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Abstract 36 

Input variable selection (IVS) is vital in the development of data-driven models.  Among 37 

different IVS methods, partial mutual information (PMI) has shown significant promise, 38 

although its performance has been found to deteriorate for non-Gaussian and non-linear data.  39 

In this paper, the effectiveness of different approaches to improving PMI performance is 40 

investigated, focussing on boundary issues associated with bandwidth estimation. Boundary 41 

issues, associated with kernel-based density and residual computations within PMI, arise 42 

from the extension of symmetrical kernels beyond the feasible bounds of potential inputs, and 43 

result in an underestimation of kernel-based marginal and joint probability distribution 44 

functions in the PMI algorithm. In total, the effectiveness of 16 different approaches is tested 45 

on synthetically generated data and the results are used to develop preliminary guidelines for 46 

PMI IVS.  By using the proposed guidelines, the correct inputs can be identified in 100% of 47 

trials, even if the data are highly non-linear or non-Gaussian. 48 

 49 
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1 INTRODUCTION 74 

Input variable selection (IVS) plays a vital role in the development of data driven 75 

environmental models, such as artificial neural networks (ANNs), as the performance of such 76 

models can be compromised significantly if either too few or too many inputs are selected 77 

(Galelli et al., 2014; Maier et al., 2010; Wu et al., 2014a,b).  Although the task of IVS is not 78 

unique to environmental modelling, its application in an environmental modelling context is 79 

complicated by a lack of understanding of the underlying physical processes, the presence of 80 

significant temporal and spatial variation in potential input variables, the non-Gaussian, 81 

correlated and collinear nature of potential input variables, and the non-linearity and inherent 82 

complexity associated with environmental systems themselves, as emphasised in Galelli et al. 83 

(2014). Given the importance and challenges associated with the IVS problem, a large 84 

number of approaches, categorised as either model free (utilising a statistical measure of 85 

significance between the candidate inputs and the output) or model based (utilising an 86 

optimization algorithm for determining the combination of input variables that maximizes the 87 

performance of a pre-selected data-driven model), have been developed and refined for the 88 

purpose of more accurate IVS (e.g. Galelli and Castelletti, 2013; Galelli et al., 2014; Li et al., 89 

2015; May et al., 2011; May et al., 2008b; Sharma, 2000), with the specific aim to determine 90 

the number of inputs that best characterise the input-output relationship with the least amount 91 

of variable irrelevance or redundancy (Galelli et al., 2014; Guyon and Elisseeff, 2003). 92 

Among existing IVS techniques, partial mutual information (PMI) based approaches are 93 

among the most promising model free techniques, as they account for both the significance 94 

and independence of potential inputs and have been successfully and extensively 95 

implemented in environmental modelling (e.g. Bowden et al., 2005a,b; Fernando et al., 2009; 96 

Galelli et al., 2014; Gibbs et al., 2006; He et al., 2011; Li et al., 2015; May et al., 2008a,b; 97 

Wu et al., 2014b; Wu et al., 2013). 98 

The PMI IVS approach was introduced by Sharma (2000) and is based on Shannon’s 99 

entropy(Shannon, 1948), which measures the Mutual Information (MI) between a random 100 

input variable 𝑋 and a random output variable 𝑌as the reduction in uncertainty of 𝑌 due to 101 

observation of 𝑋.  As part of the PMI algorithm, inputs are chosen as part of a forward 102 

selection approach, during which one input variable is selected at each iteration of the 103 

algorithm (starting with an empty set), based on the amount of information a potential input 104 

provides (in addition to inputs selected at previous iterations), until certain stopping criteria 105 
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are met. The amount of information provided by a potential input is given as a function of 106 

mutual information (MI) and the contribution of already selected inputs is accounted for by 107 

calculating the MI between potential inputs and the residuals of models between the already 108 

selected inputs and the desired output, referred to as PMI. Consequently, the performance of 109 

different implementations of the PMI algorithm, in terms of input variable selection accuracy 110 

and computational efficiency, is a function of the methods used for mutual information (MI) 111 

and residual estimation (RE), as highlighted in Li et al., (2015) and May et al. (2008b).  112 

In previous studies on the use of PMI for IVS for data-driven environmental models, the 113 

requisite MI and RE are a function of marginal and joint PDFs estimated by kernel density 114 

and kernel regression (for the estimation of kernel density based weights) based methods (e.g. 115 

Bowden et al., 2005a,b; Gibbs et al., 2006; He et al., 2011; Li et al., 2015; May et al., 116 

2008a,b). Kernel methods are an approach to constructing input/output (I/O) models from 117 

input and output data. The resulting I/O model is an ensemble of kernel functions, each 118 

centred about a data point in the input space, and returns a weighted average of the influence 119 

of all data points. The weight associated with each data point is dependent on the proximity 120 

of the input to that data point (i.e. closer points have more influence). Kernel methods are 121 

primarily controlled by a bandwidth parameter, which determines the extent to which a single 122 

kernel is spread throughout the input space (e.g. a small bandwidth means that data points 123 

will only have a localised influence). As such, the performance of PMI IVS is heavily 124 

influenced by the accuracy of the kernel density estimates required for MI and RE, which are 125 

a function of bandwidth (used interchangeably with smoothing parameter) selection and how 126 

well any boundary issues are addressed (Santhosh and Srinivas, 2013; Scott, 1992; Wand and 127 

Jones, 1995), as discussed below.  128 

Determination of the optimal bandwidth (the bandwidth that provides the most accurate 129 

estimation of the density function) is not trivial, as there is no clear consensus as to which 130 

bandwidth estimator performs best for general cases. Overestimating the bandwidth can lead 131 

to an over-smoothing of the probability density function (PDF) or residual predictions, so that 132 

detailed local information will not be effectively captured. On the contrary, under-estimating 133 

the bandwidth can make the general trend become more vulnerable to localised features, or 134 

even noise (Li et al., 2014). Although many methods for bandwidth estimation exist in other 135 

disciplines (e.g. mathematics and statistics (e.g. Hall et al., 1992; Park and Marron, 1990; 136 

Rudemo, 1982; Scott, 1992; Scott and Terrell, 1987)), in almost all existing PMI IVS studies 137 
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in environmental modelling (e.g. Bowden et al., 2005a,b; He et al., 2011; May et al., 2008a,b) 138 

the Gaussian reference rule (GRR) has been used predominately for bandwidth estimation 139 

due to its simplicity. However, as highlighted by Harrold et al. (2001) and Galelli et al. 140 

(2014), use of the GRR can result in less accurate estimation of MI and PMI for data that are 141 

highly non-Gaussian, which is generally the case in environmental and water resources 142 

modelling problems. In addition, Li et al. (2015) showed that PMI IVS performance can be 143 

improved if alternative bandwidth estimation methods are used for MI and RE for data that 144 

are non-Gaussian. 145 

Another potential problem with kernel based methods is the so called ‘boundary issue’, which 146 

is associated with the inaccuracies in density estimation arising from the extension of 147 

symmetrical kernels beyond the feasible bounds of potential input variable values (e.g. 148 

densities associated with negative values of flow obtained using symmetrical kernels) (Wand 149 

and Jones, 1995) and generally results in an underestimation of MI or residuals near the 150 

boundary. This is commonly encountered in environmental and water resources modelling by 151 

the fact that data can be bounded due to their physical feasibility (e.g. rainfall-runoff data are 152 

bounded at zero). Although a number of potential methods have been proposed within the 153 

statistical literature for addressing this issue (e.g. Cowling and Hall, 1996; Dai and Sperlich, 154 

2010; Fan, 1992; Fan and Gijbels, 1996; Gasser and Müller, 1979; Hall and Park, 2002; 155 

Marron and Ruppert, 1994; Schuster, 1985; Zhang and Karunamuni, 1998), their 156 

effectiveness has not yet been tested in the context of PMI-based IVS for data-driven 157 

environmental modelling.  However, this is likely to be a significant problem, as 158 

environmental data can be highly skewed near variable boundaries. Consequently, there is a 159 

need to establish to what degree the performance of PMI IVS is influenced by the boundary 160 

issue, and which methods are the most effective in addressing this. 161 

In order to address the aforementioned research needs, the objectives of the current study are: 162 

(i) to assess if, and to what degree, the performance of PMI IVS can be improved by various 163 

approaches to addressing boundary issues for data with different properties (i.e. degree of 164 

linearity and degree of normality); and (ii) to develop and test a set of preliminary empirical 165 

guidelines for the selection of the most appropriate methods for bandwidth estimation and 166 

addressing boundary issues for data with different properties. The remainder of this paper is 167 

organised as follows. An explanation of PMI IVS and boundary issues is provided in Section 168 

2, followed by the methodology for fulfilling the outlined objectives in Section 3. The results 169 
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are presented and analysed in Section 4. The proposed guidelines are validated on the semi-170 

real studies in Section 5, before a summary and conclusions given in Section 6. 171 

 172 

2 BACKGROUND ON PMI IVS AND BOUNDARY ISSUES  173 

2.1 PMI IVS 174 

Although details of the PMI IVS approach are provided in a number of papers (e.g. Sharma, 175 

2000; Bowden et al., 2005a; May et al., 2008b; He et al., 2011; May et al. 2011; Li et al., 176 

2015), a brief outline of the main steps in the process are given below for the sake of 177 

completeness: 178 

Let: 𝑿 = [𝑋1…  𝑋𝑚]
𝑇be the input vector, where 𝑚 is the number of inputs; 𝑦 be the output; 179 

and(𝑿𝑗 , 𝑦𝑗) be the observed pairs of input and output data for 𝑗 = 1,… , 𝑛, where n is the 180 

number of observations. 181 

Step 1: Procure candidate inputs 𝑿 and the output 𝑦 based on an understanding of the system 182 

to be modelled; 183 

Step 2: Estimate the marginal PDF of each candidate input 𝑓(𝑋𝑖)and the output𝑓(𝑦) through 184 

univariate kernel density estimation (KDE) (i.e. 𝐾ℎ𝑥(𝑋𝑖) and 𝐾ℎ𝑦(𝑦)) (May et al., 2008b; 185 

Scott, 2004; Wand and Jones, 1995), where ℎ𝑥 and ℎ𝑦are the univariate kernel bandwidths, 186 

which determine the accuracy of the kernel based marginal PDFs (Duong and Hazelton, 2003; 187 

Scott, 1992; Wand and Jones, 1995); 188 

Step 3: Calculate the joint PDF 𝑓(𝑋𝑖, 𝑦)between each candidate input and the output through 189 

bivariate KDE (Cacoullos, 1966; Parzen, 1962). Calculation of the bivariate KDE requires 190 

the determination of a bandwidth matrix, which is formed by the univariate kernel 191 

bandwidthsℎ𝑥 and ℎ𝑦as mentioned above; 192 

Step 4: Approximate the MI 𝐼𝑋𝑖,𝑦between each candidate input 𝑋𝑖and the output 𝑦based on 193 

the estimated marginal ( 𝑓(𝑋𝑖) and 𝑓(𝑦) ) and joint 𝑓(𝑋𝑖, 𝑦) PDFs in accordance with 194 

Shannon’s entropy (Shannon, 1948), which measures the reduction in uncertainty in𝑦 due to 195 

an observation of 𝑋𝑖; 196 

Step 5: Select the candidate input with the highest MI; 197 

Step 6: Remove the redundant information provided by the selected input(s) through (i) 198 

development of input-output model(s) 𝑚̂𝑦(𝑋𝑖∗)between the selected input(s) 𝑋𝑖∗ and the 199 
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output 𝑦and (ii) obtaining the residuals (𝑦 − 𝑚̂𝑦(𝑋𝑖∗)) of these models (i.e. the components 200 

of the remaining input and output that are not captured by a conditional prediction by the 201 

selected input).  In past studies, kernel regression models, such as generalised regression 202 

neural networks (GRNNs) (Specht, 1991), have been used for this purpose; 203 

Step 7: Determine if the selected stopping criterion has been satisfied .Potential stopping 204 

criteria include bootstrapping, tabulated critical values, the Akaike information criterion 205 

(AIC), and the Hampel test, as discussed and tested in May et al. (2008b).  If the stopping 206 

criterion has been satisfied, stop the process.  If the stopping criterion has not been satisfied, 207 

proceed to step 8; 208 

Step 8:Estimate the marginal PDF (i.e. 𝑓(𝑣𝑖) and 𝑓(𝑢)) of each remaining candidate input 209 

𝑣𝑖 = 𝑋𝑖 − 𝑚̂𝑋𝑖
(𝑋𝑖∗) and output residual 𝑢 = 𝑦 − 𝑚̂𝑦(𝑋𝑖∗) obtained in Step 6 through 210 

univariate kernel density estimation (Wand and Jones, 1995; Scott, 1992; May et al., 2008b); 211 

Step 9: Calculate the joint PDF 𝑓(𝑣𝑖, 𝑢) between each remaining candidate input 𝑣𝑖  and the 212 

output residuals 𝑢 through bivariate kernel density estimation (Cacoullos, 1966; Parzen, 213 

1962); 214 

Step 10: Approximate the MI 𝐼𝒗𝒊,𝑢between each remaining candidate input 𝑣𝑖and the output 215 

residuals 𝑢 based on the estimated marginal and joint PDFs in accordance with Shannon’s 216 

entropy (Shannon, 1948). This is the PMI between the candidate input and output; 217 

Step 11: Select the candidate input with highest PMI; 218 

Step 12: Repeat Steps 7 to 12. 219 

As can be seen, the performance of PMI IVS is a function of MI approximation (Steps 2 to 4 220 

and 7 to 9) and RE (Step 6).  As discussed previously, the accuracy of MI approximation is a 221 

function of the way the kernel density is estimated (KDE in Step 2 and Step 3), which is 222 

likely to be affected by boundary issues.  In addition, based on the way residual have been 223 

estimated in previous studies (i.e. using kernel regression models in Step 6), the accuracy of 224 

RE is also affected by boundary issues.  However, it should be noted that there is the 225 

possibility of avoiding any potential boundary issues associated with RE by using modelling 226 

approaches that are not reliant on kernel regression methods. Further details of the boundary 227 

issues in relation to the steps of PMI IVS are given in the following subsection.   228 



9 

 

2.2 Boundary issues in PMI IVS 229 

Let 𝑓 indicate a non-parametric estimation of the marginal( 𝑚 = 1) and joint(𝑚 > 1)PDFs of 230 

the input 𝑿with support [−𝒂, 𝒂], and 𝑿 = [𝑋1…  𝑋𝑚]
𝑇be the input vector, where𝑚  is the 231 

number of input variables (i.e., the number of elements in the input column vector𝑿); 232 

𝑿𝑗 = [𝑋1
𝑗
… 𝑋𝑚

𝑗
]
𝑇
 are the observed input data from which the non-parametric estimation is 233 

undertaken, for  𝑗 = 1,… , 𝑛 , where n is the number of observations(data points). The 234 

conventional KDE (used in Steps 2, 3, and 6 in PMI IVS) PDF is given by 235 

𝒇̂(𝑿𝒊; 𝑯) =
𝟏

𝒏
∑ 𝑲𝑯(𝑿𝒊 − 𝑿𝒊

𝒋
)𝒏

𝒋=𝟏  (1) 236 

where 𝑋𝑖represents the 𝑖th input vector and𝐾𝐻 denotes the kernel type, commonly selected as 237 

the Gaussian kernel (May et al., 2008b; Scott, 1992; Wand and Jones, 1995), which is 238 

expressed as  239 

𝑲𝑯(𝑿) =
𝟏

(√𝟐𝝅|𝑯|)𝒎
𝒆𝒙𝒑 [−

𝟏

𝟐
𝑿𝑻𝑯−𝟏𝑿]                                                                         (2) 240 

In Eq. (2), 𝑯 is the kernel bandwidth matrixif 𝑚 > 1 (or kernel bandwidth for univariate 241 

problems if 𝑚 = 1). The commonly used 𝐾𝐻is symmetric, satisfies the following integral and 242 

moment conditions∫𝐾𝐻(𝑿)𝑑𝑿 = 1,∫𝑿𝐾𝐻(𝑿)𝑑𝑿 = 0,∫𝑿𝑿𝑇𝐾𝐻(𝑿)𝑑𝑿 = 𝑚, and has at least 243 

two continuous derivatives. According to Dai and Sperlich (2010), if the support [−𝒂, 𝒂]of 𝑓 244 

is bounded, and in the absence of exponentially falling tails (e.g. support  [0, 𝒂]), strong 245 

under-estimation occurs for all data points in the boundary region, which is defined as a 246 

distance of the bandwidth h from the boundary, because of the nonzero KDE outside the 247 

support of 𝑓. As a consequence, the corresponding bias of 𝑓 is larger than expected. For 248 

example, the bias of 𝑓  is of order 𝑂(ℎ), rather than 𝑂(ℎ2), at the boundary point for the 249 

univariate case in accordance with Dai and Sperlich (2010), Karunamuni and Alberts (2005), 250 

and Wand and Jones (1995). These are the so-called ‘boundary issues’ associated with non-251 

parametric kernel-based estimation. A graphical representation of boundary issue (in 2D) can 252 

be found in Hazelton and Marshall (2009). 253 

As mentioned previously, for PMI IVS in environmental modelling, boundary issues can 254 

potentially be encountered in both MI (through KDE, in steps 2 and 3) and RE (through KDE, 255 

in step 6) when the observations are bounded and/or follow non-Gaussian distributions (e.g. 256 

with high skewness and kurtosis). 257 
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2.3 Potential options for solving boundary issues in PMI IVS 258 

In order to address the impact of boundary issues, a number of methods have been suggested 259 

in the literature (e.g. Dai and Sperlich, 2010; Karunamuni and Alberts, 2005;Wand and Jones, 260 

1995;Fan and Gijbels, 1996), which have been categorised in accordance with whether they 261 

can be used during MI estimation, RE, or both, as outlined in Fig. 1. Methods used to correct 262 

the boundary issue in MI estimation can be further divided into two groups based on whether 263 

they modify kernel functions or bandwidths. As can be seen from Fig.1: 264 

1. Methods that consider modification of the kernel functions include:  265 

 Reflection correction (RC) (Schuster, 1985; Silverman, 1986), which ‘reflects’ the 266 

data at the boundary and adds the density outside the support of 𝑓  back to the 267 

boundary region; 268 

 Boundary kernel (BK) (Gasser and Müller, 1979; Marshall and Hazelton, 2010; 269 

Zhang and Karunamuni, 2000), which replaces the conventional Gaussian kernel with 270 

a more adaptive kernel that is able to capture any shape of the density, although 271 

negative densities can be generated near the boundary; 272 

 Pseudo-data approach (PA)(Cowling and Hall, 1996), which generates additional data 273 

based on the ‘three-point-rule’ and combines them with the original data before 274 

implementing kernel estimation; 275 

 Kernel transformation (KT) (Marron and Ruppert, 1994), which requires (i) a 276 

transformation function 𝑔 so that 𝑔(𝑋𝑖) has a first derivative of 0 at the boundary; (ii) 277 

a kernel estimator with reflection on 𝑔(𝑋𝑖); and (iii) a back-conversion through the 278 

change-of-variables formula to achieve 𝑓. As a result of applying the transformation 279 

function 𝑔, the impact of the boundary issue becomes insignificant because the non-280 

Gaussian data are transformed to a nearly Gaussian distribution prior to KDE; 281 

 Local linear method (LLM) (Zhang and Karunamuni, 1998), which plugs a special 282 

case of the boundary kernel (with fixed bandwidth) into a local linear fitting function;   283 

 Empirical translation correction (ETC) (Hall and Park, 2002; Jakeman et al., 2006), 284 

which removes boundary issues by introducing an additional empirical data 285 

perturbation term 𝛼̂, which is a translation term constructed specifically to adjust the 286 

bias of the density estimate to be within the boundary region, inside the kernel. 287 

 288 

2. Methods that consider modification of the bandwidth include: 289 
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 Local bandwidth (reducing) (LBR) (Dai and Sperlich, 2010), which adopts a reduced 290 

local bandwidth within the boundary region; 291 

 Local bandwidth (enlarging) (LBE) (Gasser et al., 1985; Hall and Wehrly, 1991; John, 292 

1984), which uses a larger local bandwidth within the boundary region. 293 

 294 

As can be seen from Fig.1, all of the methods used to correct the boundary issue in MI 295 

estimation are theoretically also applicable to RE in cases where kernel regression models are 296 

used for this purpose.  However, in the case of RE, there are also other alternatives for 297 

addressing boundary issues, including modification of the kernel regression type and the use 298 

of kernel free modelling approaches.  In relation to different kernel regression types, typical 299 

options include local linear, quadratic, and high order polynomial regression (LLP, LQP, and 300 

LHOP), all of which belong to the local polynomial family. Compared with the most 301 

commonly used univariate general regression neural network (GRNN) (which is equivalent to 302 

the Nadaraya-Watson estimator), the LLP (also known as the linear smoother), LQP, and 303 

LHOP regression types are much less influenced by boundary issues (Dai and Sperlich, 2010; 304 

Fan, 1992; Fan and Gijbels, 1996) because the weighted average of each estimating point is 305 

more adaptive to the actual observations. In relation to kernel free modelling approaches, 306 

multi-layer perceptron artificial neural networks (MLPANNs) provide an attractive option, as 307 

they are universal function approximators and have been applied successfully and extensively 308 

to environmental (Adeloye et al., 2012; Ibarra-Berastegi et al., 2008; Luccarini et al., 2010; 309 

Maier and Dandy, 1997; Maier et al., 2004; Millie et al., 2012; Muñoz-Mas et al., 2014; 310 

Ozkaya et al., 2007; Pradhan and Lee, 2010; Young II et al., 2011) and water resources 311 

(Abrahart et al., 2007; Abrahart et al., 2012; ASCE, 2000a, b; Dawson and Wilby, 2001; 312 

Maier and Dandy, 2000; Maier et al., 2010; Wolfs and Willems, 2014; Wu et al., 2014a; Wu 313 

et al., 2014b) problems. In addition, they are independent of boundary issues due to their 314 

kernel free features (Maier et al., 2010; Wu et al., 2014b), although a major drawback of 315 

MLPANNs is their high computational requirements. Even though there are a number of 316 

potential methods aiming to ameliorate boundary issues by means of modification of the 317 

kernel function, not all are suited to MI estimation from a practical perspective. This is 318 

because MI estimation requires application of these methods in a bivariate setting, but the 319 

performance of a number of the methods has not been verified under these conditions. 320 

Consequently, in this paper, only selected and appropriate approaches from the 321 
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aforementioned methods (see Fig. 1) are implemented to fulfil the objectives of this paper, as 322 

detailed in the subsequent section. 323 

 324 

Fig.1. Taxonomy of methods for dealing with boundary issues in mutual information and residual estimation 325 

 326 

3 METHODOLOGY 327 

The approach adopted for the systematic assessment of methods for addressing boundary 328 

issues on the performance of PMI IVS is outlined in Fig. 2.  As can be seen, the approach 329 

consists of four main steps, including: (i) generation of input/output data that follow a range 330 

of distributions (with different degrees of normality, measured by skewness and kurtosis, and 331 

severity of boundary issue, as classified by how the probability density was clustered near the 332 

boundary); (ii) estimation of MI using different approaches for dealing with boundary issues; 333 

(iii) estimation of residuals using different approaches for dealing with boundary issues; (iv) 334 

assessment of the performance of PMI IVS in terms of input variable selection accuracy and 335 

computational efficiency for different combinations of approaches for dealing with boundary 336 

issues for MI and RE. Details of each of these steps are given in the subsequent sections. 337 

 338 
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 339 

Fig.2. Overview of the proposed analysis for the PMI IVS influenced by bandwidth and boundary issues 340 

 341 

3.1 Generate input/output data with different degrees of normality 342 

As pointed out by Galelli et al. (2014), the accuracy of IVS algorithms can only be assessed 343 

in an objective and rigorous manner if the correct outputs are known.  Consequently, input 344 

data are generated from distributions with differing degrees of normality, and the 345 

corresponding output data are obtained by substituting the generated inputs into mathematical 346 
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models. The synthetic data are generated from seven distributions with different degrees of 347 

normality, including normal (NORM), log-normal (LOGN), exponential (EXP), gamma 348 

(GAMMA), Pearson type III (PT3), log-Pearson type III (LOGPT3), and extreme value type I 349 

(EVT1), as these are the most commonly adopted distributions in hydrological modelling 350 

(Chow et al., 1988) and result in boundary issues of varying severity. The degree of normality 351 

of the input/output data is measured using skewness and kurtosis based on Bennett et al. 352 

(2013). The properties of each distribution are listed in Tables 1 and 2. In total, 525data 353 

points are generated for each of the exogenous inputs for the three functions considered 354 

(details given below) and the first 25 points are rejected in order to prevent initialisation 355 

effects (May et al., 2008b), resulting in 500 data points to be used in the analysis. 356 

Table 1Details of the distributions used to generate values of the exogenous input variables and the 357 
statistical properties of the generated data for all time series models (EAR4, TEAR10) 358 
 359 

Distribution Key Parameters s k Normality Boundary Issue 

NORM Mean=3.0; sd =1.0 0.000 -0.013 High None 

GAMMA Shape=2.0; Scale=1.0 1.370 2.638 High Low 

LOGN Mean=0.5; sd=1.0 5.326 53.694 Low High 

EXP Rate=1.0 2.132 7.219 Moderate Moderate 

PT3 Shape=2.5; Scale=3.0; Location=2.0 1.251 2.381 High Low 

LOGPT3 Shape=0.5; Scale=0.2; Location=2.0 4.792 43.265 Low High 

EVT1 Shape=0.0; Scale=0.5; Location=10.0 1.198 2.880 High Low 

(The skewness and kurtosis shown in the table are the averaged values of all input and output data) 360 

 361 
Table 2Details of the distributions used to generate values of the input variables and the statistical 362 
properties of the generated data for the non-linear model (NL) 363 
 364 

Distribution Key Parameters s k Normality Boundary Issue 

NORM Mean=3.0; sd =1.0 1.826 5.158 High None 

GAMMA Shape=2.0; Scale=1.0 10.520 192.091 Low High 

LOGN Mean=0.5; sd=0.4 5.389 47.767 Low High 

EXP Rate=1.0 14.029 334.408 Low High 

PT3 Shape=0.5; Scale=1.0; Location=0.5 16.271 514.270 Low High 

LOGPT3 Shape=0.5; Scale=0.2; Location=0.5 14.261 390.522 Low High 

EVT1 Shape=0.1; Scale=0.0; Location=10.0 1.788 9.807 Moderate Moderate 

(The skewness and kurtosis shown in the table are the averaged values of all input and output data) 365 
 366 
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The output data are generated by substituting the generated input data into three synthetic 367 

models, including one linear exogenous auto-regressive time series model (EAR4), one 368 

threshold exogenous auto-regressive time series model (TEAR10), and one non-linear input-369 

output function (NL), as they are representative of general water resource problem scenarios 370 

with increasing degrees of problem non-linearity.  Similar models have also been used in 371 

previous IVS algorithm evaluation studies (Bowden et al., 2005b; Galelli and Castelletti, 372 

2013; Li et al., 2014, 2015; May et al., 2008b). 373 

The equation of the EAR4 model is given by 374 

𝑥𝑡 = 0.6𝑥𝑡−1 − 0.4𝑥𝑡−4 + 𝑝𝑡−1 + 𝜀𝑡                                                                                 (3) 375 

wherextdenotes the output time series; xt−n stands for the input time series with lag n; pt−n 376 

represents the exogenous input with lag 𝑛; and 𝜀𝑡  is the introduced error term (explained 377 

below).The equation for the TEAR10 model is given by 378 

𝑥𝑡 = {
−0.5𝑥𝑡−6 + 0.5𝑥𝑡−10 − 0.3𝑝𝑡−1 + 𝜀𝑡; 𝑥𝑡−6 ≤ 0

0.8𝑥𝑡−10 − 0.3𝑝𝑡−1 + 𝜀𝑡;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                      (4)  379 

The equation for NL is given by 380 

 𝑦 = (𝑥2)
3 + 𝑥6 + 5 𝑠𝑖𝑛(𝑥9) + 𝜀𝑡                                                                                      (5) 381 

The first two time series models are modified from May et al. (2008b) by introducing an 382 

additional independent lagged input 𝑝𝑡−1  into the exogenous AR models, and the third 383 

synthetic model is modified from the one used by Bowden et al. (2005a) through the slight 384 

adjustment of the significance (coefficient) of each input. The rationale behind these 385 

modifications is to create data sets with known distributions through the independent lagged 386 

input 𝑝𝑡−1 and to generate known significance (relative ranking) of input variables through 387 

adjusting the coefficient of each input. All three synthetic models have also been used by Li 388 

et al. (2014, 2015). The error term 𝜀𝑡  follows a normal distribution 𝑁(0,0.01) , which 389 

introduces noise without obscuring the influence of the actual independent variables. In the 390 

present study, all data are scaled between 0 and 1. 391 

3.2 Estimate MI using different boundary correctors and suggested bandwidth estimators 392 

By recalling the fact that not all potential methods aiming to ameliorate boundary issues are 393 

suited to MI estimation from a practical point of view, as mentioned in Section 2.2,only three 394 
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methods, including the conventional kernel (CK) (Bowden et al., 2005a; He et al., 2011; May 395 

et al., 2008b) without boundary correction, the reflection correction (RC) (Schuster, 1985; 396 

Silverman, 1986), and the boundary kernel (BK) (Gasser and Müller, 1979; Marshall and 397 

Hazelton, 2010; Zhang and Karunamuni, 2000) are applied in this study. The CK is selected 398 

as a benchmark model against which the performance of the other approaches can be 399 

compared; the RC is adopted because it can be extended into a bivariate setting with relative 400 

ease; while the BK is implemented because it has theoretically amenable derivations and 401 

successful applications to both univariate and bivariate cases. Details of these estimators are 402 

given in the following subsections. It should be noted that in each case, in order to minimise 403 

any impact due to bandwidth selection, the bandwidths are estimated based on the GRR (for 404 

data with Gaussian or nearly Gaussian distributions; e.g. NORM and EVT1 synthetic cases) 405 

and 2-stage direct plug-in (DPI) (for data with non-Gaussian distributions; e.g. LOGN and 406 

LOGPT3 synthetic cases), according to the empirical guidelines proposed by Li et al. (2015). 407 

Conventional kernel (CK) The CK is the most commonly used approach for the estimation 408 

of the PDF and its expression is given in Eqs. (1) and (2).  As mentioned in Section 2, this 409 

method does not provide any boundary correction, and is therefore used as a benchmark 410 

approach. 411 

Reflection correction (RC) As described in Section 2, the motivation behind the RC 412 

approach is to ‘reflect’ data (add −𝑋𝑖
𝑗
, 𝑗 = 1,⋯ , 𝑛 to the original data set) so that the 413 

underestimated density within the boundary region can be added back based on these 414 

reflected data. The more adaptive approach is to only reflect the data within the boundary 415 

region (add −𝑋𝑖 if ℎ𝑥 ≥ 𝑋𝑖 ≥ 0 ) (Dai and Sperlich, 2010; Silverman, 1986) and the 416 

corresponding expression for the univariate RC becomes 417 

𝑓(𝑋𝑖; ℎ𝑥) =

{
 

 
1

𝑛
∑ [𝐾ℎ𝑥(𝑋𝑖 − 𝑋𝑖

𝑗
) + 𝐾ℎ𝑥(𝑋𝑖 + 𝑋𝑖

𝑗
)]; ℎ𝑥 ≥ 𝑋𝑖 ≥ 0𝑛

𝑗=1

1

𝑛
∑ [𝐾ℎ𝑥(𝑋𝑖 − 𝑋𝑖

𝑗
)]; 𝑋𝑖 > ℎ𝑥

𝑛
𝑗=1

0; 𝑋𝑖 < 0 

 (6) 418 

whereℎ𝑥is the bandwidth for input 𝑋𝑖and the expression for the bivariate RC can be extended 419 

as 420 
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𝑓(𝑋𝑖, 𝑦;𝑯) =421 

{
 
 
 
 
 

 
 
 
 
 1
𝑛
∑ [𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
]) + 𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

−𝑋𝑖
𝑗

−𝑦𝑗
])]𝑛

𝑗=1 ; ℎ𝑥 ≥ 𝑋𝑖 ≥ 0, ℎ𝑦 ≥ 𝑦 ≥ 0

1

𝑛
∑ [𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
]) + 𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

−𝑋𝑖
𝑗

𝑦𝑗
])]𝑛

𝑗=1 ; ℎ𝑥 ≥ 𝑋𝑖 ≥ 0,  𝑦 > ℎ𝑦

1

𝑛
∑ [𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
]) + 𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

−𝑦𝑗
])]𝑛

𝑗=1 ; 𝑋𝑖 > ℎ𝑥 , ℎ𝑦 ≥ 𝑦 ≥ 0

1

𝑛
∑ [𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
])]𝑛

𝑗=1 ; 𝑋𝑖 > ℎ𝑥 ,  𝑦 > ℎ𝑦

0; 𝑋𝑖 < 0 , 𝑦 < 0

                  (7) 422 

where𝑯 is the bandwidth matrix, defined as  423 

𝑯 =  [
ℎ𝑥
2 𝜌𝑥𝑦ℎ𝑥ℎ𝑦

𝜌𝑥𝑦ℎ𝑥ℎ𝑦 ℎ𝑦
2 ]                                                                                                     (8) 424 

(known as a hybrid class of bandwidth matrix), where ℎ𝑦 is the bandwidth for output 425 

𝑦 and𝜌𝑥𝑦is the correlation coefficient between input 𝑋𝑖and output 𝑦, in accordance with Li et 426 

al. (2015). The detailed explanation of the bivariate RC can be found in the Appendix A.1 427 

and it should be noted that the conditional terms all correspond to different regions in the data 428 

space, as influenced by both boundaries, just x, just y, and neither. 429 

Boundary kernel (BK) Compared with RC, BK is more flexible, as it is designed to 430 

automatically adapt to any shape of density within the boundary region. The motivation 431 

behind BK is that it is a type of linear boundary kernel for use with an adaptive density 432 

estimator (Abramson, 1982) and the adaptive density estimator adjusts the weight of each of 433 

the kernel functions in accordance with the actual distribution of the data.  Consequently, no 434 

assumption is required about the distribution of the data (Marshall and Hazelton, 2010).  435 

The expression of the univariate BK is given by 436 

𝐵(𝑢; ℎ𝑥) =
[(𝑎3

(1)
+4𝑎2)−(𝑎2

(1)
+3𝑎1)𝑢]𝐾ℎ𝑥(𝑢)

(𝑎3
(1)
+4𝑎2)𝑎0−(𝑎2

(1)
+3𝑎1)𝑎1

 (9) 437 

where 𝑎𝛼
(𝛾)
= ∫𝑢𝛼𝐷𝛾𝐾ℎ(𝑢) 𝑑𝑢 ; 𝐷𝛾𝐾ℎ(𝑢) = (𝜕∫𝑢𝐾ℎ(𝑢)𝑑𝑢 𝜕⁄ 𝑢∫𝑢𝐾ℎ(𝑢)𝑑𝑢)𝐾ℎ(𝑢) ; and 𝑢 =438 

(𝑋𝑖 − 𝑋𝑖
𝑗
) ℎ𝑥⁄ . The adaptive kernel estimator 𝐵(𝑢; ℎ𝑥) results from a linear combination of 439 

kernel terms, combined with an adaptive bandwidth, dependent on the density function 𝑓(𝑥). 440 

This maintains the bias as 𝑂(ℎ2) for thedensity estimation function 𝑓 regardless of the 441 

boundary issue. . The scaled data result in two regions, including the boundary region 442 

(𝑢𝑚𝑖𝑛, 1) and the boundary free region (1, 𝑢𝑚𝑎𝑥).  The univariate BK has an adaptive form 443 
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for the scaled data within (𝑢𝑚𝑖𝑛, 1) and a fixed form for the scaled data within (1, 𝑢𝑚𝑎𝑥). By 444 

extending this concept into two dimensions, the expression of the bivariate BK is given as 445 

𝐵(𝑢, 𝑣;𝑯) =
𝑏0𝐾𝐻(𝑢,𝑣)+𝑏1𝑢𝐾𝐻(𝑢,𝑣)+𝑏2𝑣𝐾𝐻(𝑢,𝑣)

𝑏0𝑎00+𝑏1𝑎10+𝑏2𝑎01
 (10) 446 

where 447 

𝑏0 = (𝑎30
(10)

+ 𝑎21
(01)

+ 5𝑎20) (𝑎12
(10)

+ 𝑎03
(01)

+ 5𝑎02) − (𝑎21
(10)

+ 𝑎12
(01)

+ 5𝑎11)(𝑎21
(10)

+ 𝑎12
(01)

+ 5𝑎11); 448 

𝑏1 = (𝑎11
(10)

+ 𝑎02
(01)

+ 4𝑎01) (𝑎21
(10)

+ 𝑎12
(01)

+ 5𝑎11) − (𝑎20
(10)

+ 𝑎11
(01)

+ 4𝑎10)(𝑎12
(10)

+ 𝑎03
(01)

+ 5𝑎02); 449 

𝑏2 = (𝑎20
(10)

+ 𝑎11
(01)

+ 4𝑎10) (𝑎21
(10)

+ 𝑎12
(01)

+ 5𝑎11) − (𝑎11
(10)

+ 𝑎02
(01)

+ 4𝑎01)(𝑎30
(10)

+ 𝑎21
(01)

+ 5𝑎20); 450 

and 𝑣 = (𝑦 − 𝑦𝑗) ℎ𝑦⁄ . The bivariate BK is adaptive for the scaled data within the boundary 451 

region [i.e. 𝑢 ∈ (𝑢𝑚𝑖𝑛, 1) and/or  𝑣 ∈ (𝑣𝑚𝑖𝑛, 1) ], however, it becomes constant when the 452 

scaled data are within the boundary free region [i.e. (1, 𝑢𝑚𝑎𝑥)and(1, 𝑣𝑚𝑎𝑥)]. Further details 453 

can be found in Marshall and Hazelton (2010).  454 

3.3 Estimate residuals using alternative approaches and suggested bandwidth estimators 455 

In order to assess the effectiveness of different approaches to minimising the impact of any 456 

boundary issues in RE, selected approaches from those shown in Fig. 2 are implemented.  In 457 

addition to the most commonly used GRNN with the CK (as a benchmark), seven alternative 458 

residual estimators are implemented. Of these, three are based on the modification of the 459 

kernel function (i.e. BC, BK, and PA); one is based on the modification of the kernel 460 

bandwidth (i.e. LBR); two are based on the modification of the regression type (i.e. LLP and 461 

LQP); and one is a kernel free approach (i.e. MLPANN). The selected approaches are not 462 

only representative of the different categories outlined in Fig. 2, but are also theoretically 463 

applicable to univariate approaches to RE.  Details of these methods are given in the 464 

following subsections.  465 

It should be noted that in each case, in order to minimise any impact due to bandwidth 466 

selection, where applicable, the bandwidths are estimated based on the empirical guidelines 467 

proposed by Li et al. (2014), as outlined in Table 3. 468 

Table 3 GRNN bandwidth estimation techniques used for residual estimation during the PMI IVS 469 
 470 

Synthetic data set  1 EAR4 

Data distribution NORM EVT1 PT3 GAMMA EXP LOGN LOGPT3 

Bandwidth estimator GRR GRR GRR SVO SVO SVO SVO 

Synthetic data set 2 TEAR10 
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Data distribution NORM EVT1 PT3 GAMMA EXP LOGN LOGPT3 

Bandwidth estimator GRR GRR GRR SVO SVO SVO SVO 

Synthetic data set 3 NL 

Data distribution NORM EVT1 LOGN PT3 EXP LOGPT3 GAMMA 

Bandwidth estimator GRR GRR SVO SVO SVO SVO SVO 

(GRR stands for the Gaussian reference rule; SVO denotes single variable optimisation) 471 

GRNN with CK The GRNN with CK, developed by Specht (1991), is the univariate 472 

regression approach used for residual approximation in all previous studies of PMI IVS in 473 

environmental modelling. Its expression is given by (Li et al., 2014) 474 

𝑦̂𝐺𝑅𝑁𝑁(𝑋𝑖, ℎ) =

∑ 𝑦𝑗𝑒𝑥𝑝[−
(𝑋𝑖−𝑋𝑖

𝑗
)
2

2ℎ𝑥
2 ]𝑛

𝑗=1

∑ 𝑒𝑥𝑝[−
(𝑋𝑖−𝑋𝑖

𝑗
)
2

2ℎ𝑥
2 ]𝑛

𝑗=1

 (11) 475 

This method does not involve any boundary correction, therefore it is expected to be 476 

significantly influenced by boundary issues and is used as a benchmark approach.  477 

GRNN with RC The motivation behind RC (Silverman, 1986) has been explained in 478 

Section 2.2 and Section 3.2. The RC method is implemented by replacing the symmetric 479 

kernel estimation part 𝑒𝑥𝑝 [−
(𝑋𝑖−𝑋𝑖

𝑗
)
2

𝟐ℎ𝑥
2 ] in Eq. (11) with the RC in Eq. (6). The expression 480 

for the estimator then becomes  481 

𝑦̂𝑅𝐶(𝑋𝑖, ℎ) =

{
 
 
 
 
 
 

 
 
 
 
 
 ∑ 𝑦𝑗[𝑒𝑥𝑝(−

(𝑋𝑖−𝑋𝑖
𝑗
)
2

2ℎ𝑥
2 )+𝑒𝑥𝑝(−

(𝑋𝑖+𝑋𝑖
𝑗
)
2

2ℎ𝑥
2 )]𝑛

𝑗=1

∑ [𝑒𝑥𝑝(−
(𝑋𝑖−𝑋𝑖

𝑗
)
2

2ℎ𝑥
2 )+𝑒𝑥𝑝(−

(𝑋𝑖+𝑋𝑖
𝑗
)
2

2ℎ𝑥
2 )]𝑛

𝑗=1

; ℎ𝑥 ≥ 𝑋𝑖 ≥ 0

∑ 𝑦𝑗[𝑒𝑥𝑝(−
(𝑋𝑖−𝑋𝑖

𝑗
)
2

2ℎ𝑥
2 )]𝑛

𝑗=1

∑ [𝑒𝑥𝑝(−
(𝑋𝑖−𝑋𝑖

𝑗
)
2

2ℎ𝑥
2 )]𝑛

𝑗=1

; 𝑋𝑖 > ℎ𝑥

0; 𝑋𝑖 < 0

 (12) 482 

GRNN with BK The motivation behind BK has also been explained in Section 2.2 and 483 

Section 3.2. Similar to the approach taken with the RC method, the boundary kernel [Eq. (9)] 484 

is plugged into Eq. (11), resulting in the following expression 485 
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𝑦̂𝐵𝐾(𝑋𝑖, ℎ) =

∑ 𝑦𝑗{
[(𝑎3

(1)
+4𝑎2)−(𝑎2

(1)
+3𝑎1)𝑢]𝐾ℎ(𝑢)

(𝑎3
(1)

+4𝑎2)𝑎0−(𝑎2
(1)

+3𝑎1)𝑎1

}𝑛
𝑗=1

∑ {
[(𝑎3

(1)
+4𝑎2)−(𝑎2

(1)
+3𝑎1)𝑢]𝐾ℎ(𝑢)

(𝑎3
(1)

+4𝑎2)𝑎0−(𝑎2
(1)

+3𝑎1)𝑎1

}𝑛
𝑗=1

                                                                       (13) 486 

GRNN with PA The implementation of PA is different from the above three methods. 487 

According to Cowling and Hall (1996), the motivation behind this approach is to generate 488 

pseudo-data beyond the boundary based on the existing data, so that the under-estimated 489 

kernel density near the boundary can be compensated by these additional data that contain the 490 

same trend. By using the PA, the bias does not increase significantly at the boundary, nor 491 

does the variance. The PA was implemented in three steps. Firstly, two additional data points 492 

are linearly interpolated in-between every two adjacent original data points and the pseudo-493 

data are then generated by the ‘three-point rule’, which is  494 

𝑋(−𝑗) = −5𝑋(
𝑗

3
) − 4𝑋(

2𝑗

3
) +

10

3
𝑋(𝑗), 𝑗 = 1,⋯ , 𝑛                                                            (14) 495 

where𝑋(
𝑗

3
)
 and 𝑋(

2𝑗

3
)
refer to the 

𝑗

3
th and 

2𝑗

3
th data points formed by the interpolated and 496 

original data points (Cowling and Hall, 1996), which effectively capture the features of the 497 

original data. Secondly, the corresponding density estimation is approximated as 498 

𝑓(𝑋𝑖) =
1

𝑛ℎ
{∑ 𝐾ℎ[(𝑋𝑖 − 𝑋𝑖

𝑗
)/ℎ] +𝑛

𝑗=1 ∑ 𝐾ℎ[(𝑋𝑖 − 𝑋𝑖
(−𝑗)

)/ℎ]𝑙
𝑗=1 }                                    (15) 499 

where 𝑙  is an integer less than 𝑛 . When 𝑋𝑖
𝑗

 is within the boundary region, the pseudo-500 

data𝑋𝑖
(−𝑗)

 contribute to the estimation of 𝑓 by rendering the bias and variance to the minimal 501 

possible values 𝑂(ℎ𝑚) and 𝑂[(𝑛ℎ)−1] if 𝑙 is a large integer close to n. However, when 𝑋𝑖
𝑗
 is 502 

not in the vicinity of the boundary region, the correction due to the pseudo-data 𝑋𝑖
(−𝑗)

 is 503 

negligible with small integer  𝑙 , as explained by Cowling and Hall (1996).Although 𝑙  can 504 

significantly affect the performance of boundary correction, determination of this parameter 505 

is not trivial. In the present study, 𝑙 is estimated through the golden section search (GSS) 506 

optimisation algorithm (Press et al., 1992) and the search is truncated using the ceiling 507 

function. Finally, by combining Eq. (11) and Eq. (15), the expression for GRNN(PA) is given 508 

by 509 

𝑦̂𝑃𝐴(𝑋𝑖, ℎ) =
∑ 𝑦𝑗{∑ 𝐾ℎ[(𝑋𝑖−𝑋𝑖

𝑗
)/ℎ]+𝑛

𝑗=1 ∑ 𝐾ℎ[(𝑋𝑖−𝑋𝑖
(−𝑗)

)/ℎ]𝑙
𝑗=1 }𝑛

𝑗=1

∑ 𝐾ℎ[(𝑋𝑖−𝑋𝑖
𝑗
)/ℎ]+𝑛

𝑗=1 ∑ 𝐾ℎ[(𝑋𝑖−𝑋𝑖
(−𝑗)

)/ℎ]𝑙
𝑗=1

                                                  (16) 510 

GRNN with LBR The concept behind the LBR is to adjust the bandwidth within the 511 

boundary region, rather than modifying the kernel. It is found that use of a smaller bandwidth 512 
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within the boundary region can correct the density estimation affected by the boundary issue, 513 

therefore, according to Dai and Sperlich (2010), the bandwidth ℎ used for 𝑎 ≤ 𝑋𝑖
𝑗
≤ 𝑐, where 514 

𝑎 and 𝑐are left and right boundaries determined based on the physical meaning of the variable 515 

(e.g. a case where the average daily rainfall varies between 0 and 20mm), is defined by 516 

ℎ
𝑋𝑖
𝑗 = {

max(𝑋𝑖
𝑗
− 𝑎, 𝜀) ; 𝑖𝑓 𝑎 ≤ 𝑋𝑖

𝑗
< (ℎ + 𝑎)

max(𝑐 − 𝑋𝑖
𝑗
, 𝜀) ; 𝑖𝑓 (𝑐 − ℎ) < 𝑋𝑖

𝑗
≤ 𝑐

ℎ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                    (17) 517 

and 𝜀 = 0.001 is added to avoid zero bandwidth values and the regression model used is 518 

identical to Eq. (11).  519 

Local linear polynomial regression (LLP) As mentioned in Section 2.2, the LLP regression 520 

model is theoretically more advanced than the GRNN in terms of its resistance to boundary 521 

issues (Dai and Sperlich, 2010; Fan, 1992; Fan and Gijbels, 1996). This is due to the fact that 522 

the LLP is a linear order polynomial regression, while the GRNN is a zero-order polynomial 523 

regression. Consequently, the estimates obtained from the former are more driven by the 524 

actual distribution of the data than those obtained from the latter since the estimated weight 525 

of each point is more sensitive to the actual data. As a result, the bias and variance of the 526 

estimates from the former are smaller than those from the latter. The general expression for 527 

models belonging to the local polynomial family is given by 528 

𝑦̂𝐿𝑃(𝑋𝑖; 𝑝, ℎ) = 𝒆1
𝑇 [

𝑠̂0 ⋯ 𝑠̂𝑝
⋮ ⋱ ⋮
𝑠̂𝑝 ⋯ 𝑠̂2𝑝

]

−1

[
𝑡̂0
⋮
𝑡̂𝑝

]                                                                             (18) 529 

where𝒆𝟏  is a vector having 1 in the first entry and 0 elsewhere, 𝑠̂𝑟 = 𝑛
−1∑ (𝑋𝑖

𝑗
−𝑛

𝑗=1530 

𝑋𝑖)
𝑟 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖) and 𝑡̂𝑟 = 𝑛−1∑ (𝑋𝑖

𝑗
− 𝑋𝑖)

𝑟𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)𝑦

𝑗 (Cigizoglu and Alp, 2006).  531 

The univariate LLP is obtained by substituting 𝑝 = 1 into Eq. (18), giving   532 

𝑦̂𝐿𝐿𝑃(𝑋𝑖; 1, ℎ) = 𝑛−1∑
{𝑠̂2−𝑠̂1(𝑋𝑖

𝑗
−𝑋𝑖)}𝐾ℎ(𝑋𝑖

𝑗
−𝑋𝑖)𝑦

𝑗

𝑠̂2𝑠̂0−𝑠̂1𝑠̂1

𝑛
𝑗=1                                                               (19) 533 

Local quadratic polynomial regression (LQP) Although the general expression for the 534 

LQP and LLP is identical [Eq. (18)], the former is more flexible and adaptive than the latter 535 

because 𝑠̂𝑟 and 𝑡̂𝑟 are approximated based on a quadratic relationship (𝑝 = 2), rather than a 536 

linear relationship (𝑝 = 1).  As a result, the LQP is theoretically more resistant to the 537 

boundary issue than the LLP because the density depends more on the actual distribution of 538 
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the data, resulting in smaller values of bias and variance. By substituting𝑝 = 2 into Eq. (18), 539 

the univariate equation for the LQP is given as 540 

𝑦̂𝐿𝑄𝑃(𝑋𝑖; 2, ℎ) = 𝑛
−1∑

[(𝑠̂2𝑠̂4−𝑠̂3𝑠̂3)−(𝑠̂1𝑠̂4−𝑠̂2𝑠̂3)(𝑋𝑖
𝑗
−𝑋𝑖)+(𝑠̂1𝑠̂3−𝑠̂2𝑠̂2)(𝑋

𝑖−𝑋)
2
]𝐾ℎ(𝑋𝑖

𝑗
−𝑋𝑖)𝑦

𝑖

[𝑠̂0(𝑠̂2𝑠̂4−𝑠̂3𝑠̂3)−𝑠̂1(𝑠̂4𝑠̂1−𝑠̂3𝑠̂2)+𝑠̂2(𝑠̂1𝑠̂3−𝑠̂2𝑠̂2)]
𝑛
𝑗=1         (20) 541 

MLPANN The MLP models are developed using the systematic approach proposed by Wu et 542 

al. (2014b). A single hidden layer is used and the optimal number of hidden nodes is obtained 543 

by trial and error, considering a range of 0 to 4. The number of trials is considered to be 544 

sufficient for the three synthetic models (Eqs. (3) to (5)) used in this paper, as the coefficient 545 

of efficiency (CE) values (between estimated and actual residuals) of the selected MLPANN 546 

are all above 0.95, which indicates very good residual estimates in accordance with Bennett 547 

et al. (2013). Such trials also prevent training from over-fitting, as the maximum number of 548 

hidden nodes is 4. The back-propagation (BP) algorithm (with learning rate of 0.1 and 549 

momentum of 0.1, suggested by Wu et al. (2014b)) is used for calibration and the MLPANN 550 

with CE closest to 1.0 is selected as the best model. The optimal number of hidden nodes for 551 

the different models is 2 (EAR4), 2 (TEAR10), and 3 (NL). This is consistent with the 552 

procedure implemented by Li et al. (2015). 553 

3.4 Test regime 554 

As outlined in Fig. 2, 630 synthetic data sets are simulated, which include 30 replicates for 555 

each of the three synthetic models (Eqs. (3), (4) and(5), including25, 25, and 15 candidate 556 

inputs, respectively), for each of the seven distributions. For each of the 630 synthetic data 557 

sets, 16 distinct PMI IVS approaches are applied, consisting of a combination of the 3 558 

methods used for MI estimation and the 8 regression approaches used for RE (as shown in 559 

Table 4), resulting in a total of 10,080 tests.  560 

Of these 16 approaches, three are benchmark approaches without consideration of the 561 

boundary issue (B1 to B3), two aim to improve the boundary issue in MI estimation (M1 to 562 

M2), seven aim to minimise the effect of the boundary issue in RE (R1 to R7), and four take 563 

into account the boundary issue in both MI and RE (C1 to C4). The benchmark studies 564 

represent the most commonly used approach applied in previous studies (B1) and the 565 

proposed approaches for data with non-Gaussian distributions, in accordance with Li et al. 566 

(2014,2015) (B2 and B3). The methods that only address the boundary issue in MI estimation 567 

include the RC and BK based MI estimations, as mentioned in Section 3.2. The approaches 568 

that only investigate the boundary issue in RE contain kernel based (modification of kernel 569 
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function, kernel bandwidth, and kernel type) and kernel free methods, as detailed in Section 570 

3.3. The techniques that consider the boundary issue in both MI and RE are a combination of 571 

one boundary corrector used in MI (RK) and four boundary resistant algorithms from each 572 

category outlined in Sections 2.2 and 3.3. These 16 approaches cover the different 573 

combinations of approaches for dealing with the boundary issue in PMI IVS, although there 574 

are other combinations(combinations of bandwidth, kernel, and regression used in MI and RE 575 

excluded in Table 4) of methods that are likely to result in similar outcomes. In addition, the 576 

influence of the bandwidth selection issue in both MI and RE is minimised by following the 577 

guidelines proposed by Li et al. (2014, 2015), as specified in Sections 3.2 and 3.3, 578 

respectively. 579 

Table 4 Different approaches used for PMI IVS by considering bandwidth and boundary issues  580 

  MI RE 
  Bandwidth Kernel Bandwidth Kernel Regression  

B1 GRR CK GRR CK GRNN 
B2 DPI CK GRR CK GRNN 
B3 DPI CK SVO CK GRNN 
M1 DPI RC SVO CK GRNN 
M2 DPI BK SVO CK GRNN 
R1 DPI CK SVO RK GRNN 
R2 DPI CK SVO BK GRNN 
R3 DPI CK SVO PA GRNN 

R4 DPI CK SVO CK LBR 
R5 DPI CK SVO CK LLP 
R6 DPI CK SVO CK LQP 

R7 DPI CK - - MLPANN 
C1 DPI RK SVO RC GRNN 
C2 DPI RK SVO CK LBR 
C3 DPI RK SVO CK LLP 

C4 DPI RK - - MLPANN 

(B: benchmark approach; M: boundary correction in MI estimation; R: reducing boundary impact in residual estimation; C: 581 

combination of methods resistant to boundary issue, used in both MI and residual estimations) 582 

The Akaike Information Criterion (AIC) (Akaike, 1974) is used as the PMI IVS algorithm 583 

stopping criterion because it provides a good balance between model accuracy and 584 

generalisation ability (Akaike, 1974; Bennett et al., 2013; Dawson et al., 2007; May et al., 585 

2008b) and has been found to perform comparatively well with alternative criteria (May et al., 586 

2008b). It has also been applied successfully by May et al. (2008a, b), He et al. (2011), Wu et 587 

al. (2013), and Li et al. (2015).  588 
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The software developed for conducting the numerical experiments is available for use by 589 

others (see Software Availability at the beginning of this paper), is coded in FORTRAN 590 

90/95 and run on a Linux 2.6.32.2 operating system. 591 

3.5 Assess performance of IVS over 30 trials 592 

The performance of the PMI variants used in the tests is assessed in terms of selection 593 

accuracy and computational efficiency, as detailed below.  594 

Selection Accuracy As shown in Fig. 2, the accuracy of PMI IVS is assessed by the correct 595 

selection rate (CSR) (Galelli and Castelletti, 2013; Li et al., 2015; May et al., 2008b), which 596 

measures the percentage of times the correct inputs are selected in the 30 independent trials 597 

(i.e. replicates). In order to better understand the relative impact of the different approaches to 598 

addressing the boundary issue on CSR, their impact on MI and RE is also assessed, as 599 

detailed below. 600 

The impact of the different approaches to addressing the boundary issue on MI estimation is 601 

assessed by comparing both the variation of the Kolmogorov-Smirnov (K-S) statistic 602 

(Parsons and Wirsching, 1982) and the corresponding change in MI between two approaches, 603 

which is able to detect whether MI can be better estimated as a result of boundary correction 604 

in marginal or joint PDF estimates or not. The expression of the variation of the KS is 605 

expressed as follows 606 

𝐾𝑆 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (%) =
𝐾𝑆𝐴1−𝐾𝑆𝐴2

𝐾𝑆𝐴1
× 100%                                                                             (21) 607 

where the K-S statistic measures the supremum distance between the empirical and estimated 608 

CDFs and the subscripts (A1, A2) refer to different approaches to addressing the boundary 609 

issue (see Table 4). A positive K-S variation indicates improvement of accuracy, and vice 610 

versa. As the performance of the empirical kernel based CDF is a function of bin width, a 611 

number of bin widths (from 0.001 to 1.0) are tested by means of sensitivity analysis. Bin 612 

widths of0.01 were found to be adequate for the purposes of this study, which is consistent 613 

with the tests conducted in Li et al. (2015). The corresponding expression measuring the 614 

change in MI is given by 615 

𝑀𝐼 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛(%) =
𝑀𝐼𝐴1−𝑀𝐼𝐴2

𝑀𝐼𝐴1
× 100%                                                                              (22) 616 

and indicates to what extent the improvement or deterioration in kernel density estimation 617 

can be propagated to the estimation of MI. When considering the outcomes of Eqs. (21) and 618 
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(22), high KS and MI variations indicate effective mitigation of the boundary issue in MI 619 

estimation as a result of boundary correction in the estimation of marginal PDFs. High MI 620 

variation but low KS variation indicates effective treatment of the boundary issue in MI 621 

estimation due to boundary correction in the estimation of joint PDFs, while low MI variation 622 

suggests insignificant impact of the boundary issue in MI estimation, regardless of the KS 623 

variation. 624 

The impact of the different approaches to addressing the boundary issue on RE is assessed by 625 

using the coefficient of efficiency (CE) of the models from which the residuals are extracted.  626 

CE measures the difference in predictive performance of the model and a model that only 627 

contains the mean of the observations (Bennett et al., 2013) and ranges between 0 (poorest) 628 

and 1(Ozkaya et al., 2007). 629 

Computational efficiency The computational efficiency of PMI IVS is evaluated by the 630 

computational time (CT), as measured by the average CPU time (measured on a dual 631 

processor 2.6 GHz Intel Machine).  632 

 633 

4 RESULTS AND DISCUSSION 634 

Within this section, the selection accuracy of the PMI IVS method with different approaches 635 

to addressing the boundary issue (see Table 4) and their corresponding computational 636 

efficiency are discussed in Sections 4.1 and 4.2, respectively. The resulting empirical 637 

guidelines for selecting the appropriate techniques for dealing with boundary and bandwidth 638 

issues are then summarised in Section 4.3.     639 

4.1 Selection accuracy 640 

The selection accuracy of the PMI IVS methods with the different approaches to addressing 641 

the boundary issue for the EAR4 model is summarised in Fig. 3. As can be seen, the 642 

benchmark approaches following the guidelines suggested by Li et al. (2015) (i.e. B2 and B3) 643 

have a CSR of 100% for the data that follow a Gaussian or nearly Gaussian distribution (i.e. 644 

NORM and EVT1), as these data are not expected to be impacted by any boundary issues.  645 

Consequently, there is no need for addressing boundary issues in these cases. 646 

 647 
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 648 

Fig.3. Selection accuracy of the PMI with suggested settings for EAR4 models 649 

 650 

For the data that follow a moderately (i.e. PT3, GAMMA, EXP) or severely (i.e. LOGPT3, 651 

LOGN) non-Gaussian distribution and are therefore expected to be impacted by boundary 652 

issues, some improvement is observed when the benchmark approaches that utilise the 653 

guidelines proposed by Li et al. (2015) are implemented for MI estimation (B2) and both MI 654 

and RE (B3), compared with the most commonly used approach (B1), but generally CSRs do 655 

not exceed 90% (Fig. 3).  However, these CSRs can be improved to 100% when some of the 656 

proposed approaches to addressing the boundary issue are used, including methods R5, R6, 657 

R7, C3 and C4, although not all of the approaches investigated exhibit the same level of 658 

success (i.e. methods M1, M2, R1, R2, R3, R4, C1, C2).  Potential reasons for these 659 

differences in performance are discussed below. 660 

 661 

The methods that only address boundary issues in MI estimation (i.e. methods M1 and M2) 662 

are not successful in improving CSR compared with the best-performing benchmark 663 

approach (i.e. B3).  This is despite the fact that these methods are able to improve the 664 

accuracy with which the underlying distribution is estimated, as measured by changes in the 665 

K-S statistic between methods B3 and M1 (Fig 4a). The reason for this is that the 666 

improvements in the estimates in the underlying distributions do not translate into changes in 667 

MI estimates (e.g. an approximately 50% increase in the K-S statistic between methods B3 668 

and M1 for the EXP distribution translates into a change in MI estimation that is close to 0%) 669 

(Figs.4a and 4b).This can be explained by considering the expression of MI (Shannon, 1948), 670 

which is given as  671 

𝐼𝑋𝑖,𝑦 ≈
1

𝑛
∑ 𝑙𝑜𝑔 [

𝑓(𝑋𝑖
𝑗
,𝑦𝑗)

𝑓(𝑋
𝑖
𝑗
)𝑓(𝑦𝑗)

]𝑛
𝑗=1                                                                                                (23) 672 

When applying the boundary correction (e.g. RC in M1), estimation of 𝐼𝑋𝑖,𝑦 becomes 673 
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𝐼𝑋𝑖,𝑦 ≈
1

𝑛
∑ 𝑙𝑜𝑔 {

𝑓(𝑋𝑖
𝑗
,𝑦𝑗)∆𝑓𝑥𝑦

[𝑓(𝑋
𝑖
𝑗
)∆𝑓𝑥][𝑓(𝑦𝑗)∆𝑓𝑦]

}𝑛
𝑗=1                                                                                (24) 674 

where ∆𝑓𝑥𝑦, ∆𝑓𝑥, and ∆𝑓𝑦 indicate variations in the marginal and joint densities due to the 675 

boundary correction. This equation is equivalent to  676 

𝐼𝑋𝑖,𝑦 ≈
1

𝑛
∑ 𝑙𝑜𝑔 [

𝑓(𝑋𝑖
𝑗
,𝑦𝑗)

𝑓(𝑋
𝑖
𝑗
)𝑓(𝑦𝑗)

]𝑛
𝑗=1 + {𝑙𝑜𝑔(∆𝑋𝑖

𝑗
𝑦𝑗) − 𝑙𝑜𝑔(∆𝑋𝑖

𝑗
) − 𝑙𝑜𝑔(∆𝑦𝑗)}                         (25) 677 

In Eq. (25), the log terms (i.e. 𝑙𝑜𝑔(∆𝑋𝑖
𝑗
𝑦𝑗), 𝑙𝑜𝑔(∆𝑋𝑖

𝑗
), and 𝑙𝑜𝑔(∆𝑦𝑗) ) can diminish the 678 

overall improvement of boundary correction (e.g. a change up to 50% in 𝑓(𝑋𝑖
𝑗
, 𝑦𝑗) only 679 

results in variation of 0.4 in 𝑙𝑜𝑔(∆𝑋𝑖
𝑗
𝑦𝑗)) and the overall sum of the term {𝑙𝑜𝑔(∆𝑋𝑖

𝑗
𝑦𝑗) −680 

𝑙𝑜𝑔(∆𝑋𝑖
𝑗
) − 𝑙𝑜𝑔(∆𝑦𝑗)} can be very small (close to zero), which yields a near negligible 681 

change in the resulting MI.  682 

In contrast, the accuracy of the models from which the residuals are obtained has a significant 683 

impact on MI values.  For example, the improved CSRs for methods R5, R6 and R7 (Fig.3) 684 

correspond to higher values of the Coefficients of Efficiency of these models compared with 685 

that for method B3 (Fig. 5). In contrast, there reverse applies for method R2.  Similar results 686 

can also be found in Fig. A.2.3.  The effectiveness of methods R5 and R6 can be explained by 687 

the fact that the bias of the Nadaraya-Watson Regression (equivalent to the univariate GRNN 688 

used in all three benchmark models) has an additional error term 
𝑚′(𝑥)𝑓𝑥

′
(𝑥)

𝑓𝑥(𝑥)
 [𝑚(𝑥) is the 689 

regression function;𝑓𝑥(𝑥) is the probability density function with respect to 𝑥] than the local 690 

polynomial regression (e.g. LLP and LQP) used in R5 and R6, and this term increases as the 691 

boundary issue becomes severe (Fan, 1992; Masry, 1996; Ruppert and Wand, 1994).  In 692 

contrast, the effectiveness of R7 can be ascribed to the kernel free feature of the MLPANN 693 

used for RE. Therefore, CSR is improved mainly through the adoption of boundary resistant 694 

methods in RE, rather than methods that focus on boundary correction.  695 
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 696 

 697 

Fig.4. Relative change of K-S and MI between M1 and B3 for EAR4 model 698 
 699 

The above results suggest that addressing boundary issues in RE is much more important than 700 

addressing these issues in MI estimation.  This is also confirmed by the results for the 701 

combined methods, as the combined methods that resulted in a marked increase in CSR (i.e. 702 

C3 and C4) are those that used the most successful methods for addressing the boundary 703 

issue in RE (i.e. R5 and R7), and the methods that did not result in an increase in CSR (i.e. 704 

M1 and M2) are those that used methods for addressing the boundary issue in RE that are not 705 

successful (i.e. R1 and R4), irrespective of which methods are used for addressing the 706 

boundary issue in MI estimation. 707 
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 709 

 710 

 711 

Fig.5. Accuracy of residual estimation with alternative estimators for EAR4 model (3 cases) 712 
 713 

The general findings for the EAR4 model (addressing boundary issues in RE is more 714 

important than addressing boundary issues in MI estimation and that the use of boundary 715 

resistant methods is more effective than the use of boundary correction methods) are 716 

confirmed by the results for the TEAR10 (Fig. 6) and NL (Fig. 7) models, with additional 717 

supporting information provided in Figs. A.2.1 to A.2.5.  However, it should be noted that 718 
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compared with the results for the EAR4 model, the differences between the different methods 719 

are less pronounced for the TEAR10 and more pronounced for the NL model.  This can be 720 

attributed to the relative predictive performance of the models from which the residuals are 721 

obtained for these two datasets, with much higher coefficients of efficiency for the TEAR10 722 

model (Fig. 8) than the NL model (Fig. 9). This is most likely due to the different degrees of 723 

non-linearity of the data sets. In addition, benchmark method B1 is found to underestimate 724 

the correct number of significant inputs for the non-Gaussian cases (e.g. LOGN and 725 

LOGPT3), which can be ascribed to the underestimated bandwidth, as the severity of 726 

underestimating the correct number of significant inputs is proportional to the bandwidth 727 

ratio. Nevertheless, methods with effective improvement (e.g. R5, R6, R7, C3, and C4) tend 728 

to correct such errors with increased bandwidths, which is consistent with the finding in 729 

Harrold et al. (2001) and Li et al. (2015). 730 

 731 

 732 

Fig.6. Selection accuracy of the PMI with suggested settings for TEAR10 models 733 

 734 

 735 

Fig.7. Selection accuracy of the PMI with suggested settings for NL models 736 
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738 

 739 

 740 

Fig.8. Accuracy of residual estimation with alternative estimators for TEAR10 model (3 cases) 741 
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 744 

 745 

 746 

Fig.9. Accuracy of residual estimation with alternative estimators for NL model (3 cases) 747 
 748 

While the TEAR10 model is a threshold function, and would therefore be expected to be 749 

more difficult to approximate than the EAR4 model, analysis of the data generated from the 750 

TEAR10 model indicates that the threshold function is not activated very often, thereby 751 

resulting in quasi-linear model behaviour.  In contrast, the high degree of non-linearity of the 752 
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which the residuals are obtained, reducing the effectiveness of some of the methods for 754 

dealing with the boundary issue. 755 

This effect is particularly marked for the local polynomial regression based approaches (R5 756 

and R6), which are very effective for the EAR4 and TEAR10 models, with a 100% CSR for 757 

all distributions (Figs. 3 and 6), but much less effective for the NL model, for data that are 758 

moderately or severely non-Gaussian. This can be attributed to the fact that the RE of non-759 

linear problems, as influenced by both the boundary issue and problem nonlinearity, cannot 760 

be effectively improved by using local linear (1
st
 order) or quadratic (2

nd
 order) regression. It 761 

should be noted that higher order polynomials (𝑝 > 2) could be introduced to potentially 762 

overcome these issues.  The effectiveness of using models that are better able to deal with 763 

higher degrees of nonlinearity is confirmed by the 100% CSRs for almost all cases when 764 

approach R7 is used (Fig. 7), which uses a MLPANN as the RE model.  In this setting, the 765 

use of MLPANNs might prove advantageous over using higher-order polynomials, as they 766 

are universal function approximators and do not require the functional form of the model to 767 

be selected a priori.   768 

4.2 Computational efficiency 769 

The computational efficiency of the different PMI IVS approaches investigated is displayed 770 

in Fig. 10.  As can be seen, the conventional benchmark approach (B1) is the most efficient 771 

overall due to the simplicity of the GRR and GRNNs. B2 was the second most efficient 772 

approach, as the additional computational cost associated with improving the bandwidth (i.e. 773 

DPI) in MI estimation is minimal, followed by B3, which uses a more computationally 774 

expensive bandwidth estimator (i.e. SVO) in RE than B2. The efficiency of M1, M2 and C1 775 

is similar to that of B3, indicating an insignificant increase in computational effort when 776 

applying boundary correction in MI estimation. On the contrary, the methods for addressing 777 

the boundary issue in RE (i.e. R1, R2, R3, R5, R6, R7, C3 and C4) have a marked negative 778 

impact on computational efficiency (please note the log-scale on the y-axis of Fig. 10), except 779 

for the modification of kernel bandwidth (R4 and C2), as these methods require the 780 

implementation of optimisation procedures. This reduction in computational efficiency is 781 

particularly prominent for the two approaches that performed best in terms of CSE (i.e. 782 

approaches R7 and C4), with an average runtime of 1122s, which is over 227 times greater 783 

than that of the most efficient approach (B1). This is mainly due to the time taken for the 784 

development of the MLPANNs. 785 
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 786 

 787 

 788 

Fig.10. Selection efficiency of the PMI IVS with tested methods for EAR4 models 789 

 790 

4.3 Suggested rules and guidelines 791 

Based on the results presented in Sections 4.1 and 4.2, as well as the findings of previous 792 

studies by Li et al. (2014,2015), a set of empirical guidelines for determining the best 793 

composition of the PMI IVS approaches for a range of data distribution types and system 794 

input/output mappings have been developed, as shown in Fig. 11. It should be noted that 795 

reasonable trade-offs between selection accuracy and efficiency are considered in the 796 

development of these guidelines.  However, it is acknowledged that the relative importance 797 
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of CSR and computational efficiency is also a function of case-study dependent features and 798 

user preferences.   799 

 800 

Fig.11. Suggested PMI IVS approaches under distinct scenarios (VE = comparatively very computationally efficient, E = 801 
comparatively computationally efficient, and NE = comparatively not computationally efficient; *recommendation based on 802 

Li et al. (2014) and present study; **recommendation based on Li et al. (2015)  803 
 804 

Overall, four distinct scenarios are identified, as described below: 805 

Scenario 1: If the input/output data are mainly, or nearly, Gaussian (average 𝑠 ≤ 1.3and𝑘 ≤806 

3), approach B1 (with the GRR based GRNN for RE and the GRR for MI estimation) is 807 

recommended, as this combination is able to provide good selection accuracy at the best 808 

possible computational efficiency. 809 

Scenario 2: If the input/output data follow moderately non-Gaussian (average 1.3 <  𝑠 ≤810 

5and3 <  𝑘 ≤ 30) distributions, approach B2 (with the GRR based GRNN for RE and the 811 

DPI for MI estimation) is suggested, so that CSR can be improved with only a very small 812 

reduction in computational efficiency. In addition, if the boundary issue is anticipated to be 813 

significant (i.e. for cases where the input/output data are clustered near the physical bounds of 814 

the data variables), approach R5 (with the SVO based LLP for RE and the DPI for MI 815 

estimation) is proposed for IVS. 816 

Scenario 3: If most of the input/output data follow extremely non-Gaussian (average 𝑠 >817 

5and𝑘 > 30) distributions and the problem is linear or slightly non-linear, approach R5 (with 818 

the SVO based LLP for RE and the DPI for MI estimation) should be implemented, as the 819 
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combined impact of bandwidth and boundary issues can be effectively overcome at a good 820 

trade-off between selection accuracy and efficiency when this approach is implemented.  821 

Scenario 4: If the same conditions as in Scenario 3 apply, except that the problem becomes 822 

moderately to extremely non-linear, approach R7 (with the MLPANN for RE and the DPI for 823 

MI estimation) is proposed. Although this PMI IVS approach will decrease computational 824 

efficiency significantly, it is the only approach that results in reliable selection accuracy 825 

under these conditions. 826 

 827 

5 VALIDATION ON MURRAY BRIDGE AND KENTUCKY RIVER 828 

BASIN CASE STUDIES 829 

5.1 Background 830 

The rules and guidelines proposed in Section 4.3 are tested on two semi-real case studies, 831 

including the estimation of salinity in the River Murray in South Australia 14 days in advance 832 

(Bowden et al., 2005b; Fernando et al., 2009; Kingston et al., 2005; Li et al., 2014, 2015; 833 

Maier and Dandy, 1996) and the prediction of flow in the Kentucky River Basin in the USA 834 

one day in advance (Bowden et al., 2012; Jain and Srinivasulu, 2004; Li et al., 2014,2015; 835 

Srinivasulu and Jain, 2006; Wu et al., 2013).  836 

River salinity at Murray Bridge 14 days in advance (MBS+13) is a function of the salinity at 837 

Mannum, Morgan, Waikerie and Loxton, and the river level at Lock 1, given a specified lag 838 

time (i.e. river salinity: MAS-1, MOS-1, WAS-1, WAS-5, LOS-1 and river level: L1UL-1) 839 

(Galelli et al., 2014; Maier and Dandy, 1996). However, for the purposes of assessing the 840 

effectiveness of PMI IVS, an additional 24 redundant or irrelevant candidate inputs are 841 

introduced, as shown in Table 5. 842 

Table 5 Candidate inputs and output used to forecast salinity at Murray Bridge 14 days in advance 843 

Candidate Inputs Output 

Location Variable Abbreviation Lags Location Variable Abbreviation 
Forecasting 

Period 

Mannum Salinity MAS 1,3,5,7,9 

Murray Bridge Salinity MBS 14 

Morgan Salinity MOS 1,3,5,7,9 

Waikerie Salinity WAS 1,2,3,4,5 

Loxton Salinity LOS 1,2,3,4,5 

Murray Bridge Salinity MBS 1,3,5,7,9 

Lock 1 Upper River level L1UL -3,-1,1,3,5 
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 844 

The average daily runoff in the Kentucky River Basin one day in advance is influenced by 845 

previous values of average daily effective rainfall and runoff (i.e. average daily effective 846 

rainfall: P(t), P(t-1) and average daily runoff: Q(t-1), Q(t-2)) (Galelli et al., 2014; Jain and 847 

Srinivasulu, 2004). For this case study, the effectiveness of PMI IVS is investigated by 848 

introducing another 17 redundant or irrelevant candidate inputs, as shown in Table 6. 849 

Table 6 Candidate inputs and outputs used to forecast flow at Kentucky River Basin 1 day in advance 850 

Candidate Inputs Output 

Location Variable Abbreviation Lags Location Variable Abbreviation 
Forecasting 

Period 

Manchester 

Average 
daily 

effective 
rainfall 

P 0 to 10 
Lock & 
Dam 10 

Average 
daily runoff 

Q 1 

Hyden 

Jackson 

Heidelberg 

Lexington 
Airport 

Lock & Dam 
10 

Average 
daily runoff 

Q 1 to 10 

 851 

5.2 Experimental procedure 852 

Both case studies are semi-real in the sense that actual input data are used, but that the 853 

corresponding output data are generated using a trained ANN model.  The adoption of semi-854 

real case studies enabled the benefits of utilising measured input data (i.e. not generated from 855 

a known distribution) to be combined with those of having known inputs, thereby enabling 856 

the performance of IVS methods to be tested in an objective and rigorous manner, as 857 

suggested by Galelli et al., (2014) and Humphrey et al. (2014).  858 

For both case studies, standard MLPs are developed using the approach proposed by Wu et al. 859 

(2014b). The DUPLEX method (May et al., 2010) is implemented to split the historical 860 

records into training (60%), testing (20%) and validating (20%) sets. By using a single hidden 861 

layer and empirically trying between 0 and 6 hidden nodes (in increments of 1), the optimal 862 

model structures are found to be 6-4-1 and 4-4-1 for the salinity and rainfall-runoff cases, 863 

respectively. Model calibration is conducted using the back-propagation algorithm (with 864 

learning rate of 0.1 and momentum of 0.1). The input data used in the PMI IVS are re-865 

simulated 30 times based on the observations, so that the data sets contain random variations 866 

while maintaining the major time patterns. Finally, the corresponding output data are 867 
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obtained by substituting the re-simulated inputs into the trained ANN model. This procedure 868 

has also been successfully applied in Li et al. (2015).  869 

5.3 Results and discussion 870 

The salinity case study is categorised as a strong linear problem with mildly non-Gaussian 871 

input and output distributions (not significantly affected by bandwidth and boundary issues) 872 

(Bowden, 2003; Galelli et al., 2014; Li et al., 2014,2015; Wu et al., 2013).Consequently, 873 

these data correspond to Scenario 2 in Fig. 11. Given this, the performance of PMI IVS using 874 

approach B2 is expected to be superior in terms of a desirable trade-off between selection 875 

accuracy and efficiency.  876 

The results presented in Fig. 12 are consistent with this expectation. The CSR associated with 877 

using approach B2 is 100% (estimated in 107s), compared with a CSR of less than 84% 878 

(estimated in 47s) when approach B1 is used. CSRs of 100% are also achieved by the 879 

alternative approaches (except R2), however, at additional computational cost (487s to 880 

7565s). Consequently, the best trade-off between selection accuracy and efficiency is given 881 

by approach B2, as suggested by the proposed guidelines (Fig. 11). This is also consistent 882 

with the study carried by Li et al. (2015), which suggested that the DPI/BCVDPI based 883 

method provided the best overall performance against other tested methods. 884 
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 886 
Fig.12. Selection accuracy and efficiency of the PMI IVS with suggested settings for Murray Bridge case 887 

 888 

As the rainfall-runoff case is categorised as a strong non-linear problem with extremely non-889 

Gaussian distributions (significantly influenced by bandwidth and boundary issues) (Galelli 890 

et al., 2014; Li et al., 2014,2015; Wu et al., 2013), it corresponds to Scenario 4 in Fig. 11. 891 

Given this, the performance of PMI IVS using approach R7 is expected to be superior in 892 

terms of a balance between selection accuracy and efficiency.  893 

Based on the results in Figs.13 (a) and 13 (b), this is indeed the case. The CSRs associated 894 

with using approaches R7 and C4 are 100%, followed by those of approaches B3, M1, M2, 895 

R1, R4, C1, C2 (all around 93%), B2, R3 (both approximately 87%), R2 (83%), R6, B1 (both 896 

near 77%), R5 and C3 (both about 73%). While the use of approach R7 increased CSR at 897 

significant computational cost (at around 45856s; over 162 times B1’s runtime), as shown in 898 

Fig. 13 (b), this provide the most robust selection accuracy, as suggested by the proposed 899 

guidelines (Fig. 11). Compared with the results of Li et al. (2015), selection accuracy is 900 

further improved to 100% with R7 (boundary issue free approach), which suggests that both 901 

boundary and bandwidth selection issues need to be considered during IVS for data with 902 

extremely non-Gaussian distributions.  903 
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 904 

 905 

Fig.13. Selection accuracy and efficiency of the PMI IVS with suggested settings for Kentucky River basin case 906 

 907 

6 SUMMARY AND CONCLUSIONS 908 

Partial mutual information (PMI) has been successfully and extensively implemented in 909 

environmental and water resources modelling, as it considers both the significance and 910 

independence of candidate inputs. Given that PMI input variable selection (IVS) is a function 911 

of kernel based MI and RE, the performance of PMI IVS is influenced by the determination 912 

of an appropriate bandwidth (otherwise termed the smoothing parameter) and boundary 913 

issues. Although the impact of bandwidth selection on correct selection rate (CSR) and 914 

computational efficiency of PMI IVS has been studied previously, the impact of the boundary 915 

issue has not yet been addressed, making it difficult to know to what degree the performance 916 

of PMI IVS can be compromised by such issues and which methods can effectively address 917 

this impact.  918 

In order to develop a more reliable PMI IVS algorithm for problems with boundary issues, in 919 

conjunction with bandwidth issues, the CSR and computational efficiency of PMI IVS were 920 

assessed for16 different approaches to addressing these issues on synthetic data sets with 921 
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different degrees of normality and non-linearity.  Of these 16 methods, three are benchmark 922 

approaches without explicitly considering the boundary issue (B1 to B3), two aim to improve 923 

the boundary issue in MI estimation (M1, M2), seven ameliorate the boundary issue in RE 924 

(R1 to R7), and four are combined approaches that take into account the boundary issue in 925 

both MI and RE (C1 to C4). The results from 10,080 trials with the synthetic data contributed 926 

to the establishment of preliminary empirical guidelines for the selection of the most 927 

appropriate PMI IVS approach, for data with different degrees of normality and non-linearity. 928 

The validity of the developed guidelines was then tested on two semi-real data sets. 929 

Results of the synthetic studies suggest that methods that address boundary issues in MI 930 

estimation do not result in improvements in CSR. This can be ascribed to the fact that 931 

changes in the joint and marginal distributions, resulting from the boundary correction,have a 932 

diminished influence on PMI due to the appearance of these terms in log functions in the PMI 933 

calculation. In contrast, methods that address boundary issues in RE are able to increase CSR 934 

to 100% (or very close to 100%) for even the most non-Gaussian and non-linear datasets 935 

tested.  However, this is not the case for all methods, with boundary resistant methods 936 

exhibiting greater success than methods focussed on boundary correction.  In particular, the 937 

use of MLPANNs for RE results in the most robust selection accuracy, although at a 938 

significant decrease in computational efficiency. 939 

Based on the empirical guidelines for the selection of the most appropriate PMI IVS 940 

approaches developed in Fig. 11, the most commonly used combination of GRR-based kernel 941 

bandwidth selection and GRNN-based RE only results in reliable IVS if the input/output data 942 

follow Gaussian or nearly Gaussian distributions and do not have any boundary issues.  If the 943 

data are moderately or highly non-Gaussian, the DPI should be used for MI bandwidth 944 

estimation, regardless of the degree of non-linearity in the data.  However, as the data become 945 

more non-Gaussian and non-linear, RE approaches should move from GRNNs to LLPs to 946 

MLPANNs in order to achieve CSRs near 100%, with associated decreases in computational 947 

efficiency. It should be noted that although the empirical guidelines can only be applied to 948 

datasets in which all variables have a similar distribution, this does not limit the 949 

methodological contribution of this research. 950 

The accuracy of the proposed guidelines was supported by the results of the two semi-real 951 

case studies.  For the salinity case study, for which the data were close to linear and followed 952 

a mildly non-Gaussian distribution, method B2 (Table 4), which used the DPI for MI 953 
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bandwidth estimation and the GRNN with the GRR for bandwidth estimation, resulted in 100% 954 

CSR while being very computationally efficient.  For the rainfall runoff case study, for which 955 

the data were highly nonlinear and followed an extremely non-Gaussian distribution, 956 

MLPANNs had to be used for RE in order to achieve 100% CSRs. 957 

When applying the proposed guidelines to different water resources and environmental 958 

modelling problems, it is recommended to first consider the distribution statistics (i.e. 959 

skewness and kurtosis) of the input and output variables and then categorise the problem into 960 

the most suitable scenario. In general, most water quantity models contain input and output 961 

variables that are bounded by their physical meaning and form highly skewed distributions 962 

(e.g. average daily rainfall-runoff data), thereby selection of the most appropriate bandwidth 963 

and boundary corrector should be considered in accordance with scenarios 3 and 4 in Fig.11. 964 

In contrast, water resource models that mainly include input and output variables that follow 965 

Gaussian or nearly Gaussian distributions (e.g. concentrations of dissolved oxygen in rivers) 966 

should implement scenarios 1 and 2 in Fig. 11 for the sake of good selection accuracy at the 967 

best computational efficiency. However, it is acknowledged that the application of proposed 968 

guidelines is also a function of case-study dependent features and user preferences. 969 

Overall, the results show that by using methods for MI and RE that are tailored to the input-970 

output data under consideration, CSRs of 100% (or close to 100%) can be achieved when 971 

using PMI IVS, even for data that are highly non-linear and highly non-Gaussian.  This is in 972 

contrast to PMI IVS methods that use “standard” approaches to MI and RE, which have been 973 

shown to perform poorly under such circumstances in this and previous studies (e.g. Li et al., 974 

2015; Galelli et al., 2014).  However, alternative methods for dealing with non-Gaussian data 975 

in the context of PMI IVS, such as transforming the input data to normality (e.g. Bowden et 976 

al., 2003) and estimating the required densities using histogram-based methods (e.g. 977 

Fernando et al., 2009), require further investigation, as does the impact of the stopping 978 

criterion (see May et al., 2008a) on the results obtained in this study. Although the objective 979 

of the present study is to improve PMI IVS itself, the ultimate goal of improving IVS is to 980 

improve the performance of the MLPANNs (or other data-driven environmental and water 981 

resource models), which requires assessment and quantification of the improvement in terms 982 

of MLPANN model performance using the proposed PMI IVS in the future research. In 983 

addition, the findings of this work should be tested more broadly, including for data sets with 984 
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a wider range of attributes, such as different degrees of noise, collinearity and 985 

interdependency, as well as incomplete information (see Galelli et al., 2014). 986 
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APPENDIX 994 

A.1 Explanation of Bivariate Reflection Correction 995 

 996 

Fig. A.1.1 Quadrants of Bivariate Reflection Correction 997 

 998 

As mentioned in Section 2, let: 𝑿 = [𝑋1…  𝑋𝑚]
𝑇be the input, where  𝑚  is the number of 999 

inputs; (𝑿𝑗 , 𝑦𝑗) be the observed pairs of input and output data for 𝑗 = 1,… , 𝑛, where n is the 1000 

number of observations,𝑿𝑗 = [𝑋1
𝑗
… 𝑋𝑚

𝑗
]
𝑇

 are the observed input data and 𝑦𝑗  are the 1001 
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observed output data.𝑯 is the bandwidth matrix, defined as 𝑯 =  [
ℎ𝑥
2 𝜌𝑥𝑦ℎ𝑥ℎ𝑦

𝜌𝑥𝑦ℎ𝑥ℎ𝑦 ℎ𝑦
2 ] , 1002 

where ℎ𝑥  and ℎ𝑦 are the estimated bandwidths for input 𝑋𝑖 and output 𝑦,  respectively, 1003 

and𝜌𝑥𝑦is the correlation coefficient between input 𝑋𝑖and output 𝑦. Four quadrants are created 1004 

by the x-axis and y-axis, as shown in Fig. A.1.1. Within Quadrant I, four regions (S1 to S4) 1005 

are further generated by the lines passing through 𝑥 = ℎ𝑥 and 𝑦 = ℎ𝑦.  1006 

After scaling all data within [0,1] in both x-axis and y-axis, all points fall into Quadrant I. 1007 

Points falling into S1 (𝑋𝑖
𝑗
> ℎ𝑥 , 𝑦

𝑗 > ℎ𝑦) are not influenced by the boundary issue, therefore 1008 

the density can be estimated based on Eqs. (1) and (2), as outlined in Section 2, which is 1009 

expressed as 1010 

𝑓(𝑋𝑖, 𝑦; 𝑯) =
1

𝑛
∑[𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
])]

𝑛

𝑗=1

; 𝑋𝑖 > ℎ𝑥 , 𝑦 > ℎ𝑦 

Points falling into S2 (ℎ𝑥 ≥ 𝑋𝑖
𝑗
≥ 0, 𝑦𝑗 > ℎ𝑦) are only influenced by the boundary issue on the 1011 

x-axis, therefore reflection correction is required only on the x-axis. By implementing the 1012 

reflection kernel on the x-axis, the kernel density is given as  1013 

𝑓(𝑋𝑖, 𝑦;𝑯) =
1

𝑛
∑[𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
]) + 𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

−𝑋𝑖
𝑗

𝑦𝑗
])]

𝑛

𝑗=1

; ℎ𝑥 ≥ 𝑋𝑖 ≥ 0, 𝑦 > ℎ𝑦 

where points in S2 are ‘reflected’ into Quadrant II, so that the underestimated density near the 1014 

boundary (y-axis) can be compensated for.  1015 

Points falling into S3 (ℎ𝑥 ≥ 𝑋𝑖
𝑗
≥ 0, ℎ𝑦 ≥ 𝑦𝑗 ≥ 0) are affected by the boundary issue in both x-1016 

axis and y-axis, consequently, reflection correction is required in both dimensions, which 1017 

then results in 1018 

𝑓(𝑋𝑖, 𝑦;𝑯) =
1

𝑛
∑[𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
]) + 𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

−𝑋𝑖
𝑗

−𝑦𝑗
])]

𝑛

𝑗=1

; ℎ𝑥 ≥ 𝑋𝑖 ≥ 0, ℎ𝑦 ≥ 𝑦 ≥ 0 

Where points in S3 are ‘reflected’ into Quadrant III, and hence the problem associated with 1019 

underestimated density near the boundary (x-axis and y-axis) can be addressed.  1020 



45 

 

Points falling into S4 (𝑋𝑖
𝑗
> ℎ𝑥 , ℎ𝑦 ≥ 𝑦𝑗 ≥ 0) have identical circumstances tothose in S2, 1021 

however, the impact due to the boundary issue is only on they-axis, therefore the 1022 

corresponding expression is  1023 

𝑓(𝑋𝑖, 𝑦; 𝑯) =
1

𝑛
∑[𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
]) + 𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

−𝑦𝑗
])]

𝑛

𝑗=1

; 𝑋𝑖 > ℎ𝑥 , ℎ𝑦 ≥ 𝑦 ≥ 0 

where points in S4 are ‘reflected’ into Quadrant IV, so that the underestimated density near 1024 

the boundary (x-axis) can be ameliorated.  1025 

In addition, any points outside of Quadrant I result in a density of zero. By summarising all 1026 

scenarios described above, the bivariate reflection correction can be derived as shown in Eq. 1027 

(7). 1028 

A.2 Supplementary figures and tables 1029 
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 1033 

 1034 

Fig. A.2.1. Relative change of K-S and MI in-between M1 and B3 for TEAR10 and NL models  1035 
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 1041 

Fig. A.2.2. Relative change of K-S and MI in-between M2 and B3 for EAR4, TEAR10 and NL models 1042 
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 1046 

 1047 

Fig. A.2.3. Accuracy of residual estimation with alternative estimators for EAR4 model (other 4 cases) 1048 
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 1053 

Fig. A.2.4. Accuracy of residual estimation with alternative estimators for TEAR10 model (other 4 cases) 1054 
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 1059 

Fig. A.2.5. Accuracy of residual estimation with alternative estimators for NL model (other 4 cases) 1060 
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