speci�c data-structure) to suspend and wake up with little overhead. This is
schematically shown in Figure 1.

Figure 1: System Con�guration

5.1 Casanova overview

Casanova is a Domain Speci�c Language oriented towards game development. A program
in Casanova is a set of entities organized in a tree hierarchy, of which the root is marked
as world. Each entity contains a set of �elds, a set of rules, and a constructor. An
extensive description of the formal grammar and semantics of Casanova can be found in
[28]. Casanova 2 (which we use) is a recent iteration of the original Casanova, which does
not introduce changes to syntax or semantics.

In Casanova the state of a game changes only upon the execution of a rule. A rule is
a block of code acting on a subset of the entity �elds called domain, which has at least
one yield statement and zero or more wait statements. The former updates the value
of the �elds of an entity, the latter suspends the evaluation of the rule until its condition
is met, temporally a�ecting the �elds update. The rule body is re-executed once the end
is reached.

11

An example of a rule that illustrates the wait statement (which speci�es that a shield
is repaired when it gets damaged) is the following :

rule Shields =
wait Shields < 0
. . .
yield Shields + 1

5.2 Compilation - Recognizing ICs in Casanova

From here on we will refer to the wait predicate as an IC, since its value a�ects the update
of an entity with respect to the �ow of time.

We also include query conditions in our IC taxonomy. We can think of a query as
an entity containing a list of valid query elements that satisfy the where condition. An
element adds itself to the valid query elements only if it satis�es the query where condition
(this is done by adding to its rules a rule that starts with a wait on the query condition
and ends with a yield that appends itself to the valid query elements).

An example of a rule with a query (which selects ships that are not destroyed) is the
following:

rule Ships = yield [from s in Ships do

where s . Life > 0
select s]

The e�ect of a yield is to suspend the execution of the rule for one frame and to assign
the selected query elements to the selected �eld. To achieve the optimization as described
in the previous section, the compiler uses an optimization analyzer (composed by a code
analyzer and a code generator as shown in Figure 1(h)), which requires the identi�cation
of ICs in code. This is discussed next.

Casanova allows interaction with external libraries and frameworks such as the .NET
framework. Because the analyzer cannot infer the temporal behavior of external libraries,
we add the restriction that an IC must be fully dependent on Casanova data types. The
restriction is necessary because the analysis will lead to alterations in the structure of
the game code and �eld creation, update, and access. Given the informal considerations
above, we introduce the following de�nitions:

� A suspendable statement is either a wait or a yield;

� A suspendable rule is a rule containing a suspendable statement. A suspendable
rule is interesting (ISR) if the wait argument is an IC or a yield on a query.

� An atomic rule is a rule that does not contain suspendable statements.

We now present two algorithms that respectively check if a predicate is a�ected by an
atomic rule (Algorithm 1) and to build the ICDS (Algorithm 2). For brevity we do not
present the procedure to check if a rule is an ISR, which can be done by simply looking
at the syntax tree of the rule body.

12

Algorithm 1 Check if a predicate is a�ected by an atomic rule

function Atomic(p)
E is the set of entities.
DFA← ∅
for e ∈ E do

R is the set of rules in e
for r ∈ R do

if r is an atomic rule then
for f ∈ r.domain do

DFA ∪ {(e, f)}
end for

end if
end for

end for
D ← set of (entity, field) in the predicate p.
return ∃x ∈ D : x ∈ DFA.

end function

Algorithm 2 ICDS construction

function buildICDS()
ICDS ← ∅
E is the set of entities.
for e ∈ E do

R is the set of rules in e
for r ∈ R do

if r is an ISR then
p is the �rst interesting condition of r
if not Atomic(p) then

ICDS ∪ {(e, r.index, r.domain, p)}
end if

end if
end for

end for
return ICDS

end function

13

Given a Casanova program, we build the ICDS data structure as follows: we iterate
over every entity; for every rule in each entity, if the rule is suspendable, interesting and
the predicate does not contain �elds that are a�ected by an atomic rule, we add the entity,
the rule index, the rule domain, and the predicate to the ICDS (See Figure 1(c)).

We now focus on the identi�cation of interesting conditions that exhibit temporal
locality.

5.3 Run-time e�cient sleep/wake-up system

We use the data structure generated by the analyzer to produce two distinct kinds of
rules: atomic rules (see Figure 1(b)) that are run every frame, and suspendable rules
(see Figure 1(g)). Every suspendable rule depends on an IC. Because of the property
of temporal locality of rules that contain ICs, they do not need to run at every frame.
Therefore the game program should activate and deactivate rules as needed at run time.
The game needs to: (i) activate a suspendable rule when its IC changes value, and (ii)
deactivate a suspendable rule when its IC is not satis�ed (i.e., when it is false). The
game keeps a rule active as long as the evaluation of its IC is true. Suspendable rules
di�er from classic atomic rules in Casanova since suspendable rules may become inactive,
i.e., they do not run during every update in the game loop.

We de�ne the Object Set (OBS) as the set of pairs made of an instance of an entity
and its �eld, that appear as arguments in an IC. Information used to build an OBS is
collected by using the ICDS. The idea behind the optimization is that, whenever the �eld
of an element of OBS changes during the game loop (see Figure 1(f)), we activate the
corresponding Interesting Suspendable Rule (ISR) R by triggering it (see Figure 1(e)).

We implement the previous behavior by means of dictionaries that keep track of the
dependencies among OBS and R. We use dictionaries in this implementation since they
exhibit the best asymptotic complexity with respect to the following operations: check,
add, remove, and iterate. From now on we will refer these dictionaries as Dictionary of
Entity-Predicate DEP.

We use the static information from the ICDS (see Figure 1(c)) to refer to the appro-
priate dictionary, based on the shape of the IC, to generate unique names for dictionaries.
For every �eld in the predicate, we combine the name of the type of the object containing
the �eld, the name of the �eld itself, the entity containing the ISR, and the ISR index.

As key we use a pair made of the reference to the object containing the �eld of the
IC and the �eld itself. As value we store a collection of pairs made of the instance of
the entity containing the ISR and the ISR index. We use a collection because it might
be the case that one or more instances of the same entity type are pending on the same
speci�c object �eld. In the example below the rule in E waits on a �eld X in the world,
and the world contains a collection of instances of E. When X changes, all the rules of
each instance of E waiting for X must be resumed.

world W =
X : int

L : List<E>
rule X =

14

wait 10
yield X + 1

. . .
entity E =

. . .
rule Y =

wait world . X % 2 = 0
. . .

An entry of the dictionary in the example would be (world,X), (L[0],rule Y).

5.4 Suspendable rules instantiate, destroy, and update

In order to maintain the suspendable rules we identify three stages that represent the life
cycle of a suspendable rule:

� On creation: when we instantiate an element of which a �eld appears in one of
the pairs of OBS, we use the instance and the �eld itself as a key to populate all its
DEPs with an empty collection as value. When we instantiate an entity of which
rules are targeted by an IC, we add the pair made of the entity instance and each
targeted rule as a value in its DEPs;

� On destroy: when an instance appears either as a value or a key in one of DEPs,
we remove all the occurrences of the instance in DEPs;

� On update: when a �eld of an IC changes we notify the entities pending on it.
After generating the IC data structure, we can safely refer to the dictionaries relying
on the fact that the generated code is sound and will not produce errors at run-
time. As a consequence of a noti�cation, the ISRs involved in the noti�cation will be
activated during the next frame (if they were inactive). We add them to a collection
representing the active rules of the entity containing the involved ISRs (see Figure
1(d)). We group instances of the same target type into the same collection to achieve
better performance (we iterate the active rules all at the same time per type instead
of iterating them while iterating each entity). We store a collection in the world that
contains per entity all the suspended rules that are run during a game iteration.

Rules in Casanova are translated at compile time into a series of switches without
nesting within functions that return void. ISRs return Done when the evaluation of their
IC is false (stay inactive) or Working when the evaluation of their IC is true (go active)
or we are still busy with the execution of the block after the IC. When a suspendable
rule gets suspended, i.e., its evaluation returns Done, we simply remove it from the active
rules collection (see Figure 1(a)).

Notice the similarity between Casanova and Aspect Oriented Programming paradigm:
interruptions and yields share the same philosophy of cross-cutting concerns and aspects.
When using a wait, a developer simply declares the concern of suspending the code with
respect to some condition, and the compiler acts as a weaver inlining the code for the

15

optimization (our aspect) discussed above. When using a yield, a developer declares
the concern of updating an attribute of an entity, and the compiler realises the wake up
system for all the wait statements depending on that attribute.

5.5 Query interpretation

We transform a query into semantically equivalent code where every entity appearing in
the from expression (source) adds or removes itself from an index stored in the entity
containing the query (target). We add or remove a source entity in the target index only
if the condition is true. This is done by generating a rule that waits for the condition to
be true in the target entity. Applying our optimization to queries means that we do not
need to iterate conditions every frame: we keep the rule suspended until the condition
changes its value.

6 Networking in Casanova 2

In this section we introduce the basic concepts of the implementation of multiplayer game
development for Casanova 2. This implementation aims to relieve the programmer of
the complexity of hard-coding the network implementation for an online game, while
preserving encapsulation in code. We show that code analysis is required to generate the
appropriate network primitives to send and receive data. Finally, we present a simple
multiplayer game to show a concrete example.

6.1 Introduction

Adding multi-player support to games is a highly desirable feature. By letting players
interact with each other, new forms of gameplay, cooperation, and competition emerge
without requiring any additional design of game mechanics [23]. This allows a game to
remain fresh and playable, even after the single player content has been exhausted. For
example, consider any modern AAA (AAA refers to games with the highest development
budgets[46]) game such as Halo 4. After months since its initial release, most players have
exhausted the single player, narrative-driven campaign. Nevertheless the game remains
heavily in use thanks to multiplayer modes, which in e�ect extended the life of the game
signi�cantly. This phenomenon is even more evident in games such as World of Warcraft
or EVE, where multiplayer is the only modality of play and there is no single-player
experience.

Challenges Multi-player support in games is a very expensive piece of software to
build. Multiplayer games are under strong pressure to have very good performance[13].
Performance is both in terms of CPU time, and in bandwidth used. Also, games need to be
very robust with respect to transmission delays, packets lost, or even clients disconnected.
To make matters worse, players often behave erratically. It is widespread practice among
players to leave a competitive game as soon as their defeat is apparent (a phenomenon

16

so common to even have its own name: �rage quitting� [25]), or to try to abuse the game
and its technical �aws to gain advantages or to disrupt the experience of others.

Networking code reuse is quite low across titles and projects. This comes from the fact
that the requirements of every game vary signi�cantly: from turn-based games that only
need to synchronize the game world every few seconds, and where latency is not a big
issue, to �rst-person-shooter games where prediction mechanisms are needed to ensure the
smooth movement of synchronized entities, to real-time-strategy games where thousands
of units on the screen all need to be synchronized across game instances [38]. In short,
previous e�ort is substantially inaccessible for new titles. Encapsulation su�ers from
this ad-hoc nature of the implementation of the networking layer in multiplayer games.
Indeed managing the information about game updates over a network requires each game
entity to interface the game logic code with network connection and socket objects, data
transmission method calls such as send and receive, and support data structures to manage
tra�c and track the status of common protocols. This happens because each game entity
must provide the following functionality in order to work in a multiplayer game:

� Update the logic in the fashion of a singleplayer counterpart.

� Choose what data is necessary to send over the network and create the message
containing this information.

� Choose what data can be lost and what data must always be received by the other
clients.

� Periodically check if incoming messages contain information that needs to be read
and to speci�c updates.

Combining these requirements together within the same entity breaks encapsulation
because now the logic of the entity and lots of spurious details only relevant to the network-
ing implementation are mixed together, resulting in a highly noisy program. Maintenance
then becomes very hard, as every change in the game logic must also be re�ected in the
networking implementation.

Existing approaches Networking in games is usually built with either very low-level
or very high-level mechanisms. Very low-level mechanisms are based on manually sending
streams of bytes and serializing only the essential bits of the game world, usually incre-
mentally, on unreliable channels (UDP). This coding process is highly expensive because
building by hand such a low-level protocol is di�cult to get right, and debugging subtle
protocol mismatches, transmission errors, etc. will take lots of development resources.
Low-level mechanisms must also be very robust, making the task even harder.

High-level protocols such as RDP, re�ection-based serialization, frameworks (such as
Pastry, netty.io), etc. can also be used. These methods greatly simplify networking code,
but are rarely used in complex games and scenarios. The requirements of performance
mean that many high-level protocols or mechanisms are insu�cient, either because they
are too slow computationally (especially when the rely on re�ection or events) or because
they transmit too much data across the network.

17

6.2 Motivation

To avoid the problems of both existing approaches, we propose a middle ground. We
observe that networking fundamental abstractions upon which the actual code and proto-
cols are built do not vary substantially between games, even though the code that needs
to be written to implement them does. The similarity comes from the fact that the ways
to serialize, synchronize, and predict the behaviour of entities are relatively standard and
described according to a limited series of general ideas. The di�erence, on the other
hand, comes from the fact that low-level protocols need to be adapted to the speci�c
structure of the game world and the data structures that make it up. Until now, common
primitives have not been syntactically and semantically captured inside existing domain-
speci�c languages for game development[11]. Using the right level of abstraction, these
general patterns of networking can be captured, while leaving full customization power in
the hand of the developer (to apply such primitives to any kind of game).

6.3 Related works

In the following we discuss some existing networking tools used in game development and
we highlight some issues that arise from their use.

The Real time framework (RTF) RTF [22] is a middleware built for C++ to relieve
the programmer from dealing with data compression. It is more �exible than solutions
based on game engines or hand-made implementations, since it automates the process of
data transmission. Moreover, it supports distributed server management. Unfortunately,
this solution has several �aws:

� All entities must inherit from the class Local and the semantics of the position is
pre-determined, often clashing with rendering or physics;

� Platform independence requires that the programmer uses RTF primitive types;

� Data transmission automation requires that all game entities inherit the class
Serializable;

� Being a middleware, RTF is not aware of what games are going to use it (every game
comes with di�erent data structures). Thus, the developer is tasked to include in
his code also logic to update the RTF layer, in order to keep the game updated over
the network.

Network scripting language (NSL) NSL [37] provides a language extension based
on a send-receive mechanism. Moreover it provides a built-in client side prediction (a
feature missing in existing highly concurrent and distributed languages such as Stackless
Python [26] and Erlang [7]), which is periodically corrected by the server.

18

Unreal Engine/Unity Engine Unreal Engine [21] and Unity Engine [19] are com-
mercial game engines supporting networking. Both Unity and Unreal Engine use a client-
server approach. In Unreal Engine the server contains the �true� game state, and the
clients contain a �dirty� copy, which is validated periodically. It is possible to de�ne en-
tities (actors in Unreal Engine jargon) that are replicated on the clients. Whenever a
replicated actor changes on the server, this change is also re�ected on the clients. Addi-
tional customization can be achieved through Remote procedure calls (RPC's) of three
kinds:

� The function is called on the server and executed on the client. This is used for
game element that do not a�ect gameplay, such as creating a particle e�ect when a
weapon is �red;

� The function is called on the client and executed on the server. This is useful for
events that a�ect the other clients and should be validated by the server;

� The function is executed in multi-cast, meaning that the server calls the function
and that it is executed on both the server and all the clients.

The Unity Engine uses a similar approach based on networking components, synchro-
nized at every frame, and RPC's to de�ne custom synchronization events.

Unfortunately, customization comes at the cost of the level of detail that developers
must face. Using RPC's require a deep knowledge of the engine and writing lots code, as
discussed in Section 3.1.

7 Networking architecture

In this section we introduce a small example that addresses the requirements of designing a
multiplayer game. We then present an architecture that aims to ful�l these requirements.

7.1 The master/slave network architecture

We choose to implement the networking layer in Casanova 2 by using a peer-to-peer
architecture for the following reasons:

� Server-client architectures are more reliable but suitable only for speci�c genres of
games (mostly Shooter games), while other genres, such as Real-time strategy games
or Online Role Playing Games use p2p architecture.

� We do not have to write a separate logic for an authoritative game server, which
has to validate the actions of clients.

Casanova will provide a generic tracking server, which is run separately from the main
program. The tracking server is a thin service that connects players participating in a
single game, and helps with forwarding the network tra�c through NATs.

19

Each client maintains a local copy of the world entity and has direct control over a
single portion of it. Instances belonging to such portion are seen as master by this player,
who is always allowed to directly change the state of the master instances without having
to validate this state change by synchronizing with other players through the network.

Each client also maintains a portion of the world that is not directly under his control.
Instances belonging to such portion are seen as slave by this player, who is only allowed
to predict the local state of the instances and, whenever he receives an update from their
masters, must correct this prediction according to the data contained in the received
messages. The slave part of the world is thus maintained passively by the client: the only
active part is predicting the evolution of the entity state and correcting it whenever he
receives an update by its master.

For this purpose we extend the syntax of Casanova rules by allowing them to be
marked with the modi�ers master and slave. These rules are executed respectively on
master and slave entities. Note that it is still possible not to mark a rule with these
modi�ers, which means that the rule is always executed independently of the fact that
the entity is either master or slave on that particular client. We also allow to mark a rule
as connecting and connected. These rules are triggered only once respectively when a
new client connects and when the clients detect a new connection.

Casanova also provides primitives to send (reliably or unreliably) and receive data. A
schematic representation of this architecture can be seen in Figure 3.

Figure 2: Representation of the game world in a networking scenario

(a) Unknown correct game
state when P3 joins the
game.

(b) Networking game state
seen from the point of view
of P1. P2 is partially syn-
chronized, P4 is fully syn-
chronized, and P3 is a new
client that is late and is still
sending its data

Note the aim of this architecture is to provide language-level primitives to describe the
networking logic. This means that the compiler will be able to generate code compatible
with low level network libraries that provide transmission functions over the network
channel without having to change Casanova code in the program. In our implementation
we chose the .NET library Lidgren, which is widely used also in commercial game engines,
such as Unity3D and MonoGame, but nothing prevents the compiler to be expanded in
order to target other similar libraries for other languages, such as jgroups [8].

20

Figure 3: master/slave architecture

7.2 Case study

Let us consider a simple shooter game where each player controls a space ship. Players
can move forward, backward, and rotate the ship to change direction. Moreover, they can
use the ship lasers to shoot other players. If a laser hits an enemy ship we increase the
player's score. Designing such a game requires to address the following issues, depicted
by the schematic representation in Figure 2:

1. Each player must maintain a local version of the game state (world). In order to
avoid to �ood the network with messages, all the copies are not fully synchronized at
each frame, thus they are slightly di�erent and each client knows the latest version
of only part of the copy.

2. A player connecting to an existing game must be able to receive the latest update
of the game state and send the new ship he will control to existing players in the
game.

3. A player already connected to the game must detect a new connection and send
his master portion of the game state.

4. Each player must be able to control only one ship at a time. This means that the
part of the game logic that processes the input and modify the spatial data of the
ship (position and rotation) should only be executed on the ship controlled by the
player and not on the local copies of other players' ships. This means that each
player sees as master only one ship instance.

5. Each player must send the updated state of the ship he controls to the other players
after executing the local update. To achieve better performance over the network,
the data is not sent at every update, but with a lower frequency.

21

6. Each player must receive the updated state of slave ships controlled by other
players. In this phase we must take into account that, as explained above, not every
update is sent so the player should �predict� what will happen during the game
frames in which he does not receive an update.

7.3 Implementation

Each of the scenarios described above requires speci�c language extensions. This exten-
sions identify connection, ownership (master/slave), and various send and receive primi-
tives. In this section we introduce each primitive by using a multiplayer game example
2. We now give an implementation of the shooter game presented above and using the
extended version of Casanova 2 with network primitives.

The world contains a list of ships controlled by each player.

world Shooter = {
Ships : [Ship]
. . .

}

Each Ship contains a position, a rotation, a collection of shot projectiles, and the
score.

entity Ship = {
Position : Vector2

Rotation : float32

Projectiles : [Projectile]
Score : int

. . .
}

Each Projectile contains its position and velocity.

entity Projectile = {
Position : Vector2

Velocity : Vector2

. . .
}

7.3.1 Connection

When a player connects we must consider two di�erent situations: (i) a player is already
in the game and must send the current game state to the connecting players, and (ii) the
player who is connecting needs to send the ship he will instantiate and control (its initial
state). Both the players in the game and the connecting one must receive the game states
that are sent. For this purpose we introduce two additional modi�ers, connecting and

2The game source code and executable can be found at https://github.com/vs-team/

casanova-mk2/wiki/Networking-extension

22

connected, that can be added to rule declarations to mark their role in the multiplayer
logic.

Connecting: A rule marked with connecting is executed once when a player joins
the game. In our example the player should send his initial state (the created ship) to
the other players. We use the primitive send_reliable because we must be sure that
eventually all players will be noti�ed of the ship creation.

world Shooter = {
. . .
rule connecting Ships =

yield send_reliable Ships

}

Connected: A rule marked with connected is run whenever a new player joins the
game. When this occurs, each player sends its ship. The system will take care to send
only the ship controlled locally by the player itself for each player. The rule will use the
send_reliable primitive for the same reason explained in the previous point.

world Shooter = {
. . .
rule connected Ships =

yield send_reliable Ships

}

7.3.2 Master updates

As explained above, each client manages a series of local game objects (called master
objects) that are under its direct control. The other clients read passively any update done
on those instances and update their remote copy (slave objects) accordingly. We mark
rules a�ecting the behaviour of master objects as master. In our example the following
situations are run as master: (i) synchronizing the ships among players, (ii) updating the
ship and projectiles spatial data, and (iii) creating and destroying projectiles.

1. Each player is tasked to maintain the list of Ships in the world. This requires to
receive the updated list from other players and to store the new value in a master
rule. Indeed the world is a special case of an entity that is shared among players,
and not directly owned by somebody. Each ship contained in that list and received
from other players will be treated appropriately as slaves, while the only one owned
by the current player will be under his direct control. In this rule we use let!, which
is an operator that waits until the argument expression returns a result and then
binds it to the variable. The rule uses receive_many, which receives and collects
the list of sent ships by the other players.

world Shooter = {

23

. . .
rule master Ships =

let ! ships = receive_many ()
yield Ships @ ships

}

2. The master version of the ship update reads the input of the player and moves (or
rotates) the ship if the appropriate key is pressed. Note that this part must be
executed only on a master object, because we want to allow each player to control
only the ship it owns and instantiates at the beginning of the game. Below we show
just the rule to move forward, the other movement and rotation rules are analogous.
We use an unreliable send because it is acceptable to lose an update of the position
during a certain frame: shortly after there will be a new update.

entity Ship = {
. . .
rule master Position =

wait world . Input . IsKeyDown (Keys . W)
let vp = new Vector2 (Math . Cos (Rotation) ,

Math . Sin (Rotation)) * 300 .0 f
let p = Position + vp * dt

yield send p

}

We do the same for projectiles, except the projectile position is continuously updated
and synchronized over the network without having to wait that a key is pressed.

3. Creating a new projectile happens when the player shoots. A ship keeps track of
the projectiles it has shot so far, and adds a new one to the list of the existing
projectiles. The updated list is sent to all players with the new instance of the
projectile. As explained in Section 7, we only send the new projectiles and not the
whole list.

entity Ship = {
. . .
rule master Projectiles =

wait world . Input . IsKeyDown (Keys . Space)
let vp = new Vector2 (Math . Cos (Rotation) ,

Math . Sin (Rotation)) * 500 .0 f
let projs = new Projectile (Position , vp) : : Projectiles

yield send_reliable projs

wait not world . Input . IsKeyDown (Keys . Space)
}

Filtering the colliding projectiles and updating the score is run as a master rule.
The rule computes the set di�erence between the ship projectiles and the colliding
projectiles and updates the list of projectiles, sending them through the network

24

as well. Even in this case, the network layer sends only the information about the
projectiles to remove. Note that the score is managed by each player locally, as
it does not require to be synchronized (we do not print the other players' scores.
Doing so would indeed require to also send the score).

entity Ship = {
. . .
rule master Projectiles , Score =

let collidingProjs =
[for p in Projectiles do

let ships =
[for s in Ships do

where

s <> this and

Vector2 . Distance (p . Position , s . Position) < 100 .0 f
select s]

where ships . Count > 0
select p]

let newProjectiles = Projectiles − collidingProjs

yield send_reliable newProjectiles ,
Score + collidingProjs . Count

}

7.3.3 Managing remote instances

The game objects that were not instantiated by a client, but received from another client,
are slave objects and must be synchronized di�erently than master objects. For this
purpose, a rule can be marked as slave. In our example we use slave rules in the
following situations: (i) synchronizing other players' ships and projectiles spatial data,
and (ii) projectiles instantiated by other players.

1. Every remote projectile and ship is synchronized locally by a rule, which tries to
receive a message containing updated special data. Below we provide the code
to update the position of the ship, the synchronization of other spacial data is
analogous.

entity Ship = {
. . .
rule slave Position = yield receive ()

}

2. When a projectile is instantiated remotely, we have to receive it and add it to the
list of projectiles. We use receive_many because the new projectiles are added
to a list. This case also supports the situation where a ship could shoot multiple
projectiles at the same time.

25

entity Ship = {
. . .
rule slave Projectiles =

let ! projs = receive_many ()
yield projs @ Projectiles

}

8 Evaluation

In this section we evaluate the performance of our approach. A comparison on the same
Casanova game code between the not optimized implementation and the optimized one,
and an implementation in C#, will be shown and discussed in terms of run time perfor-
mance and code complexity.

8.1 Experimental setup

In order to get a systematic evaluation of the proposed approach to encapsulation, a
generic game is considered, in which a group of entities are spawned every K seconds and
stay inactive for a random amount of time, between 5 and 10 seconds. Then they are
activated and start moving for a randomly determined amount of random time, between
4 and 8 seconds. Finally, they are destroyed, by triggering a condition in the entities. For
the evaluation additional conditions are added (with di�erent timers), in order to make
the simulation dynamics more articulated and �heavy� in terms of amount of code to run.

In this experiment we compare the code generated by the Casanova compiler, versus
our optimization built in the Casanova compiler, and an idiomatic implementation in the
C# language (a commonly-used language for building games). We also ran the games
with two di�erent front ends, namely Unity3D and MonoGame, both using .NET. For
each test we measure the time (in milliseconds) that the game takes to fully complete a
game iteration (i.e., updating all the entities in the game). We did not include the time
it takes to render the game screen, since rendering is not a�ected by our optimization,
though it might a�ect the performance measure.

8.2 Performance evaluation

Table 2 shows the performance results. As we can see in both cases the performance of
our optimized Casanova 2 code is higher than the one of non-optimized implementation,
and the idiomatic C# implementation. Using Unity3D the optimized code is one order
of magnitude faster with respect to the non-optimized code. Using MonoGame the opti-
mization is linearly faster. The di�erence is due to the implementation of the underlying
frameworks.

26

Table 1: Code lines comparison for a singleplayer game

Original language Generated language Optimized code Lines
Casanova - - 45
Casanova C# No 139
Casanova C# Yes 327

C# - - 88

Table 2: Running time comparison for a singleplayer game

Platform Language Optimized Performance

Monogame
Casanova No 0.0159 ms
Casanova Yes 0.0098 ms

C# - 0.0147 ms

Unity3D
Casanova No 0.0257 ms
Casanova Yes 0.0085 ms

C# - 0.1642 ms

8.3 Code size evaluation

Table 1 shows the code length for each implementation. Casanova 2 game code needs
about half the lines of code compared to the idiomatic C# implementation for single player
games. When comparing networking code, the di�erence is one order of magnitude (see
Table 3). The intermediate code that the Casanova 2 compiler creates (which is C# code)
is considerably longer due to the presence of support data structures. With increasing code
complexity, we may expect the original Casanova 2 code to remain compact, while the
generated code will increase rapidly in size, with additional data structures and associated
logic code. Writing such optimized code by hand is a daunting and expensive task.

9 Conclusions

Game developers often have to choose between maintainability of their code and speed of
execution, a choice that more often than not favors speed over maintainability. By using
encapsulation, game code may be written in a maintainable way, but compilation of en-
capsulated code in general-purpose languages often leads to slower games. We proposed a
solution to the loss of performance in encapsulated programs using automated optimiza-
tion at compile-time. We presented an implementation of this solution in the Casanova 2
language. We showed that our approach transforms encapsulated code, through extensive

Table 3: Code lines comparison for a multiplayer game

Language Lines
Casanova 126

C# 1257

27

automated optimization, into a high-performance executable, that easily rivals the speed
of a C# implementation. Moreover, we showed that Casanova 2 code needs about half the
lines of code as the C# implementation, with even more dramatic results if we consider
well-known complex and verbose network code: good primitives for networking preserve
encapsulation because they do not require polling the identity of an entity with network
speci�c information that it is not related to the game logic of the entity itself. Of course
networking does impact the logic of the entity, but this should be re�ected by minimal
code adjustments. Our research, which is still in its initial stage, requires more (and more
complex) samples and further investigation. Still preliminary experiments suggest that
our approach allows game developers to write clear, readable code, which is both high
performance and maintainable.

References

[1] CMP Media Game Developers Conference, 2004.

[2] Essential facts about the computer and video game industry.
http://www.theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-
2015.pdf, 2015.

[3] Galcon. https://www.galcon.com/, 2015.

[4] Abbadi, M., Di Giacomo, F., Cortesi, A., Spronck, P., Giulia, C., and
Maggiore, G. High performance encapsulation in casanova 2. In Computer Science
and Electronic Engineering Conference (CEEC), 2015 7th (2015), IEEE, pp. 201�
206.

[5] Albrecht, T. Pitfalls of object oriented programming. Proceedings of Game Con-
nect: Asia Paci�c (GCAP) (2009).

[6] Anderson, E. F. A classi�cation of scripting systems for entertainment and seri-
ous computer games. In Games and Virtual Worlds for Serious Applications (VS-
GAMES), 2011 Third International Conference on (2011), IEEE, pp. 47�54.

[7] Armstrong, J., Virding, R., Wikström, C., and Williams, M. Concurrent
programming in erlang.

[8] Ban, B., et al. Jgroups, a toolkit for reliable multicast communication.

[9] Beck, K. Extreme programming explained: embrace change. addison-wesley profes-
sional, 2000.

[10] Best, M. J., Fedorova, A., Dickie, R., Tagliasacchi, A., Couture-Beil,
A., Mustard, C., Mottishaw, S., Brown, A., Huang, Z. F., Xu, X., et al.
Searching for concurrent design patterns in video games. In Euro-Par 2009 Parallel
Processing. Springer, 2009, pp. 912�923.

28

[11] Bhatti, S., Brady, E., Hammond, K., and McKinna, J. Domain speci�c lan-
guages (dsls) for network protocols. In International Workshop on Next Generation
Network Architecture (NGNA 2009) (2009).

[12] Cheung, A., Kamil, S., and Solar-Lezama, A. Bridging the gap between
general-purpose and domain-speci�c compilers with synthesis. In LIPIcs-Leibniz
International Proceedings in Informatics (2015), vol. 32, Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

[13] Claypool, M., and Claypool, K. Latency and player actions in online games.
Communications of the ACM 49, 11 (2006), 40�45.

[14] Claypool, M., and Claypool, K. Perspectives, frame rates and resolutions:
it's all in the game. In International Conference on Foundations of Digital Games
(2009), ACM.

[15] Collar Jr, E., and Valerdi, R. Role of software readability on software devel-
opment cost.

[16] Courtney, J. Using ant colonization optimization to control di�culty in video
game ai. Undergraduate Honors Theses (2010).

[17] Di Giacomo, F., Abbadi, M., Cortesi, A., Spronck, P., and Maggiore,
G. Building game scripting dsl's with the metacasanova metacompiler. In Proceed-
ings of the 8th International Conference on Intelligent Technologies for Interactive
Intertainment (2016).

[18] Eder, J., Kappel, G., and Schrefl, M. Coupling and cohesion in object-oriented
systems. Technical Report, University of Klagenfurt, Austria (1994).

[19] Engine, U. G. Unity game engine-o�cial site. Online][Cited: October 9, 2008.]
http://unity3d. com.

[20] Fatemi, S. S. Cross it out: An experimentation in the �eld of interactive �ction.

[21] Games, E. Unreal engine 3. URL: http://www. unrealtechnology. com/html/tech-
nology/ue30. shtml (2006).

[22] Glinka, F., Ploÿ, A., Müller-lden, J., and Gorlatch, S. Rtf: a real-time
framework for developing scalable multiplayer online games. In Proceedings of the
6th ACM SIGCOMM workshop on Network and system support for games (2007),
ACM, pp. 81�86.

[23] Granberg, C. David Perry on game design: a brainstorming toolbox. Cengage
Learning, 2014.

[24] ISO/IEC/IEEE. ISO/IEC/IEEE 24765 - Systems and software engineering - Vo-
cabulary. Tech. rep., 2010.

29

[25] Kaiser, E., and Feng, W.-c. Playerrating: a reputation system for multiplayer
online games. In Proceedings of the 8th Annual Workshop on Network and Systems
Support for Games (2009), IEEE Press, p. 8.

[26] Kalogirou, H. Multithreaded game scripting with stackless python. Thoughts
Serializer,(http://harkal. sylphis3d. com/2005/08/10/multithreaded-game-scripting-
with-stackless-python/) (2005).

[27] Lewis, M., and Jacobson, J. Game engines. Communications of the ACM (2002).

[28] Maggiore, G. Casanova: a language for game development.

[29] Maggiore, G., Bugliesi, M., and Orsini, R. Monadic scripting in f# for com-
puter games. In TTSSâ��11â��5th International Workshop on Harnessing Theories
for Tool Support in Software (2011), p. 35.

[30] Mallett, J., and Lefler, M. Zillions of games. Available online at: www.
zillions-of-games. com (1998).

[31] Marx, A. Interactive development: The new hell, 1994.

[32] Petridis, P., Dunwell, I., De Freitas, S., and Panzoli, D. An engine selec-
tion methodology for high �delity serious games. In Games and Virtual Worlds for
Serious Applications (2010), IEEE.

[33] Prensky, M. Computer games and learning: Digital game-based learning. Handbook
of computer game studies (2005).

[34] Reed, A. Creating Interactive Fiction with Inform 7. Cengage Learning, 2010.

[35] Richter, J. CLR via c#. Pearson Education, 2012.

[36] Rocki, K., Burtscher, M., and Suda, R. The future of accelerator program-
ming: Abstraction, performance or can we have both? Symposium on Applied
Computing, ACM.

[37] Russell, G., Donaldson, A. F., and Sheppard, P. Tackling online game
development problems with a novel network scripting language. In Proceedings of the
7th ACM SIGCOMM Workshop on Network and System Support for Games (2008),
ACM, pp. 85�90.

[38] Smed, J., Kaukoranta, T., and Hakonen, H. Aspects of networking in multi-
player computer games. The Electronic Library 20, 2 (2002), 87�97.

[39] Snyder, A. Encapsulation and inheritance in object-oriented programming lan-
guages. In ACM Sigplan Notices (1986).

[40] Stapleton, A. J. Serious games: Serious opportunities. In Australian Game
Developers Conference, Academic Summit, Melbourne (2004).

30

[41] Sujeeth, A. K., Brown, K. J., Lee, H., Rompf, T., Chafi, H., Odersky,
M., and Olukotun, K. Delite: A compiler architecture for performance-oriented
embedded domain-speci�c languages. Transactions on Embedded Computing Systems
(2014).

[42] Tabareau, N., Figueroa, I., and Tanter, É. A typed monadic embedding of
aspects. In Proceedings of the 12th annual international conference on Aspect-oriented
software development (2013), ACM, pp. 171�184.

[43] Takeuchi, H., and Nonaka, I. The new new product development game. Harvard
business review 64, 1 (1986), 137�146.

[44] Terry, B. W., and Cameron, R. D. Software maintenance using metaprogram-
ming systems. In Proc. Conf. on Software Maintenance (1987), vol. 1087, pp. 115�
119.

[45] Ungar, D., Smith, R. B., Chambers, C., and Hölzle, U. Object, message,
and performance: how they coexist in self. Computer 25, 10 (1992), 53�64.

[46] Wolf, M. J. The video game explosion: a history from PONG to Playstation and
beyond. ABC-CLIO, 2008.

[47] Zhou, G. Partial evaluation for optimized compilation of actor-oriented models.
ProQuest, 2008.

31

