
Aberystwyth University

A modernized version of a 1D soil vegetation atmosphere transfer model for
improving its future use in land surface interactions studies
Anagnostopoulos, Vasileios; Petropoulos, George; Ireland, Gareth; Carlson, Toby N.

Published in:
Environmental Modelling and Software

DOI:
10.1016/j.envsoft.2017.01.004

Publication date:
2017

Citation for published version (APA):
Anagnostopoulos, V., Petropoulos, G., Ireland, G., & Carlson, T. N. (2017). A modernized version of a 1D soil
vegetation atmosphere transfer model for improving its future use in land surface interactions studies.
Environmental Modelling and Software, 90, 147-156. https://doi.org/10.1016/j.envsoft.2017.01.004

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 30. Apr. 2024

https://doi.org/10.1016/j.envsoft.2017.01.004
https://doi.org/10.1016/j.envsoft.2017.01.004

Page | 1

A Modernized Version of a 1D Soil Vegetation Atmosphere 1

Transfer model for improving its future use in Land Surface 2

Interactions Studies 3

 4

Vasileios Anagnostopoulos1,2, George Petropoulos3,*, 5
Gareth Ireland3, Toby N. Carlson4 6

1Distributed and Knowledge Management Systems Lab, National Technical University of Athens, Greece 7
2InfoCosmos, Pindou 71, 13341, Athens, Greece 8

3University of Aberystwyth, Department of Geography and Earth Sciences, SY23 2EJ, Wales, United Kingdom 9
4Pennsylvania State University, Department of Meteorology, University Park, PA 16802, USA 10

 11
 12
*Correspondence: george.petropoulos@aber.ac.uk, Tel: +44-0-1970-621861 13

 14

ABSTRACT 15

SimSphere is a land biosphere model that provides a mathematical representation of vertical 16
‘views’ of the physical mechanisms controlling Earth’s energy and mass transfers in the 17
soil/vegetation/atmosphere continuum. Herein, we present recent advancements introduced to 18
SimSphere code, aiming at making its use more integrated to the automation of processes within 19
High Performance Computing (HPC) that allows using the model at large scale. In particular, a 20
new interface to the model is presented, so-called “SimSphere-SOA” which forms a command line 21
land biosphere tool, a Web Service interface and a parameters verification facade that offers a 22
standardised environment for specification execution and result retrieval of a typical model 23
simulation based on Service Oriented Architecture (SOA). SimSphere-SOA library can now 24
execute various simulations in parallel. This allows exploitation of the tool in a simple and 25
efficient way in comparison to the currently distributed approach. In SimSphere-SOA, an 26
Application Programming Interface (API) is also provided to execute simulations that can be 27
publicly consumed. Finally this API is exported as a Web Service for remotely executing 28
simulations through web based tools. This way a simulation by the model can be executed 29
efficiently and subsequently the model simulation outputs may be used in any kind of relevant 30
analysis required. 31

The use of these new functionalities offered by SimSphere-SOA is also demonstrated using a "real 32
world" simulation configuration file. The inclusion of those new functions in SimSphere are of 33
considerable importance in the light of the model's expanding use worldwide as an educational 34
and research tool. 35

 36

Keywords: SimSphere, SVAT, land surface interactions, Service Oriented Architecture, Web Service, 37
software developments, Earth Observation 38

 39

mailto:george.petropoulos@aber.ac.uk

Page | 2

1. Introduction 40

Land surface interactions govern the critical exchanges of energy and mass between the 41
terrestrial biosphere and the atmosphere, and are major drivers of the Earth's system (Jung et al., 42
2011; North et al., 2015). There is an urgent need today for a better understanding and a more 43
accurate monitoring of Earth’s natural processes and interactions, evidently strengthened even 44
more in the face of pressures from climate change and global food and water security (Coudert et 45
al., 2008; Ireland et al., 2015; Mannschatz et al., 2016). The growing role of simulation in Earth 46
systems science together with the increasing available computing power have resulted to an 47
increase in the complexity of processes included in the design of simulators (Coon et al., 2016). 48

Land Surface Parameterisation schemes (LSPs, also known as Land Surface Models, LSMs) are one 49
of the preferred scientific tools to quantify earth system interactions at different spatial and 50
temporal resolutions. LSPs simulate a number of parameters characterising land surface 51
interactions within the lower atmospheric boundary from a predefined set of surface 52
characteristics (i.e. properties of soil, vegetation and water). One such group of LSPs includes Soil-53
Vegetation-Atmosphere Transfer (SVAT) models. Those mathematical models provide 54
representation of vertical ‘views’ of the physical mechanisms controlling energy and mass 55
transfers in the soil-vegetation-atmosphere continuum. SVATs provide estimates of the time 56
course of soil and vegetation state variables at time-steps compatible with the dynamics of 57
atmospheric processes. Also are able to describe the multifarious transfer processes through 58
varying degrees of complexity, over different temporal and spatial scales (Ridler et al., 2012). 59

SimSphere is an example of a 1-D SVAT model, originally developed by Carlson and Boland 60
(1978) and Lynn and Carlson (1990), and considerably modified to its current state with its 61
latest version written in Java by Gillies et al., (1997) and Petropoulos et al., (2013a). Since its 62
development it has been utilised in studies concerning the study of land surface interactions 63
(North et al., 2015) and the examination of hypothetical scenarios studying feedback processes 64
(Grantz et al., 1999). Furthermore, it has been used synergistically with Earth Observation (EO) 65
data to derive spatiotemporal estimates of energy fluxes and/or soil moisture (Carlson, 2007). 66
Variants of this technique are currently investigated by Space Agencies for developing related 67
operational products (Chauhan et al., 2003; Piles et al., 2011; ESA STSE, 2012; Piles et al., 2016). 68
An overview of the model use can be found in Petropoulos et al., (2009a). 69

Behind SimSphere’s Graphical User Interface (GUI) lies an engine that executes the computation of 70
a number of output parameters after a set of input parameters are provided by the user from the 71
User Interface (UI). The computation engine is a direct port from an existing Fortran 77 codebase 72
to Java 1.3. This port was originally undertaken 15 years ago, and during that time the code base 73
has been amended with various computation routines by various developers for a number of 74
applicational purposes. Moreover the GUI code is entangled with the logic of the computation 75
engine and provides a custom interface by providing a set of parameters as an input to the 76
computation routines. The introduction of Service Oriented Architecture (SOA) practices in the 77
remote sensing realm is relatively new (El-Sharkawi et al., 2013). Modern execution 78
environments, like cloud platforms or numerical computation Domain Specific Languages (DSLs), 79
like Modelica, are not able to create value from the research work in the codebase mostly due to a 80
monolithic, standards incompliant approach. One can attribute the problem to the lack of SOA 81
design. This is also related to the porting of business logic from old programming languages, like 82
Fortran 77, which contributes much syntactic noise. SOA allows the service specification and 83
modularity in a multi-lingual environment. The SOA rules outlined in Bell (2008) and Schroth and 84
Janner, (2007) could potentially serve to improve the separation of roles. According to these 85
authors, the researcher is not a developer and vice versa. Both roles have their own domain 86

Page | 3

specific knowledge and skills and through SOA the developer can create a standardised interface 87
that exposes the business logic engineered by the researcher. This can be done through protocols 88
and standards, something that SOA reinforces. 89

In the purview of the above, the aim of this work has been to apply modern trends in software 90
development to an existing codebase in the field of EO and land surface modeling to outline an 91
SOA migration path, display its benefits and improve the software quality. SimSphere is an ideal 92
example to be chosen as a case study as it is widely adopted in research, its use is rapidly 93
expanding worldwide, and, the software toolkit is minimal enough to have a proof-of-concept, 94
while rich enough to display our approach. More specifically, the existing GUI code is removed 95
from the model and then SOA design patterns are applied in order to create a command line 96
implementation suitable for cloud deployments or High Performance Computing (HPC) execution, 97
which subsequently exposes the model functionality as a service. 98

 99

2. SimSphere Description 100

SimSphere is a one-dimensional land biosphere model. It simulates a series of physical processes 101
that take place as a function of time in a column that extends from the soil root zone up to a level 102
higher than the surface vegetation canopy. Three main systems within the models’ architecture, 103
include the physical, the vertical and the horizontal layers (Figure 1). The physical components 104
ultimately determines the microclimate conditions in the model, grouped into three categories, 105
radiative, atmospheric and hydrological. The vertical structure components, effectively correspond 106
to the Planetary Boundary Layer (PBL) and are divided into three layers - a surface mixing layer, a 107
surface of constant flux layer and a surface vegetation or bare soil layer, where the depths of the 108
first layer is somewhat variable with time, growing throughout the day as sensible heat is added 109
from below. The depth of the constant flux and vegetation layers are set in the model input, 110
although the depth of a bare soil transition (between soil and air) layer is variable in time 111
depending on the wind speed and the surface roughness. The substrate layer refers to the depth 112
of the soil over which heat and water is conducted. The processes and interactions simulated by 113
SimSphere develop over a 24-h diurnal cycle at a chosen time step, starting from a set of initial 114
conditions given in the early morning (at 05.30 am local time) with a continuous evolving 115
interaction between soil, plant and atmosphere layers. A number of input parameters are 116
required to parameterise the model, categorised into 7 defined groups (Table 1). Model provides 117
predictions as a function of time for a total of more than 30 variables (Table 2). A detailed 118
description of SimSphere architecture can be found in Gillies (1993). The current version of the 119
model is globally distributed from Aberystwyth University, UK (http://www. 120
aber.ac.uk/simsphere). 121

 122

3. Existing Structure and Architecture of SimSphere 123

The development of SimSphere-SOA has primarily been motivated by efforts to increase the 124
usability of the original software model. In its currently distributed version of SimSphere, the GUI 125
code was written as a presentation and configuration layer to an Extensible Markup Language 126
file. This XML file provided the configuration layer of the data, whilst the persistency layer that 127
transformed user data to the XML file and back was written by hand using custom data types. A 128
component to a server based proprietary execution environment was also developed, but 129
SimSphere software is typically used as a desktop application. The interface to the Fortran 77 130
computational logic was done through a function which took all the arguments used for the 131
computation as inputs. In Figure 2 is provided an overview of the current architecture. From it 132

Page | 4

and the usage of the software, it can be observed that there is room for further improvements in 133
the original SimSphere software toolkit and in particular: 134

 There is no way for exporting the model inversion data. 135

 The configuration (that configures the internal data-structures with user input) and 136
validation layer (that examines user input for errors) is manually written which is 137
error prone. 138

 The UI couples tightly with the validation and persistency layer (that loads 139
specification and save results) . No third party interface for other UIs is possible. 140

 There are two parts in the validation layer. The first is manually written and the other 141
is written on old technology (Document Type Definition, DTD). 142

 The application is not available for headless installations because of the UI coupling. 143

 The application cannot be used remotely through Web Services. 144

 Uses legacy unsupported code. 145

 The application cannot be run in HPC or in batch mode. 146

There are also a number of other possible issues to address on the model distributed version not 147
evident in Figure 2 that mainly pertain to maintainability. Typically current deprecated methods 148
do not work as expected and make functionalities of the software unusable in current versions of 149
Java. It is also obvious from the code base that an entangling of roles leads to major shortcomings 150
in the development process. 151

 152

4. SimSphere-SOA Developments 153

The newly developed code within SimSphere-SOA was structured to follow the SOA principles. 154
For the computational logic layer an orchestrator was created, behind a mega-function interface, 155
which uses the services of the persistency layer to read the XML and export the results of the 156
computation to a Comma Separated Values (CSV) formatted file (Shafranovich, 2005). The new 157
model architecture is shown in Figure 3. As an SOA approach, SimSphere-SOA provides the 158
service of simulation by consuming messages in XML format and producing messages in CSV 159
format, allowing them to be consumed by a third party application. Using the self-documenting 160
configuration and validation layer, various applications can be designed around the Application 161
Programming Interface (API) as illustrated in Figure 4. 162

There are two endpoints per CSV. The first one takes the XML file as input and produces a CSV of a 163
time based simulation for a whole day. The first column is the simulation time in 15-minute (or 164
higher) steps, whereas the remaining columns contain the evolution of various geophysical 165
quantities as samples at these time instances. The second type of simulation runs various 166
scenarios for a specific time of a particular day encoded as Fractional Vegetation Cover (FVC) and 167
Surface Moisture Availability pairs. These two quantities vary in the 0.1 floating point range. The 168
user can specify steps to sweep the two ranges independently, and for each combination of values, 169
quantities of interest to the remote sensing community are computed. The results are exported as 170
a CSV in the desktop version; however the application can run also as a server where it exposes 171
the two endpoints as shown in Table 3. The request headers should be Content Type: 172
application/xml and Accept: text/csv. This last step can be used for fast model inversion. 173

 174

 175

Page | 5

 176

Apart from the various Computer Science (CS) considerations, this new application is an enabler 177
for sophisticated Sensitivity Analysis (SA) tooling in SimSphere. This is very important 178
functionality in terms of future efforts related to performing an all-inclusive the verification of the 179
model. Indeed, SA can help to understand the behavior of a model and in establishing the 180
dependency of the model outputs on its input parameters in how different parts of the model 181
interplay. By means of an SA, irrelevant parts of the model may be dropped or a simpler model 182
can be built or extracted from a more complex one (so-called model lumping), reducing, in some 183
cases significantly, the required computing power in running a model. SA also provides a valuable 184
method to identify critical input parameters and rank them in order of importance. The latter can 185
offer important guidance to the design of experimental programs as well as to more efficient 186
model coding or calibration (e.g. Petropoulos et al. 2009b; 2013b). The new model architecture 187
presented herein allows the creation of a generalised SA scheme which decouples the application 188
from executing various runs manually in order to derive the results. As SimSphere is provided as 189
a service, one needs to change the XML files, create CSV files and run the analysis algorithm via a 190
scripting mechanism. SimSphere-SOA is completely stateless (two executions of SimSphere are 191
independent) and is suitable for HPC environments, since it creates a stateless cluster (as 192
illustrated in Figure 5). 193

 194

5. SimSphere-SOA Software Availability 195

SimSphere-SOA product has been also developed as open source software, as its predecessor 196
SimSphere, and is hence, released under the terms of the GNU General Public License. The 197
software code of this new model version is also freely distributed from the main web site from 198
where the model is distributed globally maintained by Aberystwyth University, UK 199
(www.aber.ac.uk/simsphere). 200

 201

6. Implementation 202

6.1. Validation layer 203

A smaller software tool was created to amend and improve upon SimSphere original model 204
architecture, whilst also ensuring that SOA guidelines and use standards were respected in order 205
to facilitate and the work of the EO community. As a first step, the two validation layers that 206
existed in the currently distributed model version were unified into a single layer in SimSphere-207
SOA. The two validation layers were very different; one was contained within the application 208
while the other one was external. In order to extract the internal validation layer, amendments to 209
the original code had to be made. Following assessment of the code, the requirements for the 210
unified validation layer which were not met by the existing approach were identified as the 211
following: 212

 The data types of the XML should be specified. 213

 The validation layer should be self-documenting for a developer. 214

 The validation layer should include comments for the non-developer end users. 215

 The validation layer must lie externally to application in order to meet the previous 216
requirements. 217

http://www.aber.ac.uk/simsphere

Page | 6

 The validation layer should be used by the software before using the data for 218
computations. 219

 The validation should be standardised. 220

Having identified these requirements, the XML Schema Definition (XSD) version 1.1 was utilised 221
for the application. Compared to the previous version 1.0, the updated version has the added 222
value of the inclusion of validation, which was previously available as the separate Schematron 223
standard. Using this solution, the validation logic could be externalised as a self-documenting, 224
easily comprehensible compact document. The other benefit is that the same document could be 225
used to create a persistent layer. In the case of SimSphere-SOA, the XSD file contained 3 more 226
validation rules because extra domain specific knowledge from the expert, which is not encoded 227
in the code base, was included. The new validation/persistency approach could also find 228
validation errors that were not possible in the previous approach and were identified as bugs 229
leading to runtime crashes, or worse, incorrect results. Both the newly developed and the existing 230
approach was largely based on data types and their constraints. Perhaps the strongest advantage 231
over the existing SimSphere application is the Look Up Table (LUT) functionality with selection 232
among discrete alternatives and uniqueness provided by XSD 1.0 specification and does not exist 233
in DTD specification. The XSD 1.1 specification facilitated the assertions outlined in Table 4 234
which was not available in the previous version. There were also gains in readability. The 235
Longitude element is a typical example. In our case, this is compactly represented as an XSD data 236
type with upper and lower bounds (Table 5). In the old approach, this information was encoded 237
in an XML file which resulted in the rule being copied between XML files with the risk of possible 238
typographic mistakes. In the new approach, the XML corresponding element is simplified as one 239
can see from Table 6, with evident gains in readability and robustness. The documentation of 240
various XML parameters through the excellent xs3p package allowed for the web presentation to 241
be easily highlighted and formatted. 242

 243

6.2. Serialisation layer 244

While the Java Architecture for XML Binding (JAXB) API does not support version 1.1 of the XSD 245
(XML Schema) specification, the assertions present in 1.1 could be commented out to create the 246
1.0 conforming document. In this respect, the serialisation layer was automatically generated as a 247
Java package from the 1.0 document. Programmatically, given a conforming XML, the relevant 248
classes specified through the 1.1 XSD version could be filled with the XML data. The corresponding 249
classes in the old version were analysed by the cloc tool (CLOC). The results are shown in Table 7. 250

It should be noted that in the XSD, despite the validation and serialisation specification being 251
roughly four times bigger in terms of lines of code in comparison to the DTD approach, as opposed 252
to the manually generated Java it is almost four times smaller in terms of lines of code, and does 253
not require Java expertise. Moreover the validation logic is contained within a single file in 254
contrast to the previous approach which amounted to 39 different files (including DTD). Even if 255
the logic in the XSD were more modularised, spanning multiple files for readability, the overhead 256
would be minimal. The new configuration and validation layer is self-documenting and the 257
validation could be done with the third party library Apache Xerces (Apache Xerces). Notably, 258
application specific validation was not relied upon. There were also significant improvements 259
related to the XML files in comparison to the original approach. The sample XML which was 260
provided with the application had been reduced by 3.5 times in terms of file size in comparison to 261
the original (Table 7). 262

Page | 7

With regards to the presentation layer, due to deprecated features and bugs, the GUI code had to 263
be re-written. Instead of using this costly approach in the short term, a standards compliance was 264
adopted to tackle the problem. It was observed that the outputs were double valued, in column 265
form. Given that the model could simulate the 24 hours of a day at 15 minutes resolution, a 266
uniform column based tabulation was available. The most widely used form for such data is the 267
CSV format, which is a standard format supported by dozens of software. Consequently a solution 268
was engineered to convert the internal representation in CSV format for output. The export 269
functionality was not present in the previous approach. Through CSV, the presentation was 270
delegated to other well-established and maintained tools such as LibreOffice. 271

6.3. Demonstration of new functions 272

In order to demonstrate the new functions offered by SimSphere-SOA a simulation 273
configuration file was used for the case of running a simulation for Borgo Cioffi Italian 274
experimental site (latitude 40.617 and longitude 14.933) specifically for the date 17 November 275
2004. After the conversion it could be used the xsd to identify various mistakes (Figure 6) that 276
went uncaught by the standard SimSphere distribution. After correcting these mistakes the next 277
challenge was related to the sounding atmospheric profile data provision. In the standard 278
SimSphere distribution, the user has to manually provide such sounding data. They are typically 279
taken from the Department of Atmospheric Science of the University of Wyoming. These come in 280
a standard format. Here in the soundings were acquired for the corresponding date from the 281
nearby weather station, namely LIRE. The provided data were saved to a .csv file and using an 282
accompanying utility in the SimSphere-SOA distribution, namely csv2soundingset.java, it 283
automatically generated the <SoundingSet> element in the correct format and units suitable for 284
SimSphere-SOA (Figure 7). This was not possible in the standard version, as the user must 285
employ a manual, error prone procedure. The tool respects the constraint posed by the core of 286
Simsphere which is a limit of 51 Sounding elements. Also, notably the previous version had only 287
11 manually converted measurements. After checking the .xml file again for correctness via the 288
XSD file, it was used to perform simulations. A .csv file was effortlessly generated that encoded the 289
results of the simulation. A standard spreadsheet program was used to create the figures, namely 290
MS Excel. The .xml used to generate the simulation results, namely sample.xml, is available at the 291
corresponding Github project in the folder simsphere_xsds. An example prediction of the time 292
evolution of Sensible Heat Flux of this day is illustrated in Figure 8. 293

7. Conclusions & Future Work 294

Herein, the applicability of the SOA architecture to a SVAT modeling tool was demonstrated. The 295
innovation of the approach described herein is the exporting of validation logic encoded in code 296
to an XSD. XSD can capture these constraints while the previous DTD validation could not. With 297
XSD more accurate sensitivity analysis and model outputs validation can be performed while the 298
user can use the inline documentation in order to insert valid values. Even if the input is 299
erroneous, by using standard validation interfaces of XML editors the user can accurately describe 300
and comfortably validate the input before submitting it. The validation could be used as a 301
portable interface generator between developers. In the previous SimSphere product edition, 302
manually generated Java code had to be exchanged. In contrast, the new SimSphere-SOA allows 303
the user to analyse the input from the .csv provided as output which are compatible with 304
numerous applications. The executions can be run in headless environments (for example in HPC) 305
in parallel or through shell scripts. 306

SimSphere-SOA development has also resulted in the improvement in the maintainability of the 307
application, code reduction and flexibility of the original model. The improvement in 308
maintainability and code size is due to the automated validation and generation of a persistency 309

Page | 8

layer, whereas the flexibility owes its improvement to the SOA design. Moreover, the stateless 310
nature of SimSphere-SOA allows it to scale in HPC environments. The stateless is expressed by the 311
creation of two .csv files per XML which can be executed in parallel. While the first .csv allows the 312
observation of time evolution, the second one is very important in running model inversion. 313

Future work may focus on the GUI re-design using modern practices and technologies that have 314
proved their values. For this purpose a number of options can be explored including Java FX 315
technology (current on-going implementation) or the more standardised approach of 316
HTML5/EcmaScript6 following the web centric trend. A perhaps more pressing issue with 317
SimSphere is related to the maintainability of the scientific investment in computational logic. In 318
order to successfully separate the role of developer and researcher, future work on the model will 319
be required to transform the code base to a researcher friendly DSL like OpenModelica. This 320
development will be of key value in demonstrating a workflow that brings together the developer 321
and the researcher with minimum overlap of responsibilities to each other. 322

 323

Acknowledgements 324

This work has been funded by the FP7-People project TRANSFORM-EO (project reference 325
ID334533) as well as the High Performance Computing Facilities of Wales (HPCW) project 326
PREMIER-EO. Dr Petropoulos as the PI of both projects thanks the funding bodies for supporting 327
the implementation of this work. Authors would also like to thank the anonymous reviewers for 328
their comments which resulted to the improvement of the manuscript. 329

 330

References 331

Bell, M. (2008). Introduction to Service-Oriented Modeling. Service-Oriented Modeling: Service 332
Analysis, Design, and Architecture. Wiley & Sons. p. 3. ISBN 978-0-470-14111-3. 333

Carlson, T. (2007). An overview of the" triangle method" for estimating surface 334
evapotranspiration and soil moisture from satellite imagery. Sensors, 7(8), 1612-1629. 335

Carlson, T. N., & Boland, F. E. (1978). Analysis of urban-rural canopy using a surface heat 336
flux/temperature model. Journal of Applied Meteorology, 17(7), 998-1013. 337

Coon, E.T, J.D. Moulton and S.L. Painter (2016). Managing complexity in simulations of land 338
surface and near-surface processes. Environmental Modelling & Software, 78, 134-149. 339

Chauhan, N. S., Miller, S., & Ardanuy, P. (2003). Spaceborne soil moisture estimation at high 340
resolution: a microwave-optical/IR synergistic approach. International Journal of Remote 341
Sensing, 24(22), 4599-4622. 342

Coudert, B., Ottlé, C., & Briottet, X. (2008). Monitoring land surface processes with thermal 343
infrared data: Calibration of SVAT parameters based on the optimisation of diurnal surface 344
temperature cycling features. Remote Sensing of Environment, 112(3), 872-887. 345

El-Sharkawi, A., Shouman, A., & Lasheen, S. (2013). Service Oriented Architecture for Remote 346
Sensing Satellite Telemetry Data Implemented on Cloud Computing. International Journal 347
of Information Technology & Computer Science, 5(7), 12. 348

European Space Agency: Support to Science Element, a Pathfinder for Innovation in Earth 349
Observation, ESA, available at: 350
http://due.esrin.esa.int/stse/files/document/STSE_report_121016.pdf (last access: 10 July 351
2014), 2012. 352

Page | 9

Gillies, R. R., Kustas, W. P., & Humes, K. S. (1997). A verification of the'triangle'method for 353
obtaining surface soil water content and energy fluxes from remote measurements of the 354
Normalized Difference Vegetation Index (NDVI) and surface e. International journal of 355
remote sensing, 18(15), 3145-3166. 356

Gillies, R.R., 1993. A physically-based land sue classification scheme using remote solar and 357
thermal infrared measurements suitable for describing urbanisation. PhD Thesis, University 358
of Newcastle, UK, 121 pp. 359

Grantz, D. A., Zhang, X., & Carlson, T. (1999). Observations and model simulations link stomatal 360
inhibition to impaired hydraulic conductance following ozone exposure in cotton. Plant, Cell 361
& Environment, 22(10), 1201-1210. 362

Ireland, G., G.P. Petropoulos, T.N. Carlson & S. Purdy (2015): Addressing the ability of a land 363
biosphere model to predict key biophysical vegetation characterisation parameters with 364
Global Sensitivity Analysis Environmental Modelling & Software, 65, 94-107. 365

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., ... & Williams, 366
C. (2011). Global patterns of land‐atmosphere fluxes of carbon dioxide, latent heat, and 367
sensible heat derived from eddy covariance, satellite, and meteorological observations. 368
Journal of Geophysical Research: Biogeosciences (2005–2012), 116(G3). 369

Lynn, B. H., & Carlson, T. N. (1990). A stomatal resistance model illustrating plant vs. external 370
control of transpiration. Agricultural and Forest Meteorology, 52(1), 5-43. 371

Mannschatz, T, T. Wolf & S. Hulsmann (2016): Nexus Tools Platform: Web-based comparison of 372
modelling tools for analysis of water-soil-waste nexus. Environmental Modelling & Software, 373
76, 137-153. 374

North, M. R., Petropoulos, G.P., Rendall, D.V., Ireland, G.I. & J.P. McCalmont (2015): Evaluating the 375
capability of a land biosphere model in simulating land surface processes: results from 376
different European Ecosystems. DOI: doi:10.5194/esdd-6-217-2015 Earth Surface 377
Dynamics Discussions. 378

Petropoulos, G., Carlson, T. and Wooster, M. J. (2009a): An Overview of the Use of the SimSphere 379
Soil vegetation Atmospheric Transfer (SVAT) Model for the Study of Land Atmosphere 380
Interactions, Sensors, 9, 4286-4308. 381

Petropoulos, G., Wooster, M. J., Kennedy, K., Carlson, T.N. and Scholze, M. (2009b): A global 382
sensitivity analysis study of the 1d SimSphere SVAT model using the GEM SA software, Ecol. 383
Model., 220, 2427-2440. 384

Petropoulos, G. P., Konstas, I., and Carlson, T. N (2013a): Automation of SimSphere Land Surface 385
Model Use as a Standalone Application and Integration with EO Data for Deriving Key Land 386
Surface Parameters, European Geosciences Union, 7–12 April 2013, Vienna, Austria. 387

Petropoulos, G. P., Griffiths, H., and Tarantola, S. (2013b): Sensitivity analysis of the SimSphere 388
SVAT model in the context of EO-based operational products development, Environ. Modell. 389
Softw., 49, 166–179, 2013c. 390

Piles, M., Camps, A., Vall-Llossera, M., Corbella, I., Panciera, R., Rüdiger, C., ... & Walker, J. (2011). 391
Downscaling SMOS-derived soil moisture using MODIS visible/infrared data. Geoscience 392
and Remote Sensing, IEEE Transactions on, 49(9), 3156-3166. 393

Piles, M., G.P. Petropoulos, G. Ireland & N. Sanchez (2016): A Novel Method to Retrieve Soil 394
Moisture at High Spatio-Temporal Resolution Based on the Synergy of SMOS and MSG 395
SEVIRI observations. Remote Sensing of Environment [in press]. 396

Page | 10

Ridler, M. E., Sandholt, I., Butts, M., Lerer, S., Mougin, E., Timouk, F., ... & Madsen, H. (2012). 397
Calibrating a soil–vegetation–atmosphere transfer model with remote sensing estimates of 398
surface temperature and soil surface moisture in a semi-arid environment. Journal of 399
Hydrology, 436, 1-12. 400

Schroth, C., & Janner, T. (2007). Web 2.0 and SOA: Converging Concepts Enabling the Internet of 401
Services. IT Professional 9, Nr. 3, pp. 36-41, IEEE Computer Society. 402

Shafranovich, Y. (October 2005). "Common Format and MIME Type for CSV Files". Network 403
Working Group (RFC 4180) 404

 405

1

List of Figures:

Fig 1: Basic structure of SimSphere, with the different model components summarised

2

Fig. 2. Original SimSphere architecture

Fig. 3 The new friendly architecture of SimSphere-SOA

3

Fig. 4 Example of SimSphere-SOA applications

Fig. 5 SimSphere-SOA in cluster mode

4

Fig. 6 Validation failure on converted xml values.

Fig. 7 XML fragment generation from imported sounding data.

Fig. 8 Sensible Heat Flux predicted by the Simsphere-SOA

Page | 1

List of Tables

Table 1: Summary of the main SimSphere inputs.

NAME OF THE MODEL INPUT

PROCESS IN WHICH
PARAMETER IS INVOLVED

MIN
VALUE

MAX
VALUE

Slope (degrees) TIME & LOCATION 0 45
Aspect (degrees) TIME & LOCATION 0 360
Station Height (meters) TIME & LOCATION 0 4.92
Fractional Vegetation Cover (%) VEGETATION 0 100
LAI (m2m-2) VEGETATION 0 10
Foliage emissivity (unitless) VEGETATION 0.951 0.990
[Ca] (external [CO2] in the leaf) (ppmv) VEGETATION 250 710
[Ci] (internal [CO2] in the leaf) (ppmv) VEGETATION 110 400
[03] (ozone concentration in the air) (ppmv) VEGETATION 0.0 0.25
Vegetation height (meters) VEGETATION 0.021 20.0
Leaf width (meters) VEGETATION 0.012 1.0
Minimum Stomatal Resistance (sm-1) PLANT 10 500
Cuticle Resistance (sm-1) PLANT 200 2000
Critical leaf water potential (bar) PLANT -30 -5
Critical solar parameter (Wm-2) PLANT 25 300
Stem resistance (sm-1) PLANT 0.011 0.150
Surface Moisture Availability (vol/vol) HYDROLOGICAL 0 1
Root Zone Moisture Availability (vol/vol) HYDROLOGICAL 0 1
Substrate Max. Volum. Water Content (vol/vol) HYDROLOGICAL 0.01 1
Substrate climatol. mean temperature (oC) SURFACE 20 30
Thermal inertia (Wm-2K-1) SURFACE 3.5 30
Ground emissivity (unitless) SURFACE 0.951 0.980
Atmospheric Precipitable water (cm) METEOROLOGICAL 0.05 5
Surface roughness (meters) METEOROLOGICAL 0.02 2.0
Obstacle height (meters) METEOROLOGICAL 0.02 2.0
Fractional Cloud Cover (%) METEOROLOGICAL 1 10
RKS (satur. thermal conduct.(Cosby et al., 1984) SOIL 0 10
Cosby B (see Cosby et al., 1984) SOIL 2.0 12.0
THM (satur.vol. water cont.) (Cosby et al., 1984) SOIL 0.3 0.5
PSI (satur. water potential) (Cosby et al., 1984) SOIL 1 7
Wind direction (degrees) WIND SOUNDING PROFILE 0 360
Wind speed (knots) WIND SOUNDING PROFILE --- ---
Altitude (1000’s feet) WIND SOUNDING PROFILE --- ---
Pressure (mBar) MOISTURE SOUNDING PROFILE --- ---
Temperature (Celsius) MOISTURE SOUNDING PROFILE --- ---
Temperature-Dewpoint Temperature (Celsius) MOISTURE SOUNDING PROFILE --- ---

Page | 2

Table 2: Summary of the main s outputs simulated by SimSphere.

Table 3. Web service endpoints of SimSphere-SOA

Endpoint Description Method

http://localhost:8080/timebased Time based POST

http://localhost:8080/convolution Convolution simulation POST

SimSphere model Outputs
Output Name Units Output Name Units

Air temperature at 1.3m oC Radiometric Temperature oC

Air temperature at 50m oC Root Zone moisture Avail. n/a

Air temperature at foliage oC Sensibel heat flux Wm-2

Bowen ratio n/a Short-wave flux Wm-2

[CO2] on canopy ppmv Specific humidity at 1.3m gKg-1

[CO2] flux micromolesm2s-1 Specific humidity at 50m gKg-1

Epidermal water potential Bars Specific humidity at foliage gKg-1

Global O3 flux Ugm-2s-1 Stomatal resistance sm-1

Ground flux Wm-2 Surface moisture availability n/a

Ground water potential bars Vapor pressure deficit Mbar

Latent Heat flux Wm-2 Water Use Efficiency n/a

Leaf water potential bars Wind at 10m Kts

Net Radiation Wm-2 Wind at 50m Kts

[O3] canopy ppmv Wind in foliage Kts

[O3] flux plant Ugm-2s-1

Page | 3

Table 4: Two examples XSD 1.1 assertions used

Description Assertion

Altitude
above
station must
start at 0

<xsd:assert test="count(./simsphere:Sounding[@AltAboveStation eq 0]) gt 0"/>

Minimum
temperature
must be
below
maximum
temperature.

<xsd:assert test="@MinTemperature le @MaxTemperature"/>

Table 5: The longitude definition as used by SimSphere-SOA

<xsd:element name="Longitude">

 <xsd:annotation>

 <xsd:documentation>

 The longitude in degrees.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleType>

 <xsd:restriction base="xsd:float">

 <xsd:minInclusive value="-180"/>

 <xsd:maxInclusive value="180"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:element>

Page | 4

Table 6. Comparison of old and new approaches in providing the longitude
parameter in XML input

Approach Code

OLD <ParamLabel Format="##0.##" Label="Longitude (deg)" ParmElem="Longitude">

</ParamLabel>

<Longitude Value="96.55">

 <BoundedRange MaxType="closed" Maximum="180" MinType="closed"

 Minimum="-180" RangeID="ID102">

 </BoundedRange>

</Longitude>

NEW <Longitude>96.55</Longitude>

Table 7: Analysis using CLOC of old and new serialization and validation
codebases

Approach Files Blanks Comments Lines of Code File Size

OLD (Java only
serialization)

38 1152 2069 4393
(manual)

NEW (Java only) 0 N/A N/A 0 (manual)

OLD (DTD only) 1 N?A N/A 311

NEW (XSD only) 1 N/A N/A 1145

OLD XML Input 106KB

NEW XML Input 26KB

	ENVSOFT_manuscript main_final_revised
	ENVSOFT_List of Figures_final_revised
	ENVSOFT_List of Tables_final_revised
	List of Tables

