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Abstract

This paper presents an approach that integrates a legacy component into a software system for storm sewer simulation. The
legacy component employed here is the Storm Water Management Model (SWMM). The Extended Transport (EXTRAN) block of
the SWMM that applies the finite difference method (FDM) with explicit numerical schemes, solving the de Saint-Venant equations,

is used to route the storm sewer flow. A storm sewer simulation system, named S4, that integrates SWMM-EXTRAN and
implements a visualization model, has been developed to demonstrate the proposed approach. The approach makes use of the multi-
thread technology to alternate the execution between SWMM-EXTRAN for flow simulation on one thread and the program

controller that updates simulation state variables and displays the computed temporal water-stages at the junctions on the other
thread at every time step of the FDM process. Two test examples are used to verify and demonstrate the feasibility of the proposed
approach. The results show that the multi-thread technology is applied successfully for integrating legacy components, such as
SWMM-EXTRAN, into a software system (in this case, S4). In addition, the proposed approach is generally applicable for

integrating legacy models or components developed using FDM with explicit numerical schemes.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The capacity of storm sewers can be overtaxed
occasionally and water rises in manholes, inundating
the urban areas. Thus monitoring sewer flow for large
cities becomes necessary and prevention or mitigation of
damages due to inundation is always a concern. A storm
sewer simulation system that receives the real-time
monitoring rainfall data as system input to predict the
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future states of the storm sewer system can help make
decisions to reduce the damage during the storm events.
This kind of system usually includes at least a program
controller, a storm sewer simulator (or solver), and
a visualization module. The program controller asks the
storm sewer model to simulate the sewer flow based on
the real-time rainfall data and passes the current states
computed by the storm sewer model to the visualization
model for immediate displays.

The flow conditions in storm sewers vary with time,
which can be determined by proper hydrodynamics
models. The de Saint-Venant equations, also referred
to as the shallow water equations (Chaudhry, 1993),
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are the most popular hydrodynamics to describe the
flows in channels and/or storm sewers. The continuity
and momentum equations of the unsteady flow are
depicted by the following equations, respectively:
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where Q, discharge; A, flow cross-sectional area; H,
hydraulic head; x, distance along the pipe; t, time;
g, gravitational constant; Sf, energy slope.

Many numerical models available today adopt numer-
ical schemes to the solutions of full de Saint-Venant
equations. For instance, models like SWMM-EXTRAN
(Huber and Dickinson, 1988) and SUPERLINK
(Ji, 1998) employ explicit and implicit schemes, respec-
tively, to obtain the solutions.

The finite difference method (FDM) with explicit
numerical schemes (Explicit-FDM) that require less
memory and computation time is proper for dealing
with storm sewer hydrodynamics. However, most legacy
Explicit-FDM solvers, such as SWMM-EXTRAN, take
a priori design storm and/or historical rainfall event as
input data and then predicts the sewer flow at any time
period of the known rainfall events. They cannot avoid
re-starting the solver from the very beginning of the
rainfall events whenever the rainfall data is given in real-
time. It would be much better and saves much time if
the program controller can suspend the execution of the
solver at every time step and provide the solver with
the real-time rainfall data for the computation of the
next time step. Moreover, before the controller resumes
the execution of the solver, it can obtain the computed
results from the solver and ask the visualization module
to display them. To achieve the integration of the legacy
solver into a storm sewer simulation system capable of
simulating the flow condition with real-time monitoring
rainfall as described above, the interaction and message
passing among the legacy solver, the program controller,
and the visualization module need to be carefully
addressed.

Concepts as well as technologies have been proposed
to integrate the legacy models to accurately describe
the storm sewer simulation or provide a friendly user
interface that makes these models easier to use. The term
‘‘legacy component’’ or ‘‘legacy model’’ is used here to
refer to software with older-technology (Lutz, 1995),
typically in the form of Fortran subroutines (Ewer et al.,
1995; Achee and Carver, 1997; Neil et al., 1999; Tolsma
and Barton, 2000; Sang et al., 2002; Guo, 2003). The
approaches for integrating legacy components into
a software system can be classified into two groups with
different levels of difficulty. The approaches in the first
group usually integrate legacy components through their
input/output files and involve no modification on the
legacy source code. They are therefore simpler and more
straightforward. For instance, the well-known software
package PCSWMM, which makes use of the executable
SWMM as the simulation module, provides a friendly
graphical user interface (GUI) to make SWMM easy to
use. Hsu et al. (2000) integrated two legacy models, i.e.
a storm sewer model and a two-dimensional inundation
model, to simulate inundation problems. The two legacy
models are executed in sequence and no modification on
their source codes is required. The inundation model is
always waiting for the output from the storm sewer
simulation model. The integration approaches in the
second group require some modifications on the legacy
source code to achieve more seamless integration
between the models. Message passing between the
models is often the key issue in these approaches. The
integrated modeling discussed by Rauch et al. (2002),
which is the approach that simulates the interaction
between two or more physical systems, belongs to this
group. Many studies have focused on this group of
approaches in the last decade. They include the studies
on how to integrate the legacy models into an existing
object-oriented framework (Neil et al., 1999; Riche
et al., 2003) and into a flowsheet (Tolsma and Barton,
2000). The applications of integrated modeling in urban
drainage or wastewater systems were also proliferated
(Rauch and Harremoés, 1996, 1999; Schútze et al., 1996,
1999; Lin et al., 2003; Butler and Schütze, 2005). It has
been shown that the task to integrate sub-models with
different state variables into a single software tool can be
quite complex (Rauch et al., 2002).

This paper presents an integration approach that
belongs to the second group described above. The
approach takes advantage of the multi-thread technol-
ogy to integrate legacy components. A storm sewer
simulation system, named S4, that integrates the legacy
SWMM-EXTRAN component and implements a visu-
alization module, has been developed to demonstrate
the proposed approach. With the multi-thread technol-
ogy, S4 is able to suspend and resume the execution of
SWMM-EXTRAN for flow simulation with real-time
rainfall data on one thread during runtime and display
the computed temporal water-stages at the junctions of
the storm sewer system on the other thread at every
time step of the Explicit-FDM process. One targeted
application of the proposed approach is the real-time
control simulation in urban drainage systems.

The remaining sections of this paper are organized as
follows. Section 2 explains the background of the storm
sewer model, i.e. SWMM, adopted and the design of the
components in S4. Section 3 discusses the choices of
programming language for the development of S4 and
describes how message passing among S4 components
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during runtime can be achieved through inter-process
communication supported by the multi-thread technol-
ogy. In Section 4, the discussions are on the implemen-
tation details of S4. Section 5 then uses two examples, an
idealized drainage system and a real drainage system
located in the Taipei City, to study and demonstrate the
feasibility of the proposed approach. Finally, some
conclusions are drawn in Section 6.

2. Design of the storm sewer simulation system

S4 is composed of four major components, i.e. the
Simulator, Controller, Visualizer, and SWMM_Adaptor,
as shown in Fig. 1. The Simulator is used to simulate the
storm sewer flow. This work takes advantage of the
legacy SWMM model to implement the Simulator.
Further discussion on the Simulator is given later in the
next paragraph. The Controller is the component to
manage the flow of simulation. It suspends the execution
of the Simulator at the end of every time step and receives
information, such as the computed water-stages at the
junctions in the storm sewer system, from the Simulator
through the help of the SWMMAdaptor. It then calls the
Visualizer to display the received information immedi-
ately. The SWMM Adaptor is designed as an object of
a user-defined type (Stroustrup, 1997) that encapsulates
the data (i.e. data member in the field of Object-Oriented
Programming) used by both the Simulator and the
Controller, and provides the methods (i.e. functions or
subroutines) for both the Simulator and the Controller to
operate on the data. During the simulation, the Simulator
calls the methods of the SWMM Adaptor to set values
into the data members of the SWMM Adaptor and then
the Controller calls the methods to retrieve the data from
the SWMM Adaptor.

The design of the Simulator of the S4 system takes
advantage of the SWMM legacy model, which is
developed by the U.S. EPA and has been widely applied
in the fields of urban hydrology (Liong et al., 1995;
Zaghloul, 1997; Park and Johnson, 1998; Campbell and

Simulator
(SWMM)

SWMM Adaptor 

Controller

Visualizer

Set Information to
SWMM Adaptor  

Get information from
SWMM Adaptor

Pause and / or
start Simulator 

Fig. 1. System architecture.
Sullivan, 2002). SWMM contains many blocks for
calculating the quality and quantity processes of runoff
in urban area. The RUNOFF block in SWMM is
employed here to determine the relationship between
rainfall and runoff. The EXTRAN block in SWMM is
employed to route storm sewer flow by using an explicit
numerical scheme to solve the one-dimensional Saint-
Venant equations. Fig. 2(a) shows the main flow
sequence of the application of SWMM for simulating
storm sewer flow. SWMM starts to run in the main
routine that calls the RUNOFF routine to calculate the

Main Routine

RUNOFF
Block

RUNOFF
Block

EXTRAN
Block

EXTRAN
Block

Transx

Output

Transx

Output

DO 750
MCY=1,NTCYC,MP
Finite difference methods
Euler’s method

.
750 CONTINUE

(a) Original sequence of SWMM

Main Routine

DO 750
MCY=1,NTCYC,MP
Finite difference methods
Euler’s method 

Set Information to the
SWMM Adaptor
Suspend execution
750 CONTINUE

Initialize data
member of the
SWMM Adaptor

(b) Modified sequence of SWMM 

Fig. 2. Structure of SWMM: (a) original sequence of SWMM; (b)

modified sequence of SWMM.
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runoff quantity of a rainfall event. The EXTRAN block
is the kernel for routing the storm sewer flow. The
hydrograph of runoff, calculated by the RUNOFF
block, is taken as part of the input file to run EXTRAN.
Subroutine Transx, called by the subroutine EXTRAN,
is the main procedure to solve the Saint-Venant
equations with modified Euler’s method. A large loop
within the subroutine Transx performs the calculation of
storm sewer flow and saves them into intermediate files.
Finally, summary information is saved into an output
file by calling the subroutine Output.

To allow the Controller to retrieve the computed
results at the end of every time step of the loop of
Transx, the original sequence of SWMM needs to be
modified as shown in Fig. 2(b) with Italic bold face.
The data member of the SWMM Adaptor is initialized
in the EXTRAN block. The subroutine Transx passes
the computed results to the SWMM Adaptor at the end
of each looping step and suspends the execution to wait
for the Controller to process the results (e.g. visualiza-
tion of the results). More discussions are provided in
Section 3 on the programming languages and corre-
sponding development tools used to implement S4 and
the multi-thread technology used for message passing
between the Simulator and the Controller. Moreover,
the implementation of S4 is discussed in Section 4.

3. Integration strategies

The successful integration of the legacy SWMM
model into the S4 system requires careful consideration
on the use of programming languages and correspond-
ing development tools as well as the message passing
mechanism between the Controller and the Simulator
during runtime. This section discusses the consideration
of this work and the strategies employed.

3.1. Programming languages and development
tools used for integration

Several programming languages can be used to
implement the S4 system. They are investigated and
compared in this section. In this work, the popular
Microsoft Windows, such as Windows NT, Windows
2000, or Windows XP, is the operating system
considered and the version 4.4 of SWMM, which has
the source distribution on Win32 platform, is employed.

Because SWMM has been programmed in the
Fortran 77 programming language, it is natural to select
Fortran as the programming language for development
of S4. Moreover, Fortran 90/95 is chosen over Fortran
77 because the former has more advanced features. For
instance, Fortran 90/95 provides many new features
such as module, which is very suitable for extending the
legacy SWMM and makes construction of user-defined
types easy. The module of Fortran 90/95 can also be
used to replace the common block of Fortran 77 and
bind both data and subroutines. Wrapping data and
subroutines into modules is just like defining classes in
object-oriented programming except that modules can-
not be inherited. Compaq Visual Fortran (CVF) version
6.5 is a Fortran 90/95 compiler on Win32 platform that
can compile SWMM version 4.4 without any problem.
However, in the Win32 environment, CVF lacks
libraries and tools to construct GUI software systems.

Another popular programming language that can be
used to develop the non-SWMM part of S4 is CCC.
The CCC programming language was developed during
1970s with high performance in system programming
and provides many programming paradigms, such as
procedure-oriented, object-oriented, and generic pro-
gramming (Stroustrup, 1997). Combining Fortran 90/95
with CCC is simple and has good runtime efficiency.
The Microsoft Visual CCC 6.0 (MSVC6) and Borland
CCC Builder 6.0 (BCB6) are the two well-known
development tools of CCC on Windows platforms.
MSVC6 and BCB6 provide the Microsoft Foundation
Class (MFC), a general purpose CCC class library, and
the Visual Component Library (VCL), which is a Rapid
Application Development (RAD) tool, respectively, for
developing Win32 applications. This work selects VCL
over MFC because the learning curve of MFC is steeper
and VCL is easier to use. This also means that the
implementation task can be done using VCL in a shorter
period of time and the maintenance and extension work
in the future would be easier. However, the use of BCB6
faces a problem when it comes to integration with the
SWMM part of the program compiled by CVF.
The object file (.lib or .dll) built under CVF is in the
Common Object File Format (COFF), while the object
files (.exe) compiled and linked in BCB6 is in the Object
Module Format (OMF). The COFF format is not
compatible with the OMF! Fortunately, BCB6 provides
a utility, called implib.exe, which can transform a COFF
file into an OMF file and solve the incompatibility
problem.

The other programming language for consideration is
Python. Python is an object-oriented script language and
is good for software integration (Lutz, 2001). It is
designed to integrate with other CommonObject Request
Broker Architecture (CORBA) and Component Object
Model (COM) components and modules, which have
been programmed in C/CCC, Fortran, and Java. The
Pyfort module in Python can be used to integrate the
legacy Fortran programs. Although Python’s friendly
features for software integration make it an attractive
choice, its lack of runtime efficiency is a great disadvan-
tage, especially for development of computationally
intensive software.

Based on the above discussions and comparisons, it
can be seen that the combination of CCC and Fortran
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90/95 is the best choice for the program development of
S4 and the corresponding development tools selected
should be BCB 6.0 and CVF 6.5.

3.2. Inter-process communication strategy

Message passing between the Controller and the
Simulator in the S4 system can be accomplished using
Inter-Process Communication (IPC) technology. Two
types of IPC technology are discussed here and one of
them is adopted for implementing the message passing
mechanism needed in S4. The first type of IPC
technologies deals with message passing between differ-
ent processes (called multi-process IPC here), while the
other one deals with message passing between different
threads in a single process (called multi-thread IPC here).

A process contains a private virtual address space
(virtual memory), an executable program, data, a list of
system resources (e.g. files), and at least one thread for
execution (Solomon and Russinovich, 2000; Tanenbaum,
2001). Fig. 3 shows the structure of a process. It includes
its own memory space, the variables stored, related

Memory space

Related resources

Code

thread thread's stack

Memory space

Related resources

Code

thread thread's stack

IPC

Process 2Process 1

(a) Communication between different processes

Memory space

Related resources

Code

thread 1 thread 2

thread 1's
stack

thread 2's
stack

Threads can access the
same memory space
and resources in the
process

Process 3

(b) Communication between different threads in a single process

Fig. 3. Inter-process communication: (a) communication between

different processes; (b) communication between different threads in

a single process.
resources (e.g. open files and child process), and one or
more threads to execute the code. A thread is the basic
execution unit on an operating system, such as MS-
Windows, and has its own stacks, program counter,
registers, and state (Tanenbaum, 2001). The stack of
a thread saves the thread’s own variables. A thread uses
its program counter to keep track of the execution
sequence of the instructions. The registers of a thread
record the current values of the working variables. A
thread can be at the state of running, suspending, or
resuming. Because the thread has the same properties of
the process, it is also called lightweight process
(Tanenbaum, 2001).

In multi-tasking operating system like Windows 2000
and Windows XP, many processes run concurrently in
the sense of time slicing and sharing supported by the
operating system. The system resources of processes are
independent of each other, thus different processes
cannot exchange and share data directly. For example,
two processes, namely Process 1 and Process 2, as shown
in Fig. 3(a), have their private memory spaces, related
resources, and threads to execute their own codes. The
variables stored in the memory space of Process 1
cannot be manipulated directly by Process 2, and vice
versa. Many multi-process IPC technologies, including
pipes, named pipes, mail slots, socket, remote procedure
calls (RPC), and shared files, can be used to achieve data
exchange and sharing between different processes
(Tanenbaum, 2001). The pipes are used for the processes
of the same machine but named pipes, sockets, and RPC
are for processes being run on different machines.

Having multiple threads of a process to execute
different parts of a computational work in parallel is
very similar to having multiple processes in one
computer to execute the same work in parallel. For
example, as shown in Fig. 3(b), Process 3 has two
threads running at the same time. Both thread 1 and
thread 2 have their own stacks. They can access the same
variables resources in Process 3. The two threads can
carry out different parts of work in parallel. Similar to
the multi-process IPC, the multi-thread IPC deals with
data exchange and sharing between different threads
of the same process, instead of different processes.
However, communication latency of multi-thread
IPC is usually less than that of multi-process IPC.

This work employs the multi-thread IPC technology
to implement the message passing mechanism in S4
because it consumes less system resources by sharing
resources among threads of the same process and has
lower communication latency. Two threads are designed
in S4 to execute the Simulator in one thread and the
Controller in another. Both the Controller and the
Simulator can access variables in the same memory
space of the process. The Controller can suspend and
resume the Simulator during the simulation. More
detailed discussions on the implementation of S4,
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especially on the multi-thread IPC implementation, are
provided in the next section.

4. System implementation

As discussed in the previous section, Fortran 90/95 is
employed to implement the Simulator and the SWMM
Adaptor of S4 and CCC is used to implement the
Controller and the Visualizer of S4. The corresponding
development tools employed for Fortran 90/95 and
CCC are CVF 6.5 and BCB 6, respectively.

One of the Fortran 90/95 features, called modules, is
used to accomplish the implementation of the SWMM
Adaptor and achieve encapsulation of both data and
methods. Fig. 4 shows the Unified Modeling Language
(UML) notation of the SWMM Adaptor. The SWMM
Adaptor has only one object, called LXX_JUN, which
uses the Juntion_info object to manage many attributes
representing the state variables in the SWMMs
EXTRAN block, and some methods (e.g., Init()) to
operate on the data. For example, TIME and Y(:) are
attributes representing the simulation time and the water
depth of a junction at a given computation step,
respectively. Init() and Final() are subroutines that
dynamically allocate the memory spaces for data arrays
(such as Y(:), Z(:), etc.) when the program starts and
release the memory when the program stops, respectively.
SetJuncDynInfo() and GetJuncDynInfo() are subrou-
tines for the Simulator to store the computed results into
the SWMM Adaptor and for the Controller to retrieve
the results from the SWMM Adaptor, respectively. The
modified source codes of SWMM and the SWMM
Adaptor are compiled and linked by CVF into a single
library which is then used and invoked by the
Controller.

Fig. 5 schematically depicts the implementation details
of the S4 system. The system includes a dynamic-link
library (DLL) that binds together the modified SWMM
code, the SWMMAdaptor, and the Controller. ADLL is
a set of procedures that are compiled, linked, and stored
separately from the calling processes (Solomon and
Russinovich, 2000). Unlike a static-link library (.lib file),
the object code of the procedures is not part of the object

+Init()
+CheckOverflow() : bool
+CheckSurcharge() : bool
+SetJuncDynInfo()
+GetJuncDynInfo()
+Final()

-LXX_JUN
SWMM_ADAPTOR

+NJ : int
+NC : int
+DELT : float
+TIME : float
+Y(:) : float
+Z(:) : float
+SUMQS(:) : float
+JUN(:)
+QOU(:) : float
+QIN(:) : float

Junction_info

1
1

Fig. 4. Design of the SWMM Adaptor.
code of the calling processes. It is dynamically invoked by
the calling processes and loaded into the processes’
memory space during runtime. The DLL and the process
that invokes the procedures of the DLL share the same
virtual memory space and all threads in the process can
call these DLL procedures. However, the procedures of
a DLL are not visible by the procedures outside the DLL.
They must be exported from the DLL and imported into
the calling procedures before using them. In CVF,
subroutines in a DLL can be exported by using the
compiler directives, !DEC$ ATTRIBUTES DLLEX-
PORT (Etzel and Dickinson, 1999), for example:

Subroutine TRANSX(time)

!DEC$ ATTRIBUTES DLLEXPORT :: TRANSX

The directive statement is used to force the CVF
compiler to export the subroutine TRANSX as the
symbol TRANSX to a corresponding import library,
which is like a static library but contains no executive
code and only includes the symbols exported from
the corresponding DLL (Petzold, 1999; Richter, 1999).

Because the Controller is coded in CCC but
the SWMM Adaptor is coded in Fortran 90/95, calling
the subroutines of the SWMM Adaptor from the
Controller involves mixed-language programming. The
subroutines of the SWMM Adaptor, e.g. subroutine
GetJuncDynInfo(), must be declared in the code of the
Controller using the extern ‘‘C’’ statement as follows:

extern ‘‘C’’ void _ _stdcall

GETJUNCDYNINFO(float *time, float *y, float

*sumqs, int *n);

The extern ‘‘C’’ linkage specifier indicates that the
subroutine is not implemented in CCC but conforms to
the convention of C implementation. The __stdcall
keyword asks the CCC compiler to employ the calling
convention of Fortran for argument passing when the
subroutine is called (Etzel and Dickinson, 1999). All
subroutines invoked by the Controller are declared in
swmm.h file. The Controller invokes the subroutines in
the DLL through the DLLs corresponding import
library. However, the import library generated by
CVF is in the COFF format and cannot be used in
BCB because it requires the import library to be in the
OMF format. Fortunately, BCB provides the utility,
called implib.exe, to generate an import library in the
OMF format from the source DLL in the COFF format
with the following command:

implib target-import-lib source-dll

Fig. 6 illustrates the application of the multi-thread
IPC technology in S4. There are three components (i.e.
the Controller, the Simulator, and the SWMMAdaptor)
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Fig. 5. Implementation of the S4 system.
running on two threads (i.e. the Controller thread
and the Simulator thread). The Controller thread is
generated automatically by the operating system (OS)
when S4 starts to run. When the OS receives the user’s
request, it sends a WM_TIME message with the request
to the Controller. The Controller then takes the actions
in response to the user’s request. For example, after
receiving the user’s request to simulate the storm sewer
flow, the Controller constructs a new thread to run the
Simulator. It is convenient to use the TThread class
(Holling et al., 2003) provided by BCB to implement the
TSWMMThread class, which is used to instantiate the
thread object to execute the Simulator. The major
methods of the TSWMMThread class is shown below:

class TSWMMThread: public TThread

{

private:

protected:

void __fastcall Execute();
Operating System

CT

OnTimer:
GetJuncDynInfo( )

Display stages;
if(ST suspend)

ST suspend;
else if(ST resume)

ST resume;

ST

FDM processing
SetJuncDynInfo(   )
Sleep(time)

SWMM Adaptor

GetJuncDynInfo( ) SetJuncDynInfo( )

WM_TIME

ST suspend

Storm sewer simulation system CT = Thread of Controller
ST = Thread of Simulator 

ST suspend

ST suspended or
resumed (by Users)

...

Fig. 6. Thread communication concept in the S4 system.
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public:

__fastcall TSWMMThread(bool CreateSus-

pended);

};

The TSWMMThread class is inherited from the
TThread class. The Execute() method is called when the
thread is running. Fig. 7 exhibits the implementation
details of the thread communication and subroutine
calls to the DLL in S4. Once the user clicks on the start
button, the Controller generates a new TSWMMThread
object and the Execute() method of the object is called
automatically. The Transx() subroutine in the DLL is
then called by the Execute() method to start the
execution of the Simulator. At this point, both the
Controller thread and the Simulator thread are running.
When the Simulator finishes the FDM processing for
a computation step, it sets the computed results into the
SWMM Adaptor and suspends the execution of its own
thread (i.e. the Simulator thread) for a specified time by
calling the Sleep(time) subroutine. The Controller
thread then takes the control of the execution of S4
and waits for the user’s request.

5. Application examples

Two examples are used to verify and demonstrate the
application of the S4 system developed using the
proposed integration approach. The first example uses
a real but small drainage system, named the Liu-Guan
Fig. 7. Implementation of thread communication in the S4 system.
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system, which is located in the eastern part of the Taipei
City. The capability of the S4 system to suspend/resume
the execution of simulation and allow user interactions
is demonstrated in this example. The second example
uses an idealized drainage system to demonstrate the

Fig. 8. The layout of the Liu-Guan drainage system.
capability of S4 to handle the real-time input of the
runoff information.

5.1. The Liu-Guan drainage system

The layout of the Liu-Guan drainage system is shown
in Fig. 8. The system contains 45 manholes (or
junctions) and one pumping station with a maximum
pumping rate at 20.0 cms. An 8-h design rainfall event is
calculated first by SWMM-RUNOFF to produce the
runoff hydrograph, which is then taken as the inflow
hydrograph into the manholes for the sewer flow
simulation performed by SWMM-EXTRAN in S4.
The water-stages hydrograph of junctions computed
by SWMM-EXTRAN can be displayed in real-time
during the simulation in S4. The user is also allowed to
start, suspend, and resume the storm sewer simulation
simply by clicking on the Start, Suspend, and Resume
buttons, respectively, provided in the graphical user
interface of S4. Fig. 9 shows the water-stage hydrograph
at junctions 8213 and 8214 when the simulation has been
carried out for 23, 900 s. There are check boxes on the
right hand side of the system for the user to toggle on
and off the display of the water-stage hydrograph at
each junction in the drainage system.

5.2. An idealized drainage system

Fig. 10 shows an idealized drainage system. Each
conduit in the system is a circular pipe of 1.5 m in
diameter and the depth at each junction (or manhole) is
6 m. The junction 82 309 separates the system into two
slopes, 1/500 from junction 80 408 to 82 309 and 1/750
from junction 82 309 to 16 109). Two simulations are
Fig. 9. Water-stage hydrograph at junction 8213 and 8214 when the simulation time is at 23, 990 s.



1138 S.-S. Lin et al. / Environmental Modelling & Software 21 (2006) 1129e1140
conducted by S4 for comparison. Both of the simu-
lations use the input file containing a given inflow
hydrograph at junction 80 408, as indicated by the solid
line in Fig. 11. The second one assumes that a storage
tank located at junction 82 309 is suddenly broken at the
time of 3 h and the inflow hydrograph at junction
82 309, as indicated by the dash line in Fig. 11, is used as
a real-time input. For the second simulation, the S4
system suspends the simulation at the time of 3 h and
reads the inflow information at junction 82 309 before it
resumes the simulation. The computed water-stage
hydrographs at junctions 80 608, 82 309, and 16 209
without and with the real-time input at junction 82 309
are shown in Figs. 12 and 13, respectively. It can be seen
that S4 is capable of taking real-time inflow data for
sewer flow simulation.

6. Conclusions

This paper has presented an integration approach that
employs the multi-thread technology to integrate the

Pumping station

80408

80608

82309
16209

16109
16009

Q

t

Q

t

Fig. 10. The idealized drainage system.
legacy SWMM model into a storm sewer simulation
system, named S4, developed in this work. The S4 system
takes advantage of the SWMM-EXTRAN block to carry
out the sewer flow simulation and allows for display of
the computed water-stage hydrograph at the junctions
immediately after the results are computed. It is also
capable of suspending and resuming the simulation at the
end of any time step of the explicit-FDM process to
account for real-time inflow information for sewer flow
simulation.

The proposed multi-thread approach for system
integration should be generally applicable to integrated
modeling for water resources systems consisting of
legacy models as long as code modification on the
legacy models is permitted. This approach gives better
efficiency of the integrated system when compared with
the approach that integrates legacy components through
their input/output files. When compared with the multi-
process approach, this approach consumes less system
resources and has lower IPC latency. In addition, the
proposed approach can be easily extended to address the

t (hr)

Q

1 cms

Inflow hydrograph
at Junction 80408

Inflow hydrograph
at Junction 823093 cms

1 2 3 4 5 6 7 8

Fig. 11. Inflow hydrographs at junctions 80 408 and 82 309.
Fig. 12. Water-stages at junctions without real-time inflow.
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Fig. 13. Water-stages at junctions with real-time inflow.
real-time and/or optimal control simulation problems in
storm sewer systems (Pleau et al., 2005) or wastewater
systems (Beck, 2005; Butler and Schütze, 2005; Vanrol-
leghem et al., 2005). For example, one more thread can
be added into S4 to calculate the optimal operation
strategy using some optimization software. Periodically
the real-time simulation in S4 can be suspended for
computation of the optimal operation strategy before it
is resumed with the updated operation strategy.
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