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Abstract

This paper addresses the issue of performing global sensitivity analysis of

model output with dependent inputs. First, we define variance-based sensi-

tivity indices that allow for distinguishing the independent contributions of

the inputs to the response variance from their mutual dependent contribu-

tions. Then, two sampling strategies are proposed for their non-parametric,

numerical estimation. This approach allows us to estimate the sensitivity

indices not only for individual inputs but also for groups of inputs. After

testing the accuracy of the non-parametric method on some analytical test

functions, the approach is employed to assess the importance of dependent

inputs on a computer model for the migration of radioactive substances in

the geosphere.
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1. Introduction

Uncertainty and sensitivity analyses (UASA) of model output have be-

come popular during the last decade. Their success comes from their abil-

ity in providing relevant information into complex processes via their nu-

merical simulation modelling. To perform UASA, the modeller explores

the input space and evaluates the impact of the inputs on the numerical

model responses (see Norton, 2015, for a recent review). The choice of

the model responses to analyze depends on the objective of the survey (see

Saltelli and Tarantola, 2002, for some possible sensitivity analysis settings).

To quantitatively assess the importance of the model inputs for a given

response, two global sensitivity measures can be computed: the variance-

based sensitivity measures (Sobol’, 1993; Homma and Saltelli, 1996) and

the moment-independent measures (Borgonovo, 2006; Plischke et al., 2013;

Pianosi and Wagener, 2015). Variance-based sensitivity measures are most

often computed because of their ability to provide a picture of the model

structure (Oakley and O’Hagan, 2004).

In the recent literature, two types of global sensitivity analysis (GSA) can

be distinguished: the case of independent inputs (when the joint pdf can be

expressed as the product of its marginals) and the case of dependent inputs

(when the previous does not hold). Dependency may be caused by the pres-

ence of constraints across inputs (e.g. inputs defined on a non-rectangular

domain) or by the fact that experimental data and expert judgement are used.

Linear correlation between inputs, treated for example in Kucherenko et al.

(2012) and Mara and Tarantola (2012), is a particular case of dependency.

The case of independent input is simpler to tackle because: i) many com-

putational and efficient methods exist to compute the sensitivity indices,

ii) samples are easy to generate, iii) variance-based sensitivity indices allow
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to rank the inputs by order of importance (Sobol’, 2001), iv) the ANOVA

(ANalysis Of VAriance)-decomposition is unique and shows the model struc-

ture and v) analytical benchmarks are easy to derive.

On the contrary, UASA of model output with dependent inputs is more

challenging. Indeed, none of the points above is valid any longer. In partic-

ular, the ANOVA decomposition cannot provide a description of the model

structure (Oakley and O’Hagan, 2004). Even the definition of helpful and

easy-to-compute global sensitivity indices is an issue. One of the most popu-

lar ones is the so-called first-order sensitivity index also called correlation

ratio (McKay, 1996), which allows to address the issue of factor priori-

tization (Saltelli and Tarantola, 2002). Sensitivity indices with dependent

inputs can be computed by either parametric (i.e. interpolation, regres-

sion, see Oakley and O’Hagan, 2004; Da Veiga et al., 2009; Li et al., 2010) or

non-parametric, non-model based methods (McKay, 1996; Xu and Gertner,

2008a; Xu, 2013).

Kucherenko et al. (2012) extend the definition of first-order and total sen-

sitivity indices, initially defined in Sobol’ (1993) and Homma and Saltelli

(1996), to the case of dependent inputs. The authors propose a non-

parametric method to estimate the new sensitivity indices. The method

requires the knowledge of the conditional probability densities and the capa-

bility of sampling from those. Gaussian copulas are employed as a basis for

the generation of the conditional samples.

Mara and Tarantola (2012) introduce a set of sensitivity indices to ana-

lyze models for the specific case of correlated inputs, distinguishing between

correlated and uncorrelated contributions of inputs on model responses. The

computation of those indices is undertaken with a parametric method, specif-

ically the polynomial chaos expansion.
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In the present article, we establish the link between the indices proposed

by Kucherenko et al. (2012) and those defined in Mara and Tarantola (2012)

and we show that they can be defined for the more general case of depen-

dent input by considering the Rosenblatt transformation (Rosenblatt, 1952).

Rosenblatt transformation requires the knowledge of the conditional densi-

ties and as such, is comparable to the approach of Kucherenko et al. (2012).

In the particular case of correlated input, we proposed a simpler method that

estimates the sensitivity indices without requiring the knowledge of condi-

tional probability densities. By contrast, this method is computationally

more expensive than Kucherenko et al. (2012). The proposed approach can

be easily extended to estimate sensitivity indices for groups of inputs.

The paper is organized as follows: in Section 2 we define the variance-

based sensitivity indices for model with dependent input variables. In Section

3, we provide the sampling strategy to estimate the sensitivity indices. Sec-

tions 4 and 5 are devoted to numerical examples, namely testing the method

on analytical test functions and on a more complex computer model for ra-

dionuclide transport in the geosphere. Section 6 concludes.

2. Definition of the sensitivity indices

2.1. From dependent variables to independent variables

Let f(x) be a square integrable function over an n-dimensional space and

x = {x1, · · · , xn} ∼ p(x) a continuous random vector defined by a joint

probability density function p(x). Thanks to the Rosenblatt transformation

(RT), described in Appendix A, it is always possible to transform x into

a random vector u = (u1, · · · , un) uniformly and independently distributed

over the unit hypercube K
n = [0, 1]n . RT is not unique in general; there

are actually n! possibilities corresponding to all possible permutations of
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the elements of x. In our case, we consider only the RT obtained after

circularly reordering the set (x1, . . . , xn), resulting in n RT transformations.

We denote by ui ∀i = 1, . . . , n the Rosenblatt transformation of the set

(xi, xi+1, . . . , xn, x1, . . . , xi−1). We write:

(xi, xi+1, · · · , xn, x1, · · · , xi−1) ∼ p(x)
RT
−→ (ui

1, · · · , u
i
n) ∼ Un(0, 1) (1)

Such a mapping is bijective, and we have f(x1, . . . , xn) = gi(u
i). Because the

ui
k’s are independent, instead of performing the UASA of f(x), we perform

the UASA of gi(u
i). Indeed, global sensitivity analysis is well-established for

functions with independent input variables.

2.2. Variance-based sensitivity measures

For a set of independent variablesui = (ui
1, · · · , u

i
n), uniformly distributed

over the unit hypercube K
n = [0, 1]n, the following ANOVA-decomposition

is proven unique by Sobol’ (1993)

gi(u
i) = g0 +

n
∑

j1=1

gj1(u
i
j1
) +

n
∑

j2>j1

gj1j2(u
i
j1
, ui

j2
) + · · ·+ g1···n(u

i
1, . . . , u

i
n) (2)

where, g0 = E[gi(u
i)] =

∫

Kn gi(u
i)dui and the summands in (2) are such

that,
∫ 1

0

gj1···jsdu
i
jk
= 0 if k ∈ {1, · · · , s}. (3)

As a consequence, the summands in (2) are orthogonal and the following

variance decomposition can be derived,

V =

n
∑

j1=1

Vj1 +

n
∑

j2>j1

Vj1j2 + · · ·+ V1···n (4)

where, Vj1···js =
∫

Ks g
2
j1···js

dui
j1
dui

j2
. . . dui

js
. The variance-based sensitivity

measures (also called Sobol’ indices) are defined by dividing (4) by the total

variance V . The following variance-based sensitivity indices can then be

defined:
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- the first-order sensitivity index that measures the contribution of ui
k to

the variance of f ,

Sui

k

=

V

[

E
[

gi(u
i)|ui

k

]

]

V
[

gi(ui)
] =

Vk

V
, (5)

- the total sensitivity index that measures the overall contribution of ui
k

to the variance of f (including its marginal and cooperative effects with

the other inputs),

STui

k

=

E

[

V
[

gi(u
i)|ui

∼k

]

]

V
[

gi(ui)
] =

∑n

s=1

∑

{j1,··· ,js}∋k
Vj1···js

V
. (6)

The individual variance-based sensitivity indices have the following prop-

erties:

1. 0 ≤ Sui

k

≤ STui

k

≤ 1, the higher STui

k

the more ui
k is a relevant input

while if STui

k

= 0, ui
k is irrelevant and can be fixed at an arbitrary value

in its uncertainty range without changing the variance of f .

2.
∑n

k=1 Sui

k

≤ 1 and
(

1−
∑n

k=1 Sui

k

)

represents the amount of vari-

ance explained by the interactions. An additive function is such that
∑n

k=1 Sui

k

= 1 and consequently Sui

k

= STui

k

, ∀k ∈ [[1, n]].

Links can be established between the sensitivity indices of ui
k and those of

xk, as shown in the next Section.

2.3. Interpretation of the individual sensitivity indices

The joint pdf of x can be written in terms of conditional distributions as:

p(x) = p(xi)p(xi+1|xi) . . . p(xn|xi, xi+1, . . . xn−1)p(x1|xi, . . . , xn) . . . p(xi−1|x∼(i−1))

(7)
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with x∼(i−1) = (x1, x2, . . . , xi−2, xi, . . . , xn). The Rosenblatt transformation

in Equation (1) establishes a one-to-one mapping (i.e. bijection) between x

and ui,

[(xi), (xi+1|xi), . . . , (x1|(xi, xi+1 . . . xn)), · · · , (xi−1|x∼(i−1))] ↔ (ui
1, u

i
2, . . . , u

i
n).

(8)

The sensitivity indices of ui
1 are those of xi because ui

1 = F1(xi), where F1 is

the unconditional cumulative distribution function of xi. Hence, denoting by

Si and STi the sensitivity indices of xi, we have Si = Sui

1
and STi = STui

1
.

The indices Si and STi include the effects of the dependence of xi with

other inputs. For this reason Mara and Tarantola (2012) call them the full

sensitivity indices of xi.

The sensitivity indices of ui
2 are those of (xi+1|xi) and represent the sen-

sitivity indices of xi+1 without its mutual dependent contribution with xi.

Similarly for the other sensitivity indices.

The sensitivity indices of ui
n are of particular interest. Indeed, they repre-

sent the effects of xi−1 that are not due to its dependence with the other vari-

ables x∼(i−1). In Mara and Tarantola (2012), the authors call them the uncor-

related effects of xi−1. In the present paper, we call these sensitivity indices

the independent contributions of xi−1 and we denote them by Sind
i−1 = Sui

n
and

ST ind
i−1 = STui

n
. Note that, because of the inequalities 0 ≤ Sui

k

≤ STui

k

≤ 1

previously discussed, it is straightforward to infer that 0 ≤ Si ≤ STi ≤ 1

(case k = 1) and 0 ≤ Sind
i ≤ ST ind

i ≤ 1 (k = n). However, there are no such

relationships between (Si, ST
ind
i ), (Si, S

ind
i ), (Sind

i , STi) and (ST ind
i , STi).

An input whose importance is only due to its dependence with other

inputs has full total effect (STi > 0) but a null total independent contribution

(ST ind
i = 0). However, in this case the input cannot be fixed because it brings
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a contribution through its dependency with one or more other inputs. An

input can be fixed only when both STi and ST ind
i are null.

2.4. Formal definitions of the sensitivity indices

The following new sensitivity measures come as a consequence of the

previous discussion,

Si =
V [E [gi(u

i)|ui
1]]

V [gi(ui)]
=

V [E [f(x)|xi]]

V [f(x)]
, (9)

ST ind
i =

E [V [gi+1(u
i+1)|ui+1

∼n ]]

V [gi+1(ui+1)]
=

E [V [f(x)|x∼i]]

V [f(x)]
(10)

Sind
i =

V [E [gi+1(u
i+1)|ui+1

n ]]

V [gi+1(ui+1)]
=

V [E [f(x)|(x̄i|x∼i)]]

V [f(x)]
, (11)

STi =
E [V [gi(u

i)|ui
∼1]]

V [gi(ui)]
=

E [V [[f(x)|(x̄∼i|xi)]]

V [f(x)]
(12)

∀i = 1, . . . , n, with the convention that u1 = un+1, in formulas (10) and (11).

The variables with an overbar are conditionally distributed.

The previous definitions can be extended to the definition of the sensi-

tivity indices for groups of inputs. For instance, let us set x = (y, z) where

y is a subset of s inputs (s < n). Then, we have

Sy =
V [E [f(x)|y]]

V [f(x)]
, (13)

ST ind
y

= 1− Sz =
E [V [f(x)|z]]

V [f(x)]
(14)

Sind
y

=
V [E [f(x)|(ȳ|z)]]

V [f(x)]
, (15)

STy = 1− Sind
z

=
E [V [f(x)|(z̄|y)]]

V [f(x)]
(16)

Formulas (9-10) and (13-14) were first defined in Kucherenko et al. (2012).

These authors also derived the integral definitions that we recall in the next

subsection. The integral definitions of the sensitivity indices are reported in

the next section. The proofs are given in Appendix B.
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2.5. Integral definitions of the individual sensitivity indices

By setting y = xi and z = x∼i in the equations (39), (40), (43) and

(44) in Appendix B, the following four integral definitions of the individual

sensitivity indices of xi are derived,

Si =
1

V

[
∫

Rn

f(xi,x∼i)p(xi,x∼i)dxidx∼i

(
∫

Rn−1

f(xi, x̄
′
∼i)p(x̄

′
∼i|xi)dx̄

′
∼i −

∫

Rn

f(x′
i,x

′
∼i)p(x

′
i,x

′
∼i)dx

′
∼idx

′
i

)]

(17)

ST ind
i =

1

2V

∫

Rn+1

(f(x′
i,x

′
∼i)− f(x̄i,x

′
∼i))

2
p(x′

i,x
′
∼i)p(x̄i|x

′
∼i)dx

′
idx̄idx

′
∼i

(18)

Sind
i =

1

V

[
∫

Rn

f(x̄i,x∼i)p(x̄i|x∼i)p(x∼i)dx̄idx∼i

(
∫

Rn−1

f(x̄i,x
′
∼i)p(x

′
∼i)dx

′
∼i −

∫

Rn

f(x′
i,x

′
∼i)p(x

′
i,x

′
∼i)dx

′
idx

′
∼i

)] (19)

STi =
1

2V

∫

Rn+1

(f(x′
i, x̄

′
∼i)− f(xi, x̄

′
∼i))

2
p(x′

∼i|x
′
i)p(x̄

′
∼i|x

′
i)p(x

′
i)p(xi)dx̄

′
∼idxidxi

(20)

Six samples of size N are necessary to evaluate f(xi,x∼i), f(x′
i,x

′
∼i),

f(xi, x̄
′
∼i), f(x̄i,x

′
∼i) f(x̄i,x∼i), f(x′

i, x̄
′
∼i) and compute the sensitivity in-

dices. They are generated with the inverse Rosenblatt transformation (see

in Appendix A Equation (37)). In Section 3, we show that 4n samples are

necessary to compute all the set of sensitivity indices.
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2.6. The case of correlated input

The Rosenblatt transformation requires the knowledge of conditional

probability densities. Such information is unknown in some applications

(see the example in Section 5). However, when the dependency structure is

defined by a rank correlation matrix R, the procedure of Iman and Conover

(1982) (IC), described hereafter, can be used to generate the input sam-

ple. Let znc be a vector of independent standard normal variables and

{F1, · · · , Fn} the marginal cumulative distributions of the set of correlated

inputs x. Although the znci ’s are independent, a sample of znc has a cor-

relation matrix Cz that is not a perfect identity matrix. The procedure to

produce x is based on the following four-step algorithm,

1. Compute the lower Cholesky factorization of R, R = LLT , with:

L =

















1 0 · · · 0

l21 l22 · · · 0
...

. . .
. . .

...

ln1 ln2 · · · lnn

















.

and denote Λ, the inverse matrix of L,

Λ = L−1 =

















1 0 · · · 0

λ21 λ22 · · · 0
...

. . .
. . .

...

λn1 λn2 · · · λnn

















.

2. Find Q such that, Cz = QQT

3. Generate the normally distributed correlated variables,

zc = znc(Q−1)TLT ∼ N (0,R) (21)

4. Perform the following transformation: xj = F−1
j

(

φ(zcj)
)

where φ is the

cumulative standard normal distribution.
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From the latter relationship, it can be guessed that the sensitivity indices

of xj are those of zcj since there is an one-to-one mapping between x and

zc. Indeed, we note that f(x1, . . . , xn) = f(F−1
1 (φ(zc1)), . . . , F

−1
n (φ(zcn))) =

g(znc). It has to be noted that the Pearson correlation matrix C is not equal

to the Spearman rank correlation matrix R. If C is desired, then R must be

modified in order to get C with the IC procedure. The empirical formulas

derived in Liu and Kiureghian (1986) or the algorithm proposed in Li et al.

(2008) can be used to achieve this goal.

Besides, from Equation (21), it can be deduced that,

- znc1 = zc1 ∼ p(zc1),

- znc2 = λ21z
c
1 + λ22z

c
2 ∼ p(zc2|z

c
1),

- · · · ,

- zncn = λn1z
c
1 + · · ·+ λnnz

c
n ∼ p(zcn|z

c
∼n)

and (x1, x2, . . . , xn) ∼ p(x1)p(x2|x1) . . . p(xn|x∼n). Hence, the vector znc

plays the same role as the Rosenblatt transform u1 except that znc is a

vector of independent standard normal variables while u1 is a vector of in-

dependent variables uniformly distributed over the unit hypercube. Once

again, instead of performing the UASA of f(x) we perform the UASA of

g(znc) with independent variables.

3. Monte Carlo methods

3.1. Sampling strategy with RT

To compute (Si, S
ind
i−1, STi, ST

ind
i−1), four samples of a given size N are nec-

essary if one refers to the non-parametric method of Saltelli (2002). They

are generated with the inverse Rosenblatt transformation (see in Appendix

13



A Equation (37)). First, an uniformly distributed sample ui is created to

produce x ∼ p(x). Then, a second independent uniformly distributed sam-

ple ui′ is created to produce x′ ∼ p(x). The two previous samples are

combined as follows (ui
1,u

i′

∼1) to obtain (xi, x̄
′
∼i) ∼ p(xi)p(x̄

′
∼i|xi). From

these three samples one can compute Si and STi. Finally, a fourth sample

(x̄i−1,x
′
∼i−1) ∼ p(x̄i−1|x∼i−1)p(x∼i−1) is created from (ui

n,u
i′

∼n) and allows

for evaluating (ST ind
i−1, S

ind
i−1).

(ui
1, · · · , u

i
n)

IRT
−→ (xi, · · · , xn, x1, · · ·xi−1) ∼ p(x) (22)

(ui′

1 , · · · , u
i′

n)
IRT
−→ (x′

i, · · · , x
′
n, x

′
1, · · ·x

′
i−1) ∼ p(x′) (23)

(ui
1, u

i′

2 , · · · , u
i′

n)
IRT
−→ (xi, x̄

′
i+1, · · · , x̄

′
n, · · · x̄

′
i−1) ∼ p(xi)p(x̄

′
∼i|xi) (24)

(ui′

2 , · · · , u
i′

n−1, un)
IRT
−→ (x′

i, x
′
i+1, · · · , x

′
i−2, x̄i−1) ∼ p(x′

∼i−1)p(x̄i−1|x
′
∼i−1)

(25)

Three samples are necessary to assess the full sensitivity indices of

the group of factors y = (x1, . . . , xs), respectively u1, u1′ and

(u1′

1 , u
1′

2 , . . . , u
1′

s , u
1
s+1, . . . , u

1
n). In order to estimate (Si, S

ind
i , STi, ST

ind
i ),

∀i = 1, . . . , n, 4n samples are required, obtained with the four previous

samples by varying i ∈ [[1, n]].

3.2. Sampling strategy with IC procedure

As discussed in the previous section, the sensitivity indices of znc1 are the

full indices of x1 while those of zncn are the independent indices of xn. To

compute (Si, S
ind
i−1, STi, ST

ind
i−1), four samples of a given size N are necessary.

14



The four samples are of the form, znc = (znc1 , . . . , zncn ), znc
′

= (znc
′

1 , . . . , znc
′

n ),

(znc
′

1 , znc
′

2 , . . . , zncn ) and (znc1 , . . . , zncn−1, z
nc′

n ), with znc and znc
′

two independent

standard normal samples such that,

(znc1 , · · · , zncn )
IC
−→ (xi, · · · , xn, x1, · · ·xi−1) ∼ p(x) (26)

(znc
′

1 , · · · , znc
′

n )
IC
−→ (x′

i, · · · , x
′
n, x

′
1, · · ·x

′
i−1) ∼ p(x′) (27)

(znc1 , znc
′

2 , · · · , znc
′

n )
IC
−→ (xi, x̄

′
i+1, · · · , x̄

′
n, · · · x̄

′
i−1) ∼ p(xi)p(x̄

′
∼i|xi) (28)

(znc
′

1 , · · · , znc
′

n−1, z
nc
n )

IC
−→ (x′

i, x
′
i+1, · · · , x

′
i−2, x̄i−1) ∼ p(x′

∼i−1)p(x̄i−1|x
′
∼i−1)

(29)

Three samples are necessary to assess the full sensitivity indices of the group

of factors y, respectively znc, znc
′

and (znc
′

1 , znc
′

2 , . . . , znc
′

s , zncs+1, . . . , z
nc
n ). In

order to estimate (Si, S
ind
i , STi, ST

ind
i ), ∀i = 1, . . . , n, 4n samples are re-

quired. For this purpose, the Iman and Conover’s (IC) sampling procedure

is repeated n times by circularly reordering the vector x and changing the

rank correlation matrix accordingly.

3.3. Monte-Carlo estimators

Let us denote by x and x′ two independent samples of size N obtained

from either (22-23) or (26-27), depending on the strategy employed (RT or

IC). We denote by xi and xi−1 the sample obtained with (24-25) respectively

(or (28-29)). The Monte-Carlo estimates of the sensitivity indices are given
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by,

Ŝi =
1
N

∑N

k=1 f(xk)× (f(xi
k)− f(x′

k))

V̂
(30)

ŜT
ind

i =
1
N

∑N

k=1

(

f(xi−1
k )− f(x′

k)
)2

2V̂
(31)

Ŝind
i−1 =

1
N

∑N

k=1 f(xk)×
(

f(xi−1
k )− f(x′

k)
)

V̂
(32)

ŜT i =
1
N

∑N

k=1 (f(x
i
k)− f(x′

k))
2

2V̂
(33)

where, x∗
k = (x∗

k1, · · · , x
∗
kn) is the k-th MC trial in the sample x∗, k ∈ [[1, N ]]

and V̂ is the total variance estimate that can be computed as the average of

the total variances computed with each sample x∗.

4. Numerical test cases

4.1. A linear model

Let us consider the simple linear model f(x1, x2, x3) = x1+x2+x3, where

the xi’s are standard normal random variables with correlation matrix:

C =











1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1











.

Analytical sensitivity indices (Si,ST
ind
i ) for this linear model are derived

in Mara and Tarantola (2012). The accuracy of the non-parametric approach

can then be assessed. We considered two different sets of correlation coef-

ficients, (ρ12, ρ13, ρ23) = (0.5, 0.8, 0) and (−0.5, 0.2,−0.7) respectively. For

both cases, the computation of the 3 × 2 indices requires the 3 × 4 samples
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generated as follows,

(znc1 , znc2 , znc3 )
IC
−→ (x1, x2, x3), (x2, x3, x1), (x3, x1, x2)

(znc
′

1 , znc2 , znc3 )
IC
−→ (x′

1, x̄2, x̄3), (x
′
2, x̄3, x̄1), (x

′
3, x̄1, x̄2)

(znc1 , znc2 , znc
′

3 )
IC
−→ (x1, x2, x̄

′
3), (x2, x3, x̄

′
1), (x3, x1, x̄

′
2)

(znc
′

1 , znc
′

2 , znc
′

3 )
IC
−→ (x′

1, x
′
2, x

′
3), (x

′
2, x

′
3, x

′
1), (x

′
3, x

′
1, x

′
2)

where, x′
i ∼ p(xi), xi ∼ p(xi) and (x̄i, x̄j) ∼ p(xi, xj |xk) with i 6= j 6= k.

Note that in IC procedure, we used only four samples of znc to generate

the twelve samples of x. For each sample of znc, four samples of x is obtained

by circularly permuting the variables in the set. Of course, the circular

permutations imply a modification of the correlation matrix C. For instance,

for the set (x2, x3, x1) we have

C =











1 ρ23 ρ12

ρ23 1 ρ31

ρ12 ρ31 1











.

We used pseudo-random samples of size N = 1 000 each. Therefore, the

total computational cost is 12 000. Our discussion focuses on the computation

of (Si, ST
ind
i ), ∀i = 1, 2, 3. The bootstrap estimates of size 10 000 have been

performed for each couple of indices. The mean bootstrap estimates of Si

and ST ind
i are shown in Table 1 for two different correlation structures. We

can note that the estimates are rather accurate.

For the case (ρ12, ρ13, ρ23) = (0.5, 0.8, 0), we find that S1 = 0.94 which

means that the overall - correlated and independent - contribution of x1 to

the output variance is 94% (Table 1). The remaining amount of variance

(6%) is then explained by x2 and x3 without their correlated contributions

with x1. Consequently, for this correlation structure, the knowledge of x1

only, suffices to predict the model output accurately. Figure 1, on the left,
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[Insert Table 1 about here]

depicts the original three-dimensional scatterplots of the sample (x1, x2, x3)

(the circles) and the sample generated from x1 (crosses along a straight line).

On the right, the scatterplots show that the responses are very close. The

determination coefficient R2 is equal to 0.94 which coincides with the first-

order effect of x1. Alternatively, by noting that ST ind
1 = 0.02, one can infer

that the independent contribution of x1 is only 2%. This means that 98% of

the variance is explained by the pair (x2, x3) also via their correlation with

x1.

In the case of negative correlations (ρ12, ρ13, ρ23) = (−0.5, 0.2,−0.7) the

independent contributions are larger than the full marginal contribution (see

also Xu and Gertner, 2008b). Also in this case, S1 is the largest first-order

index. On the one hand, if the modeller wants to decrease the variance of

the output s/he should reduce the uncertainty on x1. On the other hand, the

modeller should avoid to focus on x2 as s/he would not be able to achieve a

consistent reduction in the output variance (S2 = 0.04). Should it be possible

to exclude x2 from the model? The answer is no, because the contribution

of x1 and x3 is only 63% (i.e. 1− ST ind
2 = 0.63).

[Insert Figure 1 about here]

4.2. A non-linear model with non-linear dependences

The function analyzed in this example is : f(x) = x1x2 + x3x4 where

(x1, x2) ∈ [0, 1[2 is uniformly distributed within the triangle x1 + x2 ≤ 1 and

(x3, x4) ∈]0, 1]
2 is uniformly distributed within the triangle x3 + x4 ≥ 1. In

this case, the inputs are strictly dependent and the procedure of Iman &

Conover is not appropriate to generate the samples because the dependency
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across inputs is not described by a rank correlation matrix. The Rosenblatt

transformation is therefore necessary.

The Rosenblatt transformation of (x1, x2) yields the following mapping

(see details in C),






x1 = 1−
√

1− u1
1

x2 = u1
2

√

1− u1
1

(34)

in which (u1
1 6= 1, u1

2) ∈ K
2. Because of the symmetry, the RT transformation

of (x2, x1) is obtained by simply inverting x1 and x2 in Equation (34). In the

same way, RT of (x3, x4) writes,






x3 =
√

u1
3

x4 = (u1
4 − 1)

√

u1
3 + 1

(35)

Therefore, performing the sensitivity analysis of f(x) = x1x2 +

x3x4 is equivalent to performing the sensitivity analysis of g1(u
1) =

(

1−
√

1− u1
1

)

u1
2

√

1− u1
1 +

√

u1
3

(

(u1
4 − 1)

√

u1
3 + 1

)

with the independent

variables u1 ∈ K
4 − (1, ·, 0, ·). We recall that the sensitivity indices of u1

1

are those of x1, those of u1
2 are those of x2 that are not due to its depen-

dence with x1, and so on. In this numerical exercise, we are interested by

the variance-based sensitivity indices of groups of variables, namely: S1 the

full first-order effect of x1 (i.e. u1
1), Sclosed

12 the full closed-order effect of

(x1, x2) (i.e. (u1
1, u

1
2)), S

closed
123 the full closed-order effect of (x1, x2, x3) (i.e.

(u1
1, u

1
2, u

1
3)), knowing that Sclosed

1234 = 1.

By using the pick and freeze method (Saltelli, 2002), five samples of u1 are

necessary: (u1
1, u

1
2, u

1
3, u

1
4), (u1′

1 , u
1
2, u

1
3, u

1
4), (u1′

1 , u
1′

2 , u
1
3, u

1
4), (u1′

1 , u
1′

2 , u
1′

3 , u
1
4)

and (u1′

1 , u
1′

2 , u
1′

3 , u
1′

4 ). The two independent reference samples u1 and u1′ are

uniformly distributed over the unit hypercube. Samples of size N = 1024 are

generated and the bootstrap technique is employed to assess the variability

of the sensitivity estimates.
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[Insert Figure 2 about here]

The analytical values of the sensitivity indices are: S1 =
1
30
, Sclosed

12 = 1
10

and Sclosed
123 = 1

3
. They are plotted in Figure 2 with the estimated sensitivity

indices. The results are very accurate and the mean bootstrap estimates are

very closed to the true values. The bias of the estimator is very small. For

the sake of completeness, the other sensitivity indices are S1 = S2 = 1
30
,

ST ind
1 = ST ind

2 = 1
15
, S3 = S4 = 7

30
and ST ind

3 = ST ind
4 = 2

3
. These results

indicate that (x3, x4) are the most preponderant variables. Because the pair

(x1, x2) does not interact with (x3, x4), a reduction of Sclosed
12 = 10% of the

variance of f(x) would be achieved by fixing (x1, x2).

5. Application to radionuclides transport in the geosphere

5.1. The Level E model

We now discuss the application to a model developed by the Nuclear En-

ergy Agency of the OECD for predicting the radiologic release to humans due

to the underground migration of radionuclides from a nuclear waste disposal

site. The model is known as Level E (OECD/NEA PSAC User Group, 1989;

OECD/NEA PSAG User Group, 1993) and, with time, has become a bench-

mark model in global sensitivity analysis studies (Saltelli and Marivoet, 1990;

Saltelli and Tarantola, 2002; Ratto et al., 2007; Borgonovo et al., 2012).

Level E simulates the radiological dose released from a nuclear

waste disposal site to humans. The dose is due to the under-

ground migration of radionuclides. Level E has been widely uti-

lized in the literature. We recall its utilization as a benchmark

for Monte Carlo calculations in OECD/NEA PSAC User Group (1989),

OECD/NEA PSAG User Group (1993), for variance-based techniques in

20



[Insert Table 2 about here]

Saltelli and Tarantola (2002), for emulators in Ratto et al. (2007) and, re-

cently, for moment-independent methods, in Castaings et al. (2012) . While

we refer to OECD/NEA PSAC User Group (1989) for a detailed description

of the model, a succinct illustration is proposed here. The repository is rep-

resented as a point source and the one-dimensional dispersion is tracked over

geological time scales (up to 107 years). The model describes the transport

of iodine (129I), neptunium, uranium and thorium (237Np → 233U → 229Th)

through two geosphere layers characterized by specific hydro-geological prop-

erties. The governing equations account for radioactive decay, dispersion, ad-

vection and chemical reaction between the migrating nuclides and the porous

medium. Model output uncertainty is caused by twelve uncertain model in-

puts whose probability distributions were assigned on the basis of expert

judgement (see Table 2 and OECD/NEA PSAG User Group, 1993). Two

output of this model are analyzed in the literature. The maximum radiolog-

ical dose simulated over the time period up to 107 years and the radiological

dose at given times.

5.2. Results and discussion

A sensitivity analysis of the level E model was performed by accounting

for the correlations among the twelve input parameters shown in Table 3. To

simplify the analysis the initial set of 12 parameters is reduced to six factors

by grouping all the parameters related to a specific layer i, i = 1, 2:

Gr(1) = (v(1), l(1), R(1), R
(1)
C )

Gr(2) = (v(2), l(2), R(2), R
(2)
C )
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[Insert Table 3 about here]

Results are shown in Figure 3 which presents the set of sensitivity in-

dices (Si, S
ind
i , STi, ST

ind
i ) at given times. The time interval simulated by

the model is from 20,000 to 9,000,000 years in the future. The parameters

describing layer 1, grouped in group 1 (Gr1), together with the stream flow

rate W are found to be the most important ones in terms of model output

sensitivity at almost any times. Still the two factors Gr1 and W behave in

a different way. As regards Gr1, its full first-order index SGr1 and full total

index STGr1 assume high values at almost any time points (see graphs on

the left column of Figure 3), suggesting that some variables in Gr1 are im-

portant, both in terms of direct influence on the model output and through

interactions. Gr1 is also important in terms of independent contribution to

the output uncertainty given that the values of Sind
Gr1

and ST ind
Gr1

are pretty

high for most time points (see graphs on the right column of Figure 3).

Parameter W contributes to the output sensitivity through the full total

index STW and its independent component ST ind
W (see graphs in the bottom

row of Figure 3). Parameters related to layer 2, grouped in Gr2, have in

general a lower influence on the output variability. They show high values of

the full total index STGr2, correlated and independent (bottom-left graph of

Figure 3), for almost all points in time. The uncorrelated component of STGr2

is non-irrelevant as shown by the bottom-right graph of Figure 3. The other

input parameters are less important. Among them, the containment time T

is influencing only through correlation and interactive effects at certain time

points (high values of full total index with almost null values of full first-order

effect and independent components, both for the first-order and total effect).

Clearly, T is a spurious parameter only contributing to the model response

variance because of its correlation with v(1).

22



[Insert Figure 3 about here]

6. Conclusion

We propose a non-parametric strategy to compute sensitivity indices of

model outputs with dependent inputs. These indices were initially introduced

in Kucherenko et al. (2012) and Mara and Tarantola (2012). The procedure

allows for detecting those inputs that contribute to the variation of the model

response per se and through their dependency with the other inputs. We in-

troduce and use the inverse Rosenblatt transformation that is particularly

suited to compute the sensitivity indices when the dependency structure

across the inputs is not described by a (rank) correlation matrix. Its im-

plementation is delicate because it requires the knowledge of the conditional

densities. When this latter is not known, but the (rank) correlation structure

is, a simpler procedure based on the technique of Iman and Conover can be

adopted.

The implementation of the proposed procedure for groups of inputs

is conceptually easier than in Kucherenko et al. (2012), whereby sam-

pling from probability densities conditional upon two or more inputs

can be challenging. Comparatively to the emulation-based approach de-

rived in Mara and Tarantola (2012) and to the procedure proposed by

Kucherenko et al. (2012), the proposed non-parametric method is easier to

implement, yet computationally more expensive.

The proposed method, as well as that by Kucherenko et al. (2012), allows

for computing bootstrap confidence intervals for the sensitivity indices. On

the contrary, this is not possible with Mara and Tarantola (2012) approach

because the emulation-based step cannot be bootstrapped.

The application to a benchmark radionuclide model, the so-called Level E,
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allows us to show the usefulness of the proposed approach which distinguishes

inputs that are important through a direct effect on the output from those

that are relevant only indirectly, i.e. through the dependency structure.
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Appendix A Rosenblatt transformation

Let x = (x1, . . . , xn) ∼ p(x) be a set of continuous dependent ran-

dom variables, with joint probability density function p(x) that can be

re-written as p(x) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xn|x∼n) where x∼i =

(x1, . . . , xi−1, xi+1, . . . , xn). Let Fi(xi|v) be the cumulative distribution func-

tion of p(xi|v), with v ⊆ x∼i. The Rosenblatt transformation (Rosenblatt,

1952) of x provides with a set of independent random variables u1 uniformly

distributed over the unit hypercube K
n = [0, 1]n. That is,































u1
1 = F1(x1)

u1
2 = F2(x2|x1)

...

u1
n = Fn(xn|x∼n)

(36)

The Rosenblatt transformation is unique if and only if x is a set of inde-

pendent variables, that is, p(x) = p(x1)p(x2)p(x3) . . . p(xn). In this case,

the ANOVA decomposition shown in Equation (2) (see the main text of the

paper) is unique. In general, the Rosenblatt transformation is not unique

and there are n! possibilities depending on how the random variables are

ordered in the set x. We denote by ui the Rosenblatt transform of the set

(xi, . . . , xn, x1, . . . , xi−1) obtained after the (i − 1)th circular permutation of

the canonical set. Such transformations require the knowledge of the condi-

tional cumulative distribution functions Fi(xi|v).

Rosenblatt transformations are usually employed to generate a set of depen-

dent inputs distributed with respect to a given probability density function

p(x) from a set of independently and uniformly distributed variables u1. For
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this purpose, the inverse Rosenblatt transform is employed,






























x1 = F−1
1 (u1

1)

x2 = F−1
2 (u1

2|x1)
...

xn = F−1
n (un|x∼n)

(37)

Appendix B The integral definitions of the sensitivity indices

B.1 For the first-order sensitivity index

Let us denote u = (v,w) one of the Rosenblatt transforms of x = (y, z).

It comes that,

V [E [g(v,w)|v]] =

∫

Ks

dv

(
∫

Kn−s

g(v, w̄)dw̄

)2

−

(
∫

Kn

g(v,w)du

)2

=

∫

Ks

dv

∫

Kn−s

g(v, w̄)dw̄

∫

Kn−s

g(v, w̄′)dw̄′

−

∫

Kn

g(u)du

∫

Kn

g(u′)du′

which, by using Bayes rule writes,

V [E [g(v,w)|v]] =

∫

Kn

g(v,w)dvdw

(
∫

Kn−s

g(v, w̄′)dw̄′ −

∫

Kn

g(v′,w′)dv′dw′

)

.

(38)

Now, if the RT is such that,

dv = p(y)dy

dw = p(z̄|y)dz̄

we get E [f(x)] =

∫

Rn

f(y, z)p(y, z)dydz =

∫

Kn

g(v,w)dvdw

Changing the variables in (38) yields the integral definition of the numerator

in Equation (13),

V [E [f(y, z)|y]] =

∫

Rn

f(y, z)p(y,x)dydz

(
∫

Rn−s

f(y, z̄′)p(z̄′|y)dz̄′ −

∫

Rn

f(y′, z′)p(y′, z′)dy′dz′
)
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(39)

But, if the RT is such that,

dv = p(ȳ|z)dȳ

dw = p(z)dz

then, changing the variables in (38) yields the integral definition of the nu-

merator in Equation (15),

V [E [f(y, z)|(y|z)]] =

∫

Rn

f(ȳ, z)p(ȳ|z)p(z)dȳdz
(
∫

Rn−s

f(ȳ, z′)p(z′)dz′ −

∫

Rn

f(y′, z′)p(y′, z′)dy′dz′
)

.

(40)

B.2 For the total sensitivity index

We start with the law of total variance,

E [V [g(u)|w]] = V [g(u)]− V [E [g(u)|w]] . (41)

We can write,

V [g(u)] =
1

2

∫

Kn

g2(v̄,w)dwdv+
1

2

∫

Kn

g2(v′,w)dwdv′ − (E [g(u)])2

Besides, from (38), it can be inferred that,

V [E [g(v,w)|w]] =

∫

Kn−s

dw

∫

Ks

g(v,w)dv

∫

Ks

g(v′,w)dv̄′ − (E [g(u)])2

By replacing the two previous relations in (41) yields,

E [V [g(u)|w]] =
1

2

∫

Kn

g2(v,w)dwdv +
1

2

∫

Kn

g2(v′,w)dwdv′

−

∫

Kn−s

dw

∫

Ks

g(v,w)dv

∫

Ks

g(v′,w)dv′
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which is equivalent to,

E [V [g(u)|w]] =
1

2

∫

Kn+s

(g(v′,w′)− g(v,w′))
2
dv′dw′dv. (42)

As previously, if the RT is,

dv = p(y)dy

dw = p(z̄|y)dz̄

then, changing the variables in (42) yields the integral definition of the nu-

merator in Equation (16),

E [V [f(z,y)|(z|y)]] =
1

2

∫

Rn+s

(f(y′, z̄′)− f(y, z̄′))
2
p(z̄′|y′)p(y′)p(y)dy′dz̄′dy

(43)

But, if the RT is such that,

dv = p(ȳ|z)dȳ

dw = p(z)dz

then, changing the variables in (42) yields the integral definition of the nu-

merator in Equation (14),

E [V [f(y, z)|z]] =
1

2

∫

Rn+s

(f(y′, z′)− f(ȳ, z′))
2
p(y′, z′)p(ȳ|z′)dy′dz′dȳ (44)

Appendix C RT of the variables in section 4.2

Let (x1, x2) ∈ [0, 1[2 be uniformly distributed over the triangle x1+x2 ≤ 1.

The joint pdf is p(x1, x2) = 2 and the following pdfs can be obtained,

p1(x1) =

∫ 1−x1

0

p(x1, x2)dx2 = 2(1− x1) (45)

p2|1(x2|x1) =
p(x1, x2)

p1(x1)
=

1

(1− x1)
(46)
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The associated cumulative distribution functions are

f1(x1) =

∫ x1

0

p1(x)dx = x1(2− x1) (47)

f2|1(x2, x1) =

∫ x2

0

p2|1(x|x1)dx =
x2

1− x1
(48)

and the Rosenblatt transforms of (x1, x2) are,







u1
1 = x1(2− x1)

u1
2 =

x2

1− x1

(49)

This transformation being bijective from [0, 1[×[0, 1] to [0, 1[×[0, 1], we can

invert the previous equations and find,







x1 = 1−
√

1− u1
1

x2 = u1
2

√

1− u1
1

(50)

These relationships allow to generate samples uniformly distributed over the

triangle x1+x2 ≤ 1 from samples uniformly distributed over the unit hyper-

cube (u1
1, u

1
2) ∈ K

2 excluding (u1
1, u

1
2) = (1, ·).

In the same way, we show that the Rosenblatt transform of (x3, x4) ∈]0, 1]2

uniformly distributed over the triangle x3 + x4 ≥ 1, yields,

p3(x3) =

∫ 1

1−x3

p(x3, x4)dx4 = 2x3 (51)

p4|3(x4|x3) =
1

x3
(52)







u1
3 = f3(x3) = x2

3

u1
4 = f4|3(x4, x3) =

x3 + x4 − 1

x3

(53)







x3 =
√

u1
3

x4 = (u1
4 − 1)

√

u1
3 + 1

(54)
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Table 1: Analytical first-order sensitivity indices (Si, ST
ind
i

) for different correlation struc-

tures and their mean bootstrap estimates (Ŝi, ŜT
ind

i
).

(ρ12, ρ13, ρ23) Input Si = STi Ŝi Sind
i = ST ind

i ŜT
ind

i

x1 0.94 0.95 0.02 0.02

(0.5, 0.8, 0) x2 0.40 0.38 0.05 0.05

x3 0.58 0.60 0.03 0.03

x1 0.49 0.49 0.72 0.70

(−0.5, 0.2,−0.7) x2 0.04 0.05 0.37 0.37

x3 0.25 0.26 0.48 0.50
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Table 2: Inputs list for the Level E model

Notation Definition Distribution Range Units

T Containment time Uniform [100, 1000] yr

kI Leach rate for Iodine Log-uniform [10−3, 10−2] mols/yr

kc Leach rate for Np chain Log-uniform [10−6, 10−5] mols/yr

v(1) Water speed in geosphere’s layer 1 Log-uniform [10−3, 10−1] m/yr

l(1) Length of geosphere’s layer 1 Uniform [100, 500] m

R(1) Retention factor for I (first layer) Uniform [1, 5] −

R
(1)
C Retention coeff. for Np chain layer 1 Uniform [3, 30] −

v(2) Water speed in geosphere’s layer 2 Log-uniform [10−2, 10−1] m/yr

l(2) Length of geosphere’s layer 2 Uniform [50, 200] m

R(2) Retention factor for I (layer 2) Uniform [1, 5] −

R
(2)
C Retention coeff. for Np chain layer 2 Uniform [3, 30] −

W Stream flow rate Log-uniform [105, 107] m2/yr
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Table 3: Configuration for correlated input of the Level E model

pairs of correlated factors correlation

kI , kC 0.5

R(1), R
(1)
C 0.3

R(2), R
(2)
C 0.3

T, v(1) - 0.7

v(1),v(2) 0.5

R(1), R(2) 0.5

R
(1)
C , R

(2)
C 0.5
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ŷ

R2
= 0.944

Figure 1: On the left, two samples of the random variables are depicted. The circles

represent the pseudo-random sample an the red (line) crosses, sample generated from

x1 alone (see text for explanation). On the right, comparison of the model responses

respectively evaluated with the original sample (ylhs) and the sample generated from

x1 (ŷ). A good adequacy is observed between the responses, meaning that, given the

correlation structure, the knowledge of x1 alone is sufficient to assess the model response

uncertainty.
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Figure 2: Bootstrap estimates of the sensitivity indices Sy for different groups of inputs y.

The dashed-lines are the analytical values. The squares are the mean bootstrap estimates

while errorbars represent the intervals of variation.
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Figure 3: Level E estimated variance-based sensitivity indices: (a) full first-order indices,

(b) independent first-order indices, (c) full total indices and (d) independent total indices.

See text for explanations.
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