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Highlights 

Data was collected directly from fishers to better understanding fishing behaviour. 

Face to face interviews and a conjoint analysis were completed with scallop fishers. 

Foraging and environmental parameters central to patch choice were identified. 

Different strategies of patch choice were identified, and verified against vessel data. 

These relevant and reliable data could lead to a more realistic behavioural model. 

 

Abstract 

The predictability of fisher behaviour is an area of considerable uncertainty in fisheries 

management models. Fisher-derived data could underpin a better understanding, and more 

realistic predictions, of fishing behaviour. Face to face interviews and a choice-based survey 

were conducted with scallop fishers to collect foraging parameters that could inform a model 

of fishing behaviour, and to better understand patch choice behaviour. Importantly, we 

validated survey data against vessel monitoring system and logbook data where possible, 

demonstrating a good level of accuracy. Environmental parameters central to patch choice 

were determined (e.g. wave height, distance to port), and three strategies of patch choice 

behaviour were identified, termed quantity maximiser, quality maximiser, and efficient fisher. 

Individuals’ VMS and logbook data further confirmed and explained these behavioural 

patterns. This approach provided reliable, highly relevant data for the parameterisation of a 

fisheries behavioural model, which could lead to more robust and realistic predictive fisheries 

models. 
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1. Introduction 

1.1. We need trusted predictive models for effective fisheries management 

Hunter-gatherers, such as fishers, typically lack trust in the scientific evidence that underpins 

management controls and policy. This phenomenon is termed the ‘credibility crisis’ 

(Röckmann et al., 2012). Fishers often express the opinion that data collected by scientists 

do not sufficiently reflect the status of their fishery, leading to inappropriate management 

conclusions (Bergmann et al., 2004). The integration of public participation in science has 

been demonstrated to address some of the concerns surrounding credibility and uncertainty 

in fisheries (Voinov and Bousquet, 2010; Yates, 2014). In particular, participatory modelling 

can alleviate some of the tensions between scientists and fishers, through addressing 

questions surrounding the credibility and legitimacy of scientific advice based on ‘black box’ 

models (Röckmann et al., 2012; Thébaud et al., 2014). Quantitative and qualitative scientific 

models are the primary tool for generating advice for the purpose of natural resource 

management (Röckmann et al., 2012). Accordingly, there is a need to adopt approaches that 

assist in the development of more realistic, credible and trusted predictive management 

models, capable of predicting both ecological and economic impacts of novel future 

scenarios (Fulton et al., 2011; Reeves et al., 2009; Wilen et al., 2002).  

 

1.2. Predictive models require a better understanding of fishing behaviour. 

Whilst the long term sustainability objectives of fishers and scientists are aligned (Kraak et 

al., 2010), in the short term fishers may be working to different priorities that operate under 

different spatial and time scales (Röckmann et al., 2012). Management measures that lead 

to short term reductions in fishing effort typically result in short term economic losses for 

some fishers. It is necessary to understand fishers’ tolerance and capacity to cope with 

change to be able to understand which measures would engender support compared to 

those that are unacceptable. We need to understand how fishers will respond to 

management in terms of the spatial and temporal displacement of effort. If we can 

understand and predict the scope for fishers’ compensatory activity following management 
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restrictions, we can calculate realistic economic impacts of management, and reach more 

agreeable management solutions. 

Nevertheless, the predictability of fishing behaviour is an area of considerable uncertainty in 

fisheries management (Fulton et al., 2011). Human decision-making drives spatial patterns 

of fishing effort (Hilborn, 2007; Plagányi et al., 2014). We must understand what underlies 

these fishing decisions, regarding where and when to fish, if we are to understand how 

fishing behaviour underpins the spatial and temporal patterns in fishing activity that arise 

from external factors. Hilborn (2007) stated that “managing fisheries is managing people” 

and so effective management requires an “understanding of the motivation of fishermen and 

designing a management regime that aligns societal objectives with the incentives provided 

to fishermen”. This notion has been expressed and reiterated by many fishery scientists over 

the decades (Bucaram et al., 2013; Hallwass et al., 2013; Wilen, 2006, 1979), yet a 

generation of ‘command and control’ fishing policies, where top down legislative measures 

prescribe where and when fishermen can fish, has somewhat failed to take account of the 

societal and economic dimensions of fisheries (Bucaram and Hearn, 2014; Bucaram et al., 

2013; Wilen, 2006). Environmental policies are generally developed centrally, based on the 

assumption that resource users will respond homogenously to management actions (Gelcich 

et al., 2005). Whilst fishers’ responses to management options may be deterministic, 

responses are likely to vary between groups and among individuals which necessitates a 

thorough understanding of the system to make realistic predictions about the effectiveness 

of management (Gelcich et al., 2005).  

 

1.3. Individual based models could work from a behavioural perspective, but are data 

intensive. 

Individual based models (IBMs) are considered better for predicting individual responses to 

novel conditions compared to numerical modelling, as individuals can respond to 

experienced conditions to maximise an objective function (such as fitness) (Grimm and 

Railsback, 2005; Railsback, 2001). In a fishery, the objective function could be to maximise 

the economic return (equivalent to fitness), but it could also be influenced by a range of 

social and environmental factors (Abernethy et al., 2007).  Despite the demonstrated utility of 

theoretical individual based models (Cabral et al., 2010; Ruiz-Pérez et al., 2011; Soulié and 

Thébaud, 2006), there are relatively few applications of IBMs to real life fisheries (see 

Bastardie et al., 2014, 2010; Dowling et al., 2012), perhaps due to the limited understanding 

of fisher behaviour. Vessel monitoring system (VMS) and logbook data (which when linked 

provide spatially resolved catch records) are increasingly used to investigate fishing 
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behaviour (Lee et al., 2010; Murray et al., 2011).  While VMS data can offer valuable insights 

into where and when fishing occurs, it does not impart much insight into the decision making 

process that resulted in the observed patterns of fishing effort. Fishers’ data can provide 

insights into the decision making at a finer scale than can be inferred from VMS data alone. 

For example, by collecting data directly from fishers through surveys, it could be possible to 

identify the objective function of fishers, and thereby determine to what extent profit 

maximisation is actually driving fishing behaviour in relation to other drivers (Abernethy et al., 

2007; Christensen and Raakjær, 2006). This information could inform the behavioural 

parameters used to develop an IBM of fishing behaviour and thereby predict more realistic 

and adaptive behavioural patterns in the fishery. 

 

1.4. Participatory modelling can make models more transparent and realistic, increasing 

trust. 

It is increasingly acknowledged that better management decisions can be implemented 

when stakeholders are engaged in the decision making process, e.g. through participatory 

modelling (Gelcich et al., 2008; Mackinson 2011; Voinov and Bousquet, 2010). Stakeholders 

can be involved in; 1) framing the problem and purpose of the model, 2) using and 

evaluating the model (indirect participation), and 3) directly contributing to model 

construction (direct participation). Direct participation can increase support, interest and 

legitimacy (Mackinson and Wilson, 2014; Röckmann et al., 2012). The present study used 

questionnaires and a conjoint analysis technique to collect data directly from fishers to better 

understand fishing behaviour, in a first step towards a participatory modelling approach.  

Conjoint analysis and related choice modelling methods are used in market research, to 

evaluate respondent preferences for a number of products with varying features (Green and 

Srinivasan, 1990). Conjoint analysis quantifies how an individual values a given product with 

a number of specific features or attributes, so determining which of the features of the 

product are preferred (Alriksson and Öberg, 2008). Rather than directly asking respondents 

what they prefer in a product or what influences their decision, a conjoint analysis simulates 

a more realistic choice context; i.e. respondents cannot simply state that all attributes are 

important, they are forced to rank them through making trade-offs between products (Orme, 

2010). For example, a fisher is likely to state that the sea state, distance to port, and 

expected catch rate are all crucial in deciding where to fish. Nevertheless, this information 

would not be very meaningful when trying to understand the choices a fisherman makes 

when deciding where to fish (e.g. what is the trade-off between sea state [risk] and catch 

rate?).  Whilst conjoint analysis has been used widely in marketing, healthcare, quality 
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management and transportation studies, it has been used less often in an environmental 

context, although it is increasing in use (see Alriksson and Öberg, 2008 for review). In 

fisheries, conjoint analyses have been used to investigate the importance of fisheries 

management objectives (Wattage et al., 2005), and perceived impacts of regulatory 

obligations (Hadjimichael et al., 2013). We propose that a conjoint analysis may also be a 

useful technique to elicit behavioural data from fishers that could be used to determine 

response thresholds within a model context. 

 

1.5. Aims 

The present study sought to determine whether it was possible to elicit realistic and reliable 

behavioural data from scallop fishers, using a questionnaire survey and conjoint analysis. 

The specific objectives were to i) further our understanding of fishing behaviours, focussing 

on the limiting factors and relationships between fishing behavioural parameters and 

fisher/vessel characteristics; ii) demonstrate the value of conjoint analysis for understanding 

patch choice behaviour; iii) characterise the behavioural characteristics of fishers, 

highlighting heterogeneity, and iv) provide evidence for the validity of such survey data. 
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2. Methods 

2.1. Conjoint Analysis Design 

A conjoint analysis was applied by conceptualising a fishing patch as a commercial product 

for respondents to choose between, with variable attributes (Table 1).  Fishers were 

presented with a choice of fishing patches with different attribute levels and were asked to 

select the patch in which they would fish preferentially. Different levels of an attribute refer to 

the actual details of a product, e.g. if one of the patch attributes is sea state, the levels could 

be calm, moderate, or rough. The survey was designed to elicit a fisher’s preferences for 

particular patch conditions, in terms of where they would rather fish using their current 

vessel. Understanding fishers’ preferences would identify important attributes that influence 

fishers’ decisions on where to fish, and the variation among individual fishers. An adaptive 

choice based conjoint (ACBC) survey was constructed and fielded in Sawtooth Software SSI 

Web v.8.2.4. The ACBC survey design was selected as the most appropriate as it is capable 

of handling small sample sizes, and a larger number of attributes and levels. In addition, the 

survey is adaptive, in that the software automatically and continually tailors the choices 

presented to the respondent according to their previous answers, resulting in a shorter 

interview with a greater level of respondent engagement (Sawtooth Software Inc., 2014). 

Attributes and levels were chosen through informal discussion with relevant experts, 

including a researcher familiar with the conjoint analysis technique, scientists at the Centre 

for Environment, Fisheries, and Aquaculture Science (Cefas) and Bangor University, and a 

well-respected fisher within the scallop industry. A total of six attributes were used in this 

study, with a combined total of 26 levels between them. The levels for each attribute were 

selected such that they were relevant to inshore scallop fisheries (Table 1). Patches were 

attributed with an expected tow quality, i.e. how many scallops the fisher could expect to 

catch. However, it was necessary to standardise this catch rate so that it was relevant to 

different sized vessels. Vessels fish with different numbers of dredges depending on their 

size, therefore catch rates can be standardised as scallop weight per dredge, per tow hour. 

However, providing a catch rate of scallop weight per dredge hour in the conjoint analysis 

would require a respondent to repeatedly upscale this up to the catch rate relevant to their 

vessel to evaluate the patch, which would add substantially to the complexity of the survey. It 

was therefore decided to class expected tow quality as good, average or poor tows in the 

patch attributes, and to ask fishers to define what they consider as a good, average or poor 

tow prior to the survey. 
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Table 1. Attributes and their levels used to differentiate between fishing patches in the 

conjoint analysis. 

Attribute Levels Explanation 

Sea State Calm, slight, moderate, 

rough, very rough, high 

This refers to the sea conditions of a patch, derived 

from a combination of the wave height and wind 

speed.  

Distance to Port 5, 10, 20, 30, 50, 80 The distance of a fishing patch from a vessel’s port 

location, in nautical miles. 

Tow Quality Low, average, high The catch per unit effort of a fishing patch, i.e. how 

many bags of scallops a fisher would expect to catch 

in a one hour tow. 

Meat Quality Low (12%), average 

(16%), high (20%) 

The yield of the meat inside of the scallop. 

Roe Status Roe empty, roe full The reproductive status of the scallop. Roe refers to 

the gonads of the scallop; a scallop with a full roe is 

more valuable than a scallop with empty roe. 

Cobble 1%, 10%, 20%, 30%, 

50%, 80% 

This refers to the ground type, and how much stone 

the dredges pick up. A higher proportion of rocks in 

the dredges would result in longer sorting times, and 

potentially more damage to the gear and the catch. 

 

 

Each of the attribute levels has a particular value for the respondent, influencing how much 

they like the product; termed the utility. In this analysis, instead of products, there were 

fishing patches that were described by attributes such as sea state or distance to port. 

Within an attribute (e.g. sea state) there were different levels (e.g. rough, moderate, calm). 

Following the ACBC survey, the importance of each attribute, and the utility of each level 

was calculated using Sawtooth Software. The importance of an attribute relates to which 

attribute had the biggest influence on a respondent’s patch choice, and the utility of each 

level relates to how much positive or negative influence that level has on the respondent’s 

patch choice. 

 

2.1.1.  The Survey 

The conjoint survey consisted of three different sections; demographic data collection, a 

screening section, and the choice task. Fishers were first presented with possible fishing 

patches in what is called the screening section; fishers simply indicated if it was possible or 

not possible that they would fish in each of the fishing patches, based on the varying 

attribute levels shown. This identified a set of possible fishing patches that fishers were later 

asked to choose between. During this screening section, the software continually analysed 
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respondent answers for non-compensatory screening rules, where a respondent 

systematically avoided an attribute level (e.g. high sea state). It then automatically asked the 

respondent if the level was completely unacceptable, and could remove it from subsequent 

questions. The software also screened for patch conditions that were an absolute 

requirement. For example, a respondent may only select patches that are less than 30 miles 

away. When presented with possible unacceptable or must-have options, a ‘none of the 

above’ option was included to reduce the chance of marking simply undesirable levels as 

completely unacceptable. This adaptive nature of the ACBC means that the questions 

gradually become more relevant to each individual, allowing a broader scope to the survey 

as a greater range of attributes can be tested initially. This approach is also more engaging 

for participants, which results in higher quality data (Sawtooth Software Inc., 2014). 

In the choice task section patches that were highlighted as possible fishing patches during 

the previous screening section were then presented in groups of three. Respondents chose 

the fishing patch that they preferred the most out of the three presented. The preferred patch 

from each group of three was then presented in the next round, until through an iterative 

process of elimination, respondents finally eliminated all but their most preferred fishing 

patch. The aim of the survey was not specifically to reach this preferred patch concept, but 

to analyse the trade-off decisions made by the respondent (which become increasingly 

difficult) as the patches become more similar in their attributes. 

 

2.2. Semi-structured Questionnaire Survey Design 

A semi-structured questionnaire was conducted alongside the conjoint analysis, to elicit 

further behavioural parameters and vessel characteristics from the fishers. The 

questionnaire was also used to gain input on the model design in relation to management 

scenarios. The questionnaire consisted of five sections: (1) vessel characteristics such as 

ownership, size, catching power, and crew details; (2) limiting factors and extreme 

restrictions to fishing, such as weather conditions, maximum limiting distances, and limits to 

the time spent at sea; (3) behavioural parameters related to average fishing conditions, such 

as the normal time spent at sea; (4) economic requirements of the vessel, such as a 

minimum viable catch, and the costs of fishing; and (5) the ways in which management 

actions have affected fishing activity, and opinions in relation to management and the use of 

an IBM simulation tool.  

 

2.3. Fielding the Survey 
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Individual fishers on the Isle of Man were contacted by email and then followed up with a 

phone call to explain more about the project and to arrange a time to meet face to face to 

complete the interview. The majority of interviews took place on fishing vessels or at the 

office of the producer organisation. The whole survey could be completed in 45 minutes, of 

which the conjoint analysis took from 7 to 25 minutes. Nevertheless, many fishers digressed 

additional useful contextual information, resulting in longer survey times. Whilst survey time 

could have been minimised, the additional discussion was also viewed as important for 

building relationships of trust. This data collection was subject to Bangor University’s ethics 

approval process. 

 

2.4. Data Analysis 

A conjoint utility indicates a fisher’s preference for each level within each attribute. The 

conjoint utilities were calculated with a built-in Sawtooth software Hierarchical Bayes (HB) 

tool, to determine the utility score for each level of each attribute for each individual 

respondent (Sawtooth Software Inc., 2014). The HB tool is used to overcome the problem of 

sparse information, as each respondent only provides a small amount of information on a 

proportion of the hundreds of possible patch combinations within the survey. Instead of 

estimating each respondent’s utilities individually, the HB algorithm estimates the difference 

between each respondent’s individual data and average utilities for the entire sample. It then 

adjusts each individual’s utilities, depending on the variability in the sample average; the 

more variance in the sample averages, the more the algorithm uses the individual’s data 

(Sawtooth Software Inc., 2009). The importance of each attribute is then calculated from the 

scale of difference in utilities. For a simple example of how the importance is calculated, 

consider the following respondent’s response to patch conditions: 

Sea State Utility Distance from Port Utility 

Rough 0 10 miles away 60 

Moderate 20 20 miles away 20 

Calm 70 30 miles away 10 

Range of utilities 70  50 

 

The importance of each attribute (sea state and distance to port) as a percentage is 

calculated as: 

     Importance of attribute = range of utilities for that attribute / sum of ranges across all 

attributes 
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Therefore in this example: 

Importance of sea state = (70-0) / (70+50) = 0.58 

Importance of distance to port = (60-10) / (70+50) = 0.42  

Sea state would be considered more important than distance from port for patch choice in 

this case. We can also predict how fishers might choose between patches. This respondent 

should prefer a calm patch at a distance of 30 miles away from port (total utility 80) over a 

moderate patch at a distance of 20 miles away from port (total utility 40). The same 

respondent should be indifferent to a choice between a moderate patch 10 miles away, and 

a calm patch 30 miles away (both total utility of 80). 

A principal components analysis (PCA) was used to identify the similarity among the 

different strategies adopted by each individual fisher in relation to patch choice. The strategy 

of an individual fisher was described by the importance scores for each patch attribute in the 

conjoint analysis. As there were six attributes, each fisher’s strategy was described by their 

importance scores for each of the six attributes. The first three principal components 

accounted for 88% of the variance in the importance scores. The data were standardised 

and then a similarity matrix was calculated from the conjoint importance scores for all 

fishers, using Euclidean Distance. A cluster analysis was then used to identify whether 

fishers could be grouped by the similarity in their responses in the conjoint analysis, i.e. 

fishers who placed similar importance on each patch attribute. 

Having identified different groupings of fishers based on the cluster analysis of the conjoint 

importance scores, we then explored whether the similarities in strategy within each 

grouping of fishers were supported by each individual’s corresponding questionnaire 

responses, and in the trips and catches recorded in those fishers’ VMS and logbook data. A 

Kruskal-Wallis test, with Dunn’s post hoc testing adjusted for ties, was used to compare the 

questionnaire survey responses among fishers, with the cluster set as the factor (Kruskal 

and Wallis, 1952). General or generalised linear models (GLMs, Nelder and Wedderburn, 

1972) were used to explore differences in logbook variables recorded by vessels in each of 

the behavioural groupings, with the logbook variable as the response, and the cluster as the 

explanatory factor (see Table 4 for list of significant logbook variables). Akaike’s Information 

Criterion (AIC) was used to select the best model fit between a Gaussian or Gamma family 

for each variable tested (Akaike, 1973).  

Relating trip characteristics to the clusters provided context within which to understand more 

about each of the different behavioural strategies adopted by fishers. E.g. If fishers that 

placed the highest importance on roe status (i.e. valuable product) were also the fishers who 
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had the highest value per unit fuel, we could conclude that these fishers are successfully 

targeting a high quality product. This comparison of the conjoint analysis and questionnaire 

data with the individuals’ VMS and logbook data allowed verification of the questionnaire 

responses, as well as the behavioural patterns identified in the conjoint analysis. We could 

determine to what extent the behavioural strategies identified in the cluster analysis were 

reflected in the catch records of those fishers. In addition, we could also verify the accuracy 

of the behavioural parameters provided during the questionnaire (e.g. minimum viable catch, 

distance travelled) by comparing them to those derived from logbook data. The PCA and 

cluster analysis were performed in PRIMER (v.6) (Clarke and Gorley, 2006), all other 

statistical analyses were performed in R Version 3.1.2 (R Core Team, 2016). 
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3. Results 

A total of 14 conjoint analysis responses were available for analysis. The sample size 

represented 56% of the 25 active IOM scallop vessels. Vessels ranged from 9.9m to 16m in 

length. Despite a slight skew towards larger vessels, the vessels surveyed were 

representative of the IOM fleet by length (Figure. 1, Welch’s F(3, 29.85) = 0.73, p= 0.17). 

The questionnaire is thus representative of the inshore IOM fishery, but may not be 

representative of the wider UK fleet as it fails to account for the larger vessels, despite 

displaying a borderline non-significant difference in lengths (Welch’s F(3, 32.216) = 1.88, p = 

0.07). The maximum number of dredges used by each vessel ranged from 4 to 8 per side. 

Respondents had a range of fishing experience, from 3 to 62 years fishing. Six fishers 

owned their own vessels, and had been vessel owners from 8 months to 31 years.  

 

Figure 1 Lengths of vessels fishing in ICES square 36E5 and 37E5 between 2008 and 2014. 

“UK” refers to all UK scallop vessels recorded in the logbook data, “IOM” refers to all Isle of 

Man scallop vessels in the logbook data, and “Questionnaire” refers to the population of IOM 

scallop vessels included in the questionnaire survey. 

 

3.1. Questionnaire responses provided foraging parameters relevant to parameterising a 

fisheries behavioural model 

Questionnaire behavioural response values (i.e. questions concerning fishing activity) were 

compared with the demographic variables and vessel characteristics to identify 

heterogeneity in behavioural and energetics rules. Responses were compared with vessel 

length and vessel capacity units (VCU, VCU = (length * beam) + (engine power (kW) * 0.45), 

Pascoe and Gréboval, 2003), to construct size based rules that could account for the 
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variability in ability and requirements of different sized vessels in a model. VCU had a 

stronger correlation with many variables than vessel length, suggesting that VCU may be a 

better metric when defining different behaviours for different categories of vessels (Appendix 

1). Average number of crew, maximum number of dredges used, fuel use, what might be 

considered as good takings, storage space, and fishing costs for a day of fishing were all 

significantly correlated with VCU with R2 values all > 0.6 (Figure 2, Appendix 1). However, if 

the single point for a large vessel is removed the correlation coefficients fall to 0.79 for 

average crew, 0.80 for max dredges, 0.74 for fuel use, 0.58 for good takings, 0.53 for max 

bags stored, and the costs per day are no longer significantly correlated. Further data 

collection for larger vessels would provide more insight into these patterns. 

 

 

Figure 2: Pearson correlation between vessel characteristics collected from the 

questionnaire and the size of the vessel (VCU). Values on the y axis are presented as a 

scaled response for confidentiality. 

 

3.2. Conjoint analysis increased our understanding of fishing decisions that drive patch 

choice behaviour. 

The conjoint analysis demonstrated that sea state was the most important attribute that 

influenced the choice of fishing patch (Table 2). This was followed by distance to port, and 
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then tow quality. Meat quality, roe status and cobble were relatively similar, but of lower 

importance.  

Table 2. Importance of each patch attribute, and the utility score of each attribute level in the 

conjoint analysis. 

Attribute Attribute Importance Attribute Levels Utility Score 

 Mean Standard 

Deviation 

 Mean Standard 

Deviation 

Sea State 34.92 13.71 Calm 100.92 38.48 

Slight 92.47 40.83 

Moderate 75.66 37.50 

Rough -54.40 25.92 

Very rough -106.06 44.74 

High -108.60 44.08 

Distance to 

port 

24.43 8.09 5mn 59.58 15.43 

10nm 38.09 13.51 

20nm 24.58 13.67 

30nm 4.81 13.03 

50nm -34.03 24.57 

80nm -93.03 42.35 

Tow quality 17.00 6.82 Low -59.79 25.16 

Average 17.56 13.73 

High 42.22 17.26 

Cobble 8.14 2.36 1% 25.99 5.87 

10% 13.23 3.56 

20% 3.83 2.41 

30% -5.38 2.47 

50% -14.39 4.02 

80% -22.83 8.93 

Roe Status 7.44 6.14 Roe empty 22.32 18.42 

Roe full -22.32 18.42 

Meat quality 7.07 1.56 Low (12%) -14.27 6.21 

Average (16%) -13.86 3.09 

High (20%) 28.13 3.14 

 

 

The software calculated utility scores for each level of each attribute for each individual, 

depending on how they responded to the patches presented to them, e.g. rough sea state 

has a negative utility score therefore it was having a negative influence on a fisher’s 

likelihood of choosing a patch. Individual attribute level utility curves were derived from the 

results of the conjoint analysis (Figure 3). Relatively consistent thresholds can be seen at the 

point on the graph where each attribute changes from a positive to a negative utility (Figure 

3). For example, sea state changed from a positive to negative utility score between 

moderate and rough for all vessels. The percentage of cobble also had a relatively 
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consistent threshold of around 25% cobble in the catch. A poor tow quality has a negative 

utility, while both a poor and an average meat quality have a negative utility. The threshold is 

less clear for the distance to port, which indicated that there was more heterogeneity among 

fishers for this attribute. Some fishers show a negative utility score at 30nm away from port, 

whereas other fishers were tolerant of a distance up to 50nm. The response to roe status 

was also heterogeneous, such that some fishers had a steep change in utility between 

empty roe and full roe, while other fishers had very little difference between the utility of 

empty and full roe. The latter may be driven by the specific market for which the scallops are 

destined.  

 

 

Figure 3. Individual fishers’ utility scores for each attribute in the patch choice conjoint 

analysis, completed during interviews with fishers from the Isle of Man scallop fishery. Note 

that the y-axes differ among the graphs. 

 

3.3. Heterogeneity in conjoint responses could be used to categorise fishers into different 

behavioural groups. 
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The PCA on the individual importance scores revealed that there were clearly demarcated 

individual strategies in relation to how patch choice is made (Figure 4). The first three 

principal components accounted for 88% of the variance in the importance scores. PC1 was 

related to a higher importance of sea state and cobble, and a lower importance of distance 

to port, tow quality, meat yield, and roe status. PC2 was related to a higher importance of 

distance to port and roe status, and a lower importance of sea state, tow quality and meat 

yield. PC3 related to a higher importance of sea state, tow quality, meat yield and roe status, 

but a lower importance of distance to port and cobble. These multivariate patterns in 

importance scores provide insight into the different fishing strategies. 

 

Figure 4 Principal component biplot showing the multivariate differences in each individual’s 

perceived importance of each patch attribute in the conjoint analysis.  Dark blue triangles 

relate to fisherss later classified as cluster 1, green triangles relate to fishers in cluster 2, and 

light blue squares relate to fishers in cluster 3. 

 

The importance of sea state, cobble and distance to port distinguished cluster 1 (7 fishers) 

from the other two clusters, tow quality and meat yield distinguished cluster 2 (3 fishers), and 

roe status distinguished cluster 3 (4 fishers) from the other clusters  (Figure 5). The three 

clusters of fishers could be considered as having three different strategies for patch choice, 

such that each strategy was characterised by the discriminating attributes. 

 

 



17 
 

 

Figure 5. Importance scores for each patch attribute in the conjoint analysis, grouped 

according to each strategy identified in the cluster analysis. The boxplots display the 

minimum, 1st quartile, median, 3rd quartile, and maximum values. 

 

 

3.4. Questionnaire responses were used to link vessel characteristics to the behavioural 

clusters, to understand the types of vessels that form each group. 

Variables that showed a significant difference between the clusters are presented in Table 3. 

VCUs and vessel length differed significantly between clusters 2 and 3, with cluster 2 

representing the largest vessels. There was no significant size difference between cluster 1 

and 2, but all size based characteristics (VCU, length, tonnage) were lower in cluster 1, and 

VCU showed a trend towards significance (p=0.08). Size could therefore be considered as 

an indicator of different behavioural strategies. Fishers in cluster 2 were the largest vessels, 

travelled fastest, and used the most fuel. Fishers in cluster 1 were mid-sized vessels, 

although not significantly different to cluster 2. Fishers in cluster 3 were the smallest vessels, 

had the lowest VCU, and had the lowest economic requirements. 

 

Table 3. Kruskal-Wallis results to determine significant differences in vessel characteristics 

and behaviours recorded in the questionnaire interview, between behavioural strategy 

clusters identified in the conjoint analysis. Dunn’s post hoc testing reveals the differences 

between groups. Degrees of freedom vary where some fishers did not provide a response to 
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a question. Dark green is statistically significant at p = 0.05, light green is significant at 

p=0.1. 

Questionnaire 

Variable 

   Median per cluster Dunn’s p value 

DF K-W Chi-sq P 1 2 3 2-1 3-1 2-3 

VCU 2,11 6.44 0.04 147 215 129 0.08 0.247 0.011 

Vessel length 2,11 6.51 0.04 14.6 15 10.9 0.159 0.123 0.011 

Tonnage 2,7 6.79 0.03 27 40 14.8 0.083 0.311 0.01 

Average Crew 2,11 6.23 0.04 3 3 2 0.287 0.075 0.015 

Max Steaming1 2,11 6.05 0.048 8.5 9.5 8.1 0.018 0.863 0.045 

Fuel per fishing hour 2,8 7.54 0.02 23 32 16 0.068 0.223 0.007 

Min Viable Gross2 2,11 7.31 0.026 900 1000 500 0.139 0.086 0.007 

1 Max steaming refers to the maximum speed that a vessel can steam at. 
2 Min Viable Gross refers to the minimum catch value per day that a fisher considers economically viable. 

 

3.5.  VMS and logbook data were linked to conjoint data to determine if modelled 

groupings related to differences in observed behaviours. 

Cluster 2 fishers recorded trips that were characterised by significantly higher departure 

distances, landings, duration, fuel use, and profit compared to the fishers in the other 

clusters (Table 4). However these fishers also recorded the lowest landed value of scallops 

per unit of fuel used (value per unit fuel - VPUF); they are thus catching the most, but most 

inefficiently. Cluster 1 fishers spent the least time at sea, travelled the least distance, but still 

achieved the highest catch per unit effort (CPUE), profit per unit effort (PPUE), and VPUF. 

Cluster 2 showed the highest profit, but cluster 1 showed the highest catch rates and value 

per unit effort, suggesting that cluster 1 fishers were operating in a more efficient way. 

Fishers in cluster 3 recorded similar (or higher) CPUE values than cluster 2, but they stayed 

at sea for significantly less time, and recorded lower profits, nevertheless at a significantly 

higher VPUF. Cluster 3 fishers display a low CPUE and landings, but at a high VPUF, 

suggesting they either obtain a better price for their landings or run at lower costs. 

These patterns in logbook records match some of the patterns identified in the conjoint 

analysis; for example cluster 2 fishers placed the highest importance on tow and meat 

quantity, and these were the fishers that caught the most. Cluster 3 fishers caught less and 

stayed at sea for less time, despite potentially having the ability to catch more (i.e. they 

achieved CPUE similar to cluster 2), but their VPUF was significantly higher, which could be 

consistent with their strategy identified in the conjoint analysis of targeting a higher quality 

product. Cluster 1 fishers recorded average catches, but at the highest CPUE, PPUE and 

VPUF. This is perhaps consistent with their conjoint analysis cluster, in which they placed a 
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higher importance on the sea state and amount of cobble they would catch, i.e. they 

focussed more on attributes that influence the ease and efficiency of fishing rather than 

those directly affecting catches. 
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Table 4. GLM results to determine significant differences in logbook records between behavioural strategy clusters as identified in the conjoint 

analysis. Degrees of freedom vary where it was not possible to calculate a value in a logbook entry. PPUE = Profit per unit of effort. 

  
  

 

  

Mean value per 

cluster 2-1 3-1 3-2 

Logbook Variable DF F R-sq P 1 2 3 t p t p t p 

Departure Distance 2, 2167 1.47e5 0.99 <0.001 10.5 11.3 11.8 3.11 0.002 3.8 <0.001 1.0 0.30 

Scallop Value 2, 2157 8.76e13 1 <0.001 1187 1401 1118 7.24 <0.001 -2.0 0.041 -6.5 <0.001 

Hours at sea 2, 2170 295 0.21 <0.001 19.2 23.7 21.2 -23.9 <0.001 -9.0 <0.001 9.2 <0.001 

Fuel Used 2, 2170 3.8e12 1 <0.001 220 374 212 31.9 <0.001 -1.7 0.098 -19.8 <0.001 

CPUE (per tow1 hours) 2, 2170 5.5e8 1 <0.001 103.9 98.36 95.1 -2.19 0.029 -2.88 0.004 -0.99 0.32 

CPUE (per active2 hours) 2, 2158 6.6e8 1 <0.001 77.8 68.3 68.5 -5.76 <0.001 -4.61 <0.001 0.08 0.93 

Profit 2, 2157 13.04 0.01 <0.001 1046 1165 982 -4.25 <0.001 1.89 0.059 4.66 <0.001 

PPUE (per active hours) 2, 2157 27.47 0.02 <0.001 113.6 95.0 100.3 6.90 <0.001 4.08 <0.001 -1.38 0.168 

PPUE (per tow hours) 2, 2157 11.29 0.01 <0.001 150.4 133.4 138.3 4.43 <0.001 2.60 0.009 -0.91 0.37 

Wind speed 2, 2170 1.80e5 0.99 <0.001 18.5 19.2 18.8 1.68 0.093 0.503 0.62 -0.75 0.454 

VPUF 2, 2157 6.04e4 0.98 <0.001 5.63 3.76 5.34 -16.39 <0.001 -1.99 0.047 11.6 <0.001 

CPUE (per dredge hour) 2, 2170 2.16e6 0.99 <0.001 17.5 14.3 16.7 -8.31 <0.001 -1.58 0.114 4.93 <0.001 

 

1 tow hours = time spent towing 

2 active hours = time spent towing + time spent steaming 
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3.6. By comparing the differences in the data types, three behavioural strategies have 

been identified. 

By comparing the differences in the conjoint analysis, questionnaire responses, and logbook 

entries, three behavioural strategies can be identified; fishers with larger more powerful 

vessels that are most concerned with maximising the quantity and meat quality of catches 

(cluster 2 – quantity maximisers); efficient fishers with mid-sizes vessels who place a higher 

than average importance of sea state and amount of cobble when deciding where to fish 

(cluster 1 – efficient fishers); and smaller, less powerful, potentially less economically driven 

fishers, who place a higher than average importance of roe on scallops (cluster 3 – quality 

maximisers). 

 

Table 5. Description of behavioural strategies determined from the conjoint analysis, 

questionnaire responses, and VMS and logbook data. 

 Cluster 1 Cluster 2 Cluster 3 

Conjoint 

analysis 

Higher than average 

importance of sea state and 

cobble habitats  

Higher than average 

importance of tow quality and 

meat yield. 

Higher than average 

importance of roe on scallop  

Questionnaire 

data 

Smaller vessels than cluster 

2, but not statistically 

significantly smaller than 

cluster 3 vessels. Same 

gross requirements as 

cluster 2, but significantly 

lower steaming speed and 

lower fuel use. 

Largest vessels (by VCU), 

which travelled fastest, and 

used the most fuel. 

Smallest vessels, with lowest 

tonnage, and crew members. 

Lowest economic targets. 

VMS and 

logbook data 

Average catch values, but 

travel least distance and 

have highest CPUE, PPUE, 

VPUF, and CPUEperdredge 

High distances travelled, 

value landed, trip duration, 

fuel used, and profit, but with 

lowest VPUF and 

CPUEperdredge. 

Least time at sea, lowest 

value of scallops landed and 

lowest profit – but at a higher 

VPUF than cluster 2. 

Description of 

behavioural 

strategy 

Large vessels with mid-range 

power (VCU), who consider 

more external patch 

variables such as sea state, 

cobble and distance to port, 

rather than purely the catch 

rates. Attain the best catch 

rates, fishing most efficiently. 

Largest most powerful 

vessels, potentially most 

economically driven, 

targeting the quantity of 

scallops and the meat yield, 

i.e. aiming for a large volume 

catch, with high meat 

content. 

Smaller, less powerful 

vessels, who catch less 

scallops and stay at sea for 

less time, targeting a higher 

quality product, who are 

potentially less economically 

driven. 

Number of 

Vessels 

7 3 4 

Behavioural 

Strategy 

Efficient Fisher (EFF) Quantity Maximiser (QTM) Quality Maximiser (QLM) 
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3.7. Comparison of Questionnaire and Conjoint Responses 

The responses given in the questionnaire interview were compared to the results derived 

from the conjoint analysis, to see if similar responses emerged from these two independent 

data sources, providing some validation of the accuracy of responses. During the 

questionnaire fishers were asked what the maximum sea state was that would prevent them 

from fishing. The responses given are indicated as a red histogram on the plot of the utility 

scores (Figure 6a). There is a consistent agreement between where the sea state utility 

begins to fall and where it reaches its minimum utility with the range of values provided 

during the interviews. This provides confidence that we have successfully identified the 

range of sea states which begin to hinder fishing activity. The response to distance to port is 

not quite as clear cut as the response to sea state. The questionnaire responses for 

maximum distance to port (red histogram) appear to be at the lower end of the values 

identified in the conjoint analysis (Figure 6b). Figure 6c shows the overlap between 

distances from port observed in the VMS data (histogram), and the range of distances 

identified in the questionnaire (red) and conjoint analysis (blue). The conjoint analysis 

appears to have better identified the distances at which the trip frequencies decline. The 

range of maximum distances from the questionnaire survey overlap a larger proportion of 

observed trip distances, which could suggest some fishers have underestimated the 

distances they travel, or could reflect individual heterogeneity in responses. 

  

 

Figure 6. Conjoint utility scores for sea state (A) and distance to port (B), with the number of 

questionnaire interview responses overlaid as red histograms corresponding to ‘the sea state above 

which you would no longer fish’ and the ‘maximum distance you would travel from port in a fishing trip’ 

respectively. Bars fall between sea states listed on the x axis when a fisher responded with a range, 

e.g. force 4-5, plotted as force 4.5. C) Histogram of distance to port values derived from logbook data, 

with a red line indicating the range between which conjoint utility scores first fall below zero and the 

upper limit where all conjoint utility scores are below zero. Blue line indicates the range of distances 
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identified in the questionnaire as the ‘maximum distance to port’ fishers would travel in a single fishing 

trip. 

 

 

3.8. Validation of Questionnaire and Conjoint Responses 

Both aggregated and individual responses to questions were verified against the 

independent VMS and logbook data. Fishers provided values for hours spent at sea, 

distance travelled, the catch rate at which they would move fishing ground, and the minimum 

viable catch value for a trip, which could be compared to the observed values in VMS data. 

At an aggregated level, the questionnaire responses appear to give similar responses to the 

logbook data for departure distances, landings, and catch rates (Figure 7). The hours at sea 

responses appear to slightly underestimate the actual time spent at sea, however. The 

accuracy of each individual’s questionnaire responses was assessed by comparing them to 

their own VMS and logbook data (Figures 8). Boxplots display each logbook variable for 

each individual fisher, and their corresponding questionnaire responses were overlaid as 

points. If the questionnaire response (point) falls in an appropriate place in the boxplot (e.g. 

at the lower range of the catch value boxplot for minimum viable catch) it provides evidence 

of the reliability of the questionnaire responses. This validation is somewhat qualitative, as 

the questions were somewhat subjective and/or speculative. The individual comparison data 

showed that fishers fairly consistently provided a minimum viable catch value in the lower 

quartile of the observed value landed, and a good takings value in the upper quartile (Figure 

8a). The catch rates that a fisher considered as good, average or poor appear relatively 

consistent with their recorded catch rates (Figure 8c). We can therefore consider the catch 

rates given in the questionnaire as relatively accurate. In general the values given for normal 

hours at sea fall within the observed trip lengths (Figure 7); the maximum possible trip length 

values appear quite variable, but as this is a speculative answer perhaps more variation is 

expected. Similarly, the departure distances given in the survey appear reasonably accurate, 

although slightly higher, with the more speculative maximum departure distance exhibiting 

more variation. 
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Figure 7. Grey histograms represent logbook data for all scallop logbook records from Isle of Man 

vessels. Blue overlaid histograms represent questionnaire data. A) Grey histogram of departure 

distances from VMS data, with blue histogram indicating individual answers to ‘What is the normal 

distance you would travel from your departure port to fish?’ B) Grey histogram of recorded catch 

rates, as bags per dredge, with blue histogram indicating answers to ‘At what catch rate would you 

change fishing location?’ C) Grey histogram of the value of scallops landed per trip, and blue 

histogram of answers to ‘What is the minimum viable catch for a trip? Values are scaled from zero to 

one for confidentiality. D) Grey histogram of trip length in hours at sea from VMS data, and blue 

histogram of answers to ‘How long would you normally fish for?’ 
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Figure 8. Verification of individual questionnaire responses with vessel monitoring system (VMS) and 

logbook data. Boxplots represent VMS and logbook values for each individual fisher, and coloured 

dots represent their corresponding questionnaire responses. The number of points vary where a 

fisher did not provide a response to a question. Actual values of catch value and rates are concealed 

for confidentiality, with a scaled response presented. A). Boxplots of observed scallop landings 

(monetary value, from logbooks). Red points represent answer to the question “What is your minimum 

viable daily catch?”, and blue points represent answers to the question “What do you consider as 

“good takings” for a trip?” B) Boxplots of observed trip length (hours at sea, from logbook). Blue point 

represents “How long would you normally fish for?” and red point represents “What is the maximum 

time you would spend at sea during one trip”. C) Boxplots of observed catch rates (bags per dredge 

hour, from VMS), with corresponding value provided for question “What do you consider a good catch 

rate (blue) an average catch rate (orange) and a poor catch rate (red)?” D) Boxplots of observed 

departure distances (nautical miles, from VMS). Blue points represent “What distance would you 

normally travel from port to fish?”, red points represent “What is the maximum distance from port you 

would travel to fish?” 
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4. Discussion 

 

4.1. Fishers’ data can increase understanding of fishing behaviour and patch choice. 

We have demonstrated that data derived directly from fishers can improve the understanding 

of fishing behaviour, and provide relevant and reliable data that can be used to parameterise 

a fisheries behavioural model. Using a conjoint analysis approach it was possible to gain a 

comprehensive understanding of the fishing decisions that drive patch choice and that 

explain the behaviours that lead to patterns in the spatial distribution of fishing effort. As 

Plagányi et al., (2014) pointed out, it is the human decisions of patch choice that drive the 

spatial distribution of effort, therefore to model a fishery realistically it is necessary to 

understand these decisions. For example, we have demonstrated that the sea state can 

have a large influence on the patch choice behaviour, therefore it may be necessary to 

include this in a model predicting fisher behaviour. It is also interesting to note that the term 

‘average’ had different connotations to the respondents; an average tow quality had a 

positive utility score but an average meat yield had a negative utility score. Understanding 

these trade-off decisions is not possible with VMS data; a conjoint analysis provided a rapid, 

cost-effective way to understand this patch choice behaviour. It was also possible to gain 

insights into the degree of individual heterogeneity, which is needed for more realistic 

predictions of the impacts of management on fishers (Christensen and Raakjær, 2006; 

Gelcich et al., 2005).  

The accompanying semi-structured questionnaire provided further behavioural parameters 

that would be relevant to modelling fishers in the context of optimal foraging theory (i.e. 

fishing costs, environmental limitations, vessel characteristics and requirements). These 

data again represented parameters that would be difficult or impossible to obtain from vessel 

monitoring system data. As well as collecting vessel characteristic data that were not 

recorded on vessel registry data, behavioural parameters such as the giving up rate (a catch 

rate that a fisher considers unviable and would prompt him to move to a different fishing 

patch), and the handling time (the time it takes to clear nets between successive tows) could 

be collected. Economic parameters (the equivalent of animal energetics in optimal foraging 

theory) could also be ascertained, including vessel costs, what a fisher considered their 

minimum viable catch and what they considered as good takings. These survey data 

significantly contribute to, and increase the scope for understanding fisher behaviour, 

complementing the use of VMS and logbook data.  
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4.2. Considerable behavioural heterogeneity between fishers could be used to identify 

different fishing strategies 

There was considerable behavioural heterogeneity between the fishers surveyed; vessel 

capacity units (a composite size metric) and vessel length were identified as predictors of 

this variability. As VCUs are calculated from length, and therefore correlate, only one or the 

other would be used for predictive modelling. Some economic variables demonstrated strong 

correlation with vessel size, such as fuel use, what they consider good takings, as well as 

vessel characteristics such as number of dredges used, and number of crew. Other 

variables showed no correlation with vessel size despite being linked to potential financial 

returns, e.g. the catch rate at which a fisher would ‘give up’ and move to a new location. 

These foraging parameters, and their heterogeneity, can be input to a model of their 

behaviour. 

Three behavioural strategies for patch choice could be identified within the fleet by 

comparing the similarities and differences in conjoint analysis responses. As identified in 

Table 5, fishers could be categorised as either Efficient Fishers (EFF), Quantity Maximisers 

(QTM) or Quality Maximisers (QLM). EFF refers to fishers that are the most efficient, in that 

they achieve the highest CPUE (by time and per dredge), PPUE, and VPUF, by travelling 

least far but still receiving average catches. These fishers place a higher than average 

importance on the sea state and the amount of rock in the catch, and are thus maximising 

efficiency by avoiding unfavourable fishing patches. These EFF fishers are also perhaps 

minimising risks and costs associated with taking vessels into high seas or over damaging 

rockier habitats. QTM fishers are the largest and most powerful vessels, concerned with 

maximising the quantity and meat quality of catches, obtaining the highest profits, but they 

do so at the lowest VPUF and CPUEperdredge rates. QLM refers to fishers with the smallest 

vessels who target a higher quality product (i.e. roe on), who achieve a CPUEperdredge equal 

to EFF fishers, yet land lower catches and have the lowest profit. QLM fishers have the 

potential to catch as much as EFF fishers (i.e. similar vessel characteristics, and achieve 

similar CPUE rates per dredge hour). They also obtain similar CPUE rates to QTM fishers 

despite their larger size. Nevertheless, they do not stay at sea as long, record lower catches, 

and state a significantly lower minimum viable catch rate, which could suggest the QLM 

fishers are less economically driven. 

The identification of a group of fishers who are less economically driven, or just not as 

economically successful as the others, has consequences for a model based on optimal 

foraging theory, where individuals are modelled as rational agents (i.e. taking the course of 

action that will provide the highest fitness/monetary returns). Whilst optimal foraging theory 
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may be an appropriate framework within which to investigate fishing behaviour, a model of 

fishing behaviour may need to include fishers that do not follow the assumptions of optimal 

foraging theory to realistically predict the activity of a whole fleet. The general principles of 

optimal foraging theory may hold true in a fishery – that fishers are maximising their ‘fitness’ 

– but it may be necessary to allow the model to incorporate other non-monetary aspects of 

this fitness such as quality of life, through a reduced propensity to maximise purely the 

economic returns. Modelling all individuals as true optimal foragers may thus overestimate 

the stock biomass removal, as well as the ability of fishers to cope with management 

measures. For example, during a period of stock collapse and strict management controls in 

the Isle of Man in 2014, the fishers demonstrated considerable heterogeneity in their 

plasticity in response to tough conditions. Some fishers continued to fish on seemingly 

unprofitable grounds, with ground familiarity and port affinity apparently overriding the 

seemingly more rational choice of moving to a more distant port/ground (pers. comm., Karen 

McHarg, Department for Environment, Food, and Agriculture, Isle of Man). There may be 

several reasons a fisher does not move to a more profitable ground despite having the 

vessel capacity to do so: i) they are unfamiliar with the grounds, which represents an 

economic and safety consideration; ii) they are not aware that there are better catch rates at 

a different area nearby; iii) they are less economically driven and would simply prefer to 

remain at their usual port; iv) they are not profit maximisers and instead aim for a minimum 

expected yield (Oostenbrugge et al., 2001; Pet-Soede et al., 2001). For an accurate model 

of fishing behaviour it is necessary to capture these differences in competitiveness/success, 

and the influences of ground familiarity, as the fishers which are seen as less economically 

driven may not conform to a model that assumes solely profit driven rational activity. It is 

unclear from the data presented here, however, if the fishers are just less successful than 

others, if the fishers are intentionally not as economically competitive preferring to fish in 

familiar areas, or if they are maximising some other benefit, such as quality of life, more 

highly than monetary returns. Nonetheless, to reach agreeable management solutions that 

ensure the economic sustainability of a fishery, it may be necessary to understand these 

behaviours, so that they can at least be taken into consideration in management planning. 

 

4.3. Survey data were validated to give confidence in the accuracy of the data. 

The data obtained during the questionnaire and conjoint analyses showed a good level of 

agreement with vessel monitoring system and logbook data, demonstrating that the fisher 

survey data can be considered reliable. The validation is somewhat qualitative however, as 

whilst quantitative responses were given, several questions were somewhat subjective (e.g. 
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what do you consider as good takings?). Nevertheless, responses to similar questions in the 

questionnaire and the conjoint analysis showed good correlation, giving confidence that the 

methods were eliciting realistic values. More compellingly, the questionnaire responses also 

showed good correlation with corresponding VMS and logbook data, on both an aggregated 

and individual vessel level. The values given for departure distance appeared to be 

reasonable accurate, concentrated over the highest proportion of observed travel distances 

in the VMS data; the minimum acceptable bags per dredge hour appeared to be a very 

consistent and reliable value; the values for minimum viable catch were slightly skewed 

towards the lower end of observed catches, as you would expect if the fishery is profitable, 

but it does suggest a proportion of trips may be considered unviable. The hours at sea 

values provided by fishermen are skewed towards more negative values than the VMS and 

logbook data however. On an individual scale, values provided during the questionnaire 

showed a good level of congruence with each individual’s corresponding VMS and logbook 

data. Overall, these data suggest that in the absence of VMS and logbook data, behavioural 

data of a reasonable accuracy could be obtained from fishers. 

The behavioural clusters identified in the conjoint analysis could also be somewhat verified 

through comparing them with questionnaire and logbook data. Behavioural differences 

identified in the conjoint analysis translated to real differences in observed behaviours in the 

VMS and logbook data. For example, fishers that placed the highest importance on expected 

return rates and meat yield in the conjoint analysis demonstrated higher catch rates and 

landings in logbook data accordingly. These patterns give confidence that the conjoint 

analysis has successfully identified real differences in the patch choice behavioural 

strategies of different fishers. 

There are, nevertheless, two potential types of inaccuracy relevant to this survey data: 

deliberate bias and unintentional inaccuracy. Economically and industry sensitive data, such 

as catch rates and values, are most likely known well by the fishers, but they could be wary 

of revealing them to scientists, and therefore deliberately bias responses. Economic 

parameters were shown to be of good accuracy, which could give confidence that less 

sensitive parameters were also accurate to the best of the fishers’ knowledge. If fishers were 

unhappy to give any response or value, they could leave it blank, as having missing values 

was considered preferable to inaccurate values. It would be difficult for respondents to 

deliberately bias answers in the conjoint analysis, as it is not easy to quickly compute how to 

skew the responses to an agenda. A final source of error is misrepresentation of the fleet. 

Even though a relatively high proportion of the fishery was surveyed (56%), it is likely some 

individual heterogeneity was missed. As we surveyed over half of the active fishers though, 
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we can have some confidence that we have a fair representation of the fishery (Shepperson 

et al., 2014). 

This survey approach to parameterising an IBM is the first step in a participatory modelling 

framework. Taking a more participatory approach can provide a form of mutual validation 

between fisher and scientist with regards to modelling fisher behaviour realistically. 

Scientists can be more confident they have captured the essential elements of the fishery, 

and have a realistic portrayal of fishing behaviour, and fishers can have more confidence 

that the scientists are basing their model on informed fisheries data. As described by 

Mackinson et al. (2011) and Röckmann et al. (2012), involving fishers in the modelling 

process can increase the transparency of the project and thus the trust of data and model 

outputs, leading to more successful management plans. Nevertheless, there does remain 

some scepticism among the scientific community as to whether fishers’ data can be of 

comparable accuracy to more conventional scientific data. It is thus important to provide an 

assessment of data accuracy from all steps of the participatory process where possible, to 

ensure appropriate use of the data, and to contribute to the growing body of evidence 

showing that fisher knowledge and participatory data can make a valuable contribution to 

conventional science (Bundy and Davis, 2013; Shepperson et al., 2014; Teixeira et al., 2013; 

Zukowski et al., 2011). 

 

4.4. This approach provided data relevant to parameterising a fisheries IBM 

The data obtained in this survey are highly relevant to parameterising a fisheries behavioural 

model, both in terms of model design and understanding of fishing behaviour. Grouping 

fishers into types would allow simplification of a model design, which accounts for some 

heterogeneity between fishers without leading to an overly complex model design. Three 

behavioural strategies for patch choice were identified in the conjoint analysis, which could 

be specified in an IBM of fishing activity. The impact of management on different types of 

fishers could then be explored, as fishers may be impacted to different degrees. VCU was 

the best predictor of foraging parameters, behavioural strategy and vessel economics, and 

therefore could be used to characterise a fishery for proportional input of fishers of each 

behavioural strategy into a model. Characterising the fishery in this way could simplify the 

model design, whilst ensuring heterogeneity in fishing behaviour was accounted for. 

The survey time could be considered as limitation to the approach, but these surveys were 

undertaken in a relaxed informal format, with fishers free to lead the discussion onto topics 

they felt relevant. The survey time could therefore fairly easily be reduced. Depending on the 

computer literacy of the fishing fleet in question, the conjoint analysis could be fielded online, 
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as could the questionnaire, allowing fishers to complete the survey in their own time, and 

reducing the time costs to the researcher. 

 

5. Conclusions 

The use of conjoint analysis has demonstrated in detail how fishers assess various patch 

attributes such as sea state, distance to port and expected catch rates, to decide which 

patch they would prefer to fish in. This could have direct application to a fisheries (or other 

hunter-gatherer) behavioural model. Further, the data also demonstrated behavioural 

heterogeneity, in that either some fishers are not as economically driven, or are less 

successful, as they do not appear to be reaching their full catching potential, compared to 

other similar fishers. Individual-based models (IBMs) are increasingly recognised as 

potentially useful management models in fisheries (Bastardie et al., 2014, 2010; Dowling et 

al., 2012), but they can be data intensive, as a thorough understanding of the behavioural 

decisions driving a system is required. Here we have demonstrated an accurate and cost-

effective method to collect the necessary data required to parameterise a fisheries IBM in 

the context of optimal foraging theory. Using this approach could make a model more 

relevant to a fishery through ensuring the behavioural decision processes are realistic 

(Fulton et al., 2011; Hilborn, 2007). Through developing models in collaboration with fishers, 

we can be more confident we have a realistic and thorough understanding of the system, 

and can thus better predict the outcomes of management. Better, more realistic predictions 

of the temporal and spatial displacement of effort following management would allow the 

economic and ecological impacts to be better understood, ultimately leading to more 

successful and sustainable management. 
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Appendix 1 – Relationships between vessel size metrics and behavioural parameters. 
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Engine Power 0.46 16 0.072 . 0.85 16 0.000 *** 

Tonnage 0.71 12 0.010 ** 0.91 12 0.000 *** 

Average number of crew 0.84 16 0.000 *** 0.86 16 0.000 *** 

Max number of dredges 0.7 16 0.003 ** 0.85 16 0.000 *** 

Fuel use per towing hour 0.71 13 0.007 ** 0.86 13 0.000 *** 

Normal departure distance from port 0.52 16 0.039 * 0.78 16 0.000 *** 

Max number of days at sea in relation to king 

scallop freshness 0.53 16 0.034 * 0.77 16 0.001 *** 

Minimum monthly gross required 0.68 5 0.204 
 

0.98 5 0.004 ** 

Considered ‘good takings’ 0.69 16 0.003 ** 0.66 16 0.006 ** 

Fuel use per steaming hour 0.7 13 0.007 ** 0.7 13 0.008 ** 

Vessel fuel storage capacity 0.46 15 0.087 . 0.64 15 0.011 ** 

Max number of bags possible to store aboard 0.68 16 0.004 ** 0.6 16 0.014 ** 

Cost of a days fishing 0.49 14 0.078 . 0.6 14 0.023 * 

Average steaming speed (knots) 0.58 16 0.018 * 0.54 16 0.030 * 

Time taken to clear king dredges 0.45 16 0.082 . 0.52 16 0.037 * 

Bags per hour (queens) at which would move 

location the next day 0.72 4 0.284 
 

0.95 4 0.045 * 

Minimum viable daily gross 0.37 16 0.164 
 

0.49 16 0.052 . 

Minimum daily gross worth fishing for 0.76 9 0.017 * 0.63 9 0.067 . 

Max steaming speed (knots) 0.49 16 0.055 . 0.41 16 0.118 
 

Daily gross at which would consider leaving fishery 0.68 7 0.091 . 0.61 7 0.145 
 

Cost of boat upgrades in 5 year period 0.51 11 0.113 
 

0.46 11 0.152 
 

Number of days a year lost to bad weather -0.44 13 0.136 
 

-0.39 13 0.185 
 

Absolute maximum sea state possible to fish in 0.34 16 0.205 
 

0.34 16 0.194 
 

Max possible duration of a fishing trip 0.29 16 0.270 
 

0.33 16 0.206 
 

Cost of boat maintenance per year 0.69 13 0.008 ** 0.38 13 0.206 
 

Percentage of takings as wages 0.55 8 0.161 
 

0.48 8 0.227 
 

Percentage of catch below MLS -0.13 14 0.663 
 

-0.34 14 0.236 
 

Max number of days possible at sea in relation to 

food supplies -0.14 13 0.637 
 

-0.34 13 0.249 
 

Max sea state would normally prefer not to fish 

above 0.28 16 0.285 
 

0.3 16 0.255 
 

Average hours at sea fishing for king scallops 0.5 16 0.051 * 0.27 16 0.310 
 

Maximum distance travelled from port 0.45 14 0.103 
 

0.25 14 0.390 
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King catch rate at which would move location 0.15 16 0.578 
 

0.23 16 0.400 
 

Considered ‘too long’ to spend at sea -0.06 10 0.860 
 

-0.3 10 0.407 
 

Maximum gape of trawl net 0.43 15 0.108 
 

0.23 15 0.411 
 

Max number of days at sea in relation to queen 

catch freshness 0.18 16 0.503 
 

0.21 16 0.435 
 

Max wave height possible to fish at 0.45 14 0.104 
 

0.21 14 0.466 
 

Smallest distance willing to fish near another vessel 

(miles) 0.31 16 0.239 
 

0.18 16 0.506 
 

Bag size (kg) 0.14 16 0.617 
 

0.15 16 0.597 
 

How often information from other vessels is taken 

into account when deciding fishing location -0.2 14 0.483 
 

-0.13 14 0.667 
 

How much of fishing is in same area as past year -0.39 16 0.131 
 

-0.11 16 0.697 
 

Time taken to clear queen trawl nets 0.32 13 0.288 
 

-0.11 13 0.720 
 

King dredge belly ring size -0.13 14 0.657 
 

-0.1 14 0.721 
 

Number of days a year lost to planned maintenance 0.09 14 0.765 
 

0.09 14 0.758 
 

Minimum market price at which would fish (kings) -0.55 8 0.160 
 

-0.03 8 0.894 
 

Lowest monthly ‘wage’ below which would consider 

leaving fishery -0.02 4 0.984 
 

-0.1 4 0.904 
 

Max number of days at sea in relation to fuel 

capacity -0.11 15 0.398 
 

0.03 15 0.904 
 

How many vessels would tolerate within 1nm radius -0.15 13 0.621 
 

0.03 13 0.920 
 

Minimum market price at which would fish 

(queenies) -0.38 10 0.278 
 

-0.02 10 0.956 
 

Catch per dredge hour at which would move 

location 0 16 0.990 
 

0.01 16 0.960 
 

Catch per gape length at which would move location -0.56 6 0.248 
 

0.01 6 0.984 
 

Number of other vessels information shared with 0.21 16 0.442 
 

-0.01 16 0.985 
 

Number of days lost to unplanned mechanical 

failure 0.34 13 0.249 
 

0 13 0.992 
 

 

 

 

 


