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Increasing attention to regime shifts, critical transitions, non-marginal changes, and systemic shocks calls
for the development of models that are able to reproduce or grow structural changes that occur over time
periods perceived as abrupt. This paper highlights specific modelling challenges to consider when
exploring coupled socio-environmental systems experiencing regime shifts. We explore these challenges
in the context of four modelling approaches that have been applied to the study of regime shifts in
coupled socio-environmental systems: statistical, system dynamics, equilibrium and agent-based
modelling. When reviewing these modelling approaches we reflect on a set of criteria including the
ability of an approach (1) to capture feedbacks between social and environmental system, (2) to
represent the sources of regime shifts, (3) to incorporate complexity aspects, and (4) to deal with regime
shift identification. Many of the modelling examples considered do not provide information on all these
criteria, which receive a lot of attention in empirical studies of registered regime shifts. This suggests a
need to develop a common modelling terminology in the domain of modelling for resilience and regime
shifts. When discussing strengths and weaknesses of various modelling paradigms we conclude that a
hybrid approach is likely to provide most insights into the processes and consequences of regime shifts.
Challenges and frontier directions of research for designing models to study regime shifts in coupled
socio-environmental systems are outlined.

© 2015 Published by Elsevier Ltd.
1. Introduction

Large-scale natural disasters, destruction of vital ecosystem
services, colonisation by invasive species, and socio-economic cri-
ses are currently at the top of the international agenda. Such events
interrupt the functioning of economic, ecological, or coupled socio-
environmental systems (SES), and may lead to a persistent change
in system structure. Even in the absence of external disturbances, in
the contemporary highly interconnected world, coupled SES are
more vulnerable than they would otherwise be (Helbing, 2013).

In various disciplines, regime shifts, critical transitions, non-
marginal changes, and systemic shocks are closely-related terms
used to denote a structural change, often with a perceived sense of
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abruptness. Specifically, in the resilience literature a ‘regime shift’ is
a change from one system state to another, although this concept
applies to cases where the transition occurs over any timescale,
abrupt or otherwise (Walker and Meyers, 2004; Folke, 2006;
Carpenter et al., 2011). The term is mainly used in ecology to
describe significant, persistent changes in ecosystems e typically
with vital consequences for socio-economic systems e which
occur due to a switch in the dominant feedbacks that drive the
system into a new regime (Biggs et al., 2009). The switch in the
dominant feedbacks happens either as a results of a major external
shock, or because the feedbacks dominating in the old regime are
gradually eroding, passing a threshold after which new feedbacks
prevail. As such, it is not unreasonable to apply the concept of
regime shifts to socio-ecological or social systems (Schluter et al.,
2012; Mueller et al., 2014; Lade et al 2013), despite the fact that
the latter has its own vocabulary to describe analogous phenom-
ena. Specifically, the socio-economic literature uses the term ‘non-
marginal change’, which is contrasted with gradual marginal
change. Non-marginal change is a major change in the structure of
d socio-environmental systems: Review of modelling challenges and
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Table 1
System states and drivers of change: a regime shift occurs in boxes III and IV; no regime shift in boxes I and II, due to system's resilience.

Current regime is maintained Regime shift

Disturbance I. Recovery back to the same state III. New state driven by exogenous disturbance
Gradual change II. Remain in the same system state IV. New state driven by endogenous or exogenous gradual change
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an economy, shifting a socio-economic system onto a radically
different trajectory, as opposed to its gradually moving along the
same trend (Stern, 2008). Coupled SES are expected to experience
major irreversible changes with non-marginal economic effects in
a climate-changed world. Despite this, the majority of economic
tools are designed to study exclusively marginal changes e i.e.
small variations around a particular path. In economics ‘structural
change’ refers to a long-term fundamental shift in the functioning
of markets and economic structure, moving them into a different
state. Abrupt structural change is often linked to macro-economic
cycles, such as Kondratieff waves, which under a Schumpeterian
interpretation could feature ‘creative destruction’ during down-
turns, and are accompanied by observed shifts in the time series of
socio-economic data (Medhurst and Henry, 2011). The term ‘sys-
temic shock’ is used in financial and environmental economics
domain to refer to a major shift in a system state when normally
uncorrelated markets and processes become correlated (OECD,
2003; Bhansali, 2008). Systemic shocks are global changes in the
functioning of systems on which society depends. They may be
driven either by micro-level gradual changes or external distur-
bances (e.g. natural hazards) (Filatova and Polhill, 2012). The
resilience literature also uses the term ‘critical transitions’, which
are fundamental shifts experienced by systems when they pass
bifurcations (Scheffer et al., 2012). A critical transition to a con-
trasting system state occurs when a system is approaching a
catastrophic bifurcation e a tipping point e around which even
small perturbations lead to a large change in system level vari-
ables. Positive feedbacks play a vital role in such transitions as they
trigger a self-propagating shift to a different state (Scheffer, 2009).
Thus, a critical transition is a special type of regime shift, which
may occur without any major external shocking event (Andersen
et al., 2009).

In this paper we use the term ‘regime shift’ as it is the most all-
encompassing concept to describe the phenomena in which we are
interested. A regime shift may be driven either by a disturbance or a
gradual change (Table 1). ‘Disturbance’ is an exogenous forcing in
the form of a hazard event (e.g. hurricane, disease, fire) or in the
form of an extreme change in an input variable (e.g. level of pre-
cipitation). After a disturbance, the system may either recover back
to the same state (Table 1, I) ormay shift to a new state1 (Table 1, III),
depending on the magnitude, rate of change, duration and fre-
quency of the disturbance as well as the resilience of the system
itself. (Gunderson and Holling, 2002; Folke, 2006; Scheffer, 2009).
Turner and Dale (1998) review the differences between large
infrequent and small frequent disturbances. According to Lake
(2000) a disturbance may be in the form of a pulse (short-term
and sharp), a press (a sharply-arising and maintained disturbance),
or a ramp (a disturbance steadily increasing over time and space
without an endpoint). Collins et al. (2011) simplify these ideas to
two important kinds of disturbance: long-term sustained press
disturbances and discrete, rapid short-term pulse disturbances.

A regime shift may also occur due to gradual changes in the
system's components (Table 1, IV), which up to a critical point do
1 A system state is not a steady-state or equilibrium, but rather a regime char-
acterized by a certain system's structure, properties and functionalities (Folke,
2006).
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not cause a shift in system state (Table 1, II). Regime shifts arising
from gradual changes in explanatory variables (exogenous or
endogenous drivers of response variables) have become especially
apparent in a time of collapse of ecosystems, financial crises,
housing bubbles, and climate change. In all these cases it is difficult
to identify a single disturbance that caused a regime shift. Instead, it
was gradual overfishing that led to the near-extinction of species
and destruction of coral reefs (de Young et al., 2008); the slow
accumulation of CO2 and other green-house gases that caused
climate change and its adverse consequences (IPCC, 2007; Stern,
2008); economic agents one-by-one adopting seemingly rational
rules that caused structural changes in financial markets and
economy (Anand et al., 2011); and the gradual spread of expecta-
tions among individuals of receiving a dividend from housing asset
investments as housing prices grow annually driven by an
increasing demand that was itself caused by those expectations
(Arce and Lopez-Salido, 2011). Often a regime shift occurs when a
system is moved towards a threshold by a combination of gradual
changes and the shift is precipitated by a disturbance that would
otherwise not be as harmful (Biggs et al., 2009).

Moreover, a regime shift may arise not only from gradual
changes in a single variable, but from the interactions among
processes operating at different spatial and temporal scales. As
Carpenter and Turner (2000) point out, the time periods of changes
in ecosystems span several orders of magnitude. A further
complication is that the emergence of regime shifts from the bot-
tom up in complex SES is embedded in heterogeneous spatial
landscapes. The initial spatial correlation of site conditions and
domino-effect responses across neighbouring cells strongly affect
the consequent evolving patterns of a dynamic adaptive system
(Scheffer, 2009). The effects of interactions among different pro-
cesses across several variables are captured by concept of the
‘perfect storm’. Here, the values of each of the variables taken
individually might not be thought extraordinary, but collectively
they form a highly unusual set of circumstances sufficient to cause a
regime shift.

From a complex adaptive systems perspective, SES are seen as
constantly changing, co-adapting, and perpetually out of equilib-
rium (Arthur et al., 1997; Folke, 2006). Marginal changes when a
system gradually moves along a certain trend are quite “conve-
nient” for decision-makers (and modellers), as prediction of future
states can with a certain confidence rely on the historic trends and
historic data. In other words, we know with a reasonable degree of
certainty that with a unit change in driving variable(s) the response
variable is likely to change in a predictable direction with a pre-
dictable extent. However, a growing body of literature suggests that
it is common for complex SES to experience abrupt sudden shifts
from one system state to another (Kinzig et al., 2006; Stern, 2008;
Scheffer, 2009; Anand et al., 2011; Vespignani, 2012). A system
experiencing a regime shift transforms into a system with new
properties, structure, feedbacks, and underlying behaviour of
components or agents. Macro variables of interest then do not
change marginally with a gradual change in independent variables:
there is a shift in the trend observed. These altered internal dy-
namics often prevent or impose a significant barrier to returning to
the previous regime, and hence the possibility of regime shift
occurring over relatively short timescales is of interest to decision-
makers whose power and influence may be adversely affected. The
d socio-environmental systems: Review of modelling challenges and
rg/10.1016/j.envsoft.2015.04.003
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number and diversity of regime shifts encouraged scholars to start
collecting them to the Thresholds Database2 and the Regime Shifts
Database.3

As these critical events continue to happen, policy-makers need
to find effective ways of managing the circumstances in which
regime shifts occur (mitigation), or of reducing any negative con-
sequences of regime shifts that cannot be avoided (adaptation). As
Polasky et al. (2011) note, the probability of a regime shift could be
exogenous (e.g. if management actions have no effect on the like-
lihood of a regime shift), or endogenous (e.g. when the probability
of a regime shift is a function of a resource management policy
choice). While empirical evidence based on historic data analysis is
growing, anticipating an upcoming regime shift is still a challenge.
The discovery of a range of early warning signals, which seem to
precede many of the regime shifts registered in the past and which
are universally observed in Earth sciences, medicine, and eco-
nomics (Biggs et al., 2009; Scheffer et al., 2009), is a major break-
through in this direction. Modelling tools to explore existing and
potential future regime shifts and consequences under which they
are likely to occur in coupled SES are therefore in high demand. Yet,
the design of models to explore system resilience and occurrences
of regime shifts is a challenging domain (Schlueter et al., 2012). The
development of statistical, equilibrium and dynamic simulation
models, which help our understanding of the emergence of regime
shifts triggered by exogenous or gradual endogenous processes
could support the design of resilient policies tomanage SES. Studies
of the dynamics of a system undergoing a regime shift tend to use a
single modelling approach. However, a systematic overview of
various modelling approaches to studying regime shifts is missing.

This paper provides an overview of how various modelling
paradigms approach specific modelling challenges that are relevant
for exploring coupled SES experiencing regime shifts. There are two
main questions that guide this research. First, what are the
important modelling aspects to consider when studying regime
shifts? Second, how do various modelling traditions approach
studying regime shifts? We focus on four main modelling ap-
proaches: statistical analysis, system dynamics, equilibrium
models, and agent-based models, the motivation for so doing being
chiefly driven by the fact that these are the four most commonly
applied to the study of regime shifts in coupled SES.

The rest of the paper is organized as follows. First, based on a
review of the resilience literature we identify four groups of
modelling challenges that are essential to reflect on when
designing and describing a model for exploring regime shifts
(Section 2). Based on specific modelling examples, Section 3 de-
scribes themanner inwhich different modellingmethods approach
the study of regime shifts. These examples are reviewed using the
four challenges (2.1e2.4) as evaluation criteria, with details sum-
marized in Tables 4e7. Section 4 discusses how different modelling
approaches address the four aspects, and reflects on their strengths
and weaknesses when studying regime shifts. We conclude with a
discussion of challenges to futuremodellingwork and reflect on the
use of modelling for the design of policies to mitigate or adapt to
regime shifts.

2. Regime shifts and challenges to modelling

When reviewing the empirical regime shifts literature, we came
across several themes that were discussed to varying levels of detail
but consistently in almost every paper. In this section, we group
these themes into four broad categories and discuss their
2 http://www.resalliance.org/index.php/database.
3 http://www.regimeshifts.org.
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implications for modelling in more detail. The categories are then
used as points of reflection when reviewing the modelling ap-
proaches in the next sections:

1. Feedbacks between social and environmental systems in coupled
SES. Links in models of coupled SES can be of three types: single
linkages, a chain of one-way links or two-way feedbacks. Models
representing more feedback loops may explain regime shifts
that result from interactions or domino effects.

2. Sources of regime shifts. The new state can be driven by an
exogenous disturbance or gradual changes originating in the
natural or social system.

3. Complexity aspects. Models may describe different spatial or
institutional scales and use varying approaches to thresholds
and nonlinear effects.

4. Regime shift identification (detection, time-scales). Detection
may focus on different system states, early warning signals or
thresholds. Temporal scales of change vary from days to cen-
turies. A change in internal dynamics may make a shift in a
system state irreversible.

While these four categories appear in almost every empirical
paper describing a regime shift, the modelling literature covers
them neither explicitly nor consistently. Since the necessity of
providing clear information on these four aspects arises from the
practice of resilience research, we believe that doing so systemat-
ically in the modelling literature would help to integrate current
modelling efforts in the accelerating domain of studying regime
shifts in coupled SES. The implication of these four aspects for
modelling is discussed in greater detail below. They also serve as
criteria for reviewing the implementations of models for studying
regime shifts across various modelling approaches in Section 3.
2.1. Feedbacks between social and environmental systems in
coupled SES

A matter specific to coupled SES (and other multi-disciplinary)
modelling exercises as opposed to single-disciplinary studies is
that regime shifts may be triggered by the feedbacks between the
socio-economic and ecological systems, not necessarily by the
micro-macro feedbacks within one domain (Kinzig et al., 2006).
Regime shifts may also be driven by a combination of anthropo-
genic and natural factors, when crossing a threshold in one domain
causes cascading regime shifts across other domains. This high-
lights the importance of the modelling choice on how to represent
these feedbacks when studying the resilience of coupled SES
(Schlueter et al., 2012). Parker et al. (2008) distinguish between
three types of model linkages to represent causality and feedbacks
in SES. Namely, type 1 e one submodel serves as an input to the
other (single linkages); type 2 e a chain of one-way linkages
(‘feedbacks’ between two subsystems are represented as multiple
acyclic linkages) such as environmental -> social -> environmental
where the two environmental subsystem inputs and outputs may
differ; and type 3 e feedback loop, in which there is full cyclic
integration between environmental and social subsystems and
shared variables between social and environmental subsystems are
determined endogenously.

Table 2 summarizes the types of linkages between social and
ecological systems in SES as described by Parker et al. (2008). We
list the number of cases of registered regime shifts from the
Threshold Databse4 per type of link and indicate a subsystem in
4 As at February 2013; the database is constantly updated.
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Table 2
Linkages between social (S) and ecological (E) subsystems in SES: summary of cases
of registered regime shifts.

A subsystem where a
regime shift is registered

Type of links in SES Number of studies

E One-way S / E 31
E One-way E / S 5
S One-way E / S 1
E E / S and S / E 20
S E / S and S / E 4
S & E E / S and S / E 10

Source: Thresholds Database, http://www.resalliance.org/index.php/database

5 Source: Thresholds Database, http://www.resalliance.org/index.php/database.
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which a regime shift occurs. Nearly all studies focus on regime
shifts in ecosystems, with only 15 out of 71 cases dealing with
regime shifts that manifest in social or socio-ecological systems.
About half of the literature takes into account feedbacks between
social and ecological systems, although the database does not al-
ways permit a distinction between a model composed of a chain of
linkages and a fully-linked feedback-loop model.

2.2. Sources of regime shifts

As Scheffer et al. (2001) point out, a regime shift can be driven
by external events (exogenous), or by internal dynamics that
pushes the system across a threshold (endogenous). An exogenous
disturbance to a model should appear in the time-series input data
(and hence unaffected by the model's dynamics): examples include
climate change scenarios and scenarios of crop prices or population
growth/decline trends. Exogenously driven regime shifts can arise
from a shocking event (pulse disturbance) or a gradual change
(press disturbance). An endogenously driven regime shift is an
emergent property of a system of interacting adaptive agents,
processes and/or feedbacks across scales, and is largely fuelled by
gradual processes.

The question of which variables are exogenous and which are
modelled endogenously is determined by the boundary of a system.
The choice of the boundary is subjectiveemade by amodeller (and
sometimes determined by questions of tractability driven by the
modelling approach) e but it can significantly affect the occurrence
and detection of a regime shift.

2.3. Complexity aspects

2.3.1. Spatial and institutional scales
Coupled SES are characterized by multi-scale multi-domain

feedbacks: the dynamics at various scales of an economic system
affects the dynamics of a natural system at various spatial scales
(Kinzig et al., 2006). While pursuing simplification, we may
aggregate and average empirically observed data. This aggregation
and averaging potentially omits micro-level dynamics, from which
a regime shift could have endogenously emerged.

A choice of an appropriate scale is a challenge to SES modelling
since there are mismatches between social and ecological scales
(Cumming et al., 2006). A regime shift at one scale may not be
pronounced or noticed at another scale. This is valid for scaling up
in geographical spatial scales as well as in the number of agents in
the system, when effects of heterogeneity and local interactions
that are crucial for smaller-scale systems dissolve and disappear as
the number of agents grows over several orders of magnitudee see
for example (Gotts and Polhill, 2010). The implication for modelling
regime shifts is that it may be necessary to test whether an exog-
enously- or endogenously-driven regime shift is observed (ap-
pears) when one scales up (down). A regime shift at a fine-grained
Please cite this article in press as: Filatova, T., et al., Regime shifts in couple
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scale may be hidden and its effects may not be pronounced on a
coarser-grained scale of analysis. Hence, large-scale, often highly-
aggregated models may omit the occurrence of a regime shift at
lower scales, which are often more important for policy-makers if
the implementation of policies is delegated to the local level. In this
respect, the regime shifts database reveals that the vast majority of
studies conducted so far (68/71) focus on the local or sub-
continental scale instead of the continental or global scale.5

Social and environmental systems also often operate at
different temporal scales. While socio-economic decisions in
modelling practice may take place over an annual or quarterly
timeframe, some ecological or climatic processes in natural sys-
tems undergo critical transitions in a timeframe of months, de-
cades or centuries. Aligning temporal scales in coupled SES is thus a
challenge in itself (Levin, 1992). If one aims at studying regime
shifts in coupled SES this challenge is exacerbated by the fact that
the choice of a temporal scale is crucial to its detection (see Section
2.4 for discussion).

2.3.2. Nonlinearities
Most coupled SES exhibit nonlinear behaviour (Liu et al., 2007).

In complex adaptive systems it is often the case that many inter-
acting agents follow nonlinear rules that produce complex dy-
namics at the macro level (Axelrod, 1997). In this paradigm,
nonlinear effects and their macro-scale impacts stem from local
processes, which shift from one state to another (Arthur, 1999). In
its most extreme form, nonlinear behaviour is characterized by
discontinuities (Liu et al., 2007). There are two main types of
discontinuity (Huggett, 2005), which can be generalised to
continuous cases using appropriately parameterised functions.

� Point discontinuities indicate the values of independent vari-
ables that cause sudden abrupt change in the dependent vari-
able (Muradian, 2001). The gradient at the point in question is
infinite (e.g. Heaviside function), or very large in the case of
continuous generalisations (e.g. logistic-like function with a
suitably large number in place of the base of natural logarithms).

� Zone discontinuities are intervals of the independent variables
at which the change in the dependent variable is relatively rapid
(Wiens et al., 2002). Here, the second derivative is infinite in
magnitude at the start and end of the interval (e.g. ramp func-
tion), or very large in the case of continuous generalisations.
2.3.3. Thresholds
The term ‘threshold’ is used to describe the region in which

there is a change from one regime to another (Muradian, 2001;
Wiens et al., 2002; Walker and Meyers, 2004; Bennett et al.,
2006; Kinzig et al., 2006). If they are known, then the crossing of
thresholds can be detected and used as a surrogate for other
measurements of the model's behaviour that indicate a regime
shift. For instance, de Young et al. (2008) suggest that shifts in
marine ecosystems can be predicted based on established causal
relationships between coral reefs and fisheries or climate and a
biogeographical shift.

However, the data for identifying thresholds are often absent or
insufficient (Huggett, 2005). Moreover, there might be a time lag
between the system crossing a threshold and the reflection thereof
in the domain-specific macro-measures of interest that serve as
indicators of the occurrence of a regime shift. Empirical research on
marine ecosystems shows that while atmospheric changes and the
resulting physical oceanographic responses detect a regime shift
d socio-environmental systems: Review of modelling challenges and
rg/10.1016/j.envsoft.2015.04.003
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quickly (in a year), the dynamics of various marine species in re-
sponses to these changes can take different spatial and temporal
patterns (de Young et al., 2008).

Thresholds can also shift as a result of changes in other slowly
changing variables, and crossing a threshold may be a necessary,
but not a sufficient condition to indicate a regime shift (Kinzig et al.,
2006). In addition, a regime shift may be caused by crossing
thresholds defined over a multidimensional space (Huggett, 2005).
So, even if a certain threshold is not crossed in one dimension, the
crossing of thresholds in other dimensions may still lead to a
regime shift.

Empirical research suggests that the positions of critical
thresholds and chances of crossing them in one domain and scale
react dynamically with the changes in other domains and scales
(Kinzig et al., 2006). This phenomenon of a moving threshold is
another issue to consider when designing a model that is able to
capture regime shifts. When modelling thresholds that are
explicitly specified, a perspicuous treatment of feedback loops in
the model that adjust the values of the thresholds may be
needed.
6 Source: Thresholds Database, http://www.resalliance.org/index.php/database.
2.4. Regime shift identification

2.4.1. Detection
Representation of endogenously-generated regime shifts re-

quires the representation of variables in which they are observed,
and the processes and feedbacks that drive them. According to
Kinzig et al. (2006) three to five key variables are able to capture
critical changes in SES. For an exogenously-driven regime shift, a
modeller has a priori knowledge of what the disturbance to a system
is, and is interested in how this system responds. In the particular
case where a model is designed to explore the conditions under
which a known regime shift emerges endogenously, the problem
should also be relatively trivial.

However, detecting an unexpected regime shift could pose more
of a challenge. This requires a knowledge of the ‘normal’ bounds of
behaviour of the system in at least two regimes: those the model is
in before and after a regime shift has occurred. It is possible that
knowledge of more regimes would be required if there are multiple
possible regimes into which a model could shift as a result of a
emergent regime shift. Moreover, a decision should be made on
what degree of change in macro-measures of interest, which pre-
sumably characterize the structure and underlying behaviour of the
elements of the system, constitutes a regime shift. A number of
heuristics could be used to suggest that an endogenous regime shift
has occurred: unusual values of macro variables, evidence of sys-
tem restructuring, such as changes in connectivity of relationships
among agents, or unusual model states that have not occurred in
the real world.

Regime shifts may be detected either through time series
analysis (see Section 3.1), or via detecting early warning signals of
regime shifts, or by studying thresholds of explanatory variables
(Table 3). While the detection of regime shifts in relatively simple
systems is straightforward, such as the dominance of algae in coral
reefs, it is a challenge for large-scale complex systems such as the
world oceans (de Young et al., 2008). Regime shifts in oceans are
not sudden and are asynchronous across ecosystem components;
observing them requires comprehensive statistical techniques to
analyse data gathered over decades to make sure the new regime
persists. Integrating a socio-economic system with an environ-
mental one in a single SES model does not simplify the process.
Early warning signals are contested as indicators for regime shifts:
they may merely show increased sensitivity of a system without
necessarily predicting a regime shift (Kefi et al., 2013). Moreover,
Please cite this article in press as: Filatova, T., et al., Regime shifts in couple
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catastrophic collapse may occur without being preceded by early
warning signals (Boerlijst et al., 2013).

Andersen et al. (2009) review quantitative approaches for
detecting regime shifts focussing on ecological models and list
available software for such detections. Rodionov (2005) lists an
extensive number of statistical tests that can be used to detect
regime shifts. Various methods can be used to detect shifts in the
mean, variance, frequency structure or the whole system, yet they
are highly data-intensive.

2.4.2. Temporal scales and reversibility
A potentially important element to a regime shift is its perceived

‘suddenness’. Regime shifts that occur over several thousands of
years affect no one individual significantly. A sudden regime shift is
typically an event that takes place over a relatively short period of
time in comparison with other processes. Even in the case of a
regime shift arising from gradual endogenous changes within the
system, the restructuring of the system can be an event that occurs
over a relatively short timespan. For a disturbance, the same
magnitude of change in a variable to which the disturbance is
applied could, if applied over a longer time period, not cause a
regime shift at all.

There is a possibility that an adjustment to a model events
scheduling is required when simulating a regime shift, in particular
for discrete-event models. Agents may need to make decisions over
relatively short time scales than those they normally do, and may
need to make different kinds of decision from those they take
outside the context of an on-going regime shift. There may also be
an issue with regime shift detection: it may not be recognized by
looking from one time step to the next, but by comparing more
temporally distant time steps.

Empirical cases of regime shifts feature a variety of temporal
scale: from days and weeks (2 cases each out of 71 in the Thresh-
olds Database6) to months (12), years (27), decades (13) and cen-
turies (3). There is no guarantee of overlap between those of the
environmental and socio-economic subsystems of coupled SES. An
environmental process slowly changing over decades may be
treated as constant in a shorter time scale of human decisions-
making. This is closely related to the discussion of slow and fast
variables, and myopia in socio-economic dynamics potentially
leading to regime shift if the evolution of slow ecological variables
is ignored (Carpenter and Turner, 2000). As reviewed by Carpenter
and Turner, in ecology slow processes appear in the model as pa-
rameters while fast processes are endogenously determined as a
model solution. However, since slow variables are also a subject to
evolutionary change, these interactions between slow and fast time
scales are essential for studying regime shifts.

A time scale of the duration of an old regime and the suddenness
of the transition are important to judge upon the “persistence” of a
new regime. After any regime shift there should be a period of time,
however short, when the state of the model is not within the
normal operating values of the regime it was in prior to its occur-
rence. In other words, the new state is irreversible or at least
slowly-reversible. The persistence of a regime shift can be
measured as the length of time it takes to restore the original
regime. Reversibility is often viewed with respect to the ecological
system e whether a previous, typically more ‘natural’, regime can
be restorede rather than the social system.When the social system
collapses, however, its restoration may simply be impossible,
especially when the language, history and culture are lost. While
reversibility is closely related to the magnitude of the disturbance
and time scale of analysis, the fact that the time scale varies
d socio-environmental systems: Review of modelling challenges and
rg/10.1016/j.envsoft.2015.04.003
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Table 3
A variety of ways to detect a regime shift.

Means of detecting regime shift Source

I. Identification of 2 distinct regimes
- change-point analysis by sequential F tests (Andersen et al., 2009)
- sequential t-tests (Rodionov 2005)
- sequential STARS method (Rodionov 2005)
- Regression based approach (Rodionov 2005)

II. Identification of early warning signals
- increased variability in time series data (raising variance, skewedness, kurtosis) (Carpenter and Brock, 2006), (Biggs et al., 2009),

(Guttal and Jayaprakash, 2008), (Scheffer et al., 2012)
- increasing autocorrelation (captured by slowing down of the fluctuations) (Dakos et al., 2008), (Scheffer et al., 2012)
- increasing return time after disturbances (van Nes and Scheffer, 2007), (Scheffer et al., 2012),

(Kefi et al., 2013).
III. Identification of a threshold
- principal component analysis (or empirical orthogonal functions,
or singular spectrum analysis) for a better visualization of thresholds

(Andersen et al., 2009)

- chronological clustering (Ward's linkage method) (Andersen et al., 2009)
- power spectral density (Kleinen et al., 2003)
- Markov chain Monte Carlo (Rodionov 2005)
- Lanzante method (Rodionov 2005)
- crossing a known threshold (Zhang et al., 2011)

T. Filatova et al. / Environmental Modelling & Software xxx (2015) 1e156
significantly among case studies of SES experiencing regime shifts
means it is impossible to make a general statement on time scales
over which a regime shift could be considered irreversible.

3. Modelling approaches to study regime shifts

A variety of modelling approaches have been applied to study-
ing the dynamics of coupled SES. These include analytical and
statistical approaches, cellular automata, micro-simulation,
computational general equilibrium, partial equilibrium, system
dynamics and agent-based modelling. For the purposes of this re-
view, we focused on those that present published examples with
applications to study regime shifts in SES. We also tried to collect at
least four examples per approach, pursuing the search for the
appropriate papers in three stages. Firstly, we conducted an
extended search using a variety of combinations of terms related to
a regime shift phenomenon in different disciplines (including
‘regime shift’, ‘critical transition’, ‘systemic shock’, ‘structural
change’, ‘non-marginal change’) and terms related to modelling
(including ‘model’, ‘statistical’, ‘system dynamics’, ‘agent-based’,
etc.). Secondly, we went through the Thresholds and the Regime
Shifts Databases and traced individual authors and case studies to
find related published work. Thirdly, we searched for models
applied to study typical examples of regime shifts in one of the
social or ecological domain (e.g. major disaster, eutrophication,
collapse of civilizations, etc.), and selecting those with a link to the
other of these two domains. In all three search stages we filtered
the results to focus on models that were applied to study a regime
shift in SES rather than social or ecological system alone. This three-
stage search resulted in a collection of articles. While it provided
examples of different models applied to studying regime shifts in
SES, the papers varied significantly in the degree of detail when
describing either the regime shift or the model.

The most common modelling approaches to study regime shifts
are statistical, system dynamics, equilibrium, and agent-based
models, all of which had at least four examples of models applied
to regime shifts in coupled SES. We split equation-based models
into two groups e system dynamics and equilibrium models e as
they are designed with completely different theoretical paradigms
in mind (focus on optimization in equilibrium models vs. focus on
time as independent variable in system dynamics models). Thus,
while the latter one studies results in terms of dynamics and
alternative paths, the former concentrates on a comparison of two
equilibria when discussing results. These four approaches are also
Please cite this article in press as: Filatova, T., et al., Regime shifts in couple
approaches, Environmental Modelling & Software (2015), http://dx.doi.o
interesting for their fundamental differences in character and
emphasis that to some extent map onto the four thematic cate-
gories in Section 2. For example, statistical approaches are strongly
aligned with detection; system dynamics model have a natural
aptitude for representing feedback loops; equilibrium models are
traditionally used to explore the impacts of disturbances; and
agent-based modelling owes much of its origin to the complex
systems literature (though this is not to ignore influences derived
from an interest in exploring formalisations of social theories).

In what remains of Section 3 we present several examples of
each of the methods, focussing on the essence of each modelling
approach in the study of regime shifts. These examples are
reviewed using the four challenges (2.1e2.4) as evaluation criteria,
with details presented in the summary Tables 4e7 and discussed in
Section 4.

3.1. Statistical models

Statisticalmodels aim to detect or predict regime shifts through a
statistical analysis of time-series of dependents and independent
variables. Statistical analysis can help find patterns that allow
extrapolation of the data. Yet, Andersen et al. (2009) notice that
while appropriate statistical techniques existed for decades, their
applications have been rare and limited primarily to ecological
regime shifts. Rodionov (2005) andAndersen et al. (2009) provide an
overview of statistical methods and software for detecting regime
shifts. Those include sequential t-tests and F-tests for the differences
in means and standard deviations in two (or more) regimes, chro-
nological clustering, dynamical factor analysis, linear (e.g. Principal
Components Analysis) and nonlinear dimensionality reduction
methods, singular spectrum analysis, and so forth (see also Table 3).
Contamin (2009) analyses a variety of regime shift indicators for
prediction, which require statistical analysis. Biggs et al. (2009) and
(Scheffer et al., 2012) highlight that statistical measures such as
increasing variability, growing autocorrelation and slower recovery
rates from disturbances serve as early warning signals of regime
shifts. Several authorsdemonstrate the functioningof predictors, e.g.
(Carpenter and Brock, 2006; Carpenter et al., 2011).

Statistical models may estimate a regime shift index, which is ‘a
cumulative sum of normalized deviations of the time-series values
from the hypothetical mean level for the new regime’ (Daskalov
et al., 2007), Case 1 in Table 4. Alternatively, one splits time-series
data into various segments, i.e. potentially various regimes, to run
a statistical analysis (Table 3). Some statistical models allow
d socio-environmental systems: Review of modelling challenges and
rg/10.1016/j.envsoft.2015.04.003
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automatic determination of the timing of regime shifts (Rodionov
2005) depending on the various cut-off lengths (i.e. the minimum
length of a regime shift), which is a subject to a sensitivity analysis.

Statistical models can reveal not only correlations but also un-
derlying causal mechanisms, e.g. using Granger Causality Analysis
(Zhang et al., 2011), see Case 2 in Table 4, and thus improve the
information available for the purposes of managing SES. An
important restriction of statistical analysis is the availability of data.
Contamin (2009) notes that ideally, statistical analysis is performed
on multiple parameters that are easy to monitor and that are
related to the processes causing regime shifts. Most statistical an-
alyses of regime shifts in SES focuses on well-monitored aquatic
systems and fisheries (Daskalov et al., 2007; M€ollmann et al., 2009).
There are also pure economic statistical models that study struc-
tural change in a system (Dahlquist and Gray, 2000).

The strength of the statistical approach in studying regime shifts
is in its ability to identify abrupt as well as gradual regime shifts,
without a need for information on the timing of those as it can be
detected automatically (M€ollmann et al., 2009). However, their
applicability is contingent on the availability of large time series of
data on both dependent and a range of independent variables.

3.2. System dynamics models

System dynamics (SD) models are characterisations of a system
based on influences among variables over time using differential or
difference equations. Influence is an asymmetric, transitive rela-
tionship, and feedback loops occur where a variable effectively
influences itself through a path of influences that starts and ends
with itself. Feedback loops can be reinforcing (the value of the
variable continues on the trajectory implied by the sign of its first
derivative with respect to time) or balancing (the value of the
variable tends to an equilibrium).

Collie et al. (2004), in their review of modelling regime shifts in
ecosystems using differential equations, distinguish three types of
regime shift that can also be simulated with SD models because of
strong links between the two approaches. First, smooth shifts
pertain to linear relationships between the forcing and response
variables. Second, abrupt shifts concern a sudden response of the
response variables to a gradually increasing forcing variable. Third,
a discontinuous regime shift entails an abrupt shift to another
stable state due to the forcing variable passing a threshold. This
shift exhibits hysteresis: when the forcing variable is decreased, the
response variable will follow a different trajectory than before. The
type of regime shift has implications for the characteristics of the
SD models. The minimum number of possible equilibria varies as
smooth shifts have one equilibrium, abrupt shifts have two equi-
libria and discontinuous shifts feature three or more equilibria,
since hysteresis means there should be at least one alternative
initial state (Collie et al., 2004).

SD models that study regime shifts typically include two-way
feedbacks between social and ecological processes, and regime
shifts are often caused by gradual changes in endogenous variables.
Carpenter (2004) shows that SD models with multiple scales can
account for decisionmaking at different levels. SDmodels allow the
identification of thresholds, stable states and unstable states
(Table 5) through analysis of gradients.

There are two main strengths of SD models. First, causal loop
diagrams can be elicited from participatory processes, and offer a
purely narrative basis on which to describe and (qualitatively)
analyse the system's responses to disturbances and shifts between
regimes (Sendzimir et al., 2008, 2011; Tshimpanga, 2012), see Cases
2 and 4 in Table 5. Second, SD models of SES typically feature
several feedback loops weaving between the social and ecological
subsystems, see Cases 1e4 in Table 5.
d socio-environmental systems: Review of modelling challenges and
rg/10.1016/j.envsoft.2015.04.003
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Formally (though some SD modellers stop at the qualitative
stage), SD models are specified as systems of first-order differential
equations, each of which captures the rate at which the level of one
variable is affected by those of others. For this reason, SD modellers
often characterise systems in terms of “levels and rates” or,
equivalently (perhaps from its industrial origins (Forrester, 1961))
“stocks and flows”. These equations are typically nonlinear,
meaning that nonlinear thinking is embedded into the research
paradigm. Once SD models have been specified formally, SD can be
seen as a subset of ordinary differential equations models, which
have the advantage of relative mathematical simplicity, potentially
enabling tractable analyses of the range of potential system
behaviour. However, they can struggle to elegantly represent het-
erogeneity among individuals in populations, where this is
important. Veliov (2005) notes that ignoring heterogeneity may
affect model outcomes significantly. For example, averaging critical
variables rules out extinction scenarios in predatoreprey models
that do occur with ABM (Wilson et al., 1999).

This formalisation of SD models can be problematic where the
original relationship was conceived qualitatively. There can be
many ways to represent a relationship that is asymptotic in the
response variable as the driving variable approaches plus/minus
infinity, such as logistic or arc tangent (Dniestrzanski, 2008).
Edmonds' (2005) reflections on the impact that a slight change in
functional form has on an opinion dynamics model are relevant
here, despite the fact that such models are (typically) agent-based.
Specifically, Edmonds studied the model of Deffuant et al. (2002),
which assumes that the influence of one person's opinion on an-
other's is a decreasing function of the degree of difference (d) be-
tween the two opinions, but an increasing function of the
uncertainty (u) with which the opinion of the subject of the in-
fluence is held. Edmonds found that changing the precise mathe-
matical representation of this qualitative understanding from
exp(�(d/u)2) to 1/(1 þ (1.361 d/u)3) changed a simulation in which
equilibrium opinions in the population were at two opposing ex-
tremes, to one in which the population eventually converged to a
single, moderate opinion.7 Indeed, the points made here are gen-
eral to all modelling approaches involving the formalisation and
numerical representation of qualitative concepts.

Further, stochastic events are not accounted for in deterministic
SD models although they are commonly used in representations of
decision-making. Indeed, Rahmandad (2008) notes that for
instance hospital capacity cannot be decided on a single outcome
but should be based on a distribution of outcomes. In such cases
differential equation models can be complemented with a sto-
chastic optimization model, as done by Ermoliev and Ermolieva,
2013. Heckbert (2010) also points out that while system dy-
namics approaches represent feedback and macro-level processes
and complexity well, they have limited ability to evolve: only
parameter changes can influence the structure.
3.3. Equilibrium models

Equilibrium models (EMs) study dynamic SES converging to
equilibrium by finding a constraint optimization solution. The types
of EMs applied to SES vary. In the partial-equilibrium modelling
tradition, a typical formulation permits a model to endogenously
select quantities of resource or service (including ecosystem ser-
vices) exchanged. These models sometimes use differential equa-
tions. In contrast to SD models focussing on dynamics achieved
7 Deffuant's (2006) response to this article found some further differences among
numerical representations of opinion dynamics models, and sensitivity to network
topology, but suggested robustness of results to the introduction of noise.
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through solving differential equations with time as independent
variable, EMs focus on the comparative static analysis of equilibria,
their properties and the conditions under which they occur as well
as on optimal solutions. Cyclic feedbacks between subsystems of
SES are realized through common variables, which are determined
endogenously based on nonlinear dynamics within subsystems
(Polasky et al., 2011; Suzuki and Iwasa, 2009), Cases 1and 2 in
Table 6. The general-equilibrium literature encompasses economy-
wide inputeoutput models and computable general equilibrium
(CGE) models. In CGEs several markets are represented in a single
model. Such models could simulate exogenously-driven structural
changes but hardly permit endogenous regime shifts (Lofgren and
Robinson, 1999). CGEs are usually multi-region models; however,
they rarely consider space explicitly. As an exception, Lofgren
(2002) uses a spatial-network CGE to model endogenous regime
shifts in international food markets, see Case 3 in Table 6. Dynamic
stochastic CGEs are used to analyse aggregate economic processes
through a sequence of intermediate equilibria.

EMs study regime shifts in a number of ways but generally with
the same idea: comparing the status quo equilibrium and a state
after a disturbance. This may take the form of a simple comparative
static analysis (Roson, 2003). Alternatively, CGEs compare a
reference-year equilibrium with an equilibrium estimated by
“shocking” model parameters (Eboli et al., 2010), Case 4 in Table 6.
As Wing (2011) describes it, at first, the social accounting matrix
with socio-economic data is extended to enable pollution and
resource depletion to be related to economic variables. A distur-
bance impulse is then given by defining a set of exogenous pa-
rameters. This makes CGEs useful for analyzing the impacts of
exogenously-driven regime shifts only. Further, a pulse distur-
bance propagates through the system by solving a new equilibrium
for several parameter values that represent exogenous shocks, such
as macro economic shocks, new policies or disasters. Finally, the
welfare impacts of a disturbance are estimated as the difference in
aggregated welfare between pre-shock and after-shock equilibria.
Dynamics CGEs follow the same process but thought a finer-state
temporary equilibria (Eboli et al., 2010). In this case endogenous
interactions between sectors may amplify the effect of exogenous
regime shifts.

Among the strengths of CGE models are a ‘solid microeconomic
foundation’, internal consistency and the flexible solution algo-
rithms that allow for exceedingly disaggregated models (Borges,
1986). Furthermore, Borges (1986) mentions the possibility to
derive better measures of welfare gains. For SES models, Wing
(2011), Carbone and Smith (2008) and Espinosa and Smith (1995)
point out that in deciding the utility of an equilibrium, the separa-
bility, complementarity and substitutability of environmental qual-
ity and other economic factors can be problematically decisive in the
welfare impact of the pulse disturbance. A weakness of CGEs is the
inability to show disequilibria or transitional dynamics (B€ohringer
and L€oschel, 2006), which may be particularly important in model-
ling regime shifts. Roson (2003) uses a comparative-static model to
study the impact of climate change but finds that a dynamic inte-
grated model is more apt since climate change occurs progressively
and human-natural systems interact dynamically. Such a model
would however be ‘overwhelmingly complex’, thus posing a chal-
lenge to a field of research where regime shifts do matter.

3.4. Agent-based models

Hare and Deadman (2004) suggest that agent-based models
(ABMs) provide a natural framework to represent coupled SES, and
they are increasingly being used for this purpose (Altaweel et al.,
2010; Polhill et al., 2011; An, 2012). The possibility of ABM to
represent adaptive decision-making and interactions make them
d socio-environmental systems: Review of modelling challenges and
rg/10.1016/j.envsoft.2015.04.003
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suitable for complex systems featuring heterogeneity, feedbacks
and adaptation (Heckbert et al., 2010; Le et al., 2012). An (2012)
holds that learning may change human decision-making and
needs to be understood in order to realize in-depth coupling of
natural and human systems. Parker (2003) notes that ABMs of land
use/cover-change provide several advantages over other models.
The fine resolution and inclusion of heterogeneity and in-
terdependencies mean that statistical information is better utilized
and endogenous feedbacks can be studied. More importantly, since
the models do not have to fulfil equilibrium criteria, they can
feature discontinuous and nonlinear behaviour and cross thresh-
olds between regimes. The emergence of a regime shift is often
modelled by means of adaptive behaviour in response to environ-
mental changes or socio-economic changes (Table 7). This is real-
ized through individual or social learning, which can be
implemented in a simple way (e.g. imitation) or more sophisticated
machine learning algorithms may be used.

For all that they are acknowledged to be well-suited to repre-
senting SES, Filatova et al. (2013) point out that many ABMs of SES
do not in fact represent full ‘closed-loop’ couplings of the envi-
ronmental and social subsystems, drawing on Parker et al.'s (2008)
classification of such couplings. Exceptions include Evans and
Kelley (2008), Rouleau et al. (2009), Le et al. (2012) and Heckbert
et al. (in press) which, to some extent, feature closed-loop cou-
plings (see Cases 3 and 4 in Table 7). Le et al. (2012) is one of the
most advanced ABM explorations of the effects of various feedbacks
in SES, including the impacts of human learning and adaptation to
the changes in the environment as compared to feedbacks under
fixed behavioural patterns. Voinov and Shugart (2013) emphasise
that coupling models and their accompanying software imple-
mentations is non-trivial, highlighting in particular the care that
needs to be taken in creating a consistent, balanced underlying
ontology, in order to avoid what they call ‘integronsters’: coupled
systems with incompatible levels of detail, mismatches of spatial or
temporal scale, or in the concepts represented by variables. These
findings mirror those of other authors concerned about levels of
coupling (Antle et al., 2004): namely that fully integrated models,
rather than coupled submodels, are the preferred option (Frysinger,
2001) e a matter that has to be balanced with a preference for
modularity in implementation (Leavesley et al., 2002). However,
this is a point that all modelling approaches must guard against.

There has been an increasing trend towards more empiricism in
ABMs of SES (Janssen and Ostrom, 2006; Filatova et al., 2013).
Empiricism is one way to constrain settings for the large numbers
of parameters that ABMs can have (Grimm and Schmolke, 2011),
but there may be no data available for the analysis of regime shifts,
or the regime shift to be exploredmay not have occurred previously
in sufficiently analogous circumstances to permit the justifiable use
of existing data in a different context. Large parameter sweeps
summarising the dynamics of the system are thus less feasible than
they are with the more stylised representations that are capable of
showing attractors, bifurcations, equilibria, and the other para-
phernalia of nonlinear analysis. Interestingly, Anand et al. (2011)
complement the results of their ABM of stock market crashes
with mean-field analysis made feasible with further assumptions
made “for the sake of simplicity” (p. 6). However, whilst many
authors take a similar approach, e.g. (Galan and Izquierdo, 2005),
these are often with ABMs that are quite stylised in the first place,
and authors in ABM have criticised simplifying assumptions in
other disciplines (Johnson, 1998; Moss, 2002). A strength of ABM is
its ability to explore ‘life as it could be’ (Langton, 1989), yet to
achieve the same system coverage as the more formal analyses
requires large-scale social simulation: multidimensional parameter
sweeps across several scenarios of change, and accompanying
large-scale data analysis techniques and visualisations. Until such
d socio-environmental systems: Review of modelling challenges and
rg/10.1016/j.envsoft.2015.04.003
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tools are made easy to use for the social simulation community,
ABMs applied to regime shifts tend more to compare one or two
scenarios, e.g. Happe et al. (2008), or even use the comparison of
scenarios to compare regimes, e.g. (Morrison and Addison, 2008;
Rouleau et al., 2009), rather than providing an analysis covering
the whole system state space.

4. Discussion

As Tables 4e7 show and Section 3 discusses, various modelling
approaches are applied to the exploration of regime shifts. Theygive
different levels of importance to thekeymodelling aspects thatwere
identified in Section 2 based on the attention given to them in the
empirical cases of registered regime shifts. It should be noted that
the modelling approaches are at different stages of development.
Perhaps because of this, theyalso differ in thenumberof instances of
application to the study of regime shifts: statistical models have
been used for decades to identify regime shifts while ABMs have a
shorter history in this domain8 with applications primarily in
archaeology (Axtell et al., 2002; Janssen, 2009, 2010).

4.1. Feedbacks between social and environmental systems in
coupled SES

While it is the interactions between the socio-economic and
environmental systems, which can either amplify or weaken a
regime shift in one of the subsystems, few models in Tables 4e7
implement full feedback loops. Most often it is a one-way linkage
or at maximum a chain of one-way linkages between socio-
economic and environmental systems. Yet, the presence of such
incomplete or indirect linkages may potentially result in models
with critical missing feedbacks (Parker et al., 2008). The EM
approach to studying regime shifts provides examples of all three
ways of realizing linkages and feedbacks. One-way linkages or a
chain thereof prevail in statistical modelling. By contrast, feedbacks
are a clear strength of SD models, which have them at the heart of
their ontology.Whilst ABMshave thepotential tomodel closed-loop
feedbacks between the social and environmental systems, including
exploration of the impact of feedbacks under adaptive versus fixed
agent behaviour (Le et al., 2012), this is not yet standard practice.

4.2. Sources of regime shifts

Statistical methods focus mainly on a system response to an
exogenous forcing, which could be exacerbated by endogenous
processes (Table 4). These could be either due to a single event or
achieved through gradual forcing. Data on the environment has
been diligently collected over centuries, in contrast to socio-
economic data, which is more difficult to trace back in time in a
consistent manner. Data availability issues dictate that it is usually
the shift in environmental systems on which statistical models
focus. EMs provide examples of both exogenous and endogenous
regime shifts, albeit that CGEs are exclusively applied to exogenous
shifts. Some ABMs study regime shifts by contrasting results from
runs with different parameter settings, one or more of which rep-
resents that the regime shift has occurred. However, other work in
8 Several projects, which aim to apply ABM to study resilience and consequences
where regime shifts do occur, have started only recently: (1) ABMs exploring the
impact of feedbacks in SES on resilience and SES capacity to cope with global
environmental change http://erc.europa.eu/sites/default/files/content/pages/pdf/
AAAS-FICHES_MSchlueter.pdf, (2) ABM studying climate-driven non-marginal
changes in SES in hazard-prone areas http://www.utwente.nl/mb/cstm/news/VENI_
grant_Tatiana/, (3) ABM exploring societal regime shifts in SES of mountain regions
http://www.uns.ethz.ch/people/science/seidlro/Research.
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ABM represents regime shifts as driven by endogenous processes or
exogenous time series. More challenging for ABMs is to achieve a
sufficient coverage of parameter space to permit a study of the
basins of attraction in the system. SD models tend to concentrate
more on endogenous regime shifts; an endogenous perspective is
integral to the approach.9 This does not prevent SD models from
using exogenous time series to stimulate regime shifts, but they are
seen more as drivers of endogenous change.

4.3. Complexity aspects

General EMs of SES often consider a single scale of, for instance,
a river basin or a lake, while CGE models run their analyses on
multiple scales ranging from a representative household through
regions and countries to the whole world. Statistical models anal-
yse regime shifts primarily on a single scale. ABMs are able to
address multiple scales, from micro to macro, and provided that
heterogeneity at the individual level is not a significant issue, SD
models can do so too.

Thresholds in EMs and statistical models are static and unique
per variable in specified model settings. However, in EMs they are
not estimated under scrutiny, as statistical models do, but are
rather visually observed. Crossing thresholds may be represented
using separate runs in ABMs, but in those that explore regime shifts
endogenously, threshold crossing is observed in macro-level vari-
ables. SD models may also explore crossing thresholds through
comparing runs with different model settings (as in Pacheco et al.,
2010).

All modelling approaches implement some form of nonlinear
behaviour. In EMs this is often achieved through discontinuous re-
sponses to exogenous changes or hysteresis. Dynamic CGEs also
observe nonlinear alterations of a counterfactual path from the
baseline equilibrium due to the interactions between endogenous
dynamics across economic sectors and exogenous disturbance either
amplifying or counteracting the latter. Statistical models report
hysteresis as well as exponential rather than linear response of
dependent variables to changes in independent ones. Nonlinearity is
a key component of SD modelling, as this typically features in the
functions representing the influence one variable has on another.
Nonlinear model dynamics is a typical feature of ABMs driven pri-
marily by micro-level behaviour evolution or social amplification of
opinions and impacts of agents' strategies. As Izquierdo and Polhill
(2006) point out, nonlinearity could also be implied in the use of if-
then-else (and other flow control) statements in a program code
affecting the behaviour of models. Such statements are common in
representations of decision-making, particularly rule-based.

4.4. Regime shift identification

EMs are not particularly rich in representing time scales. Partial
EMs often use a sequence of abstract time steps that are not neces-
sarily related to the real timeprocesses. In CGEs a regime shift occurs
in one shot (e.g. reference year and the year of interest) or, as for
example in dynamic CGEs, in a sequence of annual equilibria be-
tween the reference year and the year of interest. The detection of a
new regime is primarily either an interpretation of a graph or just a
qualitative judgement on the differences in the variables of interest
that supposedly indicate a new regime. In such cases, no tests are
done on EMS output to explore whether those differences have
statistical significance, as for example statistical models would do.
For the latter is it the core of the study to run several tests on, for
9 System Dynamics Society (2011) The field of system dynamics. http://www.
systemdynamics.org/what_is_system_dynamics.html Accessed 26 June 2013.
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example, changes inmeansandvariances, toprove thedifferences in
regimes. Statistical models analyse data over a range of decades or
centuries with an annual time step. ABMs usually represent the ef-
fects of a regime shift through contrasting differentmacromeasures
under different parameter settings, including the ones that allow for
growing a regime shift endogenously.While ABM output data could
be quite rich ranging from agent-level variables tomore aggregated
measures to trace the emergence of some macro-phenomena, the
possibilities of applying statistical tests for regime shift detection on
ABMoutput data remain underexplored. Computational constraints
and the availability of data as well as the interests of stakeholders in
participatory ABM may both contribute to the tendency of ABM
being used for shorter time-scales. Longer time-scales in particular
will require either significant computational power, or more styl-
ised, heuristic representations of decision-making. The qualitative
study of regime shifts is possible with ABMs, as illustrated by
Heckbert et al. (in press), and SDmodels also have a strength in this
area, with the causal loop diagram providing a context in which to
discuss the impact of regime shifts and how they may build up.
Tshimpanga (2012) demonstrates how qualitative analysis of the
causal loop diagram can be used to identify leverage points for
intervention.

When modelling a regime shift, a new system state with new
elements and their relationships has to be represented in themodel.
The capability to represent the restructured system entails the rep-
resentation of processes that create and destroy agents and links
among them, and allow decision-making processes to adapt. Thus,
agent heterogeneity and learning are both potentially important
aspects of a model. Modelling approaches that do not explicitly
represent agents and the interactions among them need to demon-
strate that theaggregatevariables theyuse to capture thesedynamics
can somehow reflect the outcomes of the implicit underlying phe-
nomena. Doing so convincingly may require data; however, there
could be problems with obtaining data that represent the new sys-
tem state. In particular, the data may not be generalizable to the
modelled context or may be unavailable if the new regime does not
have a precedent in the real world. Among the modelling examples
reviewed 8 out 16 (Tables 4e7) employed data to represent a new
system state of a known regime shift. However, none of the tech-
niques considered addresses the challenge of representing a radical
restructuring of the system explicitly with both entities and re-
lationships between them changing as the system dynamics unfold.

Many articles presenting modelling examples with regime shifts
do not always clearly describe the assumptions. Details of the four
thematic categories in Section 2, which are considered important in
the empirical literature on regime shift (see Sections 2.1e2.4), are
often omitted. Given their prevalence in the empirical literature, we
recommend that the practice of reporting these categories is
adopted in the modelling literature. This would also encourage the
presentation of new examples of models studying regime shifts in a
coherent and transparent way.

While Tables 4e7 present details on how various models
address the four thematic categories related to the study of regime
shifts, the choice of the appropriate modelling approach also de-
pends on some other pragmatic factors. Such factors include the
research question at hand, data availability, whether the aim is to
detect a known regime shift or one as yet not encountered, other
goals and the context of the research, and access to computing
power and data analysis methods, and the consequent need to
simplify. Table 8 summarises10 the strengths and weaknesses of the
10 The categories in Table 8 are based on the modelling experience of the authors
and our discussions with modelling peers on this topic, as well as from the re-
flections found in the reviewed papers.
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four modelling approaches to studying regime shifts. It covers the
four thematic categories related to the concept of regime shift,
which served as review criteria (with white background), and these
additional pragmatic categories (with grey background).

In fact, there is no universal method that scores well on all is-
sues. Often when choosing a single modelling approach one needs
to make compromises. In the ideal case, the strengths of several
modelling approaches should be united in a hybrid model.
Carpenter and Brock (2004) apply a hybrid differential equation
and discrete choice model to explore mutual dynamics of anglers'
portfolio choices of fishing activities and locations to live, and fish
population dynamics, which could experience collapses. Altaweel
(2008) combines environmental SD model and social ABM to
study the effectiveness of various crop management practices in
the settlements in the first millennium BC northern Mesopotamia.
Safarzynska (2013) proposes a design of a CGE model combined
with evolutionary economics to analyse the aggregate effects of
such regime shift as a major flood event. Regime shifts explored by
these hybrid models benefit from the combinations of strengths of
various tools, but also risk combining their weaknesses.

While the current study provides a systematic review of several
examples of models studying regime shifts (Tables 4e7 and Section
3), it is limited to four most popular modelling methods only. A
larger scale review of this sort is a potential subject for future work,
especially when new examples of models exploring regime shifts in
coupled SES e rather than only ecological or only socio-economic
systems e appear in the literature. Such a review also awaits
application of other modelling techniques as well as novel (or more
frequently applied) combinations of the four reviewed approaches
to the study of regime shifts, and might indeed be an exciting di-
rection for future research in this field. A valuable contribution
could also be made by the systematic application of alternative
modelling approaches to studying the same regime shift and
comparing the results. As far as we are aware this issue is on the
modelling agenda of the current research effort in studying regime
shifts and nonlinearities.11 While this effort is very fresh with no
published results yet, it has a great potential both in understanding
the nature of modelling and emergence of regime shifts and in
improving the reliability of the models.
5. Conclusions

One of the main aims when studying regime shifts in coupled
SES is to understand their nature and thereby to find effective ways
to manage circumstances inwhich regime shifts occur (mitigation),
or reduce their negative consequences that cannot be avoided
(adaptation). This, however, is an enormous challenge. Designed
policies, particularly where they are accountable to an electorate,
need to be simple to comprehend and communicate, and be
perceived as fair. They thereby run the risk of omitting vital positive
feedbacks in SES, promoting universal application of best-case
practices when the best way of governing regime shifts is
context-sensitive (Scheffer, 2009). Early engagement of stake-
holders in the design and exploration of models applied to study
potential regime shifts is essential for the acceptance of models'
results, including exploration of policy options' impacts (Voinov
and Bousquet, 2010). Moreover, while we tend to think of regime
shifts as negative events (catastrophic regime shifts in ecosystems,
a loss of equilibrium in economic systems), some are actually a part
11 One example of such an effort is the recent EU project ‘COMPLEX’, which aims
to compare the performance of various modelling types in studying abrupt
nonlinear response in coupled SES in the next 3 years: http://www.complex.ac.uk/
project/wp6/index.htm.
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Table 8
Strengths and limitations of various modelling approaches for studying regime shifts. Notation: “√” means that a method can be used if a condition is satisfied, “e” denotes
that it is impossible or difficult to apply a method when a condition is present, an empty cell implies neutrality.

Modelling context/conditions Statistical SD EM (non-CGE) EM (CGE) ABM

Feedbacks
one-way linkage √ √
chain of links √
feedback loops e √ √ √

Source of regime shifta:
exogenous pulse disturbance √ √ √
exogenous press disturbance √ √ √ √
endogenous gradual change √ √ √ √

Complexity
multiple scales (spatial/institutional) e e √ √
nonlinearity √ √
thresholds √ √

Regime shift identification
detection √
temporal scales & reversibility √ e e √

Availability of data
time-series of aggregated environmental data √ √
time-series of aggregated socio-economic data √ √ e

disaggregated data √
Treatment of a regime shift:
test statistical difference between 2 regimes √ e e e e

reproduce a known regime √ √ √ √ √
grow a potential regime shift e √ √ e √
a simple comparison of scenarios e √

Relation to stakeholders:
stakeholders are (or could be) actively involved in modelling e √ √ e √
state institutions issue contract research (macro analysis) √ √

Simplification vs. high computing demands:
simplified assumptions √ √ √ √
access to computing power and data analysis methods √ √
agents adaptive behaviour and learning e e √
heterogeneity e e e e √
out-of-equilibrium dynamics and path-dependence √ e √
explicit spatial representation e e -

a This largely depends on where one draws a system boundary. This choice determines which processes are represented endogenously, and is done either by a researcher, a
team of experts or in the participatory settings.
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of evolution and progress. What is universal for regime shifts with
positive and negative consequences, however, is that models with
which we study these processes should be able to accommodate
this abrupt structural change and out-of equilibrium dynamics.

This paper provides an overview of fourmodelling approachese
statistical, system dynamics, equilibrium and agent-based model-
ling e that are applied to studying regime shifts in coupled SES.
Examples of these modelling approaches were discussed according
to a number of criteria including the ability of an approach (1) to
capture feedbacks between social and environmental system, (2) to
represent the sources of regime shifts, (3) to incorporate
complexity aspects, and (4) to deal with regime shift identification.
Many of the modelling examples considered do not provide full
information on these aspects, which receive a lot of attention in the
empirical cases of registered regime shifts. This suggests there is a
need to develop a commonmodelling terminology in the domain of
modelling for resilience and regime shifts. When discussing
strengths and weaknesses of various modelling paradigms we
conclude that a hybrid approach would provide the greatest insight
into the processes and consequences of regime shifts.

This review of modelling regime shifts suggests a number of
areas for future research:

� Explicit representationof feedback loops in the simulationmodels,
which would allow tracing cascading effects when crossing a
threshold in a subsystem or the SES may affect another threshold
in the other subsystem, or emergence of the moving thresholds;

� Pursuing a proper statistical analysis of simulation models'
output data using techniques for detecting regime shifts rather
Please cite this article in press as: Filatova, T., et al., Regime shifts in couple
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than presenting a simple comparison of scenarios with/without
a regime shift;

� Addressing the data gap challenge, particularly in social sys-
tems, where quantitative data on interactions and social influ-
ence are conspicuously absent. Laboratory experiments, twitter
data, use of various applications on mobile devices, massive
online surveys or controlled online experiments e all are po-
tential candidates for collecting data on behavioural rules of
socio-economic actors and on potential behavioural change to
be employed in modelling SES;

� Searching for suitable algorithms to representdecision-making in
individuals and collectives without recourse to narrow assump-
tions of rationality and optimisation. Crises and bubbles in socio-
economic systems come unexpectedly as models that assume
rational decision-makers with perfect foresight into the future
will rarely predict them. Imperfect information and bounded
rationality lead to actions that may push SES through a critical
threshold and cause a regime shift. Yet, there seem to be many
ways tomodel bounded rationality. Insights from thebehavioural
sciences andartificial intelligence shouldbeexploitedmorewhen
developing models of decision-making in SES;

� Finding ways to represent radical regime shifts where, effec-
tively, the model ontology (the classes of agent and/or object,
their attributes and nature and structure of relationships and
feedbacks among them) change.

Insofar as the recommendation of studying hybrid approaches
constitutes something of a compromise, or risks the creation of
inelegantly coupled models with clashes in the representation of
d socio-environmental systems: Review of modelling challenges and
rg/10.1016/j.envsoft.2015.04.003
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scales, aggregations, states and processes, there is clearly a gap that
could be filled by a revolution in methods for simulating regime
shifts in SES that addresses the weaknesses of existing approaches.
The challenge of representing radically novel system states in new
regimes is a particular issue for all the approaches. However, there is
also a role formodesty. Hofstede's (1992) use of the slogan “modesty
in modelling” in the domain of decision support systems emphas-
ised theneed formodeldevelopers to recognise theexpertise of end-
users (p. 182) and adopt a pragmatic approach, avoiding the temp-
tation to model everything in exhaustive detail (pp 53e54). In the
context of modelling regime shifts in coupled SES, the slogan could
be applied as a concept of radical uncertainty:modelsmay be useful
in computing the logical consequences of large sets of assumptions
that are beyond the capacity of individual humans to reason with,
but there are limits to the extent to which models can act as crystal
balls for those wanting to control the future.
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