
Environmental Modelling & Software 22 (2007) 837e846
www.elsevier.com/locate/envsoft
Error analysis and minimum bound method for
atmospheric remote sensing

Adrian Doicu*, Franz Schreier, Siegfried Hilgers, Michael Hess

DLR e German Aerospace Center, Remote Sensing Technology Institute, Oberpfaffenhofen, 82234 Weßling, Germany

Received 27 July 2004; received in revised form 22 July 2005; accepted 5 August 2005

Available online 8 June 2006

Abstract

In this study, we present an error analysis for Tikhonov regularization in a semi-stochastic setting. The analysis is carried out in such a way
that it can be applied to any kind of inverse problem in atmospheric remote sensing. A method for selecting the optimal regularization parameter
relying on the minimization of an estimator of the bound of the error between the first iterate and the exact solution is also discussed. Numerical
simulations are performed for NO2 retrieval from SCIAMACHY limb scatter measurements.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The optimal estimation method (otherwise known as the
Bayesian approach) has a dominating role in atmospheric re-
mote sensing (Rodgers, 2000). In this method, the errors of
the solution are estimated in a stochastic setting and appear
as covariance matrices.

When statistical information about atmospheric variability
is poor, regularization methods accounting for deterministic
information about the atmospheric state parameters can be
used. One of the most efficient regularization methods for non-
linear ill-posed problems is Tikhonov regularization (Engl
et al., 1996; Tautenhahn, 1994; Neubauer, 1989; O’Sullivan
and Wahba, 1985). The selection of the regularization param-
eter is an important part of the method and a variety of a pos-
teriori regularization parameter choice methods have been
developed, e.g., the generalized cross validation method
(O’Sullivan and Wahba, 1985), the discrepancy principle
(Tautenhahn, 1997), the nonlinear L-curve criterion (Eriksson,
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1996), and the minimum bound method. In the minimum
bound method, the optimal regularization parameter is com-
puted by minimizing a bound of the error of the solution.
This method was originally formulated in a deterministic set-
ting by Raus (1984) and in a semi-stochastic setting by Lukas
(1998). A treatise of the method was presented in Engl et al.
(1996). In all these studies the regularization matrix was the
identity matrix. Unfortunately, the minimum bound method
as an a posteriori regularization parameter choice rule is
time consuming.

In Doicu et al. (2002) we used a version of Tikhonov reg-
ularization for solving inverse problems in atmospheric re-
mote sensing, while in Doicu et al. (2003) we extended this
approach to bound-constraint problems. Tikhonov regulariza-
tion with B-splines for profile discretization has been pre-
sented in Doicu et al. (2005). In the present paper we
present an error analysis in a semi-stochastic setting. Note
that the error analysis in a deterministic or a semi-stochastic
setting differs significantly from that in a complete stochastic
setting. Further, we propose an a priori parameter choice
method relying on the minimization of an estimator of the
bound of the error between the first iterate and the exact solu-
tion. Similar approaches, but in a complete stochastic setting,

mailto:adrian.doicu@dlr.de
http://www.elsevier.com/locate/envsoft


838 A. Doicu et al. / Environmental Modelling & Software 22 (2007) 837e846
has been discussed by, e.g., Steck (2002) and Carissimo et al.
(2005).

The organization of our paper is as follows. Section 2 com-
prises the formulation of the inverse problem and the main
concepts. In Section 3 we give a recipe for evaluating each
component of the error, while in Section 4 the a priori regula-
rization parameter choice method is presented. Numerical sim-
ulations concerning the retrieval of NO2 profiles from limb
scatter measurements are discussed in Section 5, the applica-
tion to real measurement data is presented in Section 6, and
Section 7 summarizes our results. Mathematical details are
treated in the appendices. Vectors and matrices are indicated
by lower and upper case boldface letters, respectively.

2. Inverse problem

A common retrieval problem in atmospheric remote sens-
ing is to estimate vertical profiles of atmospheric parameters
from spectroscopic measurements. From a computational
point of view the basic problem is the inversion of observed
spectra to obtain profiles of constituent concentrations. The
discretization of the radiative transfer equation leads to the
data model:

y¼ FðxÞ ð1Þ

where the mapping F : Rn/Rm represents the forward
model, y˛Rm is the exact data vector, x˛Rn is the state vector
containing the discrete representation of the atmospheric pro-
file to be retrieved (e.g., molecular density profiles at different
altitudes), and Rn is the n-dimensional real Euclidean space.
The exact data are assumed to be attainable, i.e., there exists
the exact solution bx such that y ¼ F

�bx�. Measurements are
made to a finite accuracy and in practice only the noisy data
vector

yd ¼ yþ d; ð2Þ

is available. In our analysis we consider a semi-stochastic data
model in the sense that the exact solution bx is deterministic but
the measurement error d is stochastic with zero mean and the
covariance matrix Sd ¼ E

�
d$dT

�
¼ ð1=mÞIm, where E is the

expected value operator and Im is the identity matrix (of
rank m). In general, if the measurement error is described by
a symmetric and positive definite covariance matrix Sd, one
can obtain a ‘‘normalized’’ data model with identity covari-
ance matrix by using the prewhitening technique (Rodgers,
2000).

The inverse ill-posed problem is solved in the least squares
sense by means of Tikhonov regularization. In this approach
an approximate solution xd

l is computed by minimizing the
function

FðxÞ ¼ 1

2

h��FðxÞ � yd
��2þl2kLðx� xaÞk2

i
; ð3Þ

where L is the regularization matrix, l is the regularization pa-
rameter, and xa is the a priori state vector, the best beforehand
estimator of bx. The GausseNewton method applied to the
above minimization problem leads to the iterative process

xd
kþ1l ¼ xd

kl�
�
KTðxd

klÞKðxd
klÞ þ l2LTL

��1

�
�
KTðxd

klÞ
�
Fðxd

klÞ � yd
�
þ l2LTLðxd

kl� xaÞ
�
; ð4Þ

where KðxÞ ¼ F0ðxÞ is the Jacobian matrix evaluated at x. Es-
sentially, at each iteration step we consider a linear problem,
and xd

kþ1l minimizes the function

F l
kðxÞ ¼

��Fðxd
klÞ � ydþKðxd

klÞðx� xd
klÞ
��2þl2kLðx� xaÞk2

:

ð5Þ

3. Error analysis

The accuracy of a retrieval method can be characterized by
the discrepancy between the approximate solution xd

l and the
exact solution bx. In this section we derive estimates of the er-
ror components in a semi-stochastic setting and for a general
regularization matrix L. The only assumption on L is that
the matrix LTL possesses an inverse. Assuming that the se-
quence of iterates ðxd

klÞ converges toward xd
l, i.e., xd

kl/xd
l as

k/N, we see that xd
l satisfies the first order optimality

condition

KTðxd
lÞ
�
Fðxd

lÞ � yd
�
þ l2LTLðxd

l� xaÞ ¼ 0: ð6Þ
The data model can be linearized around xd

l, i.e.,

y¼ Fðxd
lÞ þKðxd

lÞ
�bx� xd

l

�
þR

�
xd

l; bx�; ð7Þ

with R
�
xd

l; bx� being the linearization error. Taking into ac-
count Eqs. (2) and (6), and neglecting the linearization error
in Eq. (7) yields

xd
l� bx¼ ðAl� InÞ

�bx� xa

�
þKyld; ð8Þ

where Kyl is the regularized generalized inverse or the gain
matrix,

Kyl ¼
�
KTKþ l2LTL

��1
KT; ð9Þ

and Al is the averaging kernel,

Al ¼ KylK ¼
�
KTKþ l2LTL

��1
KTK: ð10Þ

In order to simplify the notations we omit to indicate the
dependency of the Jacobian matrix on the evaluation point
that will be clear from the context. The expression of the error
in bx can be derived by rewriting Eq. (8) as

ed
totalhxd

l� bx¼ ðAl� InÞ
�bx� xa

�
þKyld¼ esmoothþ ed

noise:

ð11Þ
Assuming that the Jacobian matrix evaluated at xd

l does not
depend on d, i.e., Kðxd

lÞzK
�bx�, we see that the smoothing er-

ror esmooth is a deterministic quantity. The total error ed
total is
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stochastic with the mean Efed
totalg ¼ esmooth and the covariance

matrix Sðed
totalÞ ¼ Sðed

noiseÞ. Upon squaring Eq. (11) it is appar-
ent that

ked
totalk

2� 2
�
kesmoothk2þked

noisek
2�
: ð12Þ

Applying the expected value operator yields

Efked
totalk

2g � 2
�
kesmoothk2þEfked

noisek
2g
�

ð13Þ

and a bound of the total error can be defined as

Y¼ 2
�
kesmoothk2þEfked

noisek
2g
�
: ð14Þ

In Appendix A we show that an estimator of the smoothing
error vector is

ed
smooth ¼ Kyrd

l; ð15Þ

where Ky ¼
�
KTK

��1
KT is the generalized inverse and rd

l ¼
Fðxd

lÞ � yd is the residual error at xd
l. Since ed

smooth is an esti-
mator of esmooth depending on the measurement error d, Yd

will be an estimator of the bound of the total error Y. Eq.
(15) shows that the norm of the smoothing error is bounded
by the norm of the residual error. As shown in Appendix A,
ed

smooth does not converge to zero as l tends to zero. However,
the residual error norm krd

lk increases with increasing l (Han-
sen, 1998), and therefore we may conclude that the smoothing
error norm ked

smoothk is an increasing function of the regulari-
zation parameter l.

The derivation of the noise error is standard (e.g. Rodgers,
2000). Using E

�
d$dT

�
¼ ð1=mÞIm, we obtain

Efked
noisek

2g ¼ 1

m
tracefKyTl Kylg ¼

1

m
tracefKylKyTl g; ð16Þ

and

Sðed
noiseÞ ¼ ð1=mÞKylKyTl : ð17Þ

In the specific case L ¼ In, we have

Efked
noisek

2g �
�
C=l2

�
;

where C� 1 (Appendix B). This estimate indicates that the
noise error is a decreasing function of the regularization
parameter l.

A numerical robust method for error estimation relies on
the use of the generalized singular value decomposition
(GSVD) of the matrix pair ðK; LÞ (Hansen, 1998). We recall
that if K˛Rm�n, L˛Rp�n and m� n� p, the GSVD of the ma-
trix pair ðK; LÞ is given by

K ¼ US1Z�1 and L¼ VS2Z�1; ð18Þ

where U˛Rm�m and V˛Rp�p are unitary matrices, Z˛Rn�n is
a non-singular matrix, S1˛Rm�n and S2˛Rp�n are diagonal
matrices
S1 ¼

2
4 In�p 0

0 diagðaiÞ
0 0

3
5; S2 ¼ ½0 diagðbiÞ �;

diagðaiÞ; diagðbiÞ˛Rp�p and the ratios gi ¼ ai=bi; i ¼
n� pþ 1;.; n; are the generalized singular values. Then
we have

ed
smooth ¼

Xn�p

i¼1

hui; r
d
liziþ

Xn

i¼n�pþ1

1

ai

hui; r
d
lizi;

Efked
noisek

2g ¼ 1

m

Xn

i¼1

Xn

j¼1

�
kjzij

�2
;

Sðed
noiseÞ ¼ ð1=mÞZkZT:

ð19Þ

where uj and zj are the columns of U and Z, respectively, zij are
the entries of the matrix Z, k ¼ diag

�
kj

�
, and

kj ¼

8<
:

1

1
aj

g2
j

g2
j þ l2;

for

j ¼ 1;2;.;n� p

j ¼ n� pþ 1;.;n:
ð20Þ

3.1. Comments

(1) The quantities ked
smoothk and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Efked

noisek
2g

q
can be used as

a posteriori global estimators of the components of the to-
tal error, while ed

smooth and the square root of the diagonal
of the noise covariance matrix Sðed

noiseÞ can be used as
a posteriori altitude-dependent estimators of the smooth-
ing and noise errors, respectively.

(2) Since the smoothing error increases with increasing l and
the noise error decreases with increasing l, the total error
has a minimum for an optimal value of l. This value can
be determined by minimizing the estimator of the bound
of the total error with respect to the regularization parame-
ter l. The minimization condition leads to a nonlinear equa-
tion in l (see Eq. (15) in Appendix B for the case L ¼ In).
This a posteriori regularization parameter choice method is
known as the minimum bound method. The numerical real-
ization of Tikhonov regularization with l chosen as the so-
lution of the minimum bound equation requires to solve the
nonlinear minimization problem (Eq. (3)) several times for
different regularization parameters l. This strategy is time
consuming and not appropriate for the operational usage
of a retrieval processor.

(3) In our analysis, we used ed
smooth as an estimator for esmooth

because ed
smooth is a computable quantity. Note that the

same problem appears in a complete stochastic setting.
In this case

Efked
smoothk

2g ¼ tracefSsmoothg;

Ssmooth ¼ ðAl� InÞSeðAl� InÞT;

where Ssmooth is the covariance matrix of the smoothing error
and Se is the covariance of the ensemble of states about the
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mean state. Often the true covariance matrix Se is not known
and the estimation of the smoothing error is inaccurate.

4. A priori regularization parameter choice method

A regularization parameter choice method that avoids the
multiple solution of the nonlinear minimization problem
(Eq. (3)) consists in the determination of the optimal value
of l from an estimator of the bound of the error between the
first iterate and the exact solution. By convention, we refer
to the error between the first iterate and the exact solution as
the a priori error. To derive an estimator of the bound of the
a priori error we consider the GausseNewton iteration (Eq.
(4)) and assume that the initial guess coincides with the a priori
state vector, that is, we set x0 ¼ xa. The first iterate is given by

xd
1l� xa ¼

�
KTðxaÞKðxaÞ þ l2LTL

��1
KTðxaÞ

�
yd�FðxaÞ

�
:

ð21Þ
Further, linearizing the data model around the a priori state

yields

y¼ FðxaÞ þKðxaÞ
�bx� xa

�
þR

�
xa; bx�: ð22Þ

Neglecting R
�
xa; bx� and using yd ¼ yþ d, gives

xd
1l� bx¼ ðAl� InÞ

�bx� xa

�
þKyld: ð23Þ

This relation is similar to Eq. (8). The major difference is
that the Jacobian matrix is computed at the a priori state.
The expected value of the a priori noise error is given by
Eqs. (9) and (16) with K ¼ KðxaÞ. Because we do not use
an optimality condition, the expression of the a priori smooth-
ing error differs from that given by Eq. (15). To compute the
a priori smoothing error we use Eq. (22) and express ea

smooth as

ea
smooth ¼ ðAl� InÞ

�bx� xa

�
¼�ðAl� InÞ

�
KTK

��1
KT½FðxaÞ � y�: ð24Þ

Replacing y by yd, we obtain after straightforward calcula-
tions the following practical estimator

ead
smooth ¼

�
Ky �Kyl

�
rd

a; ð25Þ

where rd
a ¼ FðxaÞ � yd is the residual error at xa. In contrast to

the estimator ed
smooth, ead

smooth converges to zero as l tends to
zero. In terms of the GSVD of the matrix pair ðK; LÞ, we have

ead
smooth ¼

Xn

i¼n�pþ1

1

ai

l2

g2
i þ l2 hui; r

d
aizi: ð26Þ

The a priori smoothing error is also an increasing function of
the regularization parameter l. Here, the residual error rd

a does
not depend on l, but the filter function f ðlÞ ¼ l2=

�
g2

i þ l2
�

is
an increasing function of l for all gi with i ¼ n� pþ 1;.; n.
Consequently, the optimal regularization parameter can be
computed at the first iteration by minimizing the estimator of
the bound of the a priori error (Eq. (14)) with the a priori
smoothing error estimator given by Eq. (26). This parameter
choice method will be referred to as the a priori minimum
bound method.

The derivation of the a priori error has been carried out un-
der a strong linearity assumption. Neglecting the linearization
error in Eq. (22) means that the forward model is assumed to
be linear around the a priori state. Note that this assumption is
used for selecting the regularization parameter, but not for
finding a solution.

We expect this a priori parameter choice method to be valid
only for problems with moderate degrees of nonlinearity. In
a stochastic setting, the degree of nonlinearity for any partic-
ular problem can be examined by comparing the forward
model with the linearized forward model within either the
a priori variability or the solution error covariance (Rodgers,
2000). In a semi-stochastic setting the degree of nonlinearity
can be explored a posteriori by comparing the linearization er-
ror Rðxa; xÞ in a ball of radius r ¼ jxd

l � xaj with Sd. This can
be done systematically by evaluating the cost function c2 ¼
RTSdR. However, in our analysis we will use a more prag-
matic criterion. By convention, the degree of nonlinearity of
a specific problem is given by the number of iterations re-
quired to achieve convergence. A problem has a small degree
of nonlinearity if the number of iterations does not exceed 2,
and a moderate degree of nonlinearity if the number of itera-
tions is 3 or 4.

The strategy for selecting the regularization parameter at
the first iteration step is in agreement with the technique de-
scribed in Doicu et al. (2002). There, we derived the optimal
regularization parameter by using the L-curve method for
the linear subproblem given by Eq. (5). The L-curve method
consists in the analysis of the graph of the curve obtained
by plotting the smoothing norm versus the residual norm
(Hansen, 1998). This curve exhibits a typical ‘‘L’’ shape,
and the optimal value of the regularization parameter corre-
sponds to the corner of the ‘‘L’’ (the point with maximum cur-
vature). For linear problems, the regularization parameters
corresponding to the L-curve’s corner are close to the regula-
rization parameter balancing the smoothing and noise errors
(Hansen, 1998). Therefore, for linear problems, the a priori
minimum bound method and the L-curve method will give
similar results.

5. Numerical simulation

The forward problem of atmospheric remote sensing essen-
tially describes the radiative transfer in the atmosphere. The
algorithms developed in Doicu et al. (2002, 2003, 2005)
have been applied to inverse problems in infrared atmospheric
sounding, where the radiative transfer is dominated by molec-
ular absorption (Schreier and Böttger, 2003; Amato et al.,
2003). Here we consider atmospheric retrievals in the ultravi-
olet and visible spectral domains, where multiple scattering is
the dominant mechanism of radiative transfer (cf., e.g., Spurr
et al., 2000).

Several satellite instruments measure ultraviolet and visible
solar radiation scattered from the Earth’s limb to monitor ver-
tical profiles of O3 and other minor constituents such as NO2.
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A sequence of observations (limb scan) corresponding to dif-
ferent tangent altitudes are used for atmospheric retrieval. One
instrument that employs this technique is the SCanning Imag-
ing Absorption SpectroMeter for Atmospheric Chartography
(SCIAMACHY) aboard the ENVISAT satellite (Bovensmann
et al., 1999). The radiative transfer model for SCIAMACHY
limb radiance simulation is a single-scattering model, while
the multiple scattering effect is taken into account by using
look-up table corrections (Flittner et al., 2000). The Jacobians
required for the iterative solution of the nonlinear least squares
problem are computed analytically; for an alternative approach
based on perturbation theory we refer to Box (2002). The data
model Eq. (1) is expressed in terms of normalized limb radi-
ances and relies on the DOAS (Differential Optical Absorption
Spectroscopy) technique (Platt, 1994) i.e.,

yd ¼ lnðIn
measÞ �Pmeas;

F¼ lnðIn
simÞ �Psim:

The normalized vector of limb radiances is given by In ¼
I=Iref where the division is component-wise, Iref ¼ IrefðlÞ is
the reference radiance spectrum for all wavelengths l of inter-
est and I ¼ Iðs; lÞ is the vector of radiance spectra for all tan-
gent heights s except for the reference tangent height sref. P is
a lower-order polynomial in l, whose coefficients are obtained
by fitting the function lnðInÞ for a specific tangent height in the
wavelength domain. Note that the spectra normalization elim-
inates solar Fraunhofer structure, the instrument response
function and the need for an absolute instrument calibration.
By subtracting lower-order polynomials from radiance spectra
we remove those spectral features that are smoothly varying
functions of wavelength, particularly those due to Rayleigh
and Mie scatterings. The DOAS type model is very sensitive
to weak absorptions and has a moderate degree of nonlinearity
(the number of iterations required to achieve convergence does
not exceed 4).

In this section we consider numerical experiments concern-
ing the retrieval of NO2 profile from simulated SCIAMACHY
data in the visible domain. Specifically, 168 equidistant points
are considered in the 425e460 nm range within SCIA-
MACHY Channel 3. The noisy data vector (i.e., the contami-
nated spectrum) is generated by using the noise variances
corresponding to this channel of the SCIAMACHY instru-
ment. The a priori and initial gas profile were assumed to be
identical and were chosen from the U.S. standard atmosphere.
The exact gas profiles bx were taken as a scaled version of the
a priori profiles by a factor of 1.2, i.e. bx ¼ 1:2xa. This choice
leads to a problem with a small degree of nonlinearity since 2
iterations are required to achieve convergence. An equidistant
altitude retrieval grid with n¼ 14 grid points between 15.75
and 61.25 km is considered. The number of limb spectra is
14 and the corresponding tangent heights vary between 16
and 61.5 km in steps of 3.5 km.

To estimate the accuracy of a computed solution xd
l with re-

spect to the exact solution bx, we use the relative error
Dx ¼
kxd

l� bxk
kbxk :

Similarly, we define

Dsmooth ¼
ked

smoothk
kbxk ;

Dnoise ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Efked

noisek
2g

q
kbxk ;

Dtotal ¼
ffiffiffiffiffi
Yd
p

kbxk
as the relative smoothing error, relative noise error and relative
bound of the total error, respectively. The relative a priori
errors are defined in an analogous manner and are marked
with the superscript a.

In Fig. 1 we plot the relative a priori errors Da
smooth and Da

noise

for different values of the regularization parameter l. It can be
seen that the relative a priori noise error decreases with increas-
ing l, while the relative a priori smoothing error increases (al-
most) with increasing l. The relative bound of the a priori
total error Da

total has a minimum value for la
opt ¼ 0:227. For

this value of the regularization parameter we compute the ap-
proximate solution xd

lopt
and obtain a relative error with respect

to the exact solution of Dx ¼ 1:47%. The retrieved profiles are
shown in Fig. 2. In Fig. 3 we plot the L-curve at the first iteration,
i.e., the graph of smoothing norm versus the residual norm. The
L-curve has a pronounced corner and the optimal value of the
regularization parameter la

opt is near to the corner of ‘‘L’’.
Thus, for this example, the a priori minimum bound method is
equivalent to the L-curve method.

In Fig. 4 we plot the relative errors Dsmooth and Dnoise of the
solutions obtained by solving the nonlinear minimization
problem several times for different regularization parameters
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of the bound of the total error) for different values of the regularization

parameter.
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l. As before, the relative bound of the total error Dtotal pos-
sesses a minimum that is attained for lopt ¼ 0:178. In this
case, the relative error with respect to the exact solution is
Dx ¼ 1:64%. Evidently, the a priori regularization parameter
choice method estimates a regularization parameter which is
very close to the minimizer of the bound of the total error.

In Fig. 5 we plot the relative error Dx for the above se-
quence of regularization parameters. The minimum of this er-
ror is Dx ¼ 1:38% and corresponds to l¼ 0.301. It was
surprising to find that the optimal regularization parameter es-
timated by minimizing the bound of the a priori total error is
more close to the optimal value than the minimizer of the
bound of the total error. This suggests that ead

smooth is a better
estimator for ea

smooth than ed
smooth for esmooth. However, all solu-

tions are of comparable accuracy and the differences between
them are generally small.
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Fig. 2. Retrieved NO2 profile for the optimal regularization parameter com-

puted with the a priori minimum bound method.
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a priori minimum bound method.
6. SCIAMACHY measurements

In this section SCIAMACHY measurements for the orbit
12 253 on 4 July 2004 are considered. The goal of our analy-
sis is to compare the performances of Tikhonov regularization
with the a priori minimum bound method and the L-curve
method for real data. Note that for data with significant noise
level, rd

l is not an accurate estimator of rl and the smoothing
error is potentially overestimated. The geographical coordi-
nates of the exemplary measurements (‘‘states’’) considered
in our analysis are given in Table 1. For these simulations,
the a priori information is obtained from the dataset of
McLinden et al. (2002). The number of limb spectra is 9,
while the tangent altitudes are state dependent and vary
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between 20 and 47 km. Table 2 illustrates as an example, the
tangent heights for the measurement at the latitude of 79 deg
N. The altitude retrieval grid is equidistant and consists of
n¼ 9 grid points between 19.25 and 47.25 km. Below and
above the retrieval limits, an a priori profile is considered.

Denoting by xd
lMB and xd

lLC the minimum bound and the
L-curve solutions, we use the relative error vector

½Dx�i¼
j½xd

l MB�i�½xd
l LC�ij

½xd
l MB�i

;

the relative smoothing and noise error vectors

½Dsmooth�i¼
j½ed

smooth�ij
½xd

l�i
;

½Dnoise�i¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Sðed

noiseÞ�ii
p
½xd

l�i
;

with i ¼ 1; 2;.; n, and the bound of the total error vector

Dtotal ¼DsmoothþDnoise;

to characterize the solutions. The retrieved profiles together with
the altitude-dependent errors are shown in Figs. 6 and 7. Four
iterations are required to achieve convergence for the measure-
ments at the latitudes of 9 and 24 deg N, while 3 iterations are
sufficient for the other latitudes. Thus, the problems under ex-
amination are characterized by moderate degrees of
nonlinearity.

The conclusions of our numerical analysis can be summa-
rized as follows:

Table 1

Geographical coordinates of SCIAMACHY observations

State Latitude Longitude

deg N deg E

1 79 145

2 67 112

3 53 102

4 39 96

5 24 92

6 9 88

Table 2

Tangent altitudes for the measurement at the latitude of 79 deg N (state 1)

Number Tangent altitude (km)

1 46.351

2 43.087

3 39.821

4 36.512

5 33.264

6 29.974

7 26.680

8 23.438

9 20.132
(1) The agreement between the retrieved profiles is accept-
able. The relative error Dx attains a maximum value of
about 7% at the latitude of 39 deg N and at the altitude
of 33.25 km. For other latitudes, the relative error does
not exceed 5%. Note that the maximum value of the rela-
tive error Dx is accompanied by a large value of the bound
of the total error Dtotal (between 25 and 40 km). In general,
the relation ½Dx�i < ½Dtotal�i is satisfied for all altitudes and
latitudes.

(2) The regularization parameters estimated by the L-curve
method are slightly larger than the regularization parame-
ters computed by the a priori minimum bound method.
Consequently, the L-curve solutions are characterized by
larger smoothing errors and smaller noise errors. The min-
imum bound solutions are slightly under smoothed and
small oscillations are visible at latitudes of 9 deg N and
24 deg N.

(3) The smoothing error is the dominant error source for both
parameter choice methods and this component of the total
error increases at low and high altitudes.

(4) The a priori minimum bound method systematically gives
smaller bounds of the total error. Thus, the solutions ob-
tained by using the a priori minimum bound method are
closer to the minimum bound solutions than the solutions
derived by using the L-curve method.

The applicability of the a priori minimum bound method
strongly depends on the data model used. For a data model
with

yd ¼ In
meas;

F¼ PsimIn
sim;

where Psim ¼ Psimðs; lÞ is a lower-order polynomial whose co-
efficients are retrieved together with the atmospheric profiles,
the degree of nonlinearity is large and the a priori minimum
bound method leads to erroneous results.

7. Conclusions

An error analysis for the solution of nonlinear inverse prob-
lems solved by Tikhonov regularization has been presented.
Our analysis was performed in a semi-stochastic setting and
has been applied to inverse problems arising in atmosphere re-
mote sensing. We discussed a diagnostic tool for estimating
the components of the error after the iterative process is com-
pleted. Essentially, we derived an estimator of the bound of the
total error (that possesses a minimum for an optimal value of
the regularization parameter) and for its components, the
smoothing and the noise errors. An a priori parameter choice
method relying on the minimization of an estimator of the
bound of the error between the first iterate and the exact solu-
tion has been introduced. This parameter choice method was
derived under a linearity assumption of the forward model
and is applicable for a DOAS type model. Numerical experi-
ments showed that:



844 A. Doicu et al. / Environmental Modelling & Software 22 (2007) 837e846
(1) for problems with small degrees of nonlinearity, the value
of the regularization parameter estimated by the a priori
minimum bound method is close to the value predicted
by the L-curve method and to the minimizer of the total
error bound estimator, while

(2) for problems with moderate degrees of nonlinearity, the
solutions given by the a priori minimum bound method
are characterized by smaller bounds of the total error as
compared to those obtained by using the L-curve method.

Appendix A. An estimator for the smoothing error

In this appendix we derive an estimator for the smoothing
error vector esmooth ¼ ðAl � InÞ

�bx� xa

�
. Because the smooth-

ing error does not depend on the measurement error, we con-
sider xl as a minimizer of F with yd replaced by y. Clearly, xl

satisfies the first order optimality condition

KTðxlÞ½FðxlÞ � y� þ l2LTLðxl� xaÞ ¼ 0: ðA:1Þ
Assuming the linearization around xl,
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Fig. 6. Retrieved volume mixing ratios (left) and associated errors (right) for

SCIAMACHY Orbit 12253, latitudes 9, 24, and 39 deg N. Minimum bound

method: solid lines, L-curve method: dashed lines. Smoothing error: þ, noise

error: �, total error: circle.

y¼ FðxlÞ þKðxlÞ

�bx� xl

�
þR

�
xl; bx�; ðA:2Þ

neglectingR
�
xl; bx� and defining the residual for the noise-free

case as rl ¼ FðxlÞ � y, we rewrite the above equations as

KTrlþ l2LTLðxl� xaÞ ¼ 0; ðA:3Þ

rl�K
�
xl� bx�¼ 0: ðA:4Þ

Since xl � xa ¼
�
xl � bx�þ �bx� xa

�
, Eqs. (A.3) and (A.4)

can be viewed as a system of matrix equations with the un-
known vectors xl � bx and bx� xa.

Inserting Eq. (A.4) into Eq. (A.3) gives

KTK
�
xl� bx�þ l2LTLðxl� xaÞ ¼ 0; ðA:5Þ

whence

xl� bx¼��KTKþ l2LTL
��1

l2LTL
�bx� xa

�
¼ ðAl� InÞ

�bx� xa

�
; ðA:6Þ

follows. The least squares solution of Eq. (A.4) leads to

xl� bx¼ �KTK
��1

KTrl; ðA:7Þ

and we conclude that
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Fig. 7. Same as in Fig. 6 for SCIAMACHY Orbit 12253, latitudes 53, 67, and

79 deg N.
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esmooth ¼ ðAl� InÞ
�bx� xa

�
¼ xl� bx¼ �KTK

��1
KTrl: ðA:8Þ

The above relation shows that esmooth is a deterministic
quantity. The residual rl converges to zero as l tends to
zero. This follows from Eq. (A.4) by using the convergence re-
sults: Al/In and xl � bx/0 (c.f. Eq. (A.6)) as l/0. Conse-
quently, esmooth converges to zero as l tends to zero. If we now
replace rl by rd

l, where rd
l ¼ Fðxd

lÞ � yd and assume that
Kðxd

lÞzKðxlÞ, we arrive at the following implementable ex-
pression for the smoothing error vector

ed
smooth ¼

�
KTK

��1
KTrd

l: ðA:9Þ
From Eqs. (A.4) and (A.6) we see that

rl ¼ KðAl� InÞ
�bx� xa

�
¼
� bAl� Im

�
K
�bx� xa

�
; ðA:10Þ

where bAl is the influence matrix, bAl ¼ KK
y
l, and K

y
l is given

by Eq. (9). Considering the noisy case and the linearization
around xd

l we arrive at

rd
l ¼

� bAl� Im

�
K
�bx� xa

�
þ
� bAl� Im

�
d; ðA:11Þ

Thus, rd
l is an unbiased estimator of rl, i.e., Efrd

lg ¼ rl,
with the covariance matrix

Sðrd
lÞ ¼

1

m

� bAl� Im

�� bAl� Im

�T
: ðA:12Þ

In contrast to rl, rd
l does not converge to zero as l tends to

zero and therefore ed
smooth does not converge to zero as l tends

to zero.

Appendix B. A bound of the noise error and
the minimum bound method in a discrete
semi-stochastic setting

In this appendix we derive a bound of the noise error in the
case L ¼ In and formulate the minimum bound method in
a discrete semi-stochastic setting. We have

ked
noisek

2¼ dTKyTl Kyld ¼ dTKyTl

�
KTKþ l2LTL

��1
KTd ðB:1Þ

The identity

�
KTKþ l2LTL

��1
KT ¼ 1

l2

�
LTL

��1
KTA1l; ðB:2Þ

with

A1l ¼



1

l2
K
�
LTL

��1
KT þ Im

��1

; ðB:3Þ

yields, for L ¼ In,

ked
noisek

2¼ 1

l2
dTKyTl KTA1ld� 1

l2 kKKyldk kA1ldk: ðB:4Þ

Relying on the SVD of the matrix K, it is easy to show that

1

l2kA1ldk � 1

l2kdk; ðB:5Þ
kKKyldk � Ckdk; ðB:6Þ

where C is a positive constant such that

g2
i

g2
i þ l2

� C� 1; ðB:7Þ

for all singular values gi, i ¼ 1;.; n, of the matrix K. Thus,

Efked
noisek

2g � C

l2
E
�
kdk2�¼ C

l2
: ðB:8Þ

In this case, taking into account Eqs. (14) and (A.8), the
bound of the total error may be written as

Y
�
l2
�
¼ 2

���xl� bx��2þC

l2



: ðB:9Þ

The above relation is the starting point for the minimum
bound method. Minimization of the function

1

2

��xl� bx��2þ C

2l2
; ðB:10Þ

with respect to l2 gives an a posteriori strategy for comput-
ing the optimal regularization parameter. To derive the nec-
essary condition for such a minimum, we consider the
function

f
�
l2
�
¼ 1

2

��xl� bx��2 ðB:11Þ

and obtain

df

dl2

�
l2
�
¼
�
xl� bx�T dxl

dl2
: ðB:12Þ

Formal differentiation of Eq. (A.1) with respect to l2 yields

dKT

dl2
½FðxlÞ � y� þKTK

dxl

dl2
þ ðxl� xaÞ þ l2dxl

dl2
¼ 0

whence, neglecting the first term, gives

dxl

dl2
¼
�
KTKþ l2In

��1ðxa� xlÞ: ðB:13Þ

Further, using the relation xa � xl ¼ KTrl=l2 (Eq. (A.3)),
the identity (B.2) and the linearity relation

�
xl � bx�T

KT ¼
rT

l (Eq. (A.4)), we arrive at

df

dl2

�
l2
�
¼ 1

l2rT
l

�
KKTþ l2Im

��1
rl: ðB:14Þ

Replacing rl by rd
l we obtain an implementable parameter

choice rule to compute the optimal regularization parameter
as the solution of the equation

l2rdT
l

�
KKT þ l2Im

��1
rd

l ¼
C

2
: ðB:15Þ
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