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Résumé

Since the initial point of [Lan93] saying that Geographic Information
Systems (GIS) were poorly equipped to handle temporal data, many re-
searchers have sought to integrate the time dimension into GIS [RHS01].
We present a time space modelling approach – and a generic software na-
med ARPEnTAge– capable of clustering a territory based on its pluri-
annual land-use organization. By adding the ability to represent, locate
and visualize temporal changes in the territory, ARPEnTAge provides
tools to build a Time-Dominant GIS. One main Markovian assumption
is stated : the land-use succession in a given place depends only on the
land-use successions in neighbouring plots. By means of stochastic models
such as a hierarchical hidden Markov model and a Markov random field,
ARPEnTAge performs an unsupervised clustering of a territory in order
to reveal patches characterized by time space regularities in the land-use
successions. Two case studies are developed involving two territories car-
rying environmental issues. Those territories have various sizes and are
parameterized using long term surveys and/or remote sensing data. In
both cases, ARPEnTAge detects, locates and displays in a GIS the tem-
poral changes. This gives valuable information on the spatial and time
dynamics of the land-use organization of those territories.
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, landscape organization , land-use successions , temporal GIS , Hierarchical
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1 Software availability

Name : ARPEnTAge

Programming language : C++

Libraries used : Gnu STL, shapelib, gen2shp, txt2dbf

Inputs : csv files holding landscape raster representation : Lambert conformal
conic coordinates (Tab. 2) or 2 level sampling Ter-Uti data (Tab. 3)

Outputs : ESRI shapefiles and DBF files

User interface : Unix / Windows scripts files

Availability : http ://www.loria.fr/~jfmari/App/

Licence : Gnu GPL.

Demo : http ://www.loria.fr/~jfmari/App/Arpentage/demo.zip

2 Introduction

Stochastic modelling is a convenient way of building statistical and proba-
bilistic models for capturing the spatial and temporal variability that is not
yet fully understood [HK08, SMDF+12] especially in all alive processes. In agri-
cultural landscapes, land-use (LU) seem randomly distributed among different
agricultural fields (plots) managed by farmers. Nevertheless, the landscape spa-
tial organization and its temporal evolution reveal at various scales the presence
of logical processes and driving forces related to the soil, climate, cropping sys-
tem, and economical pressure whose understanding is a major challenge mainly
for landscape agronomists [BRM+12]. The data mining approach involving spa-
tial and temporal clustering methods to get a landscape description in terms of
land-use patterns has already demonstrated its capabilities in knowledge extrac-
tion [LMB09, SLM+12]. Such a description is useful in various areas : [For95] has
demonstrated that a concise description of the mosaic of plots in terms of patch
arrangement is necessary for ecologists to understand the relationship between
landscape organization and species flows or biotic diversity. [JSMP06] use such
a plot mosaic description to lower runoff on agricultural land by spatially alter-
nating different crops at the catchment level. This description is also of interest
in landscape governance [SLOW11] issues because land-use location influences
the assessment of the visual aesthetic of a landscape.

This paper presents a method – and a generic software named ARPEn-

TAge (Analyse de Régularités dans les Paysages : Environnement, Territoires,
Agronomie or “Landscape Regularities Analysis : Environment, Territory, Agro-
nomy”, arpenter is a French verb meaning “to survey”) – capable of clustering
territories of various sizes into patches based on their pluri-annual LU organiza-
tion. It provides a Geographic Information System (GIS) with a description of
the main time changes in the landscape together with their localizations. The
scope of this software is not restricted to agriculture but may extend to other
fields whenever it comes to locate sequences in space like in time space epide-
mic or ecological species surveillance. It implements a Markov random field of
sequences whose parameters can be estimated based on a stream of time space
data : long term surveys or remote sensing data.

This paper is organized as follows : section 3 presents the stochastic models
that ARPEnTAge implements : second-order Hidden Markov Models (HMM2),
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Hierarchical Hidden Markov Models (HHMM2), and Markov Random Fields (MRF).
Section 4 describes the method used by ARPEnTAge to cluster a 3-D stream
of data representing a time sequence of landscapes. Section 5 evaluates AR-

PEnTAge on two different annual landscape raster representations : 2 level
resolution surveys and remote sensing data. Section 6 compares ARPEnTAge

with similar software programmes. Finally, Section 7 focuses on ARPEnTAge

in the framework of temporal GIS.

3 Temporal and spatial modelling background

ARPEnTAge relies on a stochastic Markovian principle to model time space
landscape regularities. In short, this framework is based on the two following
assumptions in spatial and temporal domains respectively :

– the Markov random field assumption assumes that the land-use of a given
field depends only on the land-use of the neighbouring fields ;

– the Markov chain assumption assumes that the land-use of a given field
in a year depends only on the land-use of the recent previous years in the
same field.

Therefore, these two assumptions may be summarized by assuming in turn that
the land-use succession of a given field only depends on the land-use successions
in the neighbouring fields.

3.1 Hidden Markov Models

A Hidden Markov Model is a Bayesian network which represents the se-
quence of observations as a doubly stochastic process : an underlying “hidden”
process, called the state sequence of random variables Q0, Q1, Q2, . . . QT and an
output (observation) process, represented by the sequence of random variables
O0, O1, O2, . . . OT over the same time interval.

. . .Q0 Q1 Q2 QT

O0 O1 O2 OT

P (Q1/Q0) P (Q2/Q1) P (Q3/Q2)

P (O0/Q0) P (O1/Q1) P (O2/Q2) P (OT /QT )

Figure 1 – Conditional dependencies in an HMM1 represented as a Bayesian
network. The hidden variables (Qt) govern the observable variables (Ot)

We define a discrete hidden Markov model (HMM) by giving :
– E = {e1, e2, . . . , eK} , a finite set of K states that are the outcomes of Qt ;
– A a matrix defining the transition probabilities between the states. These

probabilities are time independent.

A = (aij) for a first-order HMM (HMM1). aij is the probability P (Qt =
ej/Qt−1 = ei), ∀t = 1, T that the Markov chain is in state ej at
index t assuming it was in state ei at index t− 1 (see Fig. 1) ;

A = (aijk) for a second-order HMM (HMM2). aijk is the probability P (Qt =
ek/Qt−1 = ej , Qt−2 = ei), ∀t = 2, T that the Markov chain is in
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. . .Q0 Q1 Q2 QT

O0 O1 O2 OT

P (Q2/Q0, Q1) P (Q3/Q1, Q2)

P (Q1/Q0)

P (O0/Q0) P (O1/Q1) P (O2/Q2) P (OT /QT )

Figure 2 – Conditional dependencies in an HMM2 represented as a Bayesian
network

state ek at index t assuming it was in state ej at index t − 1 and ei
at index t− 2 (see Fig. 2) ;

– O = {o1, o2, . . . oL} a set of L observations that are the outcomes of Ot ;
– B = {b1(), b2(), . . . , bK()} a set of K probability density functions (pdf)

over O, each of them being associated to a state ei, i = 1,K.

3.1.1 HMM2 properties

Each second-order Markov model has an equivalent first-order model on the
2-fold product space E × E but going back to first-order increases dramatically
the number of states. For instance, figure 3(b) shows the equivalent HMM1 as-
sociated with the HMM2 depicted in figure 3(a). In this model the states in the
same column share the same pdf.

20 1 3 4

(a) original second-order model

01 12 23 34

22 33

a123 a234

1 - a123

a222 a333

1 - a222 1 - a333

1

1 - a234

pdf pdf

(b) first-order equivalent model

Figure 3 – Decreasing the order of a HMM2.

The transition probabilities determine the characteristic of the state duration
model. In a HMM1, whose topology is depicted in the figure 3(a) : linear, left-to-
right, self-loop, the probability dj(l) that the stochastic chain loops l times in
the state j follows a geometric law of parameter ajj :

dj(l) = al−1
jj × (1− ajj). (1)

In the model depicted in figure 3(b), in which the successive states are in-
dexed by i = j − 1, j, k = j + 1, the duration in state ej may be defined as :

dj(0) = 0 (2)
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dj(1) = aijk, i 6= j 6= k

dj(n) = (1− aijk)× an−2
jjj × (1− ajjj), n ≥ 2.

These models achieved interesting results in pattern recognition and know-
ledge extraction in areas such as : speech recognition [MHK97, PBW98, EdP10],
hydrology [LABP12], biology [EAA+09, ETD+11] and agronomy [MLB06, LBBS+06].

3.1.2 Hierarchical hidden Markov Models

We define a discrete hierarchical hidden Markov model (HHMM) as a HMM whose
states are HMM [FST98]. Therefore, a second-order hierarchical HMM (HHMM2) is a
2-level hierarchical hidden Markov model in which the main HMM is a HMM2 (see
Fig. 4).

. . . . . . . . .

. . .

. . .

Q0 Q1 Q2 QT

P (Q1/Q0)

P (Q2/Q0, Q1) P (Q3/Q1, Q2)

Figure 4 – 2-level second-order hierarchical hidden Markov model (HHMM2)
represented as a Bayesian network. The observation probabilities are given by
the HMM2 depicted in Fig. 2

The second-order Hidden Markov Models implement an unsupervised trai-
ning algorithm – the Baum-Welch algorithm [DLR77] – that can tune the HHMM2
parameters from a corpus of observations in order to fit the model to the obser-
vations. The estimated model enables to segment each sequence in stationary
and transient parts and to build up a classification together with its a posteriori
probability

P
(

QT
0 = qT0

∣

∣ OT
0 = oT0

)

, (3)

while the uncertainty of the class assignment of observation ot in class ek is
measured by the a posteriori probability

P
(

Qt = ek
∣

∣ OT
0 = oT0

)

, t = 0, T, ek ∈ E . (4)

3.2 Stochastic spatial modelling

In the space domain, the MRF theory is an elegant mathematical way for ac-
counting neighbouring dependencies [GG84, Bes86] between plots. A landscape
representation is given by a set S of sites (eg plots) and a relation of neigh-
bourhood on S (Fig. 5). | S | denotes the number of sites and N (i) the set of
neighbours of site i. As in section 3.1, we call E = {e1, e2, . . . , eK}, a set of K
different classes that will play the role of patches. Zi = ek means that site i is
assigned to class ek. The collection of outcomes {Zi = zi} is called a configura-
tion. In the following, the random variables Zi will belong to RK . In particular,
ek is a binary vector of RK having its kth component set to 1, all the others
being 0.
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3.2.1 The Potts model with external field

In a Potts model with external field, a unique parameter β > 0 controls
the pair-wise interaction – aggregation versus dispersion – between the patches
whereas an additional vector Vi weights the values of zi. The probability of a
configuration Z = z is given by :

P (Z = z) =
exp

(

−
∑

i∈S

[

ztiVi − β
∑

j∈N (i) z
t
izj

])

W
.

W is a normalizing factor involving all the possible configurations. Its compu-
tation is intractable, hence the need of approximations such as the mean field
approximation. zt denotes the transpose of vector z and the product ztizj is
equal to 1 if the sites i and j are in the same class, 0 otherwise.

3.2.2 The Mean Field approximation

The mean field theory applied to MRF provides an approximation of the distri-
bution of a MRF that allows the design of fast algorithms in image segmentation.
In this theory, the class assignment probabilities of the neighbours of site i
are set constant and replaced by their mean value. In this framework, [CFP03]
introduce the self-consistency equation :

Pmf
i (es) =

exp
[

−Vi(es) + β
∑

j∈N (i) P
mf
j (es)

]

∑K

k=1 exp
[

−Vi(ek) + β
∑

j∈N (i) P
mf
j (ek)

] , (5)

Vi(ek) being the kth component of Vi. This equation says that the mean com-
puted based on the mean field approximation must be equal to the mean used
to define the approximation.

3.3 Approximation of a MRF by a HMM

(a) plot configuration (b) neighbour. graph (c) Hilbert-Peano fractal
curve

(d) LU allocation

Figure 5 – Simple landscape and its neighbourhood graph

HMM can approximate efficiently MRF [BP95, GP97] by means of a Hilbert-
Peano fractal curve (cf. Fig. 5(c)) that introduces a total order in the lattice of
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sites [Ska92, DCOM00]. The 2-D landscape is first sampled using a 2n×2n grid.
A scan is next performed using the Hilbert-Peano curve. To take into account
the irregular neighbour system, the variable plot size and the overall landscape
shape, we adjust the fractal depth by removing the fractal motifs lying entirely
in a plot. For example, figure 5(c) shows two successive merging in the bottom
left field that yield to the agglomeration of 16 points. The “blank” pixels in the
2n×2n image that are not in the landscape are assigned to the same “blank” plot
and are partly removed in such a way. Two successive points in the fractal curve
represent two neighbouring points in the landscape but the opposite is not true,
nevertheless, this rough modelling of the neighbourhood dependencies has shown
interesting results compared to an exact Markov random field modelling [GP97].

4 ARPEnTAge description

ARPEnTAge is based on CarrotAge [LBBS+06] : a data mining tool-
box for mining temporal data. Therefore, these two software programmes share
a great part of code. They have the same programs to edit and train the HMM2.
ARPEnTAge produces ESRI shapefiles that represent the landscape by means
of a mosaic of patches, each of them being characterized by a temporal HMM2 that
models the temporal dynamics. ARPEnTAge takes advantage of the Carro-

tAge graphic user interface facilities to display the temporal changes involved
in the extracted clusters.

An elementary observation can range from a LU (such as cereals in the Yar
watershed case study) or a LU category (such as Wheat in the Seine watershed
case study) to a fixed length LU succession spanning several years (usually 2,
3 or 4) on a plot. In the latter case, the observation time sequence over the
study period is made of overlapping LU sub sequences. The length of the LU
succession influences the interpretation of the final model. However, the total
number of LU successions is a power function of the succession length, and
memory resources required during the estimation of HMM2 parameters increase
dramatically. The user defines the LU categorization in a configuration file (box
2 in Fig. 6).

Figure 6 – Mining data with ARPEnTAge
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ARPEnTAge implements hierarchical HMM2 as shown in Figure 7. A master

1a //
��

2a //
��

3a
��

1b //
��

2b //
��

3b

��

a //
��

�� ""❉
❉❉

❉❉
❉

boo
��

��||③③
③③
③③

c //
GG

OO <<③③③③③③
doo
II

OObb❉❉❉❉❉❉

1c //
II

2c //
II

3c
II

1d //
II

2d //
II

3d
II

Figure 7 – Graph of state transitions in a hierarchical HMM. Each state x ∈
{a, b, c, d} of the HHMM topology is a HMM whose states are 1x, 2x, 3x. In this
figure, the HHMM topology is ergodic (all states are inter connected) whereas the
HMM topology is left-to-right and linear

HMM2– whose underlying transition graph is made up of states named a, b, c, d
– approximates the MRF. In each master state x, the LU succession proba-
bilities are given by a temporal HMM2 whose underlying graph contains states
named 1x, 2x, 3x. The editing and training of this HHMM2 is performed using the
corresponding programs of the CarrotAge toolbox.

In CarrotAge, the design of the HMM2 is a crucial step. The user has to
specify the underlying graph (linear, ergodic, . . .) and to decide which state
must be container or Dirac [LBBS+06]. In ARPEnTAge, the user must simply
set the number of states (box 3 in Fig. 6) in the ergodic model (a,b,c,d in Fig.
7) related to the number of classes to extract and, in each class, the number of
states of a linear model related to the number of steady periods or snapshots
(1,2,3 in the same figure).

4.1 a posteriori decoding

ARPEnTAge regroups the territory sites into patches (box 4 in Fig. 6) by
assigning a class to each site. The assignment is done in three steps :

1. Define a K state ergodic HHMM2 (see Fig. 7) that process the observations
along the fractal curve. The observation on a given site is the temporal
LU sequence observed on this site. This sequence is built up with single
LU observed at time t such as (lut), t = 0, T or overlapping temporal
n-uplets such as ([lut, lut+1, lut+n−1]), t = 0, T − n+ 1.

2. Let CarrotAge train this HHMM2 and compute during the last iteration
of the EM algorithm the a posteriori class assignment probabilities

P (zi = ek | curve ) , i ∈ S, k = 1,K. (6)

3. To take into account the full neighbourhood of each site, we next model
the class assignment using a K-colour Potts model with a site-dependent
external field whose mean field is the a posteriori probabilities computed
in step 2 (Eq. 6). Finally, the ICM algorithm [Bes86] performs the class
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assignment. Using one iteration, it scans the territory following the fractal
curve and gets, for all i ∈ S, a new estimate of Pmf

i (es) based on Equa-
tion 5. The site i is labelled by argmaxkP

mf
i (ek) and the mean field at

site i is updated to be 1 on this component and 0 on the others.

It seems reasonable to set the external field using Eq. 6 :

Vi(ek) = − log (P (zi = ek/curve)) .

The best results have been obtained by setting β = 1. Then Equation 5 intro-
duces a smooth effect in Eq. 6 that eliminates the effect of the Peano curve in
which only 2 neighbours – the previous and the next in the fractal – were taken
into account.

5 Case studies

5.1 Data preparation

The corpus of spatial and temporal LU data is generally built either from
remotely sensed LU data or from long-term LU surveys. Depending on the data
source, several differences in the LU database may exist regarding the number of
LU modalities and the representation of the spatial entities : polygons in vector
data or pixels in raster data. In the following, the first data source (remotely
sensed LU) is illustrated by the Yar watershed case study and the second (long-
term LU field surveys) is illustrated by the Seine watershed case study. Principal
characteristics of the two case studies are summarized in Table 1.

Case study
Seine watershed Yar watershed

Data source Ter-Uti surveys Remote sensing
Surface (km2) 112000 61
Study period 1992 – 2003 1997 – 2008
LU modalities 83 (reduced to 49) 6
Atomic spatial unit Ter-Uti point polygon
Data base format Excel data sheet ESRI Shapefile

Table 1 – Comparison between 2 land-use databases coming from two different
sources : land-use surveys and remote sensing

5.2 ARPEnTAge on remotely sensed LU data : the Yar

watershed

This watershed – 61.5 km2 – is known as being a place in Brittany where
there is an important phytoplanktonic biomass and Ulva species mass prolife-
ration risk. Using data obtained by remote sensing analysis and spanning the
1997 – 2008 period, we have distinguished only six LUs : Urban, Water, Forest,
Grassland, Cereal and Maize.

On these data, using CarrotAge, we have performed preliminary temporal
segmentation tests with linear models having an increasing number of states
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nLig=153157, y1=1997, yn=2008, nAttr=1, indeter=0, isHeader=1

x y pt poly 97 98 09 00 01 02 . . . 06 07 08

164603 2424461 1 4825 1 1 1 1 1 1 . . . 1 1 1

164623 2424461 2 4825 1 1 1 1 1 1 . . . 1 1 1

164643 2424461 3 4800 3 3 3 3 3 3 . . . 3 3 3

164663 2424461 4 5005 3 3 3 3 3 3 . . . 3 3 3

. . .

Table 2 – First lines of the Yar data sheet. The first line is a header giving the
file size (153157 lines), the study period (1997 – 2008), the number of attributes
per site each year (=1), the value of the “blank pixel” (=0) and specifies that
the next line gives the column’s names : x, y coordinates (Lambert conformal
conic), pixel Id, polygon Id, and the LU sequence between year1 and yearn

on the whole territory. These tests showed that a 6-state linear HMM2 was the
best compromise to achieve an accurate time resolution with a small number
of parameters. This defines 6 timestamps. Plotting together the surface size
devoted to each LU on these 6 timestamps gives the major trends of the LU
dynamics (Figure 8).

The patches shown in figure 8 are associated to a 5-state ergodic HHMM2.
States 1 and 2, respectively represent Forest and Urban and are steady during
the study period. The Urban state is also populated by less frequent LUs that
constitute its privileged neighbours. Grassland is the first neighbour of Urban,
but it vanishes over the time. The other 3 states exhibit a greater LU diversity
and a more pronounced temporal variation. In state 3, Grassland, Maize and
Cereal evolve together until the middle of the study period. Next, Grassland
and Maize decrease and are replaced by Cereal. This trend may show that a
change in the cropping system was undertaken in the patches belonging to this
state and threaten the groundwater and surface water quality. State 4 and state
5 represent 2 steady areas populated mainly by Grassland and Forest.

5.3 ARPEnTAge on long-term LU surveys : Ter-Uti

data on the Seine watershed

The Ter-Uti data are collected by the French agriculture administration
on the whole French mainland territory. They represent the land use of the
country on a one year basis. Two levels of resolution are achieved (see Fig. 9)
and determine 2 fractal scans. The aerial photos are first ordered by a Hilbert-
Peano scan while the 36 points inside a photo are ordered using a common space
filling curve. This defines an extended fractal curve on which the a posteriori
class assignment probabilities (Eq. 6) are computed. The mean field is defined
at the photo level by averaging the mean field probabilities of the 36 points
inside a photo. Finally, the ICM algorithm is run on the regular photo lattice
and classifies each photo.

The 83 LU have been grouped with the help of agricultural experts into 49
categories following an approach based on the LU frequency in the spatial and
temporal database and the similarity of crop management.

On the Seine watershed, represented by 112806 sites (see Tab. 3), ARPEn-

TAge exhibited patches whose spatial organization looks similar to the mosaic
obtained by [MSB04, MSB07] on the same data in their work for modelling the
spatial dynamics of farming practices in the Seine watershed and for understan-
ding the relations in diffuse pollution observed in the ground waters and surface
waters of the river Seine.
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Figure 8 – The Yar watershed seen as patches of LU dynamics. Each map unit
stands for a state of the HHMM2 used to achieve the spatial segmentation. Each
state is described by a diagram of the LU evolution. Location in France of the
Yar watershed is shown by a black spot depicted in the upper middle box

nLig=112806, y1=1992, yn=2003, nAttr=1, indeter=95, isHeader=1

pt dep pra photo pti 92 93 94 . . . 00 01 02 03

1 2 2034 8885 1 27 28 42 . . . 42 27 27 27

2 2 2034 8885 2 27 33 27 . . . 40 27 27 42

3 2 2034 8885 3 27 40 52 . . . 27 40 27 33

. . .

Table 3 – First lines of the Seine data sheet. The (x,y) coordinates have been
replaced by the photo Id, the intra grid point Id ( pti : 1 – 36). Each site is
labelled by the administrative department (dep) and the agricultural district
(pra = smaller agricultural region) where it is located
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(a) an aerial photograph

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

300m

250m 1500m 250m

(b) the 6x6 grid inside
a photo

2km 6km 4km

12km

6km

(c) the 4 aerial photos
in a mesh

(d) the basic grid cove-
ring France

Figure 9 – Collecting the Ter-Uti data : 3820 meshes square France, 4 aerial
photographs are sampled in a mesh, a 6x6 grid determines 36 sites.

In this work, 147 districts were first labelled by their main crop successions
using CarrotAge. As the cropping system was assumed as being stationary
over the whole study period, a one state HMM2 was specified. The observations
were temporal triplets of LU. Their distribution defined a cropping plant that
was computed on each agricultural district. A linear component analysis (LCA)
followed by a hierarchical classification (HC) using Ward’s method identified
homogeneous regions made up of groups of contiguous agricultural districts
which exhibited similar combinations of crop successions (see Fig. 10(b)). It
is interesting to note that ARPEnTAge produced roughly a similar mosaic
without having to use the geographical limits of the agricultural districts. In
both experiments, the observations were temporal triplets of LU, the number
of states in the master HHMM2 was set to the same number of classes found by
the HC and the number of steady periods was set to 1 like in Mignolet’s work
in order to have a fair experiment.

6 Comparison with other similar software pro-

grammes

ARPEnTAge provides a stand-alone analysis tool to extract patches based
on their pluri-annual LU organization, it can be seen as a GIS analysis tool. Since
the initial point of [Lan93] saying that GIS were poorly equipped to handle tem-
poral data, many researchers have sought to integrate the time dimension into
GIS [RHS01]. It is now well accepted in many fields such as pedagogy [Pia73], an-
thropology [Hal90], GIS [Peu02] and agronomy [LMB09, SLM+12] that the tem-
poral and spatial dimensions are interrelated and cannot be exchanged. This
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(a) ARPEnTAge (b) LCA+HC

Figure 10 – Comparison between two clusterings of the Seine watershed.
LCA+HC represents the map obtained by statistical methods [MSB07]. AR-

PEnTAge gives results directly from Ter-Uti data without considering the
district borders. The patch’s colours are characteristic of the LU succession
distributions that are roughly the same in both maps

explains why a 3-D modelling approach provides a limited answer. Following
Langran’s and Peuquet’s works, a GIS that handles time data can fall into
three categories [Peu00, Wac00].

Space-Dominant Models : space is considered as a container in which events
occur. A new snapshot is created every time a new event occurs. Time is
frozen in each layer.

Time-Dominant Models : specific patterns that occur repeatedly or in se-
quence constitute units that are geographically located.

Relative Space-Time Models : the relations between entities determine their
locations.

Several software programmes that implement Space-Dominant Models and ha-
ving clustering capabilities, have been released in various domains :

– In the image segmentation area, SpaceEM3 1 is used for clustering various
data from hyper spectral satellite images, remote sensing and mapping
epidemics of ecological species.

– In the space-time disease surveillance domain, ClusterSeer 2, SatScan 3,
GeoSurveillance 4 and the Surveillance package for R 5 provide maps from
disease data. More generally, the GNU R statistical tool provides access
to Geoprocessing tools 6 (ArcGIS, QGIS, . . .). R programmers can read
shapefile, do unsupervised clustering on the spatial entities based on their
attributes and represent the results as shapefiles. But, the time dimension
of the attributes is not handled.

1. http ://spacem3.gforge.inria.fr
2. http ://www.terraseer.com
3. http ://www.satscan.com
4. http ://www.acsu.buffalo.edu/˜ rogerson/geosurv.htm
5. http ://cran.r-project.org/web/packages/surveillance/
6. http ://cran.r-project.org/web/views/Spatial.html
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In our knowledge, no software provides a simultaneous analysis of time se-
quences and their spatial locations. Consequently, ARPEnTAge can be seen as
the first software in the agronomic area implementing a Time-Dominant Model
and processing time-space data.

7 Discussion and conclusions

We have presented a software programme called ARPEnTAge whose goal
is to achieve an unsupervised clustering of a 2-D territory represented by its
LU successions. This software is based on a stochastic modelling of the time
space stream of data. The user controls the clustering through a limited set of
parameters : the length of the elementary observation (1 LU for the Yar case
study and 3 successive LUs in the Seine watershed case study), the number of
states in the master HHMM2 that specifies the number of clusters to be extracted
and the number of states of the temporal HMM2 that define the number of desired
steady periods.

In the mean field paradigm applied to the Potts model, we have shown that
the initialization of the mean field by the a posteriori probabilities given by a
fractal scan provides a tractable opportunity to obtain patchy landscapes. These
probabilities can be used to define an external field as well. But so far, the value
β that controls the pixel interaction strength has not been not learnt and set by
the expert. A logical continuation of this work would be to consider its learning.

ARPEnTAge rapidly produces patchy landscapes of various sizes whose
classes can be analyzed more precisely by agronomists. As shown in the Yar
case study, ARPEnTAge implements a Time-Dominant model and proposes
a visualization of changes – eg where the grasslands are replaced by crops –
by means of shapefiles and Markov diagrams that CarrotAge can display.
In the Seine case study, ARPEnTAge produced a clustering of the watershed
based on 3 year successions and computed a shapefile that can be viewed as a
snapshot showing clusters having stationary successions over the study period.
In this case, the HHMM2 acts as a Space-Dominant model in which the dominant
successions are the themes to be located.

In a stochastic framework, a plot mosaic description is obtained by estima-
ting as many probabilistic distributions as clusters that a clustering program
can extract, each of them characterizing the content of a cluster. Only few
works tackle the issue of describing the neighbour effects between clusters and
their time dynamics. ARPEnTAge showed interesting capabilities in quanti-
fying the neighbourhood effects between clusters. [LMB09], in their work to
describe a patchy landscape having environmental issues, used CarrotAge to
determine the main LU successions and ARPEnTAge to locate them inside
the territory. As they observed that LU successions were stationary over the
1996-2007 period, they used a simple temporal HMM2 to represent the states
of the hierarchical HMM2 (see Fig. 11). This model had 2 states. One – S(X) –
described the distribution of the temporal quadruplets of interest related to the
succession S(X) involving the LU X , the other state – N(X) – captured the dis-
tribution of the temporal quadruplets in the neighbourhood. The Markov field
introduces a blur in the patch’s frontier and in the patch estimation because a
site is classified not only based on its temporal characteristics (the quadruplet
succession) but depends now on the classification of the neighbouring sites. A
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patch was then described by two stochastic pluri-annual LU distributions : one
characterizing the inside and the second characterizing the border. The latter
influenced their relative locations as in a relative time space model. That last
point shows that ARPEnTAge brings a valuable help for creating shapefiles
from time-space data in temporal GIS.
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Figure 11 – Graph of state transitions in a HHMM that describe 4 kinds of patches
based on the inside – S(X) – and border – N(X) – observation distributions
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