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a b s t r a c t

Current metrics for predicting bleaching episodes, e.g. NOAA’s Coral Reef Watch Program, do not seem
to apply well to Brazil’s marginal reefs located in Bahia state and alternative predictive approaches
must be sought for effective long term management. Bleaching occurrences at Abrolhos have been
observed since the 1990s but with a much lower frequency/extent than for other reef systems
worldwide. We constructed a Bayesian Belief Network (BN) to back-predict the intensity of bleaching
events and learn how local and regional scale forcing factors interact to enhance or alleviate coral
bleaching specific to Abrolhos. Bleaching intensity data were collected for several reef sites across Bahia
state coast (w12�e20�S; 37�e40�W) during the austral summer 1994e2005 and compared to envi-
ronmental data: sea surface temperature (SST), diffuse light attenuation coefficient at 490 nm (K490),
rain precipitation, wind velocities, and El Niño Southern Oscillation (ENSO) proxies. Conditional in-
dependence tests were calculated to produce four specialized BNs, each with specific factors that likely
regulate bleaching intensity. All specialized BNs identified that a five-day accumulated SST proxy
(SSTAc5d) was the exclusive parent node for coral bleaching producing a total predictive rate of 88%
based on SSTAc5d state. When SSTAc5d was simulated as unknown, the Thermal-Eolic Resultant BN
kept the total predictive rate of 88%. Our approach has produced initial means to predict beaching
intensity at Abrolhos. However, the robustness of the model required for management purposes must
be further (and regularly) operationally tested with new in situ and remote sensing data.

� 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Coral bleaching can occur as a response to stressful environ-
mental conditions induced by direct local pressures as well as in-
direct regional/global climatic change (Carpenter et al., 2008;
Suggett and Smith, 2011). Although anomalous surface water
heating is acknowledged to be the most important stressor, the
interplay of additional environmental variables moderates the net
bleaching response (Glynn, 1993; Fitt et al., 2001). Indeed, most
observations to date demonstrate that corals are most vulnerable to
bleaching during periods of clear sky, calm sea, weak winds and
clear water that maximise the amount of heat and light reaching
the coral soft tissue (Baker et al., 2008; Brown, 1997; Glynn, 1993).
However, such patterns may also be influenced by genetic com-
position of the corals, symbiotic algae or hosts (see Baker et al.,
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Fig. 1. The seven main reef areas at the coast of Bahia State, Brazil. The red polygons
illustrate the reef patches, the black rectangles define these study reef areas limits and
grey contours illustrate isobaths. In detail, the limits of the broad study area (red
rectangle) used at the Principal Component Analysis. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this
article.)
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2008), which may, in turn, reflect the intrinsic environmental his-
tory of the populations in question (e.g. Oliver and Palumbi, 2011).

Indirect climatic forcing of coral bleaching is often observed
across large regional scales and frequently attributed to El Niño
driven thermal anomalies (Baker et al., 2008; Goreau and
McClanahan, 2000). Globally significant mass coral-bleaching epi-
sodes occurred in 1982e83 and 1997e98 but with clearly variable
effects amongst reefs within regions (e.g. Berkelmans et al., 2004;
Mumby et al., 2001). Thus, accounting for regional scale variability
in compounding environmental variables is vital to increasing the
accuracy in predicting the likely severity of bleaching outbreaks
(Maina et al., 2008; McClanahan et al., 2007).

Reefs throughout Bahia state represent South Atlantic’s largest
regional scale reef complex and contain 84% of the Brazilian coral and
hydrocoral species,which appear to exhibitmixed responses to global
patterns of coral bleaching (Leão et al., 2008). Variations inmean SST,
cloud cover and turbidity induced by the 1997e98 El Niño caused
partial mortality of octocorals and actiniarians at Bahia, but had
limited impacts on scleractinian communities (Kelmo et al., 2003).
Such observations suggest that SST anomalies alone may not explain
the observed bleaching. For example, Brazil’s reefs are dominated by
endemic coral species, notably Mussismilia braziliensis is an endemic
species that have adapted to high levels of turbidity (Leão et al., 2003).
It is possible that environmental regulation and localised adaptation
shape a specific relationship between bleaching susceptibility to
anomalous environmental conditions here (see Suggett and Smith,
2011). However, whilst observations of coral bleaching for Brazil’s
reefs have been recorded since 1994 during the peak SSTs (Februarye
April; Castro and Pires, 1999; Leão et al., 2008), there still remains an
overall scarcity of field data (Castro and Pires, 1999). Robust relations
governing local and remote atmospheric and oceanic forcing of coral
bleaching have not been found and other approachesmust be sought.

Modelling the complex interactions of atmosphere (e.g. winds and
clouds) and oceans (e.g. SST and the underwater light field) with coral
biology is a major challenge for anticipating future coral bleaching
events. Site-specificvariationshaveprompted the researchcommunity
to stress theneed foralternative approaches to improvecoral bleaching
predictions (Berkelmans et al., 2004; Donner et al., 2007; Maina et al.,
2008; Maynard et al., 2008; Sheppard, 2003). One such effort
(Wooldridge andDone, 2004)modelled thedependencies of a series of
proxies using a Bayesian Belief Network (hereafter called Bayesian
Network or BN), to predict coral mortality due to the 2002 bleaching
event at the Great Barrier Reef (GBR). Specifically, the authors built
a probabilistic graphical model that incorporated information on
thermal stress, geographic location, ecological and topographic attri-
butes of reef areas, and achieved a predictive success rate of 72%.

The advantages of using BNs include the possibility of (i) con-
structing a process oriented model domain, (ii) providing explicit
representation of dependency relationships between variables, (iii)
handling of uncertainty and complexities by the propagation of evi-
dence based on conditional probabilities, and (iv) testing future sce-
narios to support decision-making (Charniak, 1991; Chen and Pollino,
2012;Wooldridge andDone, 2004). Furthermore, BNs allow the use of
different types of data and enable continuous refining of analyses
upon data addition(s) and testing of hypotheses about past or future
processes/events. Such predictive power provides structure to high
dimensionality models and has meant that BNs have become wide-
spread in fundamental diagnostic applications, such as the medical
industry (Kahn et al., 1997; Maskery et al., 2008), ecological studies
(Kuikka et al.,1999; Little et al., 2004;Uusitalo, 2007;Varis andKuikka,
1997) as well as environmental modelling (Aguilera et al., 2011;
Alameddine et al., 2011) and management (Kragt et al., 2011; Pérez-
Miñana et al., 2012; Ticehurst et al., 2011).

In light of the difficulty in constructing predictive models
(Maina et al., 2008; Maynard et al., 2008; McClanahan et al., 2007)
for Brazil’s reefs, we have developed a BN capable of learning how
regional and remote forcing factors interact to determine coral
bleaching intensity for the major reef complex of Bahia State, in the
tropical southwest Atlantic. The complexities involved in the
bleaching scenarios that have been identified for the Bahia state
reefs are highlighted. This should be the starting point for future
development of an operational predictive tool to aid decision-
making in reef areas.

2. Materials and methods

2.1. Study area and coral bleaching cases

Reefs of the Bahia State (Brazil’s East coast) are the centre of south Atlantic coral
biodiversity (Spalding et al., 2001). At the northern and central coast, reefs are
distributed along a narrow continental shelf ca.15 km wide. The reefs further south
are mostly onshore of the Royal Charlotte and Abrolhos banks, where the conti-
nental shelf extends up to 200 km from the coast. Seven reef areas are specifically
identified for this paper: 1) Litoral Norte (LN), 2) Baía de Todos os Santos embou-
chure (BTS), 3) Tinharé, Boipeba and Baía de Camamu (TB), 4) Cabrália (CAB), 5)
Itacolomis Reefs (ITA), 6) Abrolhos Coastal Reefs (ABC), and 7) Parcel dos Abrolhos
(PAB) (Fig. 1). All these reefs typically grow in shallowwater�10m depth, except for
ITA, PAB and certain areas of ABC, that extend to ca. 20 m depth.

Coral bleaching data (Leão et al., 2008) were collected in these seven areas
between 1998 and 2005 during the austral summer, via 10 m line transects ac-
cording to the Atlantic and Gulf Rapid Reef Assessment (AGRRA) protocol
(Ginsburg et al., 1998). Two other bleaching records for Abrolhos Reefs (ABC) were
made in 1994 (Castro and Pires, 1999) and 2005 (Travassos, pers. comm.) that were
collected via 10 m and 50 m line intercept transects, respectively. Sampling effort
was comparable across surveys and all results are given in percentage of bleached
coral surface relative to the total surveyed area. Unfortunately, these assessments
did not consistently include detailed information on the severity of bleaching of
the surveyed coral colonies (e.g. McClanahan et al., 2007). Therefore, coral
bleaching events were instead arbitrarily categorised as either weak, or strong
whether the percentage bleached area of all surveyed colonies was < or >20%,
respectively. Only one case of ‘no bleaching’ was observed for 2004 in Cabrália
(CAB) reefs (Table 1), therefore, this category was not included in the prediction of
bleaching intensity.



Table 1
Environmental data and El Niño index (MEI) for months of bleaching events. Variables units are: �C for maximum sea surface temperature (MaxSST) and sea surface tem-
perature accumulated in five days (SSTAc5d); m�1 for light attenuation coefficient (K490); m s�1 for resultant wind jWj, and its components zonal (U) and meridional (V);
mm d�1 for rain precipitation (PPT).

Area Month/year Intensity of bleaching MaxSST SSTAc5d K490 jWj (U) (V) PPT MEI MEI_7

LN April 1998 Strong 29.1 145.2 0.0521 7.33 �6.73 2.27 2.12 2.613 2.837
BTS April 2003 Strong 29.4 147.0 0.0347 6.41 �5.82 2.04 6.38 0.385 0.795
T/B March 2002 Weak 28.9 144.4 0.0635 3.39 �3.17 0.36 3.27 �0.081 0.301
T/B April 2003 Strong 29.3 146.6 0.0943 3.18 �2.63 0.71 6.38 0.385 0.795
T/B March 2004 Weak 28.7 143.6 0.1396 2.97 �2.71 �0.43 7.93 �0.083 0.276
ITA April 2005 Weak 28.6 142.5 0.0705 2.03 �1.74 0.18 5.67 0.555 0.580
ABC March 1994 Strong 28.1 140.6 0.1139a 5.20 �3.38 �2.47 5.49 0.137 1.064
ABC March 2001 Weak 28.4 141.5 0.1128 5.81 �4.96 �2.45 0.86 �0.552 �0.162
ABC March 2002 Weak 28.3 141.4 0.1053 5.55 �4.50 �1.82 2.21 �0.081 0.301
ABC March 2003 Weak 28.7 143.6 0.1226 5.84 �4.10 �1.47 1.25 0.812 0.864
ABC March 2005 Strong 28.4 142.1 0.1148 4.53 �3.00 �2.19 5.55 0.929 0.611
PAB March 2000 Weak 28.0 140.3 0.0712 4.97 �3.82 �0.78 6.55 �0.927 �0.723
PAB March 2001 Weak 28.4 141.5 0.0657 5.81 �4.96 �2.45 0.86 �0.552 �0.162
PAB March 2002 Weak 28.2 141.0 0.0624 5.55 �4.50 �1.82 2.21 �0.081 0.301
PAB March 2003 Weak 28.8 144.0 0.0627 5.84 �4.10 �1.47 1.25 0.812 0.864
PAB April 2005 Strong 28.4 142.1 0.0728 3.58 �2.71 0.41 2.74 0.555 0.580
CAB March 2004 Absent 28.4 141.8 0.0907 2.76 �2.10 �1.02 9.95 �0.083 0.276

a Data on K490 before 1997 was not available, therefore a mean value calculated for events occurring at same area and month was used instead.

Table 2
Mean PC1 loadings representing the variation amplitude for the seven reef areas and
the maximum and minimum loadings for the broad study area (red rectangle in the
inset of Fig. 1) MaxSST, K490, PPT, jWj, (U) and (V) (see Table 1 for abbreviations).

Areas MaxSST K490 PPT jWj (U) (V)

PC1 eigenvalue
(explained
variance)

92% 37% 76% 49% 55% 54%

LN 0.0094 �0.0185 0.27 0.215 0.187 0.182
BTS 0.0093 �0.0222 0.27 0.215 0.187 0.182
TB 0.0095 �0.0126 0.27 0.216 0.186 0.233
CAB 0.0096 �0.0054 0.27 0.206 0.195 0.232
ITA 0.0095 �0.0029 0.27 0.206 0.195 0.232
ABC 0.0095 �0.0034 0.26 0.252 0.237 0.234
PAB 0.0096 �0.0067 0.26 0.252 0.237 0.234

Maximum loading 0.0110 �0.028 and 0.023 0.29 0.252 0.242 0.244
Minimum loading 0.0033 0 0.16 0.036 0.107 0.031
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2.2. Environmental data

Bleaching environments were characterized using a 13-year long time series
(1993e2005). Data used from remote sensing were sea surface temperature
(SST, daily and pentad) and diffuse light attenuation coefficient at 490 nm (K490, 8
day mean), from analysis were rain precipitation (PPT, pentad) and from
reanalysis data were zonal (U) and meridional (V) wind velocity components and
resultant surface wind fields jWj (daily). All these variables were selected and
calculated to cover the main forcing factors that have been reported as relevant
for coral bleaching (see above, also Maina et al., 2008), in an attempt to recon-
struct likely bleaching conditions for the Bahia reefs (Table 1). Association of these
environmental variables with bleaching intensities was based on the mean values of
each variable (except SST, see below) for the chosen reef areas (black rectangles in
Fig. 1) and for the months when bleaching occurred. Summertime (February to
April) maps for each year were built from the maximum values of the SST (MaxSST)
and mean values of K490, PPT, (U), (V) and jWj.

Daily and pentad (5-day composites) 4 km resolution SST fields (Kilpatrick et al.,
2001) were obtained from the Advanced Very-High Resolution Radiometer (AVHRR)
sensor (http://data.nodc.noaa.gov/pathfinder/Version5.0/). Two thermal anomaly
proxies most relevant for coral bleaching were derived from the SST data. First, the
MaxSST, which indicates the highest SST value in an area for each summer, obtained
as the maximum SST value per pixel cell within the 18 pentads available in each
summer or six pentads per month (Table 1). Second, the sea surface temperature
accumulated in five days (SSTAc5d), intended to capture the persistence of high
temperatures over a running five days, was calculated as follows. The daily SST in
each cell was recursively summed along five consecutive days generating 18 pentads
per summer (6 per month), from which the highest value was selected from each
pixel to create a map with the SSTAc5d for that particular summer month (Equation
(1)). A similar proxy (3-days accumulated temperature) has been reported as being
highly correlated with coral bleaching in the GBR (Berkelmans et al., 2004).

SSTAc5d ¼ M

 Xnþ4

n
SST

!
(1)

whereM is the highest value among all the five day summations, n ¼ {1, 6, 11,.,86}
for summer and {1,6,.,26} for monthly data.

K490 provides a measure of water transparency and was calculated for 1998e
2005 from measurements made by the Sea-viewing Wide Field of View Sensor
(SeaWiFS e Mueller, 2000) (ftp://oceans.gsfc.nasa.gov/SeaWiFS/Mapped/8Day/
K490/). To account for the 1994 bleaching event an average value calculated from
the time series for March was used.

Rain precipitation (PPT) datawere obtained from the Enhanced version ofMerged
Analysis of Precipitation (CMAP) developed by NOAA Climate Prediction Center (CPC)
with 2.5� spatial resolution (http://www.cdc.noaa.gov/cdc/data.cmap.html). The 1.9�

spatial resolution zonal (U) and meridional (V) wind data for the same period were
obtained from reanalysis model developed by the National Centres for Environmental
Prediction/Atmospheric Research (NCEP/NCAR). The resultant wind velocity magni-
tude jWjwas built by the vector sum of its zonal (U) andmeridional (V) components.

Two monthly time series of the Multivariate El Niño Index (MEI), one with zero
lag and another with a seven months lag, were used as El Niño Southern Oscillation
(ENSO) proxies. This index takes into account a number of measures of oceano-
graphic and atmospheric parameters in the Pacific Ocean (Wolter and Timlin, 1998).
The seven months negative lag relative to the bleaching period was based on the
maximum cross correlation coefficient with the 20-year SST on the Abrolhos Bank
(r ¼ 0.3). Refer to Krug et al. (2012) for more details on the environmental data.

2.3. Statistical analyses

A standardized PCA (Eastman, 1992) was performed separately on each oceanic
and atmospheric variable to obtain proxies (PCA) related to summer amplitudes.
These proxies in turn provide an indication of the acclimatization extent for corals
relative to their geographical location since highly variable regions inherently impose
more stress but in the longer term this can carry more potential for acclimatization.

The data set consisted of a single variable time series; the first principal com-
ponent (PC1) indicated the largest possible fraction of the variability contained in
the original data (Eastman, 1992; Wilks, 2006). Each pixel is an element of an N-
dimensional vector time series constructed from 13 summer periods, between 1993
and 2005, with the exception of K490, for which the time series starts in 1998. In
doing so, one can consider this vector as a continuous field sampled at N discrete
points in space, according to the spatiotemporal resolution of each data set. Also
referred to as the empirical orthogonal function (EOF) analysis, this statistics has the
advantage of showing the mutually orthogonal spatial patterns modulated by
mutually uncorrelated time series (Monahan et al., 2009).

The PCA was generated for the whole study area (red rectangle in the inset of
Fig. 1) and the average of the first Principal component (PC1) loadings for each of the
seven reef areas (Table 2) was used in the BNs as proxies that incorporate typical
patterns of variability influencing each reef. The PC1 maps reflect the spatial pat-
terns of summertime amplitude of variation: the higher the absolute loading value,
the larger the variation for the time period (Krug et al., 2012).

Models capable of incorporating observed evidences and inherent uncertainties
to both measurements and dependency relationships can be used to alert the
probability of bleaching intensity for certain environmental conditions. According to
Charniak (1991), given the important role played by causality on a situation or

http://data.nodc.noaa.gov/pathfinder/Version5.0/
http://ftp://oceans.gsfc.nasa.gov/SeaWiFS/Mapped/8Day/K490/
http://ftp://oceans.gsfc.nasa.gov/SeaWiFS/Mapped/8Day/K490/
http://www.cdc.noaa.gov/cdc/data.cmap.html


L.A. Krug et al. / Environmental Modelling & Software 42 (2013) 157e167160
a phenomenon and our incomplete knowledge of its functioning, it is easier to
describe things probabilistically. BNs calculate the conditional probability of an
event (given all available evidences) applying the Bayes Theorem.

In a more formal approach, a BN can be described as an influence diagram
represented as BN ¼ hN,A,Qi, where hN,Ai is a directed acyclic graph (DAG); each
node, n ˛ N, represents a domain variable and each arc, a ˛ A, represents the
probabilistic dependence between two connected nodes. For each node, ni ˛ N,
exists a conditional probability table (CPT) whose elements are represented by
Q ¼ {qi} that quantifies the dependency of a child node to its parents (Neapolitan,
2004). Variables (or nodes) can represent events, objects, propositions or other
entities whilst the orientation of the arcs connecting two nodes is from the parent
node to the child node. These dependencies can be seen as indicative of causeeeffect
influences (or temporal relations) given by the conditional probabilities (Pearl,
2000). On the other hand, if two nodes X and Y are not connected given some evi-
dence C, then they are conditionally independent given that evidence. This concept
is called direction dependent separation or d-separation (Pearl, 2000).

BNs (aswell as other probabilistic graphicalmodels) can be built based on experts’
knowledge, but they can also be induced fromdata (in an inductive learning processe
Pearl, 1988). In order to start building the coral bleaching BN from data it is critical to
identify which variables are ‘connected’. Such a connection can be either a causal
relation (e.g. heat stress and coral bleaching intensity)ora temporal sequenceofevents
(e.g. El Niño and SST anomalies). This is achieved by deriving the network structure
from the data according to two main classes of methods: those based on “search and
score” (SS) algorithms (Santos et al., 2011) and those on the “conditional indepen-
dence” (CI) definition (Spirtes et al., 2000). Additional methods can be based on
a combinationof these approaches (Neapolitan, 2004). CImethods are designed tofind
arc direction without the need of ordering, the attributes algorithms based on these
methods can still be improved when the ordering is known (Spirtes et al., 2000). For
our approach, such a node ordering is based on the domain knowledge that specifies
a causal or temporal order of conditions known to induce, exacerbate or minimise
ableachingevent. At thispoint, the actual arc orientation isnot important aswewish to
understand the conditional independencies avoiding anya priori expert knowledge. In
addition, each environmental variable was discretized (Yang and Webb, 2003, 2009)
into classes, ensuring that a balanced distribution of values within each class was
maintained; such a step is key to allow the learning algorithms to separate condi-
tionally independent nodes (variables) (Cheng et al., 2002; Pearl, 2000).

Once the BN structure (nodes and arcs) is defined, it is necessary to set the nu-
merical parameters to determine the strength of dependencies between a parent and
a child node. Thus, the probabilities of nodes states are specified for the direct de-
pendents and then used to compute the indirect probabilities. In our approach, the
mutual information and the conditionalmutual information algorithms (equations (2.1)
and (2.2) in Cheng et al., 2002) were used to construct a BN without expertise infor-
mation. The performed learning process is intended to help determining how variables
relate to each other in terms of information flow. Therefore, to further investigate the
conditional dependencies expressed in this initial BN, specialized BNs were derived by
adding some straightforward expert knowledge (details are given in the following
sections) on the relationships between nodes (“expert guidance”). Such an approach
has the advantage of allowing identification of weaker dependency signals within the
data set, as well as variables more strongly related to bleaching events in Bahia.

The Belief Network Power Constructor (BNPC) software (Cheng et al., 2002) was
employed in the performed experiments to learn BN networks from data. By com-
puting themutual information of variable pairs, BNPC constructs a BN by applying CI
tests to analyse the relationships among nodes. The CI test based on the mutual
information is capable of informing whether two variables are dependent and how
closely related they are. The algorithm performs a drafting procedure, which is the
tree construction algorithm of Chow and Liu (1968); this procedure subsequently
performs a ‘thickening and thinning’ process to extend tree construction to general
BN construction. The full description of the mutual information algorithms and the
procedures involved in the construction of networks is beyond the scope of this
manuscript, we refer the reader to Cheng et al. (2002) for details.

The numerical parameters (presented at the CPTs) were calculated with the
expectationemaximization (EM)algorithm(GuptaandChen, 2010) availablewithNetica
(Norsys Software Corp., 2006). Specific implementation of this EM algorithm is achieved
by iteratively taking random initial BNs to optimise the initial BN after a sequence of
expectation (E) and maximization (M) steps. This procedure continues until the log
likelihood numbers converge (cease to improve). Here, the EM algorithm is not used for
estimatingmissingvaluesbut instead forupdatingparameters tofindamaximumfor the
log likelihood (Needham et al., 2007). A probabilistic inference algorithm (see Lauritzen
and Spiegelhalter, 1988) is then used to propagate the effects of the evidences of field,
model and remote sensing data throughout the dependence-structured BN.

Both the structure and the probabilitieswere derived froma table consisting of rows
with bleaching cases and columns with corresponding environmental variables
(Table 1). Since there is only one field record of no bleaching event (March 2004 in
Table 1), we excluded that category from the CPTs learning procedure. For the sake of
completeness we kept the environmental information observed during that period
during the CI calculations. The main focus here is in the analysis of the environmental
conditions that modulate the intensity of coral bleaching, instead of focussing in the
prediction of bleaching occurrence. There is an ongoing project dedicated to the creation
of amodel for bleaching prediction on a global scale using a significantly larger database.
2.4. Validation and sensitivity analysis

BNs were evaluated for accuracy using scoring (loss) functions and contingency
tables, whilst the reliability of predictions was assessed using calibration values that
express the percentage of times the predicted node state was the true state. The
three scoring functions used are the logarithmic loss, ranging from zero (best per-
formance) to infinity; the Brier score ranging from zero (best performance) to 2; and
the spherical payoff, ranging from zero to 1 (best performance) (see Bickel, 2007 for
comparisons between scoring rules).

A sensitivity test of the bleaching node to all other nodes was also run based on
variance and entropy reduction. This test helps to identify how the probability of
a specific bleaching state is influenced by using knowledge on the other nodes.
Finally, to validate the results of the final BN a ‘leave-one-out cross validation’
procedure was used; for this, one bleaching case is excluded prior to probabilities
construction to avoid its influence on the calculation of the CPTs. Then, the newly
formed BN is used to predict the excluded observation. This process is then
repeated for all bleaching cases so that each excluded case can be treated as in-
dependent data.

3. Results

3.1. Environmental variability

The average summer SST ranges from 27.7 �C to 28.4 �C in the
north sector of the shelf, and from 27.1 �C to 28.1 �C in the south
sector. The leading PC mode (PC1) of the MaxSST explained 92% of
this variable total variance (Table 2) and demonstrates that heating
is higher offshore of the Abrolhos Bank than elsewhere (Fig. 2a).
Overall SST variability was relatively low in the northern sectors but
coastal SST was highest between latitudes 13�S and 18�S, i.e. where
most reefs are located. The PC1 of the K490 explained only 37% of the
time series variance (Table 2), reflecting the spatially restricted
distributions of larger PC loadings in the northern shelf break zones
and some inner shelf areas of the Royal Charlotte and Abrolhos
Banks (Fig. 2b). Thus K490 variability appeared to have limited effect
on most reefs, except for ABC and PAB reefs.

The first leading mode of PPT (Table 2), seems to add little in-
formation, except for the fact that it tends to decrease towards the
northern and southern limits of the Bahia coast (Fig. 2c). Variability
in wind magnitude jWj for the Bahia coast (Fig. 2d) explained 49%
of total variance and, as for K490, with high PC loadings spatially
restricted to the southern coastal areas. Higher variability con-
centrated south of 18�S, was coincident with areas of cooler SST
over Abrolhos Bank, i.e. where ABC and PAB are located; most of the
variability observed for jWjwas explained (55% of total variance) by
the zonal wind component (U) (Fig. 2e). Finally, the meridional
wind component (V) (Fig. 2f) was spatially very similar to the
observed pattern of PPTand explained 54% of total variance. Amore
detailed environmental description of these (bleaching) sites can
be found in Krug et al. (2012).

3.2. The Bayesian networks

Our initial BN, based on information flow and without expert
knowledge (Fig. 3), suggests that the direct influence of local
environmental variables is likely more important than remote
forcing (i.e. MEI) and characteristic variability pattern obtained
from the first PCs in driving bleaching. K490 and its parent nodes
appeared to add little in determining bleaching intensity. On the
other hand, local SST proxies, wind and PPT were more closely
linked with the bleaching events. Even so, it is important to high-
light that the single use of CI tests was capable of producing a BN
that is very close to what is currently known as the likely causal
relationships amongst relevant environmental conditions for other
reef systems (e.g. Maina et al., 2008, above). Therefore, it is also
possible to infer that the environmental data used to produce the
PCA loadings do not produce unrealistic relations. However, as
stated earlier, the importance of this network relies on the



Fig. 2. First principal component (PC1) maps for a) maximum sea surface temperature (MaxSST); b) light attenuation coefficient (K490) where the positive values at the edges of the
banks represent an inverse environment, with high values of K490, opposed to the rest of the area normally low values of K490; c) rain precipitation (PPT); d) resultant wind jWj, and
its components e) zonal (U) and f) meridional (V). The non-dimensional values represent the variation amplitude.
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determination of the conditional dependencies as the direction of
arcs is easily achieved by later adding expert knowledge.

The CI tests resulted in four alternative BNs that can be used to
explore different possible causal relationships likely to modulate
coral bleaching for the Bahian reefs (Figs. 4e7). These fully directed
BNs were obtained by adding expert knowledge gathered from the
literature to the skeleton produced by the BNPC (Fig. 3) as follows:
1) that ENSO proxies MEI and MEI_7 do not have parent nodes due
to its remote origin, i.e., no other node on the BN can influence
them; 2) that bleaching intensity is an obligatory child node,
meaning that it cannot influence other nodes but can be influenced
by anything in the BN; 3) that PC1MaxSST can be a direct or indirect
cause of SSTAc5d and MaxSST due to their related origin; and 4)
that jWj, (U) and (V) can be direct or indirect cause of SSTAc5d. Once
conditional independencies were established, the specialized BNs
were constructed based on the directed arcs and nodes expressing
different likely relationships between variables. These specialized
BNs have the purpose of learning the most likely causal relation-
ships affecting coral bleaching and thus test for the best candidates
of BNs based on prediction efficiency.

Specialized BNs were: 1) Thermal BN, emphasising the thermal
environment (Fig. 4); 2) Thermal-Atmospheric BN, integrating
thermal and atmospheric (wind and rain precipitation) variables
(Fig. 5); 3) Thermal-Eolic Resultant BN (Fig. 6); and 4) Thermal-
Eolic Meridional BN (Fig. 7). The Thermal-Eolic Resultant and
Thermal-Eolic Meridional BNs integrate thermal variables with the
resultant wind and its meridional component, respectively. The
class intervals obtained (using the BNPC software, see Table 3) for
all variables were used with the EM algorithm of Netica to cal-
culate the CPTs.
To test for prediction efficiency, all BN parent nodes for
bleaching were set to their observed values relative to each of the
16 bleaching occurrences (Table 1), and the resulting probabilities
recorded for each bleaching node stated as strong or weak in-
tensity. Predictive rates of bleaching intensity were computed as:
1) “high probability”, when prediction was 100% correct; 2) “likely
state”, when it is the highest probability among all states; and 3)
“unlikely state”, when bleaching state does not display the highest
probability. The “assigned prediction” or total predictive rate value
is the sum of correct predictions for all cases pointed as “high
probability” and “likely state”. A rate of 14 correct predictions out
of 16 (88%) was achieved for the total of strong and weak
bleaching cases in all 4 specialized BNs. It is important to highlight
that the five-day accumulated SST (represented by the proxy
SSTAc5d) was the single effective parent node for bleaching in all
BNs (Figs. 4e7). Thus the Markov blanket (Pearl, 1988) for the
bleaching node is formed by a single variable, namely SSTAc5d, i.e.
when it is known, the information on ancestor nodes is not
propagated to the bleaching node. To understand how the other
variables may affect the bleaching state we tested the specialized
BNs by allowing evidences to propagate without using information
on SSTAc5d (see Table 4).

The Thermal-Eolic Resultant BN (Fig. 6) presented the best
results in terms of propagation of evidences across the network
maintaining a total predictive rate of 88% and the prediction po-
wer (probability values) whether SSTAc5d is known or not
(Table 4). The Thermal (Fig. 4) and Thermal-Atmospheric (Fig. 5)
BNs provided a total predictive rate of 69%, with loss of prediction
power. When SSTAc5d is known, all weak cases are correctly
predicted with 6 (out of 10) of them pointed with 100% chance of



Fig. 3. First approach on the Bayesian network to estimate coral bleaching at Bahia based on all available variables with no expert knowledge added. Local environmental variables
are more related to bleaching than El Niño remote forcing (MEI) and the characteristic variability patterns (PC1s).
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occurrence. Once this variable is treated as not known, only 3
cases are given as certain (100% chance), 6 are now pointed as
most likely and 1 was wrongly predicted (prediction rate of 69%,
Table 4). The Thermal-Eolic Meridional BN (Fig. 7) also performed
Fig. 4. Thermal Bayesian network. The nodes on the BN show the probabilities for each
of their states when all nodes condition is unknown.
well when SSTAc5d node is known, with a prediction rate of 88%,
but it falls to 63% when SSTAc5d is not known. Despite the fact
that jWj and PPT nodes had little or no influence at all on the
bleaching node in the Thermal-Atmospheric BN, these have been
maintained in the graph (Fig. 5) to highlight that the conditional
independence test yielded no direct relationship between PPT and
bleaching intensity.

It is also useful to evaluate the level of regret associated with
wrong predictions of the specialized BNs when the most likely
state is used, for instance, in the calculation of predictive rates.
The logarithmic loss is 0.2387 (from 0 to infinity, with 0 indicat-
ing the best performance), the Brier score is 0.1667 (between
0 and 2, with 0 being best) and the spherical payoff is 0.9045
(between zero and 1, with 1 being best) for all BNs, indicating that
they do not differ in their abilities to predict the different
bleaching states.

The ‘leave-one-out’ validation applied to the Thermal-Eolic
Resultant BN when SSTAc5d is known reached a prediction rate
of 63% (4 strong bleaching and 6 weak bleaching cases correctly
predicted with 100% probability), and if information on ancestor
nodes was allowed to propagate (MaxSST and jWj), i.e. SSTAc5dwas
treated as unknown, this rate decreased to 56% of correct pre-
dictions. Here, 5 weak cases were correctly predicted with 100%
and 4 were correctly pointed as most likely. In both cases some of
the bleaching prognostics were 50% weak and 50% strong when it
was actually a weak bleaching event. If one considers that a 50%
chance of bleaching (as opposed to, e.g., 5%) should be considered
as a serious threat, then prediction rates would rise to 88% and 63%,
whether SSTAc5d was used or not, respectively.

Results of the sensitivity test (Table 5) of the bleaching node to
other nodes demonstrated that SSTAc5d exerts the strongest



Fig. 5. Thermal-atmospheric Bayesian network. The nodes on the BN show the probabilities (percentage values and horizontal bars) for each of their states when all nodes
condition is unknown.
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influence on all BNs, followed by MaxSST and jWj for strong and
weak bleaching, respectively (Fig. 8). It is also worth noting that
wind conditions during bleaching events have a stronger influ-
ence than typical summertime conditions for maximum SST and
K490 (compare the percent of entropy reduction in Table 5).
Bleaching seems relatively less sensitive to MEI, although its in-
fluence on bleaching probability can be stronger in weak
bleaching events. The influence of MEI in the outcome of
a bleaching state is stronger when the influence of wind condi-
tions was stronger (see T-E jWj and T-E (V) BN in Table 5). Strong
and weak bleaching states are more sensitive to MaxSST varia-
tions, while variations in jWj had more influence on the weak
bleaching state (Fig. 8b). Together these results suggest that
thermal variables are the most important factors influencing the
intensity of bleaching for this reef system.
Fig. 6. Thermal-Eolic resultant Bayesian network. The nodes on the BN show the
probabilities (percentage values and horizontal bars) for each of their states when all
nodes condition is unknown.
4. Discussion

Environmental conditions are key in determining bleaching
variability within and between reef sites, in particular geographic
location, circulation pattern of surface waters and the presence of
atmospheric systems (Maina et al., 2008; McClanahan et al., 2002,
2007). Therefore an obvious step to predict bleaching of Bahia’s
reefs is to examine the interplay of these variables at a regional
scale. A useful starting point is examining ocean and atmospheric
variability during summer. Both northesouth and onshoree
offshore patterns are evident in the PC1 maps (Fig. 2) and these
are important to help interpret the results of the dependency
analysis. The low spatial variability in the PC1 maps for K490, PPT
and wind data (Fig. 2), and the generally low number of classes
obtained for the PC loadings (mostly two classes, see Fig. 3), suggest
Fig. 7. Thermal-Eolic meridional Bayesian network. The nodes on the BN show the
probabilities (percentage values and horizontal bars) for each of their states when all
nodes condition is unknown.



Table 3
Based on frequency, the variables are discretized into class intervals later used to
calculate the conditional probabilities. The nodes presented in one or more Bayesian
Networks are: bleaching intensity; summer characteristic amplitude variation of
maximum sea surface temperature (PC1MaxSST); maximum sea surface tempera-
ture (MaxSST); sea surface temperature accumulated in 5 days; resultant wind
(jWj); meridional wind (V); summer characteristic amplitude variation of light
attenuation coefficient (PC1 K490); rain precipitation (PPT); El Niño index without
and with a 7 month lag (MEI and MEI_7, respectively).

Bleaching (%) PC1MaxSST
Weak (0 < x � 20) Low (x � 0.0095)
Strong (x > 20) High (x > 0.0095)

MaxSST (�C) SSTAc5d (�C)
Low (x < 28.3) Very low (x < 141.2)
Medium (28.3 � x < 28.5) Low (141.2 � x < 141.7)
High (28.5 � x < 28.8) Medium (141.7 � x < 142.3)
Very high (28.8 � x < 29.2) High (142.3 � x < 143.8)
Extreme

high
(x � 29.2) Very high (143.8 � x < 145.9)

Extreme high (x � 145.9)

jWj (m s�1)
Very weak (x < 3.08) PPT (mm d�1)
Weak (3.08 � x < 4.06) Very low (x < 1.68)
Medium (4.06 � x < 5.38) Low (1.68 � x < 2.47)
Strong (5.38 � x < 5.83) Medium (2.47 � x < 5.52)
Very strong (5.83 � x < 6.87) High (5.52 � x < 6.46)
Extreme strong (x � 6.87) Very high (x � 6.46)

(V) (m s�1)
Strong North (x < �2.32) MEI
Medium North (�2.32 � x < �1.65) Niña (x � �0.082)
Weak North (�1.65 � x < �0.9) Normal (�0.082 < x � 0.261)
Transition (�0.9 � x < 0.27) Weak Niño (0.261 < x � 0.684)
Weak South (0.27 � x < 1.38) Medium Niño (x > 0.684)
Medium South (x � 1.38)

PC1 K490 MEI_7
Very low (x > �0.0032) Normal (x < 0.289)
Low (�0.0061 < x � �0.0032) Weak Niño (0.289 � x < 0.596)
High (�0.0096 < x � �0.0061) Medium Niño (0.596 � x < 0.964)
Very high (x � �0.0096) Strong Niño (x � 0.964)
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that at present they can only have a limited contribution to the
analysis. The conditional dependence tests indicate that the
structural relations between the characteristic environments (PC1
maps) and the environmental conditions during bleaching events
are conditionally independent given the knowledge of K490 (Fig. 3).
This indicates that specific local conditions tend to be more infor-
mative (and may be more important) than the knowledge on the
Table 4
Predictive rates of bleaching states when sea surface temperature accumulated in 5 days (S
was 100% correct; “likely” state, when it is the highest probability among states; and “

“assigned prediction” value is the sum of correct predictions for all cases considered as “h
predictive rates whether SSTAc5d is known or unknown.

BN Thermal

Strong Weak All cas

High probability 2/6 (33%) 3/10 (30%) 5/16
Likely state 0 6/10 (60%) 6/16
Unlikely state 4/6 (67%) 1/10 (10%) 5/16

Assigned prediction 11/16

Thermal-Eolic resultant

Strong Weak All cas

High probability 4/6 (67%) 6/10 (60%) 10/16
Likely state 0 4/10 (40%) 4/16
Unlikely state 2/6 (33%) 0 2/16

Assigned prediction 14/16
long term summertime environmental variability for predicting
bleaching intensity. It is surprising that K490 does not seem to be an
important variable, given that light availability has been cited as an
important moderating factor towards bleaching extent/severity
(e.g. Baker et al., 2008; Suggett and Smith, 2011). It is worth men-
tioning that Bahia’s reefs are clearly subjected towide temporal and
spatial variations in K490 (Suggett et al., 2012) and corals have
developed adaptations to this condition.

Reduced spatial resolution of PPT (2.5�) and wind (1.9�) data
might also explain the segregation of their proxies (PCs) into a cut-
set (or subset) given K490 (Fig. 3) during the conditional test. With
this in mind, we can assume that the robustness of this method
minimizes the risks of drawing conclusions from poor data and
perhaps highlights what information should be considered most
relevant to ultimately refining the predictive power. It is also worth
noting that (U) and (V), being orthogonal components of jWj, are
parent nodes of this variable, which in turn has an influence on
SSTAc5d. The influence diagram of Fig. 3 also connected the tem-
perature proxies to the bleaching node, confirming the empirical
knowledge of their causal relations (Berkelmans et al., 2004;
Brown, 1997; Fitt et al., 2001; Glynn, 1996).

Here it should be stressed that no previous knowledge (no node
ordering) was used to run the conditional dependence test, yet the
dependency relations that were established are in good agreement
withwhat is perceived as a plausible natural relationship. Examples
for this are the independence of PC1PPT and PC1MaxSST given
knowledge of PC1 K490, since rainfall and SST are known to influ-
ence productivity and water transparency. Our observations indeed
suggest that the southern reef areas, located on the Royal Charlotte
and Abrolhos banks, exhibit higher K490 values, and hence lower
water transparency than northern reef areas. These patterns are
consistent with field observations reported by Leão et al. (2003). In
spite of these differences, K490 is high throughout for coral reef
systems and thus corals here must be well adapted to a high tur-
bidity environments where light availability is highly variable (Leão
et al., 2003). Such adaptation could provide enhanced tolerance to
anomalous (light) conditions and thus further confound K490 (and/
or the product of K490 and incident light intensity) as a predictor of
bleaching intensity.

Studies are increasingly observing that the susceptibility to
bleaching (induced mortality) declines with SST variability (e.g.
Oliver and Palumbi, 2011); however, such a relationship is clearly
not universal (e.g. Maina et al., 2008 for Western Indian Ocean
corals). Two possible explanations are give: (1), corals living in
areas with high SST variability are probably more adapted to
STAc5d) is treated as unknown. Values represent “high probability”, when prediction
unlikely state”, when bleaching state does not display the highest probability. The
igh probability” and “likely state”. The thermal-Eolic resultant BN produces the same

Thermal-atmospheric

es Strong Weak All cases

(31%) 2/6 (33%) 3/10 (30%) 5/16 (31%)
(38%) 0 6/10 (60%) 6/16 (38%)
(31%) 4/6 (67%) 1/10 (10%) 5/16 (31%)

(69%) Assigned prediction 11/16 (69%)

Thermal-Eolic meridional

es Strong Weak All cases

(63%) 0 6/10 (60%) 6/16 (38%)
(25%) 0 4/10 (40%) 4/16 (25%)
(13%) 6/6 (100%) 0 6/16 (38%)

(88%) Assigned prediction 10/16 (63%)



Table 5
Sensitivity test of bleaching in relation to the other nodes of thermal Bayesian Network (T BN), thermal-atmospheric BN (T-A BN), thermal-Eolic resultant BN (T-E jWj BN) and
thermal-Eolic meridional BN (T-E (V) BN) based on entropy reduction (expressed as percentage) and variance of belief which measures the effect of one node on another.

Node PC1 K490 PC1MaxSST MEI MEI_7 V W PPT MaxSST SSTAc5d Bleaching

T BN Distance from bleaching n.a. 2 n.a. 3 n.a. n.a. n.a. 2 1 0
Entropy reduction n.a. 0.30 n.a. 0.04 n.a. n.a. n.a. 12.3 60.8 100
Variance of belief n.a. 0. 0009350 n.a. 0.0001190 n.a. n.a. n.a. 0.0366040 0.1437532 0.2343213

T-A BN Distance from bleaching n.a. 2 3 n.a. n.a. 5 4 2 1 0
Entropy reduction n.a. 0.299 0.0164 n.a. n.a. 0 0.0031 12.3 60.8 100
Variance of belief n.a. 0.0009350 0.0000510 n.a. n.a. 0 0.0000103 0.0366041 0.1437532 0.2343213

T-E jWj BN Distance from bleaching n.a. n.a. 3 n.a. n.a. 2 n.a. 2 1 0
Entropy reduction n.a. n.a. 0.764 n.a. n.a. 6.24 n.a. 3.77 68.4 100
Variance of belief n.a. n.a. 0.0026023 n.a. n.a. 0.0209846 n.a. 0.0127326 0.1720137 0.2481160

T-E (V) BN Distance from bleaching 3 n.a. 3 n.a. 2 n.a. n.a. 2 1 0
Entropy reduction 0 n.a. 13.2 n.a. 13.3 n.a. n.a. 19.7 67.9 100
Variance of belief 0 n.a. 0.0499750 n.a. 0.0400779 n.a. n.a. 0.0471650 0.1617051 0.2361670

L.A. Krug et al. / Environmental Modelling & Software 42 (2013) 157e167 165
extreme conditions; and (2) shallow water circulation is mainly
controlled by wind forced Ekman transport and imposes distinct
regulation of SST and thus coral bleaching. Strong winds can
enhance vertical mixing leading to water cooling and cause
onshore advection of warm surface waters increasing the persis-
tence of warm SST. Weak winds can reduce water mixing and
contribute to warm SST conditions, leading to thermal stress
(Gleason and Wellington, 1993). Therefore, the complex patterns
arising from these processesmay developwithin days or weeks and
the long-term proxies may be only able to capture part of the
inherent driving signal. That said, the dependency analysis algo-
rithm considered the MEI and MEI_7 as influencing PPT, despite
their remote origin. This agrees with findings that establish ENSO
events induced major remote forcing of interannual climate varia-
tions for many parts of South America. In particular, drier than
Fig. 8. Sensitivity analysis for a) strong and b) weak bleaching to individual alterations
at thermal-Eolic resultant BN nodes.
normal conditions over northeast Brazil and along the Bahia coast
can be directly related to El Niño events (Kayano et al., 2009, and
references therein).

When previous expert knowledge (known relationships) is
added, the robust relations learnt from the dependency analysis
algorithm produced specialized BNs to investigate how different
variables influence the likelihood of bleaching. The “belief” that the
thermal environment is the primary cause of coral bleaching has
been captured in all four specialized BNs; i.e. a pattern that con-
forms the well established paradigm that elevated SSTs primarily
drive coral bleaching (Berkelmans et al., 2004; Glynn, 1993). It is
important to note that PC1MaxSST and MaxSST are conditionally
independent given SSTAc5d. Thus historical SST patterns and epi-
sodic SST extremes, although directly linked to heat stress, play
important roles in the persistence of stressful conditions leading to
coral bleaching. The SSTAc5d proxy was devised based on the three
days accumulated maximum SST (Max3day) proposed by
Berkelmans et al. (2004), which correlates with coral bleaching in
the GBR. Wooldridge and Done (2004) also used the Max3day in
their BNs, which directly influenced coral bleaching and mortality
in the GBR during the 2002 bleaching event. The reefs of Bahia
would therefore seem to respond to accumulated thermal stress in
a similar manner as with other major reef complexes.

Specific wind conditions influenced coral bleaching, as
expressed by the connections of the resultant wind (Thermal-
Eolic Resultant, Fig. 6) and its meridional (V) component (Ther-
mal-Eolic Meridional, Fig. 7) with the SSTAc5d node. More
importantly than the predictive capability is the fact that a direct
probabilistic relation between wind intensity and the persistence
of high SST has been found. A total of nine, out of 16 bleaching
cases, occurred during high wind intensities (jWj > 5 m s�1), from
which six cases were recorded as weak bleaching (Table 1). Set-
ting jWj with probability of 100% for extreme strong winds, the
Thermal-Eolic Resultant BN will predict a strong/weak bleaching
ratio of 42.4/57.6%, respectively. In contrast, setting jWj to 100%
very weak winds will predict a bleaching ratio of 36.1/63.9%,
respectively. Inspection of raw data indicates that the magnitudes
of jWj are similar to (U), and magnitudes for (V) are much lower,
but may also contribute to the bleaching process. Setting (V) to
100% strong northerly wind, the Thermal-Eolic Meridional BN
predicts 18.2/81.8% of strong/weak bleaching ratio. On the other
hand, setting (V) to 100% weak northerly wind will predict a 58.3/
41.7% ratio of strong/weak bleaching ratio. During summer, there
is a predominance of easterly and northeasterly winds (Rao et al.,
1993) that contributes to the advection of warm water from the
equatorial Atlantic. Reducing the meridional component of the
northerly wind may thus have contributed to increase the
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residence time of warm waters in the Bahia coast. With the
present data set, it is not possible to establish a deterministic
relationship between high wind velocity and weak bleaching but
the BNs seem to be capable of incorporating these uncertainties
in a coherent fashion.

All of the specialized BNs incorporate the external forcing rep-
resented by the MEI and MEI_7 in a way that deserves some
attention. Apparently, there seems to have occurred some confusion
when the Thermal BN (Fig. 4) connected theMEI_7 to PC1MaxSSTas
parent node, and the Thermal-Atmospheric BN connected MEI to
the same child node. Maximum correlations between ENSO and the
tropical Atlantic SSToccur with a lag of up to sevenmonths (Enfield
andMayer,1997; Klein et al., 1999; Lanzante,1996). The Thermal BN
(Fig. 4) captured this relation but this was not the case for the
Thermal-Atmospheric BN (Fig. 5). The reason for that may lie in the
fact that the former BN included nodes for jWj and PPT, for which
maximum correlations are achieved with zero lag. This mechanism
includes the upper-tropospheric Rossby-wave train that extends
from the equatorial eastern Pacific to the northern tropical Atlantic
and the eastewest displacement of theWalker circulation during El
Niño years (Hastenrath,1976, 2006; Kayano et al.,1988). Such ability
to learn this relationship has been confirmed in the Thermal-Eolic
Resultant and the Thermal-Eolic Meridional BNs that incorporated
ENSO information via MEI without time lag.

Finally, the cross validation procedure demonstrated that the
overall bleaching prediction accuracy is maintained by enabling
evidences to propagate from the ancestor nodes (MaxSST andW) to
the bleaching intensity node. This propagation was even more
encouraging considering that the sensitivity analysis showed that
knowledge of SSTAc5d tends to have a large impact on the proba-
bility of bleaching. Such behaviour might have been influenced by
the small data sample used to build the BNs, thus, showing the
ability of BNs to help generalize from small data samples. Future
studies that have a large number of samples will enable further
exploration of this issue.

In summary, our new insights into likely (environmental)
drivers of coral bleaching intensity for Bahia’s reefs from the BN
approach presented here appear to be in strict agreement with
observations in many other reef provinces (Fitt et al., 2001;
Maynard et al., 2008; Wooldridge and Done, 2004); i.e. changes in
thermal environment are key. The use of BNs to learn robust re-
lationships from a limited data set contrasts with predictive eco-
logical models that are generally ‘data-hungry’. However, for
operational prediction purposes the BN model has to be fed with
new environmental data on a regular basis, whether originated
from in situ sensors or from remote sensing. Data availability for our
current BN is obviously limited in extent (hence the choice of a BN
over a GIS model) and additional future (targeted) data collection
will enable a means to independently test the current BN. It will
also allow an iterative refinement of our approach to improve
predictive capacity further; notably care must be taken in an
objective and consistent means to classify bleaching (see Chen and
Pollino, 2012; Suggett and Smith, 2011) and thus pay close atten-
tion to weak and or null bleaching events during anomalous con-
ditions. Analysis of historical bleaching records, e.g. from coral
cores, may provide an additional means to further refine the BNs
ahead of any (unpredictable) anomalous events. Interestingly,
despite the observation that SST is a key driver of bleaching events
here and thus consistent with observations for other reefs systems,
it is clear that current predictive tools (e.g. NOAA’s coral watch SST
proxies) are not applicable to Bahia’s reef system and therefore
refining the BN is seen as a priority for effective regional manage-
ment of Brazil’s reefs.

Advancing the BN for Bahia’s reef system remains a long term
priority. Current operational coral bleaching prediction tools
provided by the Coral Reef Watch program of the National Oceanic
and Atmospheric Administration (NOAA) (http://coralreefwatch.
noaa.gov/satellite/), are based exclusively on SST stress. None of
the bleaching events used in the present study was reported by the
Coral Reef Watch site as submitted to a thermal stress above the
1 �C bleaching threshold. Some events (April/1998, April/2002,
March/2003 and MarcheApril/2005) were indicated as hotspots
but below this bleaching threshold. This may be the result of the
way stressful conditions are estimated using the hottest climato-
logical monthly SST. It is, however, beyond the scope of the present
paper to compare and discuss specific bleaching prediction tools.
The main point here is to highlight the complexities involved in the
bleaching scenarios that have been identified for the Bahia state
reefs and to offer a prediction tool that incorporates evidences
drawn from a larger set of environmental information.
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