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Abstract

A laboratory-scale Activated Sludge System (ASS) was employed for the biodegradation of coke wastewater, which contains high concen-
trations of ammonium, thiocyanate, phenols and other organic compounds. The well-known kinetics models of Monod or Haldane are not very
useful due to inhibition phenomena amongst the pollutants and also, they need the determination of a wide range of parameters to be introduced
in the models. In this paper, a feed-forward neural network is outlined to obtain a satisfactory approach for estimating the effluent ammonium
concentration of the treatment plant. The methodology consists in performing a group of different sizes of the hidden layer and different subsets
of input variables.

The developed model is useful to obtain simulations under different conditions of the influent stream, thus enabling the effluent ammonium
concentration to be estimated. This neural network achieves better results than classical mathematical models for biological wastewater treat-
ment as a result of the complex composition of the coke wastewater.
� 2006 Published by Elsevier Ltd.
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1. Introduction

The wastewater used in this work originates from coke
process in steelworks, which are present in most raw steel
production facilities. Carbon requirements for iron smelting
are obtained from the destructive distillation of coking coals
at temperatures of between 900 �C and 1100 �C. When coal
is heated in the absence of air, complex organic molecules
within the coal break down to yield gases, liquid and solid
organic compounds of lower molecular weight, and a nonvola-
tile carbonaceous residue which is known as coke.

The substances leaving the coke-ovens as liquids under
ambient conditions are a flushing liquor consisting of free
and fixed ammonium salts and other pollutants such as

thiocyanate and cyanide; a tar containing several compounds
that can be recovered, namely pyridine, tar acids, naphthalene,
creosote oil and coal tar pitch and BTX aromatic hydrocarbon
fractions; and an oil lighter than water that contains the com-
pounds benzene, toluene, xylene and solvent naphthas.

Each of the three liquid streams undergoes further process-
ing in the by-products section. The flushing liquor undergoes
steam stripping, tar is recovered by removing the bottoms
from settling tanks, and BTX’s are extracted from the flushing
liquor using liquid/liquid extraction. The resulting wastewater
from these three processes makes up the coke wastewater. In
this study, coke plant wastewater from the Arcelor Group
steelworks in Avilés (Spain) was used.

Table 1 shows the average composition of coke wastewater,
which was analysed daily over a 4-month period. As can be
seen, the wastewater from the coke-making process contains
considerable amounts of toxic compounds such as cyanide
(31.8 mg/L), thiocyanate (363 mg/L) and phenols (207 mg/L).
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They also have high concentrations of ammonium, around
700 mg/L, and chlorides, above 1200 mg/L, but low concentra-
tions of heavy metals and very low levels of phosphorus, around
0.5 mg/L. Hence, if the intention is to carry out a biological
treatment, this nutrient will have to be added in the form of
phosphates.

A laboratory-scale Activated Sludge System (ASS) was
employed for the biodegradation of coke wastewater, with
the following characteristics: (i) A wastewater homogenization
tank, made of PVC with a total volume of 200 L, to which the
nutrient needed for the biological process was added; and (ii)
two aerobic reactors made of transparent PVC, with a total
volume of 20 L. Oxygen was introduced in the reactor through
orifices located at the bottom. A mechanical stirrer was em-
ployed to keep the liquor completely mixed. The temperature
was kept constant at a value of 35� 0.5 �C by means of

a heating element. (iii) Two settling tanks, also made of trans-
parent PVC, with a total volume of 12 L, in order to return the
settled sludge to aerobic reactors and thus keep the biomass
concentration inside constant. Pumps were employed to feed
the reactor and for recirculation.

In order to predict the behaviour of biological wastewater
treatment plants, the Activated Sludge Model No. 1 (ASM1)
of the International Association on Water Pollution Research
and Control (IAWPRC) Task Group on Mathematical Model-
ling for Design and Operation of Biological Wastewater Treat-
ment is frequently used (Henze et al., 1987). This simulation
model distinguishes between heterotrophic and autotrophic
biomass and different components of the wastewater, such
as, for instance, the readily biodegradable substrate, the slowly
biodegradable substrate and the soluble and particulate inert
organic matter.

However, this model is not very useful to be applied to
a type of wastewater with inhibition between pollutants like
coke wastewater. For this reason, a feed-forward neuronal
net was selected in this study to estimate the ammonium nitro-
gen concentration in the effluent. Similar applications using
neural computing techniques can be found in Belanche et al.
(1999), Capodaglio et al. (1991) and Steyer et al. (1997).

2. Process understanding and comprehension of the data

One of most complex tasks is the selection of variables to
be used to model the system. An important working variable
is the influent flow rate, which is correlated with the Hydraulic
Residence Time (HRT) and the reactor volume.

Fig. 1 shows the influent flow rate as well as the concentra-
tions of organic matter, expressed as Chemical Oxygen De-
mand (COD), ammonium nitrogen and thiocyanate. These
compounds influence the removal of ammonium by

Table 1

Composition of coke wastewater

Parameter Coke wastewater (average value)

pH 8.1

Conductivity (mS/cm) 7.12

N-NH4
þ (mg/L) 808

TKN (mg/L) 1040

COD (mg O2/L) 1102

BOD5 (mg O2/L) 579

CN� (mg/L) 31.8

PO4
3� (mg/L) 0.54

TSS (mg/L) 32.0

VSS (mg/L) 23.0

NO3
� (mg/L) 76.0

SCN� (mg/L) 363

Phenols (mg/L) 207

Cl� (mg/L) 1290

Fe (mg/L) 4.40

Zn (mg/L) 0.98
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Fig. 1. Recorded values in laboratory pilot plant.
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obic reactor, after the thiocyanate has been biodegraded in the
first reactor. The pH in the first reactor was kept at 6.5 to
favour thiocyanate biodegradation and at 8.4 in the second
to favour nitrification. Furthermore, the solid retention time
in the latter reactor (45 days) was sufficient for nitrification
to take place. Accordingly, the influent ammonium concentra-
tion may be considered similar to the ammonium concentra-
tion in the first reactor.

When the COD increases, an increase in biological activity is
required in order to remove the same amount of ammonium.
Thiocyanate has a significant effect on nitrification, since its
biodegradation produces ammonium. The biodegradation of
thiocyanate occurs in both reactors and its concentration will
be taken into account and integrated into the data set for training.

Finally, the ammonium concentration in the influent is the
most important variable to consider, as it will influence the
ammonium concentration in the effluent.

Taking all the above considerations into account, four vari-
able sets will be analysed as input variables, namely

1. Influent flow, influent ammonium concentration, influent
thiocyanate concentration and influent COD (Variable set
No. 1).

2. Influent flow, influent ammonium concentration and influ-
ent COD (Variable set No. 2).

3. Influent flow and influent ammonium concentration (Vari-
able set No. 3).

4. Influent flow, influent ammonium concentration and influ-
ent thiocyanate concentration (Variable set No. 4).

It is obvious that influent flow and influent ammonium con-
centration are key variables to estimate the effluent ammo-
nium concentration. Moreover, COD and thiocyanate should
be considered. For this reason, four data sets were formed
by combination of these variables.

Several models of neural networks will be trained using
these four variable sets in order to select the best model that
minimizes the estimation error. Regarding the data acquisition,
the measurements include 42 samples that were obtained ap-
proximately every 4e5 days. The data were divided into two
sets of samples (training and testing) of the same size and
the main characteristics of them were distributed between
these two sets to achieve a better generalization.

3. Data pre-processing and training

The data are normalized to a zero mean and a unitary var-
iance. This allows all the features to move in the same ranges
and hence be treated by the neural network in the same way.

The architecture of the neural network is composed of a sin-
gle hidden layer with hyperbolic tangent as the activation
function and a single neuron with a linear activation function
as the output layer. The activation function of the neurons of
the hidden layer is a hyperbolic tangent. Thus, this type of
function allows the network to learn nonlinear relationships.
The activation function of the output layer is linear, thus en-
abling the network to take any value. This network topology
can be used as a general approximator for any function that
has a finite number of discontinuities whenever the hidden
layer has a sufficient number of neurons and a nonlinear acti-
vation function (Hornik et al., 1989; Funahashi, 1989; Cy-
benko, 1989; Hartman et al., 1990).

The next step consists in training the neural network using
the LevenbergeMarquardt algorithm (Levenberg, 1944; Mar-
quardt, 1963; Moré, 1977). After training, the network is
pruned, removing the weights that have the lowest saliences
according to Hij$wij

2/2 (LeCun et al., 1990), where Hij is the
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Fig. 2. Training and validation methodology.
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Hessian matrix and wij is the weight. At this stage, a data set
different to that used for training is employed. The data set
that is used is the testing data set.

4. Model selection

Discovering the input variables that optimize the approx-
imation to the objective function is the first task to perform
on the basis of the topology described above. The mean
square error and the autocorrelation between the output vari-
able and the error are useful to carry out this task (López
et al., 2001).

Once the best combination of input variables has been se-
lected, the number of hidden neurons must be determined. A
low number of neurons does not provide enough parameters
to train the neuronal network correctly. On the other hand,
an excessive number of neurons leads to overtraining problems
and its computational cost is higher. The training and pruning
of the neuronal network was carried out using the toolbox
named ‘‘Neural Based Network Identification System’’ devel-
oped by Helsinki Technical University (Norgaard et al., 2000,
2002).

Fig. 2 represents the methodology. The number of neu-
rons in the hidden layer is increased gradually for each
combination of input variables, making several tests with
each of these (60 assays were carried out in this study). Af-
ter pruning, the results are registered as the number of neu-
rons in the hidden layer, the testing and training errors, the
average and variance of these errors and the final number of
used weights.

5. Results

The minimum value, mean value and standard deviation of
the mean square error as a function of the number of used
weights are calculated for each combination of variables.
These are shown in Figs. 3e6. It can be seen that the higher
the number of weights, the lower the training error. However,
although the testing error decreases at the beginning, it rises
later. Therefore, an optimum number of weights must be
found.

Variable set No. 4 or the influent flow, the influent ammo-
nium concentration and the influent thiocyanate concentration
were chosen as input variables based on the minimum value,
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Fig. 4. Minimum value, mean value and standard deviation of mean square error of input variables: influent flow, influent COD and ammonium nitrogen
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the mean value and the standard deviation of the testing mean
square error. The best results are obtained in a number of used
weights equal to 18, which correspond to an original model of
eight hidden neurons. Problems of local minima were detected
in some models.

An iterative loop is established to search for the best
model that minimizes the testing mean square error after
pruning and considering the selected input variables and
a number of hidden neurons equal to eight. Four of the
eight neurons are not used in the best model after pruning.
However, it is necessary to start training with a high enough
number of neurons and then stop the procedure and remove
the pruned weights.

Fig. 7 shows the real data, both training and testing data,
corresponding to the effluent ammonium concentration and
the values estimated by the neural network. The autocorrela-
tion of the estimation error is good, tending quickly to zero
and the distribution is also good, with most of the samples
centered in the origin in accordance with Fig. 8.

6. Conclusions

A neural network model was developed to estimate the
ammonium concentration in the effluent stream of a wastewa-
ter plant that undergoes biological treatment.

There are well-known mathematical models for biological
treatment, such as the Activated Sludge Model (ASM). These
can be formulated using kinetic dynamics (Haldane, Monod)
and material balances to configure the particular structure of
the plant. In this case, however, these models are not very use-
ful because of the existence of inhibition between pollutants.
Accordingly, the use of ANN’s is recommended. Neural net-
works are widely used to estimate key parameters of physical
processes.

In this paper, a feed-forward neural network is outlined to
obtain a satisfactory approach to estimating the effluent
ammonium concentration of the treatment plant. The method-
ology consists in performing a group of different sizes of the
hidden layer and different subsets of input variables.
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The developed model is useful to obtain simulations under
varying conditions of the influent stream, thus enabling the
effluent ammonium concentration to be estimated. This neural
network achieves better results than classical mathematical
models for biological wastewater treatment as a result of the
problematic composition of the coke wastewater.

As future work, the generalization ability and the accuracy
may be improved training an ensemble of neural networks as
can be seen in Torres et al. (2005) how the results are im-
proved with this technique in other problems.
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