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Abstract

Models are essential in a decision support system for river basin management. In a decision support system for integrated planning and
management, the use of appropriate models is important to avoid models being either too simple or too complex. In this paper, appropriate
models refer to models that are good-enough-but-not-more-than-that to obtain an acceptable ranking of river engineering measures under
uncertainty. A systematic approach called ‘appropriateness framework’ is proposed to determine appropriate models that can be used in a
decision support system. The approach is applied to a decision support system for the Dutch Meuse River. One important component of this
decision support system, flood safety, is used in this paper to demonstrate how this approach works. The results show that the approach is
very useful in helping to determine appropriate models. Potential applications of the approach in other decision support systems are discussed.
The approach presented in this paper is designed as a tool to stimulate the communication between decision makers and modelers and to promote
the use of models in decision-making for river basin management.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Decision-making in river basin management is becoming
more complex because of the integration of surface water and
groundwater, issues of water quality, competitions among
stakeholders and increasing uncertainty due to effects of envi-
ronmental change. During the last couple of decades, there
has been growing interest in the use of computer-based decision
support systems (DSSs) to address the increasingly complex
river basin decision-making problems. Keen and Scott Morton
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(1978) state that a DSS couples the intellectual resources of in-
dividuals with the capabilities of the computer to improve the
quality of decisions and it is a computer-based system for deci-
sion makers who deal with semi-structured problems. The in-
corporation of DSS techniques in river basin management
started in the mid-1980s (McMahon et al., 1984; Barnwell
et al., 1986). In recent years, several DSSs have been developed,
such as AQUATOOL (Andreu et al., 1996), NELUP (Dunn
et al., 1996), RiverWare (Zagona et al., 2001), DSS Large
Rivers (Schielen and Gijsbers, 2003) and GAMES (Dorner
et al., 2007) to support river basin management.

For an integrated model-based DSS, the capabilities of the
models are fundamental in facilitating the major, if not the
whole, decision-making process. Models with different com-
plexities are often used in a DSS and there is a gradation of
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model complexity. Related to this, recently, there have been
considerable discussions about the use of simple and complex
models (Jakeman and Hornberger, 1993; Nihoul, 1994; Chwif
and Paul, 2000). Simple and complex models both have their
advantages and disadvantages. In general, modelers often tend
to develop more complex models to better understand the
system under study while decision makers focus more on prac-
tical applications and tend to use simpler models. According to
Perrin et al. (2001) and Vreugdenhil (2002), in many cases, es-
pecially in planning and strategic management, simple models
can be more appropriate than complex ones. For model-based
DSSs, the models used are supposed to fit decision makers’
use but without leaving out essential mechanisms associated
with management problems. Therefore, to stimulate the appli-
cation of models in decision-making, the use of appropriate
models is essential and has been discussed by Rogers
(1978), Fread (1985), Vreugdenhil (2002, 2006) and Booij
(2003). In these studies, however, the appropriateness of
models is only related to the accuracy or uncertainty of model
outputs.

The importance of uncertainty in decision-making has been
widely recognized (Ministry of Public Housing, Physical Plan-
ning, and Environmental Protection, 1985; Reckhow, 1994;
European Commission, 2000; Caminiti, 2004; Schlüter and
Rüger, 2007). It has been argued that the current state of
knowledge and natural variability in the system behavior often
precludes sufficiently accurate model outputs to distinguish or
rank among potential river engineering measures (Reichert
and Borsuk, 2005). To tackle this decision problem in water
management, Reda and Beck (1997) and Duchnese et al.
(2001) ranked storm water control measures mainly based
on the mean values, or the mean values plus standard devia-
tions, or the values of cumulative probability functions of de-
cision variables (model outputs). De Kort and Booij (2007)
proposed a ranking procedure based on the significance of
the difference between model output distributions to distin-
guish different measures. In life cycle assessment, Basson
and Petrie (2007) investigated whether the uncertainty in deci-
sion variables is likely to make it impossible to distinguish
measures by using Principal Component Analysis. They em-
phasized that it would be of little value to commence detailed
preference modeling for the evaluation of measures unless
some measures are distinguishable from others despite the
uncertainty in decision variables. Preference modeling is the
procedure of giving different preferences or weights to differ-
ent decision variables in multi-criteria decision analysis.

Decision support systems are often used to help develop
and evaluate management measures (Sojda, 2007), particularly
find their way in evaluating river engineering measures (De
Kort and Booij, 2007; Giupponi, 2007). A DSS for integrated
river basin management encompasses a number of sub-
models, such as models for flood safety, ecology, tourism,
recreation and navigation. For such complicated DSSs, dealing
with the right problem, the adequate level of complexity of
models and the adequate uncertainty in model outputs is par-
ticularly important, while addressing the right problem is most
fundamental (Jakeman et al., 2006; Vreugdenhil, 2006). The
missing link in past research is that the determination of
appropriate models in a DSS is rarely connected with the prac-
tical ranking problems and the uncertainty in model outputs at
the same time. Appropriate models used in a DSS in this paper
are therefore not only related to the uncertainty in model
outputs, but also aim to solve the ranking problem through
the incorporation of decision makers’ attitudes to uncertainty.
The objective of this paper is to develop a systematic approach
called ‘appropriateness framework’ and apply it to a DSS to
investigate if the approach finally works out. This appropriate-
ness framework can be used as a tool to help to determine ap-
propriate models in a DSS for integrated river basin
management and is proposed under the assumption that deci-
sions are made on a rational basis.

In this paper, a DSS for the Dutch Meuse River is
developed and used as a case study (Xu, 2005). The proposed
appropriateness framework is applied to one of the most im-
portant components of the DSS, flood safety, which itself
can be regarded as a DSS. The structure of this paper is as fol-
lows. Section 2 first proposes the appropriateness framework
that will be used to help to determine appropriate models
and its main components are introduced. Section 3 gives
a brief description of the case study followed by the results
of the application of the framework in Section 4. Section 5
discusses several aspects related to the appropriateness frame-
work. Finally, conclusions based on the Dutch Meuse DSS
case study are summarized in Section 6, along with recom-
mendations for future applications of the appropriateness
framework.

2. Appropriateness framework

2.1. Criterion for appropriate models

The determination of the appropriateness of models used in
a DSS generally not only depends on the practical ranking
problem and the uncertainty in model outputs. Basically,
good practice is the platform for pursuit of model quality or
appropriateness (Jakeman et al., 2006). Furthermore, other
aspects such as user-friendliness, flexibility of models and
computation time will play an important role as well (Xu,
2005). However, in this paper, the authors argue that the rank-
ing problem and the uncertainty are the most critical aspects
for determining appropriate models. Therefore, the concept
of appropriateness focuses on these two aspects. The core of
this concept is to use good-enough-but-not-more-than-that
models (of the processes involved) to solve a decision-making
problem for obtaining an acceptable ranking of different river
engineering measures accounting for uncertainty in model out-
puts. Here ‘good enough’ indicates that a model used in a DSS
should have a sound statistical or physical meaning and that
the most important and relevant processes should be included.
The concept of appropriateness is consistent with the Occam’s
Razor Theorem, which states that ‘entities should not be mul-
tiplied beyond necessity’ (Brooks and Tobias, 1996). Fig. 1
shows a schematic diagram of the decision problem where
two measures M1 and M2 are used for illustration. The error
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bars in this figure indicate the uncertainty ranges of model out-
puts (simulation results) from the two measures. As shown in
Fig. 1, in most cases, M2 produces higher model outputs than
M1 (the probability is more than 50%). If a higher value indi-
cates a better measure, in most cases, M2 is better than M1.
However, still situations exist where M1 could be better be-
cause of the uncertainty involved. The dashed lines in Fig. 1
indicate where the ranking of the two measures can be differ-
ent from the ranking in most cases. This paper therefore fo-
cuses on how to obtain an acceptable ranking of measures
under uncertainty, viz. when can the ranking of M2 being
better than M1 be accepted? If this ranking can be accepted
by decision makers, the models used in the DSS are regarded
as ‘appropriate’.

To analyze the appropriateness of models quantitatively, the
risk of obtaining an unacceptable ranking is adopted. This risk
is defined with reference to the classical concept of risks,
which usually consider the occurrence probability of a hazard
and the consequences of that hazard (Kaplan and Garrick,
1981). Here, in the context of measure comparisons, the risk
of obtaining an unacceptable ranking is defined as the product
of the mean difference between the model outputs of two mea-
sures and the probability of obtaining an unacceptable ranking,
that is, the ranking of two measures being different from the
ranking in most cases. The consideration of the mean
difference in this definition is not only because the value of
the difference of the two measures on average is important
to decision makers (which indicates which measure is better
on average) and regarded as the loss when an unacceptable
ranking is adopted, but also because the difference is used
here as a scaling factor. The above-defined risk utilizes the
mean difference to scale the effect of probability and is inde-
pendent of measures with different levels of effects on the sys-
tem. Therefore, the definition of risk in the context of measure
comparisons is not exactly the same as the classical one.

Let Y1 be the model outputs (simulation results) from M1

and Y2 be the model outputs from M2. As shown in Fig. 1,

Fig. 1. Schematic diagram of the decision problem.
in most cases M2 is better than M1. The probability of obtain-
ing an unacceptable ranking is then:

P¼ PrðY2 < Y1Þ ¼ PrðY2� Y1 < 0Þ ð1Þ
A parametric method to calculate the probability can be

found in Karl (1999). The mathematical equation of the risk
of obtaining an unacceptable ranking then becomes:

R¼ Y�P ð2Þ

where R is the risk of obtaining an unacceptable ranking for
the two measures; Y is the mean difference of model outputs
for the two measures; and P is the probability of obtaining
an unacceptable ranking for the two measures.

If the risk calculated is acceptable to decision makers, the
ranking of measures is regarded as acceptable and models
are considered to be appropriate. In the situation with multiple
measures, the models are regarded as appropriate if the risks
for all combinations of measures are acceptable.

2.2. Appropriateness framework

A systematic approach called appropriateness framework is
proposed here to determine appropriate models in a DSS (see
Fig. 2). This approach is designed for stimulating the commu-
nication between decision makers and modelers (experts) and
promoting the use of models in decision-making. For the de-
velopment, choice or use of such appropriate models, expertise
will play an important role. The models used in a DSS should
be able to address the main problems and achieve the

Fig. 2. Appropriateness framework.
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objectives. In the meantime, they should include the essence of
the system, e.g., should be steady or dynamic, or should be
linear or non-linear. Building or selecting a model with good
statistical or physical meaning often reduces the later efforts
for determining appropriate models. Model building and selec-
tion is so called ‘quantitative modeling and validation’ (see
Fig. 2). During this phase, expertise is essential in helping to
identify problems and objectives and to carry out appropriate
modeling activities. Quantitative modeling is the premise of
the appropriateness framework and it ensures that models
developed or selected are reasonable.

Therefore, the appropriateness framework generally starts
from simple but reasonable models, which include the most im-
portant and relevant processes of the system to be modeled.
Fig. 2 shows the main components of the framework, including
uncertainty analysis, appropriateness analysis, sensitivity anal-
ysis and model improvement by uncertainty reduction. In the
following, these main components are described consecutively.

Uncertainty analysis is used to analyze sources of uncer-
tainty in the data and models and propagation of these uncer-
tainties into model outputs. In the decision-making process,
there are two types of uncertainty. One is decision uncertainty
that includes uncertainty on agenda-setting, uncertainty about
costs and benefits of measures and uncertainty on goals and
preferences of decision makers (Van Asselt, 2000). The other
type is outcome uncertainty, which originates from measure-
ment errors of model inputs, uncertainty in scenarios (external
factors), uncertainty in model structures, uncertainty in model
parameters and natural variability (Morgan and Henrion, 1990;
Van Asselt, 2000). To propagate the uncertainty into decision
variables, many methods are available in the literature, includ-
ing error propagation equations, Monte Carlo simulations
(e.g., Latin Hypercube simulation) and response surface
methods (Bevington and Robinson, 1992; Saltelli et al.,
2000). In this paper, Latin Hypercube simulation is used
because of its capability to deal with non-linear and non-
monotonic systems, and its high efficiency.

However, it is known that the true uncertainty is often not
equivalent to the simulated Monte Carlo distribution, although
that will be always the case in practice. Even when all other
important uncertainties such as model structural uncertainty
are incorporated in the uncertainty analysis, there will be still
uncertainty in the uncertainty distribution. Therefore, the
Monte Carlo simulation can only give an approximate
estimation of the uncertainty.

Appropriateness analysis mainly concerns the process of
analyzing whether the models are appropriate or not by inves-
tigating if the ranking of measures is acceptable. The criterion
explained in Section 2.1, viz. the risk of obtaining an unac-
ceptable ranking is used in this study as the indicator for the
appropriateness analysis.

To determine the appropriateness of models in the DSS, an
acceptable risk level R* is needed. This value is usually deter-
mined by decision makers and is indicative of the lower limit
of making a sound decision under uncertainty according to
decision makers’ experience and opinions. The acceptable
risk can be interpreted as the expected loss of different
decision variables (such as the expected loss of money). Dif-
ferent from the objective risk R, this acceptable risk is a subjec-
tive one. One feasible way to determine this acceptable risk is
through decomposing the acceptable risk into the acceptable
probability and the acceptable mean difference (see Eq. (2)).
The main role of the acceptable risk is to be able to incorpo-
rate decision makers’ attitudes to uncertainty into the appro-
priateness framework. The models are determined to be
appropriate if the risk R is smaller than R* for all combinations
(pairs) of measures (in the case of multiple measures), i.e.:

R< R� for all combination of measures ð3Þ
Measures here offer opportunities to change the system

from the initial undesired situation into a desired one. They
are often developed through brainstorming to ensure that ade-
quate measures are included. During measure generation, it is
very important that a set of creative and feasible measures is
generated, and these measures should be different from one
another (Howard, 1988; Matheson and Matheson, 1998; Keis-
ler, 2002). In this sense, the null measure (uninformative
model) is regarded to be irrelevant in this approach.

Sensitivity analysis explores the effect of variations of in-
puts, parameters and models on model outputs to identify the
most important model components. If the risk calculated is
unacceptable, the models are determined as inappropriate. In
order to obtain appropriate models, the models initially devel-
oped for a DSS need to be improved by reducing the uncer-
tainty in the data and models. An efficient way to do this is
to first identify the most important sources of uncertainty
and then put efforts into reducing the uncertainty in these
most important sources. Different sensitivity analysis methods
can be used for this purpose, such as the Morris method, the
‘Method of Sobol’, Fourier Amplitude Sensitivity Tests and
the Bayesian sensitivity analysis method (Saltelli et al.,
2000). In this paper, the Morris method is used because of
its efficiency in dealing with a large number of uncertainty
sources in the simulation.

Model improvements are carried out, whenever possible,
after identifying the most important sources of uncertainty
by sensitivity analysis. Model improvements can be achieved
by reducing the uncertainty in these most important sources.
Two main directions of model improvements are: (i) the
reduction of data uncertainty (e.g., model inputs) and (ii) the
reduction of model uncertainty (e.g., model parameters, model
equations, or spatial and temporal resolution of data). Possible
ways for reducing uncertainty include:

� collecting more high quality observation data;
� using better data processing methods;
� collecting expert opinions;
� increasing spatial or temporal resolution of data;
� improving model structures (mainly model equations).

However, one has to realize that not all uncertainties
identified in the uncertainty analysis can be reduced due to,
for example, the current knowledge limitations, or to the fact
that it is not worthwhile to put great efforts in reducing
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uncertainty due to time and economical constraints. One
example is that the uncertainty caused by natural variability,
such as the uncertainty in the river discharges (as inputs for
flood modeling) can be reduced only by obtaining more obser-
vation data, which may not be possible to achieve within the de-
cision-making time frame. If the uncertainty cannot be reduced
under current knowledge and resource limitations, measures
with ranking problems have to be regarded to have same effects
on the system. This implies that decision makers must live with
some uncertainty because of current knowledge limitations.

3. Case study

3.1. Flood safety component in Dutch Meuse DSS

A DSS was developed for the Dutch Meuse River located in
the Netherlands (Xu and Booij, 2004; Xu, 2005). This DSS
seeks answers to strategic questions related to different prob-
lems in a long-term context like flood damage, water quality
and navigation. Detailed information about this DSS can be
found in Xu (2005). The Dutch Meuse River consists of three
sections: Border Meuse, Sand Meuse and Over Meuse (Rhijns-
burger, 1997). In this paper, one of the most important compo-
nents in the DSS, flood safety, is selected for the further
development of the appropriateness framework as described
in Section 2. Fig. 3 shows the system diagram for the flood
safety component (models). This diagram mainly includes
two subsystems: the physical subsystem and the economic
subsystem. The interrelationships between the subsystems
are indicated by arrows. The left-hand side of the diagram con-
tains the inputs, including river discharges, channel cross sec-
tion data, land height and district information. The right-hand
side is the decision variable, which is the net present value
(NPV) of the flood damage. The flood safety models are ap-
plied to the river sections e Border Meuse and Sand Meuse e
in the Province of Limburg. Economic growth is the only
external factor considered.

3.2. Brief model description

For the purpose of further development of the appropriate-
ness framework, this case study starts from a rather schematic
problem with simple models, if compared to many existing
and sophisticated models used in river basin management. The
main sub-models used in the physical subsystem (see Fig. 3) in-
clude a flood frequency model, a hydraulic model, an inundation
model, a flood damage model and a risk model while the main
model in the economic subsystem is a costebenefit model.

The primary objective of the flood frequency model is to
relate the magnitude of extreme events (flood flows) to their
frequency of occurrence through the use of probability distri-
butions. In this analysis, the Gumbel Extreme Value distribu-
tion is used (Shaw, 1994). The hydraulic model is used to
calculate water levels in the river channel for design floods,
based on steady non-uniform flows. The inundation model is
used to calculate inundations (the difference between water
level and land height) in the floodplains. The damage model
is used to calculate the economic damage in the floodplains
based on the inundation depth, the land use type and the num-
ber of units of that land use type in a cell (De Blois, 2000).
The objective of the risk model is to calculate the expected an-
nual damage by using the US Army Corps’ method (National
Research Council, 2000). The costebenefit model is used to
calculate the NPV of the expected annual damage, which is
the decision variable in this case study. In order to quantify
the benefits resulting from different measures, often the annual
reductions in damage are used as a decision variable for deter-
ministic situations (Shaw, 1994). Due to the consideration of
uncertainty, an alternative way is used here based on the
sum of the costs of measures and extra benefits, e.g., sand
and gravel extraction (see Fig. 3) to the present value of flood
damage. This doesn’t affect the ranking of the measures, and
in this way, the larger the net present value becomes, the
less desirable the measures are.

3.3. Data and measures

Most data are obtained from the Dutch Directorate for Pub-
lic Works and Water Management (RWS) (see Fig. 3). Daily
mean discharges are from 1911 to 1997 (RWS, 1997). Channel
cross section data are obtained from the RWS (2001) and
Folkertsma (personal communication, 2003). Land use and
land height data are obtained from De Blois (2000). There
are 10 types of land use in the flood safety component, namely
households, industry, construction, trade and recreation,
services, agriculture, greenhouses, institutions, road and water.
The spatial resolution of land use and land height data is
150 m. Three damage classes are used in the damage func-
tions, namely ‘low’, ‘medium’ and ‘high’, which are defined
for 33 different municipalities according to their economic im-
portance. Damage factors in damage functions are given by De
Blois (2000). For a specified time horizon (50 years), a dis-
count rate of 5% per year is chosen and the economic growth
is assumed to be 2% per year (Ministry of Transport, Public
Works and Water Management, 1994a). These inputs are indi-
cated on the left-hand side of the system diagram in Fig. 3.

As shown in Fig. 3, three categories of measures are iden-
tified: measures aiming at increasing the discharge capacity of
river channels, embankments and spatial planning measures.
In this paper the current situation (do-nothing) is regarded to
be one measure as well. Five measures are included: (i) Mea-
sure 0: current situation (M0); (ii) Measure 1: broadening the
main channel of the Border Meuse by 25 m (M1); (iii) Measure
2: deepening the main channel of the Sand Meuse by 1 m
(M2); (iv) Measure 3: embankments (M3); and (v) Measure
4: spatial planning measures (M4).

The cost and benefit data of the measures are obtained from
the Ministry of Transport, Public Works and Water Manage-
ment (1994b).

3.4. Uncertainty in model inputs and parameters

As mentioned before, besides input and parameter uncer-
tainty, other uncertainties can be important as well, such as
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Fig. 3. System diagram for flood safety.
model structural uncertainty. However, input and parameter
uncertainty are two important sources (but not all sources)
and it is reasonable to start with them for demonstrating and
developing the approach. Other important uncertainties such
as model structural uncertainty should be included when actu-
ally applying the approach, which is the case in the second
case study (Xu and Booij, submitted for publication).

In total, there are 112 inputs and parameters in the models
(Xu, 2005). Most of them are factors from the damage func-
tions for different land use types. The estimation of uncer-
tainty in the sample’s mean and sample’s standard deviation
of the flood flows is based on the assumption that both param-
eters are normally distributed. The estimation of the uncer-
tainty in the hydraulic parameters is obtained from experts
and assumed to be normally distributed as well. The distribu-
tions of other inputs and parameters are set to be uniform in
shape, because insufficient data are available to infer any par-
ticular type of distribution (Campolongo and Saltelli, 1997).
Ranges of uncertainty are selected either according to the
information available, or in absence of such information, as-
suming 20% of uncertainty in input variables and parameters
(nominal value � 20%). Detailed uncertainty information
can be found in Xu (2005).

4. Results from applying the appropriateness framework

4.1. Results from uncertainty analysis

The uncertainties in inputs and parameters are propagated
into the model outputs (NPV) for each measure by Latin
Hypercube simulation. The number of simulations is 1000.
Table 1 gives the mean values and standard deviations of the
model outputs associated with the five measures. In this table,
Yi represents the model outputs from Mi, i¼ 0,.,4. The re-
sults in this table show that the mean NPV for M1 is signifi-
cantly lower compared with other measures and so is the
standard deviation. This implies that M1 is the best choice if
the NPV is the only decision variable considered. Furthermore,
if decision makers are only interested in the mean values of
model outputs, Table 1 also indicates a ranking of the mea-
sures: M3<M2<M0<M4<M1. M2 and M3 rank after M0

(the current situation) because of their high costs.
However, if uncertainty is considered as an important factor

in decision-making, the above ranking doesn’t hold all the
time, especially for M0, M2 and M3, which produce close
mean values and high standard deviations. Some standard de-
viations are even much higher than the differences in mean
values. For example, for measure M0 and M4, the mean differ-
ence in the NPV is 23 million euros, while individual standard
deviations are around 32 and 27 million euros, respectively.
This indicates that it is difficult to distinguish these two

Table 1

Mean NPVs and standard deviations for model outputs from five measures (Yi

represents the model outputs from measures Mi, i¼ 0,.,4)

Measures Mean NPV

(million euros)

Standard deviations

of NPV (million euros)

M0 (Y0) 138 32.2

M1 (Y1) 54.0 17.6

M2 (Y2) 143 23.3

M3 (Y3) 150 20.9

M4 (Y4) 115 26.8
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measures. In other words, M4 is not so effective in improving
the flood situation, especially in the presence of high uncer-
tainty in the model outputs (M0 is the current situation).

4.2. Results from appropriateness analysis

Goodness-of-fit tests show that the model outputs from
Latin Hypercube simulation for the five measures are log-nor-
mally distributed. For risk calculations, the natural logarithms
of the model outputs (ln) are used so that the parametric
method of Karl (1999) can be employed to calculate the prob-
ability of obtaining an unacceptable ranking defined in Eq. (1).
Fig. 4 shows the superimposed normal density based on the
histograms of the log-normally transformed model outputs
for the five measures. This figure shows large overlaps among
the five distributions.

According to Eq. (2), the differences between model out-
puts from measures are of importance to calculate the risk
of obtaining an unacceptable ranking. Since the log-normally
transformed model outputs are normally distributed and as-
suming the model outputs from the five measures are indepen-
dent from each other, the differences for each combination of
measures are normally distributed as well (Karl, 1999). The
original mean differences before the log-normal transforma-
tion are presented in Table 2.

The probability distributions of the differences for 10 com-
binations of measures are shown in Fig. 5. Yi and Yj are differ-
ent model outputs from Mi and Mj, respectively, i¼ 0,.,4,
j¼ 0,.,4, isj. It is assumed that, in most cases, the elements
from Yi are bigger than the elements from Yj. This means that
the probability of Yi� Yj> 0 is higher than 50%. Therefore the
probability that Yi� Yj< 0 is the probability defined in Eq.
(1), which corresponds to the negative area of the distributions
in Fig. 5. The bigger the negative areas, the more difficult it
will be to distinguish the measures. For example, Fig. 5 shows
that the pairs (M0 & M2), (M0 & M3) and (M2 & M3) are the

Fig. 4. Superimposed normal probability density function for log-normally

transformed model outputs for five measures.
most difficult ones to distinguish, because their negative areas
are almost half of the entire distributions with respective prob-
abilities of 0.42, 0.35 and 0.40 as shown in Table 2.

Table 2 also shows that, in this case study, lower mean differ-
ences correspond to higher probabilities and vice versa, for ex-
ample, the values (5.61, 0.42) for M0 & M2 pair and (60.6,
3.1� 10�2) for M1& M4 pair. On the basis of Eq. (2), the risks
for each combination of measures are calculated and presented
in Table 2 as well. The risks are calculated as a result of the com-
bined effects of the mean differences and the probabilities. The
results also show that these two aspects counteract each other.

The acceptable risk needed to determine the appropriate-
ness of models in the flood safety component is usually deter-
mined by decision makers. In this case study, a value of 6
million euros is selected for a preliminary analysis, assuming
that this value represents the consensus of decision makers.
Table 2 shows that most of the risks calculated are lower
than this acceptable value and only the risk for the

Table 2

Mean differences of model outputs, probabilities and risks of obtaining an un-

acceptable ranking for 10 different combinations of measures

Measures compared Mean difference

(million euros)

Probability Risk

(million euros)

M0 & M1 83.9 1.1� 10�2 8.95� 10�1

M0 & M2 5.61 0.42 2.38

M0 & M3 12.6 0.35 4.40

M0 & M4 23.3 0.28 6.60

M1 & M2 89.5 4.2� 10�3 3.78� 10�1

M1 & M3 96.5 2.4� 10�3 2.27� 10�1

M1 & M4 60.6 3.1� 10�2 1.89

M2 & M3 7.02 0.40 2.84

M2 & M4 28.9 0.20 5.69

M3 & M4 35.9 0.14 5.02

Fig. 5. Probability distributions of differences of log-normally transformed

model outputs for 10 combinations of measures.
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combination M0 & M4 is higher. The occurrence of an unac-
ceptable risk means that the ranking of M4, although being bet-
ter than M0 on average, is not acceptable because of the high
levels of uncertainty in model outputs. Therefore, in this case
it is concluded that the models are inappropriate because of the
unacceptable risk. This also means that it is not possible to ob-
tain an acceptable ranking due to the high levels of uncertainty
in the decision variable. Thus, according to the appropriate-
ness framework, the models need to be improved.

4.3. Results from sensitivity analysis

In this section, model improvement is implemented by re-
ducing the uncertainty in the most important sources. To
achieve this purpose, the Morris method is used to determine
the relative importance of the 112 inputs and parameters based
on their respective contributions to the output uncertainty
(Morris, 1991). The mean and standard deviation (SD) of
the distribution of elementary effects for each input or param-
eter are calculated (Morris mean and SD). The elementary ef-
fect EE is the indicator used in the Morris method to evaluate
the effects of ith input or parameter factor on the outputs. It is
defined as:

EEiðXÞ ¼
Yðx1;.; xi�1; xiþD; xiþ1;.; xkÞ � YðXÞ

D
ð3Þ

where X is any selected value in the region of experiment, Y is
the model output, k is the number of inputs and parameters and
D is a pre-determined multiple representing variations of
inputs and parameters. The order of importance of inputs
and parameters is finally obtained by calculating the Morris
distance, which is the Euclidean distance from the coordinate
(Morris mean, Morris SD) to the origin (0, 0) (Campolongo
and Saltelli, 1997). The larger the Morris distance, the more
important the inputs and parameters are.

Table 3 shows the Morris means, Morris SDs and Morris dis-
tances, along with the order of importance, for the top 15 inputs
and parameters in the flood safety models. It can be observed
that the most important inputs and parameters come from the
hydraulic model while damage factors are less important.

4.4. Results from model improvements

For the purpose of illustration of improving the models, only
the first 14 inputs and parameters shown in Table 3, whose Mor-
ris distances are higher than 107, are regarded to be important.
On the basis of this list, possible suggestions about realistic un-
certainty reductions can be derived. For example, as Table 3
shows, the slope and bed level factors (is, ib, as and ab) used in
calculating the bed levels are among the most important param-
eters. This suggests that a reduction of uncertainty in bed level
calculation would be very helpful in reducing the uncertainty
in model outputs. A realistic reduction of uncertainty could be
obtained by improving the model structure, for example, by add-
ing a morphological model, or by obtaining more high quality
measurements of bed levels. In this study, however, only hypo-
thetical reductions of uncertainty in parameters and inputs are
used to investigate how uncertainty reductions affect the model
outputs and the risk of obtaining an unacceptable ranking. Two
cases are proposed. Case 1 deals with a reduction of uncertainty
in several of the most important inputs and parameters. The un-
certainty in the slopes, bed level factors and the depths of the
main channel (is, ib, as, ab, hb and hs) is reduced from 5% to
1% and the uncertainty in the Nikuradse coefficients (Kb and
Ks) in the floodplains is reduced from 20% to 10%. Case 2 as-
sumes that the 14 important inputs and parameters are determin-
istic (i.e. without uncertainty). The use of two hypothetical cases
aims to investigate the effects of different levels of uncertainty
reduction on the appropriateness analysis of models.

Goodness-of-fit tests show that the model outputs (NPV)
after uncertainty reductions are still log-normally distributed.
The superimposed normal densities based on histograms of
the differences for different pairs of measures (log-normally
transformed) are shown in Fig. 6. Fig. 6a shows the distribu-
tions for all measures for Case 1 and Case 2 and Fig. 6b shows
Table 3

Inputs and parameters in order of importance according to Morris distances (here SDs mean Morris standard deviations)

Inputs and

parameters

Descriptions Morris means Morris

SDs

Morris

distances

Order of

importance

is Slope of Sand Meuse 1013 1014 1014 1

ib Slope of Border Meuse 1013 1013 1013 2

Ks Nikuradse of Sand Meuse floodplains 108 109 109 3

Kb Nikuradse of Border Meuse floodplains 107 109 4

as Bed level factor for Sand Meuse 107 108 108 5

hb Depth of Border Meuse main channel 108 108 6

hs Depth of Sand Meuse main channel 108 108 7

ab Bed level factor for Border Meuse 108 108 8

Bb1 Width of Border Meuse main channel 107 107 107 9

Cs Chézy coefficient of Sand Meuse main channel 106 107 10

Bb2 Width of Border Meuse floodplains 106 107 11

Bs2 Width of Sand Meuse floodplains 106 107 12

Cb Chézy coefficient of Border Meuse main channel 106 107 13

Bs1 Width of Sand Meuse main channel 105 107 14

bm Sample mean of flood flow 105 106 <107 15

Others 16e112
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Fig. 6. Superimposed normal probability density function of ln(NPV) for Case 1 and Case 2 for five measures (a) and for measures M0, M2, M3 and M4 (b).
the distributions for all measures except Measure 1 for Case 1
and Case 2. This figure shows that the distributions of ln(NPV)
from both cases are narrower than those in Fig. 4, slightly for
Case 1 and obviously for Case 2. This indicates that the uncer-
tainty in the model outputs has decreased after reducing the
uncertainty in the most important inputs and parameters.
Fig. 6 also shows a shift of the distributions (mainly repre-
sented by a change in mean NPVs) when the uncertainty is
reduced. These shifts of distributions mainly resulted from
the model behavior (e.g., non-linearity and non-monotony)
of the flood safety model.

For the convenience of comparison, the situation before
model improvements is represented by Case 0. The mean dif-
ferences for each pair of measures are shown in Table 4 for
Case 0, Case 1 and Case 2. This table shows that the mean dif-
ferences change when the uncertainty is reduced. For example,
the mean difference for the pair (M2 & M3) changes from 7.02
million euros for Case 0, to 7.38 for Case 1, to 3.50 for Case 2.
Fig. 6b shows the switch of distributions (shown by the switch
of mean values) from M2 and M3 for Case 1 and Case 2.

Table 4 also shows the probabilities for different pairs of
measures for the three cases. The results indicate that reducing
uncertainty in the most important inputs and parameters has
significant effects on the ranking of measures, especially for
Case 2, which shows an obvious decrease of the probabilities.
Small numbers of probabilities increase, such as the probabil-
ities related to M1, because of the shift of the distributions. The
results from Table 4 also indicate that M0, M2 and M3 are com-
parable with high probabilities (>30%), especially for M2 and
M3. Even if the uncertainty is reduced a lot, it is still difficult
to distinguish them. As shown in Fig. 6b, the distributions for
M2 and M3 switched for Case 1 and Case 2. This situation in-
dicates that reducing uncertainty is not worthwhile anymore
because too much effort would be needed to reduce the prob-
ability even only by 1%. Hence, this aspect should be
considered when the appropriateness of models is analyzed.
From this point of view, M2 and M3 can be regarded to have
the same effects on the decision variable.

Finally, Table 4 presents the risks for different pairs of mea-
sures for the three cases. The table shows that most risk values
decrease while a few slightly increase because of the shifts of
the distributions. The effects of model behavior, such as non-
linearity, need to be investigated in future studies.

The analysis shows that the models improved after reducing the
uncertainty in the most important inputs and parameters. All risks
calculated are lower than the acceptable risk (6 million euros) for
Case 1 and Case 2, and it is moreobvious for Case 2. Therefore, the
models are judged to be appropriate under the reduced uncertainty
situation, for both Case 1 and Case 2. Meanwhile, the measures
can be ranked as: M3¼M2<M0<M4<M1, which can be
accepted by decision makers. This case study shows that, if real-
istic reduction of uncertainty to the level in Case 2 is difficult or
even impossible to achieve, Case 1 is good enough to achieve ap-
propriate models.

5. Discussion

This paper addressed the problem of determining appropri-
ate models in the Dutch Meuse DSS by applying an appropri-
ateness framework approach developed specifically for this
purpose. In this approach, the risk of obtaining an unaccept-
able ranking for each combination of measures incorporates
the mean differences of the model outputs from pairwise mea-
sures (‘consequences’), which are used as a scaling factor. An-
other option to represent the consequence of obtaining an
unacceptable ranking may be the value at 95% probability of
the difference between two measures. This needs further in-
vestigations in future.

The appropriateness framework approach starts from sim-
ple but reasonable models. One advantage of starting from
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Table 4

Mean differences of model outputs, probabilities and risks of obtaining an unacceptable ranking for 10 different combinations of measures

Measures

compared

Mean difference

(million euros)

Probability Risk (million euros)

Case 0 Case 1 Case 2 Case 0 Case 1 Case 2 Case 0 Case 1 Case 2

M0 & M1 83.9 71.5 86.7 1.1� 10�2 2.1� 10�2 1.0� 10�3 8.95� 10�1 1.51 8.97� 10�2

M0 & M2 5.61 6.88 6.93 0.42 0.41 0.39 2.38 2.85 2.70

M0 & M3 12.6 14.3 3.42 0.35 0.30 0.43 4.40 4.32 1.46

M0 & M4 23.3 22.3 22.8 0.28 0.24 0.22 6.60 5.38 5.10

M1 & M2 89.5 78.4 93.6 4.2� 10�3 1.3� 10�2 2.3� 10�4 3.78� 10�1 1.06 2.15� 10�2

M1 & M3 96.5 85.8 90.1 2.4� 10�3 6.6� 10�3 2.1� 10�4 2.27� 10�1 5.68� 10�1 1.97� 10�2

M1 & M4 60.6 49.2 63.9 3.1� 10�2 5.8� 10�2 5.5� 10�3 1.89 2.83 3.54� 10�1

M2 & M3 7.02 7.38 3.50 0.40 0.38 0.44 2.84 2.84 1.54

M2 & M4 28.9 29.2 29.7 0.20 0.17 0.12 5.69 4.97 3.58

M3 & M4 35.9 36.6 26.3 0.14 0.09 0.13 5.02 3.19 3.40
these models is to save efforts and time with respect to the de-
velopment of very complex models. Nevertheless, there is still
a possibility that these models miss some components in the
system, which may contribute to model outputs. Carrying
out an uncertainty analysis (as performed in this case study)
cannot display what the missing components really are be-
cause only the uncertainty in inputs and parameters was con-
sidered. This should be investigated by comparing model
outputs from models with different model complexity. It can
become apparent whether complex models are more appropri-
ate than simpler ones.

The appropriateness framework in this paper is mainly de-
signed for planning and strategic management. Therefore, the
models used are supposed to be simpler than those for other
purposes. However, there is still a chance that achieving an ac-
ceptable ranking could be difficult. The models initially devel-
oped or chosen may not be adequate. Then many efforts are
often put on collecting more data or even building a new
model. Both may cost a lot of time and money. Furthermore,
three aspects may hinder the ranking. The first is model behav-
ior, such as model non-linearity. The effect of such model be-
havior on risk calculations has been shown in the case study.
The second aspect again relates to the cost and time involved
to reduce the uncertainty. Sometimes it is not worthwhile to
spend a huge amount of money and time to get completely dis-
tinguishable measures. The third aspect is that some uncer-
tainties in the models cannot be reduced, for example the
uncertainty due to current knowledge limitations and the sto-
chasticity in the natural world. Under such conditions, as men-
tioned in Section 2.2, the indistinguishable measures have to
be regarded to have similar effects on the decision variable
and decision makers must live with some uncertainty. Finally,
the attitudes of decision makers (indicated by acceptable risks)
will play a significant role in determining the efforts needed to
achieve appropriate models. In practical applications, the de-
termination of acceptable risks is rather important in applying
the appropriateness framework. This has been further investi-
gated in the second case study (see Xu and Booij, submitted
for publication).

In this case study, the model outputs from different mea-
sures were assumed to be independent of each other. This
means that the uncertainties originating from the model inputs
and parameters are independent of each other (Reichert and
Borsuk, 2005). Another assumption could be that all uncer-
tainties are fully dependent, thus the distributions of model
outputs from different measures will be highly dependent. Un-
der this extreme assumption, the risks calculated will be nearly
zero and a definite ranking can be obtained. These two differ-
ent assumptions mean that the interdependency among model
outputs from different measures will play an important role in
calculating the risks of obtaining an unacceptable ranking.
However, in reality, both assumptions are only extreme situa-
tions. In a future study, a more reasonable assumption is
needed to consider some degree of interdependency, so that
the correlations between model outputs from different mea-
sures could be taken into account. However, modeling depen-
dencies among the model outputs is not a trivial thing.
According to Reichert and Borsuk (2005), a possible way to
take the dependencies into account is through the construction
of dependency structures by copulas. This is often difficult for
the case with many uncertainty sources (which is the case in
this paper). One may need to first figure out several major
sources of uncertainty and it is also difficult to take into ac-
count the effects of model structural uncertainties. The inde-
pendent case in this paper in fact gave more conservative
results compared to the dependent case (a smaller risk), which
is in favor of the application of the approach.

Besides the ranking information of the measures, the distri-
butions of differences for each combination of measures can
be very important to decision makers. The knowledge about
the distributions of differences turns out to be useful for eval-
uating the effectiveness of river engineering measures in the
presence of high levels of uncertainty (see Fig. 5). This is often
ignored in the real decision-making process.

The models used in a DSS according to the developed sys-
tematic approach are fit for decision maker’s use because on
the one hand, models chosen or built by modelers are based on
decision makers’ problems and objectives and on the other
hand, the ranking problem is solved through the use of the ac-
ceptable risk, which is determined by decision makers as well.
Therefore, the appropriateness framework can be used as
a tool to stimulate the communication between decision makers



1677Y.-P. Xu et al. / Environmental Modelling & Software 22 (2007) 1667e1678
and modelers, promote the use of models in decision-making
under uncertainty, avoid possible efforts to develop over-com-
plex models and improve the quality of decision-making.

6. Conclusions and recommendations

This paper proposed a systematic approach to develop ap-
propriate models which can be used in a DSS for integrated
river basin management. The Dutch Meuse case study gave
a good demonstration on how the appropriateness framework
can be applied to a DSS.

However, the Dutch Meuse case study was mainly used for
the further development of the appropriateness framework and
focused on how the proposed approach worked out. In future
applications of this approach to other DSSs for river basin
management, some aspects need to be further investigated.
First of all, since the value of the acceptable risk is subjective
and could vary among different decision makers, it is recom-
mended that this value is determined in a more delicate and
careful way in a future case study (through a collective view
and consensus of relevant decision makers). Second, realistic
uncertainty reductions using the techniques introduced in Sec-
tion 2 should be implemented. Third, the dependencies among
model outputs need to be investigated, so does the model
structural uncertainty. Finally, the practical issues of costs
and time for achieving appropriate models should be taken
into account. A second case study is therefore proposed to
take these aspects into account and should be used particularly
for validation purposes. A DSS for the River Elbe (the part in
Germany) has been selected for this purpose and it has been
investigated if the approach can be applied to a more realistic
situation that is different from the one it is designed for (Xu
and Booij, submitted for publication).
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