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Abstract 

Optimisation of the operation of water distribution systems has been an active research field for almost half a 

century. It has focused mainly on optimal pump operation to minimise pumping costs and optimal water 

quality management to ensure that standards at customer nodes are met. This paper provides a systematic 

review by bringing together over two hundred publications from the past three decades, which are relevant to 

operational optimisation of water distribution systems, particularly optimal pump operation, valve control 

and system operation for water quality purposes of both urban drinking and regional multiquality water 

distribution systems. Uniquely, it also contains substantial and thorough information for over one hundred 

publications in a tabular form, which lists optimisation models inclusive of objectives, constraints, decision 

variables, solution methodologies used and other details. Research challenges in terms of simulation models, 

optimisation model formulation, selection of optimisation method and postprocessing needs have also been 

identified. 

 

Keywords: Water distribution systems; optimisation; literature review; pump operation; water quality; valve 

control 

 

1 Introduction 

Water distribution systems (WDSs) represent a vast infrastructure worldwide, which is critical for 

contemporary human existence from all social, industrial and environmental aspects. As a consequence, 

there is pressure on water organisations to provide customers with a continual water supply of the required 

quantity and quality, at a required time, subject to a number of delivery requirements and operational 

constraints. A level of flexibility exists in the WDSs, which enables the supply of required water under 
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different operational schedules, more or less economically. This flexibility gives opportunity for optimisation 

of WDS operation. 

 

Since the 1970s, substantial research has addressed the operational optimisation of WDSs (Ormsbee and 

Lansey 1994) with two main areas of focus. The first area includes pump operation, as pump operating costs 

constitute the largest expenditure for water organisations worldwide (Van Zyl et al. 2004). Optimal operation 

of pumps is often formulated as a cost optimisation problem (Savic et al. 1997). The second area includes 

optimisation of water quality across the water distribution network. This research area emerged in the 1990s 

following the U.S. Environmental Protection Agency (EPA) promulgating “rules requiring that water quality 

standards must be satisfied at consumer taps rather than at treatment plants” (Ostfeld 2005). 

 

Development in the use of various methods to optimise operation of WDSs is not only an interesting subject 

for research, but is also very complex. Initially, these techniques included deterministic methods, such as 

dynamic programming (DP) (Dreizin 1970; Sterling and Coulbeck 1975a; Zessler and Shamir 1989), 

hierarchical control methods (Coulbeck et al. 1988a; Coulbeck et al. 1988b; Fallside and Perry 1975; Sterling 

and Coulbeck 1975b), linear programming (LP) (Alperovits and Shamir 1977; Schwarz et al. 1985) and 

nonlinear programming (NLP) (Chase and Ormsbee 1989). Since the 1990s, metaheuristic algorithms, such 

as genetic algorithms (GAs), simulated annealing (SA), to name a few, have been applied to the optimal 

operation of WDSs with increased popularity. Their attractiveness for this type of optimisation is due to their 

potential to solve nonlinear, nonconvex, discrete problems for which deterministic methods incur difficulty 

(Maier et al. 2014; Nicklow et al. 2010). In recent years however, deterministic methods have started to 

reappear, because they are more computationally efficient, thus more suitable for real-time control, as well as 

other applications (Creaco and Pezzinga 2015). An example of the former is Derceto Aquadapt, a 

commercial software used for real-time optimisation of valve and pump schedules (Derceto 2016), which 

uses LP as the base algorithm. 

 

2 Aim, scope and structure of the paper 

The aim of this paper is to provide a comprehensive and systematic review of publications for operational 

optimisation of WDSs since the end of the 1980s to nowadays to contribute to the existing review literature 

(Lansey 2006; Ormsbee and Lansey 1994; Walski 1985). Publications included in this review are relevant to 

optimal pump operation, valve control and optimal system operation for water quality purposes of both urban 

drinking and regional multiquality WDSs. 

 

The paper consists of two parts: (i) the main review and (ii) an appendix in a tabular form (further referred to 

as the table), each having different structure and purpose. The main review is structured according to 

publications’ application areas (pump, water quality and valve control) and general classification. This 

classification is used because it captures all the main aspects of an operational optimisation problem 

answering the questions: what is optimised (Section 4.1), how is the problem defined (Section 4.2), how is 
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the problem solved (Section 4.3) and what is the application (Section 4.4)? The purpose of this part of the 

paper is to provide the current status, analysis and synthesis of the current literature, and to suggest future 

research directions. 

The table forms a significant part of the paper referring to over a hundred publications and is structured 

chronologically. It contains a detailed classification of each paper, including optimisation models (i.e. 

objective functions, constraints, decision variables), water quality parameters, network analyses and 

optimisation methods used, as well as other relevant information. The purpose of the table is to provide an 

exhaustive list of publications on the topic (as much as feasible) detailing comprehensive and thorough 

information, so it could be used as a single reference point to identify one’s papers of interest in a timely 

manner. Therefore, it represents a unique and important contribution of this paper. 

 

The structure of the paper is as follows: 

 The main review: Application areas (Section 3), General classification of reviewed publications (Section 

4), Future research (Section 5), Summary and conclusion (Section 6), List of terms (Section 7), List of 

abbreviations (Section 8). 

 The table: Appendix (Section 9). 

 

3 Application areas 

3.1 Pump operation 

Typically, electricity consumption is one of the largest marginal costs for water utilities. The price of 

electricity has been rising globally, making it a dominant cost in operating WDSs. Pump operation is 

optimised in order to achieve a minimal amount of energy consumed by pumps. Pumps are controlled either 

explicitly by times when pumps operate (so called pump scheduling), or implicitly by pump flows (Bene et 

al. 2013; Nitivattananon et al. 1996; Pasha and Lansey 2009; Zessler and Shamir 1989), pump pressures, 

tank water trigger levels (Broad et al. 2010; Van Zyl et al. 2004) or pump speeds for variable speed pumps 

(for example Hashemi et al. (2014), Ulanicki and Kennedy (1994), Wegley et al. (2000)). These controls are 

specified as decision variables and their formulations are reviewed in Ormsbee et al. (2009). The most 

frequently used is explicit pump scheduling, which can be specified by (i) on/off pump statuses during 

predefined equal time intervals (for example Baran et al. (2005), Ibarra and Arnal (2014), Mackle et al. 

(1995), Salomons et al. (2007)), (ii) length of the time (in hours) of pump operation (Brion and Mays 1991; 

Lopez-Ibanez et al. 2008), (iii) start/end run times of the pumps (Bagirov et al. 2013). The former, although 

the most frequently used, requires a large number of decision variables for (real-world) WDSs with 

numerous pump stations, which increases the size of the search space. The latter two methods reduce the 

number of variables hence decrease the size of the search space. This reduced search space helps the 

optimisation algorithm to quickly achieve a satisfactory pump schedule. Concerning the methods for search 

space reduction, an open question is how to perform it without compromising the fidelity of the optimisation 

model and undue simplification of the real system. 

 



4 

 

Pump operating costs comprise of costs for energy consumption due to pump operation and costs due to the 

maintenance of pumps. Energy consumption normally incurs energy consumption charge and demand 

charge. Consumption charge is based on the kilowatt-hours of electric energy consumed by pumps during the 

billing period (Ormsbee et al. 2009) and is often the only component of operating costs used in the pump 

optimisation problem (for example Jamieson et al. (2007), Kim et al. (2007), Ulanicki et al. (1993)). Demand 

charge is usually based on the peak energy consumption during a specific time period (Ormsbee et al. 2009), 

and often determined over a time scale much longer (weeks-months) than the time period considered for 

optimisation (hours-days). As it is not easily incorporated in the optimisation model (McCormick and Powell 

2003), it has been included as a constraint (Gibbs et al. 2010a; Selek et al. 2012) or as an additional objective 

besides pump operating costs (Baran et al. 2005; Kougias and Theodossiou 2013; Sotelo and Baran 2001). 

Whether demand charges are included as a constraint or an objective depends largely on the optimisation 

technique selected for solving the pump operation problem. The shape of the resulting solution space (i.e. the 

solution neighbourhood structure) or the ease with which an additional constraint is incorporated determines 

the best optimisation method to use. The approach for including maximum demand charges into overall 

costs, which takes into account the uncertainty in the future water demand, makes an already difficult 

problem of pump operation planning an even greater challenge.  

 

Similar to demand charges, pump maintenance costs are also difficult to quantify. They are usually included 

using a surrogate measure such as the number of pump switches (Lopez-Ibanez et al. 2008). It is assumed 

that a reduction in the number of pump switches results in the reduction of the pump maintenance costs 

(Lansey and Awumah 1994). The number of pump switches has been considered as a constraint (Boulos et 

al. 2001; Lansey and Awumah 1994; Lopez-Ibanez et al. 2008; Selek et al. 2012; Van Zyl et al. 2004), 

alternatively, pump energy costs and pump maintenance costs have been considered as a two-objective 

optimisation problem (Bene et al. 2013; Kelner and Leonard 2003; Lopez-Ibanez et al. 2005; Savic et al. 

1997). The advantage of considering pump switches as an objective over incorporating them as a constraint 

is in the ability to investigate a complete tradeoff between maintenance and other costs when the former is 

selected. However, an open research question with regard to pump maintenance costs within an operational 

optimisation problem relates to whether there are more appropriate expressions for characterising this type of 

wear and tear costs. 

 

A multi-objective approach has been increasingly applied (Figure 1) to pump optimisation problems to 

include considerations other than costs. Other objectives considered, apart from demand charge and pump 

maintenance costs mentioned above, were the difference between initial and final water levels in storage 

tanks (Baran et al. 2005; Sotelo and Baran 2001), the quantity of pumped water (Kougias and Theodossiou 

2013), greenhouse gas (GHG) emissions associated with pump operations (Stokes et al. 2015a,b) and 

operational reliability (Odan et al. 2015). Most recently, water quality has been traded off against pump 

operating costs (Arai et al. 2013; Kurek and Ostfeld 2013; Kurek and Ostfeld 2014; Mala-Jetmarova et al. 

2014) with the finding that those objectives are conflicting. Similarly, water losses due to leakage and pump 
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operating costs were identified as conflicting objectives (Giustolisi et al. 2012). Minimisation of only 

pumping costs moves the pumping to the night time when the pressures in the system are higher, producing 

increased leakage. When water losses are introduced as an objective, more pumping occurs during the day 

time, with a corresponding reduction in leakage (Giustolisi et al. 2012). 

 

 

Figure 1: Papers (from the appendix table) by year and optimisation approach 

 

While the single-objective approach benefits from being able to identify one best solution, which is then 

implemented, multi-objective methods normally produce a set of tradeoff (Pareto) solutions, which requires 

an additional step to select only one of the solutions. Selecting a single solution from a potentially large non-

dominated set is likely to be difficult for any decision maker. This subsequent selection process makes the 

multi-objective approach less desirable by the operators who often require a clear decision to implement. 

This mismatch leads to the research question of what is the most promising way for selecting the best 

solution from the Pareto set, which may involve providing the decision makers with a globally representative 

subset of the non-dominated set that is sufficiently small to be tractable. 

 

3.1.1 Real-time control 

Time is an important factor for industrial applications. In real-time planning and control of WDSs, there is a 

need for optimal schedules to be found in a timely manner based on demand forecasts and be implemented 

via the SCADA (supervisory control and data acquisition) system. Evidence from the literature suggests that 

computational efficiency of metaheuristic algorithms in conjunction with the network simulator, such as 

EPANET, for large WDSs is not sufficient, however. 

 

Several authors have investigated how to decrease computational effort of the network simulator and/or an 

optimisation algorithm to provide an optimal solution in real-time. Time consuming extended period 

simulations (EPSs) could be replaced with surrogate models such as artificial neural networks (ANNs) 

(Broad et al. 2010), interpretive structural modelling (ISM) (Arai et al. 2013) or reduced (i.e. skeletonised) 

models (RMs) (Shamir and Salomons 2008). ANNs, which are applied most frequently, were used to 
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determine real-time, near optimal control of WDSs by integrating with a GA incorporating demand 

forecasting (based on seasonal, weekly and daily periodic components) and operating continually based on 

SCADA data and demand forecast updates (Martinez et al. 2007; Rao and Alvarruiz 2007; Rao and 

Salomons 2007; Rao et al. 2007; Salomons et al. 2007; Shamir et al. 2004). Surrogate models can be 

developed prior to the optimisation run, in which case optimisation is not gated by the time consuming 

network simulator, or they can be validated within the optimisation loop where the network simulator is 

employed sparingly. An open question is how to control the error of the surrogate model to ensure that the 

solution found is still optimal when the full network simulator is employed to validate it.  

 

Optimisation methods used for real-time control include LP (Jowitt and Germanopoulos 1992; Pasha and 

Lansey 2009), NLP (Cembrano et al. 2000), progressive optimality algorithm combined with heuristics 

(Nitivattananon et al. 1996), adaptive search algorithm (ASA) (Pezeshk and Helweg 1996), GA integrated 

with ANN (Shamir et al. 2004), and LP combined with a greedy algorithm (LPG) (Giacomello et al. 2013).  

 

Real-time control depends crucially not only on the ability of the optimisation algorithm to find a good 

solution in near real-time, but also on the effectiveness of the model used to forecast the future state of the 

system for an operational decision window. These aspects make real-time pump control a much more 

difficult problem to solve as opposed to when optimisation is used for planning purposes. 

 

3.2 Water quality 

3.2.1 Urban drinking water distribution systems 

There does not seem to be a unique optimisation model for the operation of drinking WDSs. The following 

three basic single-objective models exist in the literature. The first optimisation model minimises pump 

operating time/costs (Dandy and Gibbs 2003; Goldman and Mays 1999; Sakarya and Mays 1999; Sakarya 

and Mays 2000; Sakarya and Mays 2003) with addition of water treatment costs (Ulanicki and Orr 1991), 

costs of water at sources (Brdys et al. 1995) and utility turnout costs (Murphy et al. 2007) subject to water 

quality and other constraints. The second optimisation model minimises the (costs of) total disinfectant mass 

dose (Boccelli et al. 1998; Fanlin et al. 2013; Prasad et al. 2004; Rico-Ramirez et al. 2007; Tryby et al. 

2002), which may consider the number and locations of booster disinfection stations. The third optimisation 

model minimises disinfectant concentration deviations at customer demand nodes from desired values 

(Goldman et al. 2004; Kang and Lansey 2009; Munavalli and Kumar 2003; Propato and Uber 2004a; Propato 

and Uber 2004b; Sakarya and Mays 1999; Sakarya and Mays 2000; Sakarya and Mays 2003). These models 

are sometimes combined in various ways (Biscos et al. 2003; Biscos et al. 2002; Gibbs et al. 2010a; Ostfeld 

and Salomons 2006).  

 

What is the difference in the solution obtained when applying those models? Sakarya and Mays (2000) 

considered the first and third optimisation model with the following outcomes. Different pump schedules 

were found using these models. Optimal solutions for the first model considering either pump operating time 
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or pump operating costs were very similar. For the third model considering concentration deviations, 

nonetheless, the optimal solution had higher value of pump operating time/costs than for the first model. The 

explanation provided was that the objective function implemented in the third model (i.e. concentration 

deviations) does not force the algorithm to reduce pump operating time/costs further after all of the 

constraints are satisfied. Ostfeld and Salomons (2006) discovered that pumping costs are significantly 

reduced if water quality is absent from the optimisation model and conversely, that the best water quality 

outcome corresponds to the highest pump operating costs. This competing nature of tradeoff between water 

quality and operating costs was confirmed by Arai et al. (2013), and Kurek and Ostfeld (2014). 

 

Those models were improved by the incorporation of control valves to direct disinfectant laden-water where 

required (Kang and Lansey 2009; Kang and Lansey 2010) and by inclusion of uncertainties on demands, 

pipe roughness and chemical reactions of the disinfectant (Rico-Ramirez et al. 2007). Furthermore, a multi-

objective approach was applied with additional objectives being the number of instances of not meeting 

quality requirements (Ewald et al. 2008; Kurek and Brdys 2006), the costs of tanks (Kurek and Ostfeld 

2013), and the number of polluted nodes and operational interventions (OIs) as responses to WDS 

contamination (Alfonso et al. 2010). 

 

Water quality parameters (such as chlorine) were typically modelled as non-conservative using first order 

decay kinetics, except for Murphy et al. (2007) and Prasad and Walters (2006), who used water age as a 

substitute for water quality. Optimisation methods used were mainly LP and mixed integer nonlinear 

programming (MINLP) (for example Arai et al. (2013), Biscos et al. (2003), Boccelli et al. (1998)) and 

metaheuristic algorithms (GA and others) linked with a network simulator EPANET (for example Alfonso et 

al. (2010), Dandy and Gibbs (2003)). Most recently in order to reduce computational effort, EPANET 

simulations were replaced by the ISM (Arai et al. 2013) and ANN (Wu et al. 2014b). 

 

Introduction of water quality considerations increases the complexity of the optimisation considerably. This 

increased complexity is caused not only by the more complex simulations required to predict the temporal 

and spatial distribution of a variety of constituents within a distribution system, but also by the requirement 

to run shorter time step water quality computations. Furthermore, the ability to model multiple constituents 

throughout the water distribution system via the EPANET Multi-Species Extension, EPANET-MSX (Shang 

et al. 2008), also comes with a further loss in computational efficiency. However, these complex simulations 

are sometimes necessary as network operational conditions often impact on various water quality 

constituents, e.g., discolouration that occurs due to erosion of particulate material layers. Consequently, there 

is a need to develop even more computationally efficient optimisation methods that can be run in real-time, 

which take complex water quality behaviour into account. 
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3.2.2 Regional multiquality water distribution systems 

Multiquality WDSs are “systems in which waters of different qualities are taken from sources, possibly 

treated, conveyed and supplied to the consumers” (Ostfeld and Salomons 2004). They deliver water to more 

than one customer group, who have different water quality requirements. The first optimisation models for 

multiquality WDSs considered pump operating costs only (Mehrez et al. 1992; Percia et al. 1997).The 

system operating costs were later extended to also include costs of water at sources (Cohen et al. 2000b), 

water treatment costs (Ostfeld and Shamir 1993a; Ostfeld and Shamir 1993b), water conveyance costs 

(Cohen et al. 2000a) and yield reduction costs due to watering crops with low quality water (Cohen et al. 

2000a; Cohen et al. 2000c). These costs were combined into one objective, with water quality requirements 

at customer demand nodes included as constraints. 

 

Subsequent studies performed analyses to explore sensitivity of the solution to modifications of model data 

and constraints (Cohen et al. 2004; Cohen et al. 2009; Ostfeld 2005; Ostfeld and Salomons 2004) and to 

compare performance of different optimisation methods (Cohen et al. 2003). The emphasis of these analyses 

was to investigate the impact of individual operating costs on total system costs and the relationship between 

different customer groups, such as drinking and irrigation. 

 

Water quality parameters (such as salinity, magnesium, sulphur) were typically modelled as conservative, 

except for Ostfeld and Shamir (1993b), who modelled non-conservative parameters in reservoirs using first 

order decay. Additionally, Ostfeld et al. (2011) included chemical water instability, which can result from 

mixing desalinated water with surface or groundwater, using calcium carbonate precipitation potential 

(CCPP). Optimisation problems in the above papers were solved as single-objective. Most recently, Mala-

Jetmarova et al. (2014) included water quality as an additional objective into an optimisation model and 

explored tradeoffs between water quality and pumping costs, confirming results of Arai et al. (2013), and 

Kurek and Ostfeld (2014) indicating conflicting relationship between water quality and pumping cost 

objectives. Interestingly, when two water quality objectives (each representing a separate water quality 

parameter) are incorporated together with a pumping cost optimisation into a model, the relationship between 

water quality and pumping costs is not necessarily conflicting (Mala-Jetmarova et al. 2015). This hypothesis 

represents a further research challenge to be tested on a different set of realistic case studies of various 

configurations to ascertain whether the objectives are conflicting or that they can be somehow integrated, 

leading to reduced optimisation problem complexity. 

 

3.3 Valve control 

Valve controls were used in conjunction with both optimal pump operation and optimal system operation for 

water quality purposes. These valve controls were implemented in optimisation models as decision variables. 

In regards to minimisation of pump operating costs, those decision variables were represented by continuous 

valve statuses (Biscos et al. 2002; Biscos et al. 2003; Ulanicki and Orr 1991; Ulanicki et al. 2007), binary 

valve statuses (Biscos et al. 2002; Biscos et al. 2003; Giustolisi et al. 2012; Jamieson et al. 2007), valve 
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positions (Ulanicki and Kennedy 1994; Wu et al. 2014a) or valve openings/opening ratios (Cembrano et al. 

2000; Cohen et al. 2000c; Martinez et al. 2007; Ostfeld and Salomons 2004; Rao et al. 2007; Rao and 

Salomons 2007), flows through valves (Carpentier and Cohen 1993; Jowitt and Germanopoulos 1992), valve 

headlosses or headloss coefficients (Cohen et al. 2000b; Cohen et al. 2009; Kelner and Leonard 2003), and 

pressure reducing valve (PRV) settings (Murphy et al. 2007; Salomons et al. 2007; Shamir and Salomons 

2008). 

 

In water quality optimisation models, valves were used, via their binary statuses (open or closed), to improve 

water quality at customer nodes by rerouting flows (Prasad and Walters 2006) and to minimise pollutant 

contamination across a network (Alfonso et al. 2010). Additionally, percentages/degrees of valve closures 

(Kang and Lansey 2009; Kang and Lansey 2010) or openings (Ostfeld and Salomons 2006) were used to 

optimise chlorine levels across a network. 

 

In general, the pumping flow is often the main decision variable used in operational optimisation of WDSs. 

Valves often play an indirect role in meeting the constraints, such as balancing of levels in interconnected 

reservoirs (e.g. Ulanicki et al. 2007) and/or pressure regulation (e.g. to control leakage, Giustolisi et al. 

2015). However, in water quality optimisation, they may also be one of the main decision variables. 

 

4 General classification of reviewed publications 

Based on the selected literature analysis, the following are the four main criteria for the classification of 

operational optimisation for WDSs: (i) application area, (ii) optimisation model, (iii) solution methodology 

and (iv) test network. 

 

4.1 Application area 

 As described in Section 3, there are three application areas: pump operation (Section 3.1), water quality 

management (Section 3.2) and valve control (Section 3.3). Figure 2 displays distribution of those application 

areas across the papers analysed (and listed in the appendix table) as follows: 

 

 The largest portion of papers (41%) is concerned with optimisation of pump operation only. 

 Optimisation of pump operation combined with valve control, water quality, or both valve control and 

water quality are represented quite evenly by 15%, 15% and 11% of papers, respectively. 

 Optimisation of water quality exclusive of any other operational controls (i.e. pumps and/or valves) is 

addressed in 15% of papers. 

 The smallest portion of papers (3%) is concerned with optimisation for water quality purposes combined 

with valve control. 
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Figure 2: Papers (from the appendix table) by application areas 

 

The above apparent prevalence of purely pump operation focused papers is not surprising and occurs mostly 

due to historical reasons. Namely, following the first studies focusing on WDS design optimisation, the idea 

of using optimisation in operational studies (i.e. for cost reduction by manipulating pump flows over time) 

was the next challenge to be addressed by the research community. The introduction of water quality criteria, 

with or without valve control for pressure management (e.g. for leakage control) or water quality 

manipulation, appeared much later in the literature. Lately, more emphasis was put on holistic assessment of 

WDS operation, and thanks to more sophisticated simulation and optimisation methods having been 

introduced. 

 

4.2 Optimisation model 

Regarding optimisation models, each is mathematically defined by three types of components: objectives, 

constraints and decision variables. Figure 3 shows how many of these components are included in the 

optimisation models (of papers analysed in the appendix table), which indicates the degree of complexity of 

the formulation. Note that not all reviewed papers include mathematical formulations of an optimisation 

model used. Therefore, our assessment is limited to our interpretation of the provided information in the 

publications, where explicit formulation was partially presented or missing altogether. 

 

 The number of objectives included in optimisation models ranges from one to four, with a vast majority 

of models (84%) being single-objective. The proportion of multi-objective optimisation models, including 

2, 3 or 4 objectives is only 8%, 6% and 2%, respectively. 

 The number of constraints incorporated in optimisation models ranges from one to nine. The largest 

proportion of optimisation models uses 3 or 4 constraints, or 29% and 22%, respectively. The proportion 

of optimisation models using 1-2 and 5-9 constraints totals to 49% (see Figure 3(b) for more details). 

Please note that hydraulic constraints (such as conservation of mass of flow, conservation of energy, and 

conservation of mass of constituent) were not included in these statistics as they are normally included as 

implicit constraints and forced to be satisfied by WDS modelling tool, such as EPANET. 

 The number of types of a decision (i.e. control) variable included in optimisation models ranges from one 

to seven. A majority of optimisation models, 41% and 33%, uses one or two types of a decision variable, 
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respectively. Use of more than two types of a decision variable is less frequent and the number of such 

models tends to decrease with the increasing number of decision variables used. 

 

 

Figure 3: Optimisation models (of papers from the appendix table) by: (a) number of objectives, (b) number 

of constraints, (c) number of types of a decision variable, in an optimisation model 

 

As indicated, the prevailing use of single-objective optimisation is probably caused by the preference to 

arrive at a single solution, which can be implemented by WDS operators. On the other hand, the number of 

constraints used in the formulation of the problem depends on the complexity of the system and the number 

of operational criteria expressed as constraints rather than objectives. Finally, the number and types of 

decision variables depend on what is controllable (what can be changed) in WDS under consideration. Two 

related unresolved research questions are: (i) how to select the best formulation for the problem at hand; and 

(ii) how sensitive the ultimate selection of solution(s) is to the problem formulation selected (Maier et al. 

2014). 

 

4.2.1 General optimisation model 

A general multi-objective optimisation model for optimal operation of a WDS can be formulated as: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥))                                                            (1) 

 

subject to: 

 

𝑎𝑖(𝑥) = 0,     𝑖 ∈ 𝐼 = {1, … , 𝑚},     𝑚 ≥ 0                                                     (2) 

𝑏𝑗(𝑥) ≤ 0,     𝑗 ∈ 𝐽 = {1, … , 𝑛},     𝑛 ≥ 0                                                       (3) 

𝑐𝑘(𝑥) ≤ 0,     𝑘 ∈ 𝐾 = {1, … , 𝑝},     𝑝 ≥ 0                                                     (4) 

 

where Equation (1) represents objective functions to be minimised, Equations (2)-(4) three types of a 

constraint, while 𝑥 represents decision variables (for details, see Table 1). 
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Table 1: Components of a general optimisation model 

Optimisation model 

component 

Description Reference (an example) 

Objective functions 

𝑓1(𝑥), 
𝑓2(𝑥), 
…, 
𝑓𝑛(𝑥) 

Pump operating costs, consisting of energy 

consumption charge and demand charge 

Kougias and Theodossiou (2013) 

Pump maintenance costs, represented, for 

example, by the number of pump switches 

Lopez-Ibanez et al. (2005) 

GHG emissions associated with pump operation Stokes et al. (2015a) 

Water treatment costs Cohen et al. (2009), Ostfeld et al. (2011) 

Disinfectant dosage mass or costs Rico-Ramirez et al. (2007) 

Water quality deviations at customer demand 

nodes 

Propato and Uber (2004a,b) 

Pressure deficit at customer demand nodes Min/max pressure at nodes only as a 

constraint, Ostfeld and Tubaltzev (2008) 

Other operational objectives, for example, cost 

of water 

Ostfeld and Salomons (2004) 

Constraints 

𝑎𝑖(𝑥) = 0, 
𝑏𝑗(𝑥) ≤ 0, 

𝑐𝑘(𝑥) ≤ 0, 

respectively 

Hydraulic constraints given by physical laws of 

fluid flow in a pipe network: (i) conservation of 

mass of flow, (ii) conservation of energy, (iii) 

conservation of mass of constituent 

Rossman (2000) 

System constraints given by limitations and 

operational requirements of a WDS, for 

example, minimum and maximum water levels 

at storage tanks, water deficit/surplus at storage 

tanks at the end of the simulation period 

Lopez-Ibanez et al. (2005) 

Constraints on decision variables 𝑥, for 

example, limits on pump schedules/speeds, the 

number of pump switches or disinfectant doses 

Ghaddar et al. (2014) (limits on pumps), 

Propato and Uber (2004a,b) (limits on 

disinfectant doses) 

Decision variables 

𝑥 to control 

Pumps: either pump schedules, pump start/end 

run times, pump flows, pump heads/pressures, 

pump speeds or storage tank water trigger levels 

Lopez-Ibanez et al. (2005) (schedules), 

Bagirov et al. (2013) (times), Bene et al. 

(2013) (flows), Price and Ostfeld (2014) 

(heads), Kurek and Ostfeld (2014) 

(speeds), Broad et al. (2010) (trigger 

levels) 

Valves: either valve flows, headlosses or 

opening ratios 

Carpentier and Cohen (1993) (flows), 

Cohen et al. (2009) (headlosses and ratios) 

Water quality: either explicitly by disinfectant 

dosage rates (urban drinking WDSs) or 

implicitly by pumps drawing water from 

different water sources (urban drinking and 

regional multiquality WDSs) 

Propato and Uber (2004a,b) (explicitly by 

disinfectant doses), Ostfeld et al. (2011) 

(implicitly by pumps) 

 

Table 1 provides a generic set of components used for formulating an optimisation problem involving 

operational management of a WDS. Particular circumstances being considered in different case studies may 

warrant only a portion of those components to be used.  

 

4.3 Solution methodology 

Optimisation methods have developed significantly since the 1970s. Deterministic methods used initially 

(Brion and Mays 1991; Carpentier and Cohen 1993; Coulbeck et al. 1988a; Coulbeck et al. 1988b; Lansey 

and Awumah 1994; Ulanicki and Kennedy 1994; Ulanicki et al. 1993; Zessler and Shamir 1989) started 

being supplemented by metaheuristics during the mid 1990s (Figure 4). The first of these methods 

introduced was a GA (Boulos et al. 2001; Lingireddy and Wood 1998; Mackle et al. 1995; Moradi-Jalal et al. 

2004; Wu et al. 2014a), which was also used with modifications (Bene et al. 2010; Selek et al. 2012; Wu 
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2007) or in combination with local search methods (i.e. hybrid methods, Figure 4) (Savic et al. 1997; Van 

Zyl et al. 2004) to increase its efficiency. Other metaheuristic algorithms included particle swarm 

optimisation (PSO) (Wegley et al. 2000), ant colony optimisation (ACO) (Hashemi et al. 2014; Lopez-Ibanez 

et al. 2008; Ostfeld and Tubaltzev 2008), nondominated sorting genetic algorithm II (NSGA-II) (Prasad et al. 

2004), strength Pareto evolutionary algorithm 2 (SPEA2) (Kurek and Ostfeld 2013), harmony search 

algorithm (HSA) (Kougias and Theodossiou 2013), limited discrepancy search (LDS) (Ghaddar et al. 2014) 

and other multi-objective algorithms (Baran et al. 2005). 

 

 

Figure 4: Optimisation methods (of papers from the appendix table) by year 

 

Recent advancements show, nevertheless, that these metaheuristics linked with a network simulator (i.e. 

EPANET) may prevent implementation for large WDSs in real-time, due to considerable computational 

effort required (Giacomello et al. 2013). For this reason, more efficient deterministic methods have been 

increasingly applied (Arai et al. 2013; Bagirov et al. 2008; Bagirov et al. 2013; Bagirov et al. 2012; Bene et 

al. 2013; Gleixner et al. 2012; Goryashko and Nemirovski 2014; Kim et al. 2015; Kim et al. 2007; Price and 

Ostfeld 2013a; Price and Ostfeld 2013b; Price and Ostfeld 2014; Reca et al. 2014; Ulanicki et al. 2007). 

Parallel programming techniques (Ibarra and Arnal 2014; Wu and Zhu 2009) are also used to reduce 

computation time. However, even with parallel programming techniques and more efficient deterministic 

optimisation methods, WDS simulations may still be computationally prohibitive especially as the fidelity of 

the model and the number of decision variables increase. 

 

Further efforts to improve the computational efficiency of various optimisers led to the development and 

integration of surrogate models (metamodels) within optimisation algorithms. Surrogate models are efficient 

tools used to replace and approximate network simulations which can be very computationally expensive 

and/or may become an obstacle in real-time implementations. To date, two types of a surrogate model were 

applied to the operational optimisation of WDSs being ANNs (Broad et al. 2005; Broad et al. 2010; Martinez 
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et al. 2007; Rao and Alvarruiz 2007; Rao and Salomons 2007; Rao et al. 2007; Salomons et al. 2007; Shamir 

et al. 2004) and ISM (Arai et al. 2013). 

 

ANNs, which are by far the most commonly used surrogate models, are based upon real neurological 

structures and can be represented as directed graphs. They consist of nodes interconnected by links and are 

commonly arranged into an input layer (representing model inputs), multiple intermediate layers and an 

output layer (representing model outputs). They do not approximate all simulation mechanisms of a network 

model, but only model inputs such as decision (control) variables and model outputs such as state variables 

(Broad et al. 2010). In contrast, ISM captures an underlying hierarchical structure of the system and 

identifies relationships (direct or indirect) between its facilities. As such, it enables an understanding of 

fundamental principles of complex systems such as WDSs. ISM is defined mathematically by a matrix and 

similarly to ANN, it can be represented as a directed graph. 

 

The choice of the solution methodology, and whether it incorporates the equations representing the 

behaviour of the real system directly in the formulation of the problem, or it uses a network simulator (with 

or without the use of a surrogate model to reduce the calls to the simulator), depends on the type of problem 

being considered, the level of expertise of the analyst and the familiarity with the particular method/tool. 

However, there is no clear justification provided in many of the papers as to why a particular methodology 

has been selected and/or why another methodology has not been tested. Quite often, this choice is based on 

the literature survey done by the authors of the paper, rather than on an objective comparison of the tests 

performed using implementations of two or more solution methodologies. Maier et al. (2015) stress that 

these aspects make it difficult to progress towards the development of meaningful guidelines for the 

application of different optimisation methods. Hence, an interesting research question for further studies 

would be how to select the best optimisation method for a particular WDS operational problem. This process 

would require a thorough comparison of a number of solution methodologies on a representative selection of 

problems as, for example, it has been done for multi-objective WDS design (Wang et al. 2015). 

 

4.4 Test network 

A large variety of test networks has been used in operational optimisation of WDSs. These networks vary in 

size and complexity, from small systems with one source, one pump and a few nodes (see for example, Bene 

and Hos (2012), Price and Ostfeld (2014)) to large real-world WDSs with multiple reservoirs, hundreds of 

pumps and thousands of nodes (see for example, Murphy et al. (2007)). Figure 5 categorises test networks 

used (in the papers listed in the appendix table) by network size, expressed in terms of the number of nodes 

within a network. Networks, for which the number of nodes can be identified from the reviewed paper or 

references provided, are included only. Figure 5 reveals that a majority of the networks used (80%) are 

limited in size to 100 nodes, from which about one half of the networks (36%) includes only up to 20 nodes. 
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Figure 5: Test networks (of papers from the appendix table) by network size 

 

Figure 5 illustrates that similar to other problems in operations research literature, various WDS operational 

formulations and optimisation methods used have usually been assessed using computationally cheap, small 

networks to facilitate initial algorithm development and implementation. As real-world networks contain 

hundreds of thousand elements (including pumping stations, reservoirs and valves), a single EPS simulation 

can take minutes or even hours to execute even on powerful desktop computers. This extended time can 

become especially obstructive when real-time control is considered. Consequently, large networks are being 

simplified for the purpose of optimisation (Cembrano et al. 2000; Jowitt and Germanopoulos 1992; Ulanicki 

et al. 1993), or reduced (so called reduced models) (Shamir and Salomons 2008) by applying mathematical 

manipulation, such as the methodology proposed in Ulanicki et al. (1996). 

 

Similar to network size, frequency of use of test networks varies considerably, as some networks have been 

used only once, while others quite frequently and by numerous authors. For example, there are two test 

networks, which have been used (in the papers listed in the appendix table) 10 or more times. The first is 

Anytown network (Walski et al. 1987) with 19 nodes (and 1 source, 1 pump station, 2 tanks), which was 

applied 10 times, and the second is EPANET Example 3 (USEPA 2013) with 92 nodes (and 2 sources, 2 

pump stations, 3 tanks), which was applied 14 times. Anytown is a hypothetical WDS, whereas EPANET 

Example 3 is based on a real WDS of Navato, California. The possible reasons for those networks being 

more popular than others is their data availability and their flexibility to be modified to suit a range of 

optimisation models inclusive of water quality considerations. 

 

The similar situation with the lack of large and complex networks has been experienced by researchers 

working in the WDS design field, where there used to be a limited availability of realistically large 

benchmark problems for testing of optimisation algorithms. For that reason, a number of research groups 

have been working on the development of either water distribution test networks (Jolly et al. 2014) or tools 

for automatic generation of such networks of varying size and levels of complexity (De Corte and Sörensen 

2014). An open question still remains, how these tools or benchmark networks can be adapted to the needs of 

operational optimisation of WDSs as most of the systems do not include all the elements required for such 

optimisation (e.g. pump stations/pumps, valves and reservoirs). 
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5 Future research 

Future research challenges for operational optimisation of WDSs are listed in Figure 6 and grouped 

according to steps involved in optimisation: (i) simulation model, (ii) optimisation model, (iii) optimisation 

method, and (iv) solution postprocessing. In regards to simulation models, methodologies need to be 

developed to account for uncertainties in demands, pipe roughnesses and chemical reactions of constituents 

as incorporation of those uncertainties into optimisation models is very rare (Goryashko and Nemirovski 

2014; Rico-Ramirez et al. 2007). In contrast, it is important to develop understanding of the impact of 

assumptions while using simplified simulation models or surrogate models (for example in real-time control) 

and to control the error of the surrogate model to ensure that the solution found is still optimal. Benchmark 

test networks developed for WDS design (De Corte and Sörensen 2014) need to be adapted for operational 

optimisation of WDSs as most of the systems do not include all the elements required for such optimisation 

(e.g. pump stations/pumps, valves and reservoirs). 

 

 

Figure 6: Future research challenges 

 

Concerning optimisation models, an open question is how to select the best formulation for the problem at 

hand (Maier et al. 2014). This formulation also involves development of the approach for including 

maximum demand charges into overall operating costs, which would take into account the uncertainty in the 

future water demand. Development of more appropriate expressions for characterising pump maintenance 

costs is also required to include this type of wear and tear costs into an operational optimisation problem. 

Explicit pump scheduling would benefit from an improved optimisation model, which would decrease the 
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number of decision variables, thus reduce the size of the search space and enable application to more 

complex and extensive real-world problems. Regarding optimisation problems with water quality aspects, 

future research may consider the development of an optimisation model with an inbuilt flexibility for a 

general WDS, which could be customised for a specific WDS. 

 

A methodology for an objective comparison of optimisation methods should be developed, so the best 

optimisation method for a particular case can be selected. Further, there is a need to develop computationally 

efficient optimisation methods which can be run in real-time, as well as take complex water quality 

behaviour into account. Concerning the methods for search space reduction, an open question is how to 

perform it without compromising the fidelity of the optimisation problem and undue simplification of the 

real system. While using metaheuristic algorithms, methodologies for algorithm parameter selection such as 

in Gibbs et al. (2010b) and Zheng et al. (2015) need to be developed. 

 

In regards to solution postprocessing, the question remains how sensitive the ultimate selection of solution(s) 

is to the problem formulation selected (Maier et al. 2014). In multi-objective optimisation approach, methods 

need to be developed for selecting the best solution(s) from the Pareto set, which is representative and 

sufficiently small to be tractable. A further research challenge is to analyse relationships between pumping 

costs and water quality using a set of realistic case studies to ascertain whether they are conflicting objectives 

or they can be somehow integrated, leading to reduced optimisation problem complexity. 

 

6 Summary and conclusion 

This paper presented a literature review of optimisation of WDS operation since the end of 1980s to nowadays. 

The papers reviewed are relevant to optimal pump operation inclusive of real-time control, valve control and 

optimisation for water quality purposes for urban drinking as well as regional multiquality WDSs. The value 

of the paper is that it brings together the majority of journal publications for operational optimisation of WDSs, 

over two hundred in total, which have been published over the past three decades. It describes the current 

status, provides synthesis and suggests future research directions. Uniquely, it also contains extensive 

information for over one hundred publications in a tabular form, listing optimisation models inclusive of 

objectives, constraints, decision variables, solution methodologies used and other details. 

 

The main future research challenges are identified as follows. The basic requirement for optimal operations 

is an accurate and reliable simulation model. However, the lack of understanding and accepted means for 

incorporating uncertainties in demand forecasting and network behaviour prediction models (both quantity 

and quality) are, among others, the factors limiting wider implementation of those models. Furthermore, 

there is no universal agreement among researchers and practitioners on how to formulate an operational 

optimisation problem and include all relevant objectives and constraints, while still allowing an efficient 

search for the best solution to implement. Although optimisation methods are well researched, there is no 

agreement on what optimisation method is best for a particular WDS operation problem, which requires a 
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concerted effort by the research community to develop methods for objective comparison and validation. 

Finally, postprocessing of results, and multi-objective (Pareto) solutions in particular, poses another research 

challenge as there is no universally accepted method for selecting only one solution, which can be 

implemented in a real system. Therefore, water distribution operational optimisation problems are far from 

being solved, despite the large body of literature on this subject published over the last 20-30 years. 

 

7 List of terms 

 Hydraulic constraints = Constraints arising from physical laws of fluid flow in a pipe network, such as 

conservation of mass of flow, conservation of energy, conservation of mass of constituent. 

 Optimisation approach = Single-objective approach or multi-objective approach. 

 Optimisation method = Method, either deterministic or stochastic, used to solve an optimisation problem. 

 Optimisation model = Mathematical formulation of an optimisation problem inclusive of objective 

functions, constraints and decision variables. 

 Simulation model = Mathematical model or software used to solve hydraulics and water quality network 

equations.  

 Solution = Result of optimisation, either from feasible or infeasible domain, so we refer to a ‘feasible 

solution’ or ‘infeasible solution,’ respectively. In mathematical terms though an ‘infeasible solution’ is 

not classified as a solution. 

 System constraints = Constraints arising from the limitations of a WDS or its operational requirements, 

such as water level limits at storage tanks, limits for nodal pressures or constituent concentrations, tank 

volume deficit etc. 

 

8 List of abbreviations 

ACO = ant colony optimisation 

ADP = approximate dynamic programming 

AMALGAM = a multialgorithm genetically adaptive method 

ANN = artificial neural network 

ARIMA = autoregressive integrated moving average 

ASA = adaptive search algorithm 

ASib = ant system iteration best (algorithm) 

CCPP = calcium carbonate precipitation potential 

CNSGA = controlled elitist nondominated sorting genetic algorithm 

COPA = changing operation in pollutant affectation (module) 

CPU = central processing unit 

CWQ = consistent water quality (sources) 

D = design 

DAN2-H = hybrid dynamic neural network 

DBP = disinfection by-products 
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DCA = direct calculation algorithm 

DP = dynamic programming 

DPG = decomposed projected gradient 

DRAGA = dynamic real-time adaptive genetic algorithm 

EA = evolutionary algorithm 

EF = emission factor 

ENCOMS = energy cost minimisation system 

EPS = extended period simulation 

fmGA = fast messy genetic algorithm 

FMS = full mixing step 

FP = full parameterisation (approach) 

GA = genetic algorithm 

GAPS = genetic algorithm for pump scheduling 

GHG = greenhouse gas (emissions) 

H-W = Hazen-Williams (head-loss equation) 

HSA = harmony search algorithm 

ILDS = improved limited discrepancy search 

IP = integer programming 

ISM = interpretive structural modelling 

ISS = in-station scheduling (approach) 

IWQ = inconsistent water quality (sources) 

LDS = limited discrepancy search 

LLS = linear least square 

LP = linear programming 

LPG = linear programming combined with a greedy algorithm 

LRO = linear robust optimal (policy) 

MILP = mixed integer linear programming 

MINLP = mixed integer nonlinear programming 

MIP = mixed integer programming 

MIQP = mixed integer quadratic programming 

MO = multi-objective 

MOGA = multiple objective genetic algorithm 

NLP = nonlinear programming 

NPGA = niched Pareto genetic algorithm 

NPV = net present value 

NSGA = nondominated sorting genetic algorithm 

NSGA-II = nondominated sorting genetic algorithm II 

OI = operational intervention 
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OP = operation 

OPTIMOGA = optimised multi-objective genetic algorithm 

PBA = particle backtracking algorithm 

PMS = partial mixing step 

POWADIMA = potable water distribution management (a research project) 

PP = partial parameterisation (approach) 

PRV = pressure reducing valve 

PSO = particle swarm optimisation 

Q-C = flow-quality (model) 

Q-H = flow-head (model) 

Q-C-H = flow-quality-head (model) 

QP = quadratic programming 

RM = reduced model (i.e. skeletonised model of a WDS) 

RR = replacing reservoir (approach) 

SA = simulated annealing 

SARIMA = seasonal autoregressive integrated moving average 

SCADA = supervisory control and data acquisition 

SDW = safe drinking water 

SLO = series of the local optima 

SO = single-objective 

SPEA = strength Pareto evolutionary algorithm 

SPEA2 = strength Pareto evolutionary algorithm 2 

SQP = sequential quadratic programming 

TDS = total dissolved solids 

TOC = total organic carbon 

WDS = water distribution system 

WTP = water treatment plant
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9 Appendix 

 
ID. Authors (Year) 

SO/MO* 

Brief description 

Optimisation model (objective 

functions+, constraints**, decision 

variables++) 

Water quality 

Network analysis 

Optimisation 

method 

Notes 

1. Coulbeck et al. (1988a) 

SO 

Optimal pump operation considering 

fixed speed, variable speed and 

variable throttle pumps using 

hierarchical approach. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Min/max reservoir water 

levels, (2) min/max flows through pump 

stations, (3) min/max speed for variable 

speed pumps, (4) min/max throttle valve 

factor for throttle pumps. 

Decision variables: (1) The number of 

pumps which are switched on (discrete), 

(2) pump speeds (continuous), (3) throttle 

valve factors (continuous). 

Water quality: N/A. 

Network analysis: 

Explicit mathematical 

formulation 

(unsteady state). 

Optimisation method: 

N/A. 

 A hierarchical decomposition framework of pump scheduling problem 

divided into three levels is proposed as follows: (i) upper level, which 

includes dynamic optimisation of reservoirs in order to find the optimal 

reservoir trajectories; (ii) intermediate level, which includes static 

optimisation of pump groups; (iii) lower level, which includes static 

optimisation of individual pump stations.  

 Proposed time horizon is 24 hours divided into 24 hourly time stages. 

 It is assumed that a demand prediction is available.  

 The upper level problem can be solved using DP or subgradient NLP 

techniques. 

 Test networks: N/A. 

2. Coulbeck et al. (1988b) 

SO 

Optimal pump operation considering 

variable speed and variable throttle 

pumps using hierarchical approach. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Min/max reservoir water 

levels, (2) min/max flows through pump 

stations, (3) min/max speed for variable 

speed pumps, (4) min/max throttle valve 

factor for throttle pumps. 

Decision variables: (1) The number of 

pumps which are switched on (discrete), 

(2) pump speeds (continuous), (3) throttle 

valve factors (continuous). 

Water quality: N/A. 

Network analysis: 

Explicit mathematical 

formulation (steady 

state). 

Optimisation method: 

A proposed 

algorithm. 

 An extension of the paper by Coulbeck et al. (1988a) including new 

algorithms for lower level problem to optimise operation of individual pump 

stations.  

 The proposed algorithms are based on a decomposition approach. Optimality 

and convergence analysis is presented.  

 At this stage of the optimisation procedure, the reservoir levels, pump station 

flows and the number of pumps which are switched on, are obtained from the 

upper and intermediate levels. As the intermediate level problem was 

implemented, feasible pump station heads and flows had to be chosen, which 

means that the solutions obtained for the lower level are not the optimal 

solutions for the overall problem. 

 The algorithm is tested using three different pump station configurations 

consisting of variable speed pump groups, variable throttle pump groups, and 

a mixture of variable speed and variable throttle pump groups. 

 Test networks: (1) A combination of pump stations.  

3. Zessler and Shamir (1989) 

SO 

Optimal pump operation of regional 

WDSs using DP. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Pump station discharge 

limits, (2) reservoir volume lower/upper 

limits (can be different for each time 

interval), (3) initial and final reservoir 

Water quality: N/A. 

Network analysis: 

Unspecified network 

simulator (EPS). 

Optimisation method: 

Progressive 

optimality method 

 The network is divided into subsystems, each consisting of a pump and 

upstream and downstream reservoir. 

 A simulator is used to generate the energy-cost-versus-discharge function for 

each pump station. 

 Time horizon is 24 hours divided into 1-hour intervals. An iterative 

optimisation algorithm progresses over time horizon, dealing with two 

adjacent time steps sequentially over all subsystems, one at a time. When 
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volumes. 

Decision variables: (1) Pump station 

discharges. 

(iterative DP). dealing with one subsystem, the only parameters which vary are the reservoir 

volumes. Optimisation stops when reservoir volumes do not change between 

iterations by more than a specified tolerance. 

 Test networks: (1) Real-world regional water supply system Ein Ziv, Israel. 

4. Brion and Mays (1991) 

SO 

Optimal pump operation using NLP. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) penalty term for the head 

bounds, (c) penalty term for the tank 

volume deficit. 

Constraints: (1) Lower/upper bounds on 

the duration the pump operates within each 

time interval, (2) lower/upper pressure 

head bounds, (3) lower/upper tank water 

level bounds, (4) volume deficit in tanks at 

the end of the scheduling period. 

Decision variables: (1) Duration of the 

pump operation time during time period 

(continuous). 

Water quality: N/A. 

Network analysis: 

KYPIPE (Wood 

1980) (EPS). 

Optimisation method: 

NLP solver GRG2 

(Lasdon and Waren 

1984). 

 KYPIPE handles hydraulic constraints and lower/upper bounds on tank water 

level. Bounds on the pressure head and tank volume deficit are converted into 

penalty terms using an augmented Lagrangian method and added to the 

objective function.  

 Time horizon is 24 hours divided into 2-hour intervals. 

 The following assumptions are considered. First, the decision to turn on the 

pump can be made only at the beginning of each time interval. Second, the 

duration of the pump operation time is a continuous variable, and can take a 

minimum value of zero and a maximum value equal to the length of the time 

interval (i.e. 2 hours). These limitations can be offset by the use of shorter 

time intervals, but at the expense of longer computation times. 

 Global optimum cannot be guaranteed. 

 Test networks: (1) WDS for city of Austin Northwest B pressure zone (incl. 

98 nodes), Texas. 

5. Ulanicki and Orr (1991) 

SO 

Optimal pump operation suitable for 

large-scale drinking WDSs using LP. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) water treatment costs. 

Constraints: (1) Lower/upper limits of 

reservoir operating ranges, (2) treatment 

work set-point limits, (3) treatment work 

efficiency, (4) reservoir flow limits, (5) 

system flow limits, (6) min pressure in the 

system. 

Decision variables: (1) Pump control 

vector (continuous for variable speed 

pumps and control valves, and discrete for 

the actual number of pumps in use), (2) 

treatment works set points vector 

(continuous). 

Water quality: Not 

specified. 

Network analysis: 

A system simulator 

(EPS). 

Optimisation method: 

Simplex method for 

lower level problem, 

unspecified method 

for upper level 

problem. 

 A time distribution function is introduced. The optimisation problem is 

defined in terms of this time distribution function instead of original control 

variables. Time horizon is 24 hours. 

 Two level optimisation structure, lower/upper level, is used. The lower level 

problem is a LP problem, whereas the upper level problem is a continuous 

NLP problem with linear constraints. 

 Test networks: (1) System with 2 treatment works, 4 pump stations, 2 contact 

tanks and 2 reservoirs. 

6. Jowitt and Germanopoulos (1992) 

SO 

Optimal pump operation in real-time 

considering both energy and demand 

charges using LP. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge and demand charge). 

Constraints: (1) Constraints on the hours of 

pumping, (2) min/max volume at storages, 

(3) initial and final volume at storages, (4) 

min/max flow rate through valve 

Water quality: N/A. 

Network analysis: 

Extended period 

network simulation 

model 

(Germanopoulos 

1988). 

 The original problem is simplified into a LP problem. Time horizon is 24 

hours, which is divided into control intervals. 

 Both unit and maximum demand electricity charges are considered. 

Maximum electricity charges are taken into account through an iterative 

procedure of a LP problem for varying restrictions on pump usage, until the 

best solution is obtained. 

 The methodology is robust with low computation time, hence it is suitable for 
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connecting storages, (5) max licensed 

abstraction of water at a source pump 

station over the optimisation period. 

Decision variables: (1) Length of time for 

which pump station operates, (2) flow rate 

through valves, (3) storage volumes at the 

end of the time intervals (i.e. control 

intervals).  

Optimisation method: 

Revised simplex 

method. 

real-time optimisation. 

 Test networks: (1) High Wycombe area network (incl. 87 nodes, but 

simplified network is used in the optimisation), UK. 

7. Mehrez et al. (1992) 

SO 

Optimal pump operation of regional 

multisource multiquality WDSs in real-

time using NLP.  

Objective (1): Minimise (a) the pump 

operating costs (fixed energy charge and 

varying expenses). 

Constraints: (1) Max flow in pipes, (2) 

min/max reservoir volumes, (3) water 

quality upper limits at customer demand 

nodes, (4) pump operational conditions, 

(5) valve operational conditions. 

Decision variables: (1) Pump discharges, 

(2) solute concentration. 

Water quality: 

Chloride, 

magnesium, sulphate, 

salinity, considered 

as conservative. 

Network analysis: 

Explicit mathematical 

formulation (quasi 

state). 

Optimisation method: 

GAMS/MINOS using 

projected Lagrangian 

algorithm (Murtagh 

and Saunders 1982). 

 The model is a short-term for a planning horizon of 2 hours considering 

energy peak and off-peak times. Planning horizon is divided into two 1-hour 

intervals, assuming steady state conditions within each time interval. 

 In order to increase computational efficiency, the solution methodology is 

divided into three phases. First two phases are used to validate an initial 

solution, the last phase is the actual optimisation. 

 The model is applied to a regional WDS system, which mixes water from 

aquifers and a desalination plant, and delivers it to irrigation and domestic 

customers. 

 Test networks: (1) Arava Rift Valley, Israel. 

8. Carpentier and Cohen (1993) 

SO 

Optimal pump operation using DP. 

Objective (1): Minimise (a) the pump 

operating costs (electric consumption 

charge), (b) water treatment costs. 

Constraints: (1) Min/max reservoir water 

levels. 

Decision variables: (1) On-off pump 

statuses (discrete), (2) flows through the 

valves (continuous).  

Water quality: N/A. 

Network analysis: 

Explicit mathematical 

formulation. 

Optimisation method: 

Discrete dynamic 

programming. 

 Decomposition and coordination techniques are used. The network is 

decomposed into a central control and peripheral subnetworks. A dual 

decomposition scheme is used to set up optimisation problems for all 

subnetworks, which are solved sequentially. 

 The flows in the interconnection valves between the central and peripheral 

networks are mostly coordinated by the central network. However, some 

subnetworks are also given a parallel control of the flow in the valve. As a 

result, two values are produced by two optimisation subproblems, and the 

dual price variables are updated to equalise these values. This coordination 

process provides near optimal solutions, which may not be feasible. To obtain 

feasible solutions, the interconnection valve flows are fixed for each 

subnetwork at their computed values, and optimisation problems solved again 

using the detailed model. 

 Time horizon is 24 hours divided into 1-hour intervals. 

 The paper also analyses leak detection, which is not included here as this 

topic is outside of scope of this review paper. 

 Test networks: (1) The network called RPO, west of Paris. 
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9. Ostfeld and Shamir (1993a) 

SO 

Optimal operation of multiquality 

WDSs for steady state conditions 

including the costs of water at sources, 

water treatment costs and pump energy 

costs using NLP. 

Objective (1): Minimise (a) the costs of 

water at sources, (b) water treatment costs, 

(c) pump operating costs (energy 

consumption charge), (d) penalty costs for 

violating pressure head. 

Constraints: (1) Min/max pressure heads at 

selected internal (usually customer) nodes, 

(2) min/max discharges in arcs, (3) 

min/max concentrations at internal nodes, 

(4) max removal ratios of quality 

parameters at treatment plants. 

Decision variables: (1) Discharges in arcs 

(pipes and pumps), (2) treatment costs of 

quality parameter per unit volume of 

treated water. 

Water quality: 

Unspecified 

conservative 

parameters. 

Network analysis: 

Explicit mathematical 

formulation (steady 

state). 

Optimisation method: 

GAMS/MINOS using 

projected augmented 

Lagrangian algorithm 

(Murtagh and 

Saunders 1982). 

 The model is a short-term for a planning horizon of 2 hours considering a 

constant energy tariff. 

 Concentration equations allow the algorithm to reverse flow directions during 

the algorithm iterations. 

 Artificial variables are introduced to enable to obtain a mathematical solution 

even when the system cannot meet all the head constraints. A penalty 

parameter on these variables is added in the objective function. 

 Sensitivity analysis is performed to examine the sensitivity of results to 

changes in (i) the prices of water, (ii) prices of treatment, (iii) prices of 

energy, (iv) head constraint at an internal node. 

 Test networks: (1) Two-loop network with 3 sources (incl. 6 demand nodes). 

10. Ostfeld and Shamir (1993b) 

SO 

Optimal operation of multiquality 

WDSs for unsteady state conditions 

including the costs of water at sources, 

water treatment costs and pump energy 

costs using NLP. 

Objective (1): Minimise (a) the costs of 

water at sources, (b) water treatment costs, 

(c) pump operating costs (energy 

consumption charge), (d) penalty costs for 

violating pressure head. 

Constraints: (1) Min/max pressure heads at 

selected internal (usually customer) nodes, 

(2) min/max discharges in arcs, (3) 

min/max concentrations at internal nodes, 

(4) max removal ratios of quality 

parameters at treatment plants, (5) 

min/max reservoir levels. 

Decision variables: (1) Discharges in arcs 

(pipes and pumps), (2) treatment costs of 

quality parameter per unit volume of 

treated water. 

Water quality: 

Unspecified 

parameters, 

conservative in pipes, 

non-conservative in 

reservoirs (first order 

decay). 

Network analysis: 

Explicit mathematical 

formulation 

(unsteady state). 

Optimisation method: 

GAMS/MINOS using 

projected augmented 

Lagrangian algorithm 

(Murtagh and 

Saunders 1982). 

 An extension of the paper by Ostfeld and Shamir (1993a) with the major 

differences listed as follows. 

 The model is an unsteady state with a planning horizon of 24 hours divided 

into time intervals of one to few hours, and a varied energy tariff. 

 Water quality parameters decay in reservoirs (but are conservative in pipes). 

 Sensitivity analysis is performed to test the sensitivity of results to changes in 

(i) the prices of water, (ii) pump efficiency and (iii) quality constraint at an 

internal node. 

 Test networks: (1) Two-loop network with 3 sources (incl. 6 demand nodes). 

11. Ulanicki et al. (1993) 

SO 

Optimal selection of new pumps within 

given locations for an urban WDS as 

part of major redevelopment using LP. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Min/max pressure limits at 

network nodes, (2) initial and final water 

levels in reservoirs over 24-hour period are 

equal, (3) average reservoir flows over a 

time interval belong to the respective 

domain. 

Water quality: N/A. 

Network analysis: 

A network simulator 

(EPS). To establish 

boundary conditions 

of the test network 

within the larger 

system, GINAS5 

(Coulbeck and Orr 

 The optimisation problem is formulated as a LP problem for a time horizon 

of 24 hours. Both fixed and variable speed pumps are considered. 

 The solution methodology constitutes a sequence of steps. All practical 

control configurations are created, a simulation is run to obtain sets of results, 

a least-cost surface is constructed. The union of feasible and optimal control 

configurations is created, which represents the final results. Balances are 

checked, if they comply, the best configuration is selected, otherwise relevant 

steps are repeated. 
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Decision variables: (1) Control 

configurations (discrete). 

1988) is used. 

Optimisation method: 

Numerical algorithms 

(Matheiss and Rubin 

1980). 

 The methodology is limited to up to 1,000 control configurations for a 

particular time instant. For the test network, the number of control 

configurations is reduced by engineering judgement and simulation 

experiments. 

 Test networks: (1) Part of London's WDS (incl. 433 nodes, but simplified 

network is used in the optimisation), UK. 

12. Lansey and Awumah (1994) 

SO 

Optimal pump operation suitable for 

small to midsized WDSs for both real-

time and longer planning horizons 

using DP. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge) while limiting the number of pump 

switches. 

Constraints: (1) Min/max pressure heads in 

nodes, (2) min/max water levels in tanks, 

(3) initial and final water level in tanks are 

equal, (4) max number of pump switches 

for each time interval, (5) max number of 

pump switches for the planning horizon. 

Decision variables: (1) Pump combinations 

(binary, 0 = pump off, 1 = pump on). 

Water quality: N/A. 

Network analysis: 

KYPIPE (Wood 

1980) (EPS). 

Optimisation method: 

DP. 

 Pump operation in real-time is solved, accounting for variations in water 

demands and energy costs. Time horizon is 24 hours divided into 2-hour 

intervals. 

 Pump switching is introduced to reduce the maintenance costs. 

 A two level approach is used to solve the problem: (i) offline 

‘preoptimisation’ to generate simplified hydraulics and energy consumption 

by simple nonlinear functions using polynomial least-square method, (ii) 

online DP optimisation. 

 Sensitivity analysis is performed considering some operational decisions and 

other parameters which influence the accuracy and computational effort. 

 The model is applicable to small to midsized systems, with up to about 8 

pumps and 1 tank. 

 Test networks: (1) WDS for city of Austin Northwest B pressure zone (incl. 

98 nodes), Texas. 

13. Ulanicki and Kennedy (1994) 

SO 

Optimal operation of WDSs including 

pump energy costs and water treatment 

costs using MINLP. 

Objective (1): Minimise (a) the water 

treatment costs (based on volume of 

treated water), (b) pump operating costs 

(energy consumption charge). 

Constraints: (1) Customer demands, (2) 

operational conditions such as lower/upper 

water levels in tanks.  

Decision variables: (1) Pipe flows, (2) 

nodal heads, (3) water production 

(continuous), (4) valve positions 

(continuous), (5) pump speed (continuous), 

(6) the number of pumps switched on 

(discrete). 

Water quality: N/A. 

Network analysis: 

Explicit mathematical 

formulation 

(unsteady state). 

Optimisation method: 

Lancelot package 

(Conn et al. 1992) 

using the augmented 

Lagrangian method, 

branch and bound 

algorithm. 

 The optimisation problem is formulated as a MINLP problem. 

 Time horizon is 24 hours with 4 time steps. 

 An analogy with electrical networks is used to formulate a mathematical 

model of water flow in pipe network, such that pipe = nonlinear resistor, tank 

= capacitor, pump = source of energy, demand = load. Ohm’s law is applied 

to describe characteristics of individual elements. 

 A special model structure (sparsity) is used, which expresses how many pipes 

are connected to a node in contrast to the total number of pipes. 

 The scale of the optimisation problem is reduced by replacing pipes by 

equivalent nonlinear resistance, using a technique of Zehnpfund and Ulanicki 

(1993). 

 Test networks: (1) Yorkshire Grid system with 2 sources - water treatment 

plants (WTPs), 4 tanks, 5 pump stations and 10 pipes. 

14. Brdys et al. (1995) 

SO 

Optimal operation of drinking WDSs 

integrating water quality and quantity 

using mixed integer linear 

programming (MILP) and GA. 

Objective (1): Minimise the costs of (a) 

untreated water from the sources, (b) water 

treatment, (c) the quality control by 

injection at the junction nodes, (d) 

electricity due to pumping. 

Constraints: (1) Bounds on reservoir 

levels, (2) bounds on flows, (3) bounds on 

Water quality: Non-

conservative 

parameters (first 

order kinetics). 

Network analysis: (i) 

Explicit mathematical 

formulation 

 A detailed mathematical formulation of the nonlinear non-convex mixed 

integer optimisation problem is presented in Brdys and Chen (1995). 

 The following three approaches are used to solve the problem in time horizon 

of 24 hours. 

 (i) Implicit approach: The problem is transformed into an approximating 

MILP problem, for which efficient numerical solvers exist. The disadvantage 

is that for a very accurate approximation, the dimensionality of the problem 
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heads at chosen nodes, (4) bounds on 

constituent concentrations at demand 

nodes and selected junction nodes. 

Decision variables: (1) Pump and valve 

controls, (2) integer variables controlling 

pump station operation structure (normal 

or bypass), (3) controlled flows, (4) 

treatment flows, (5) constituent 

concentrations. 

(unsteady state), (ii) 

EPANET. 

Optimisation method: 

(i) Implicit solver 

MOMIP (Ogryczak 

and Zorychta 1993), 

(ii) explicit solver 

GAUCSD 

(Schraudolph and 

Grefenstette 1992) 

using GA.  

increases significantly. The advantage is that an arbitrarily accurate 

approximation of the global minimum is obtained regardless of the starting 

point. 

 (ii) Explicit approach: The problem is solved using the hydraulic simulator 

combined with a GA. Although the problem dimension is much smaller 

compared to the implicit approach, the total computational effort may be 

greater. A local optima can be caught easily and more effort is required to 

obtain the global solution. 

 (iii) Combined approach: The implicit method based on a rough 

approximation of the model provides starting points, subsequently the 

explicit method finds the global optimum. 

 Test networks: (1) Neuhaus water supply system, Germany (Schneider et al. 

1993). 

15. Mackle et al. (1995) 

SO 

Optimal pump operation using GA. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) penalty costs for violating 

constraints. 

Constraints: (1) Consumer demands, (2) 

min/max water levels in reservoirs, (3) 

volume deficit in reservoirs at the end of 

the scheduling period. 

Decision variables: (1) Pump statuses 

(binary, 0 = pump off, 1 = pump on, during 

a time interval). 

Water quality: N/A. 

Network analysis: 

Not specified (EPS). 

Optimisation method: 

GA. 

 The model considers fixed speed pumps only. Time horizon is 24 hours 

divided into 1-hour intervals, with two electricity tariffs used. 

 A standard GA is modified by introducing a ranking procedure, where 

population members are ranked based on their costs, each receives fitness 

equal to the order number within the ranked list, i.e. the most expensive 

solution obtains 1, the next 2, etc. 

 The paper predicts increased implementation of online (real-time) control in 

order to adjust the planned pump schedules to compensate for differences 

between predicted and actual demands. 

 Test networks: (1) Simple system with 4 pumps and 1 reservoir. 

16. Nitivattananon et al. (1996) 

SO 

Optimal pump operation in real-time 

considering both energy and demand 

charges using progressive optimality 

combined with heuristics. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge and demand charge). 

Constraints: (1) Min/max pump 

discharges, (2) min/max reservoir 

volumes, (3) initial and final reservoir 

volumes. 

Decision variables: (1) Pump discharges 

(continuous and discrete). 

 

Water quality: N/A. 

Network analysis: 

Simplified system 

hydraulics (unsteady 

state). 

Optimisation method: 

Progressive 

optimality algorithm 

for multi-state DP 

problem, heuristics 

for discretising pump 

discharges and 

refining pump 

schedules, OPWAD 

(OPWAD 1994). 

 

 The optimisation model is decomposed spatially into subsystems and time 

wise into a long-term and short-term model. The long-term model (i.e. 1 

month, continuous pump discharges) estimates the demand charge and 

determines monthly pump operation. Subsequently, the short-term model (i.e. 

1 day, discrete pump discharges) refines pump discharges and pump 

combinations, which are finally rearranged by heuristics. This procedure is 

carried out for each subsystem. 

 Development of preoptimisation data is required. 

 Test networks: (1) Pittsburgh water supply system, Pennsylvania. 
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17. Pezeshk and Helweg (1996) 

SO 

Optimal pump operation considering 

both fixed and variable speed pumps in 

real-time suitable for large and 

complex networks using ASA. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Min/max pressure at 

selected nodes (checkpoints). 

Decision variables: (1) Pump statuses (0 = 

pump off, 1 = pump on), (2) speed settings 

for variable speed pumps (0 = pump off, 1 

= pump on at the highest speed, 2 = pump 

on at the second highest speed). 

Water quality: N/A. 

Network analysis: 

KYPIPE (Wood 

1980) (EPS). 

Optimisation method: 

ASA. 

 Checkpoints (nodes) are strategically selected so that if the pressure at each 

checkpoint is within the minimum and maximum allowable limits, pressures 

at all nodes are also within allowable limits. 

 Pump stations are assigned an influence coefficient(s) which indicate their 

impact on the pressure at the checkpoints. Basically, pumps with the highest 

influence coefficients are turned on to correct the problematic pressure zones. 

 Pump curves are generated from field pump tests. 

 It is recommended that the ASA program be installed directly onto the 

SCADA system. 

 Test networks: (1) WDS of Memphis Light, Gas and Water, the water utility 

for Memphis (incl. 1,127 nodes), Tennessee and surrounding Shelby County. 

18. Percia et al. (1997) 

SO 

Optimal pump operation of regional 

multisource multiquality WDSs in real-

time using NLP. 

Objective (1): Minimise (a) the pump 

operating costs (fixed energy charge and 

varying expenses), (b) penalty costs for 

deviation from zero equality constraints 

for pumps and valves.  

Constraints: (1) Allowed head losses at 

links terminating at consumption sites, (2) 

min/max reservoir volumes, (3) mean 

required quality at the consumption sites, 

(4) pump operational conditions, (5) valve 

operational conditions. 

Decision variables: (1) Pump discharges, 

(2) artificial variables (for zero equality 

constraints). 

Water quality: 

Conservative: 

chloride, magnesium, 

sulphate (only 

chloride used in 

implementation). 

Network analysis: 

Explicit mathematical 

formulation (quasi 

state). 

Optimisation method: 

GAMS/MINOS using 

projected Lagrangian 

algorithm (Murtagh 

and Saunders 1982). 

 An extension of the paper by Mehrez et al. (1992). 

 The model is a short-term quasi state for a planning horizon of 2 hours using 

energy peak and off-peak times both daily and seasonal. It identifies hourly 

pump schedules and water release policy from the reservoirs. 

 Similar to Mehrez et al. (1992), the solution methodology is divided into 

three phases to increase computational efficiency. 

 The paper focuses on the structure of the model and the implementation 

procedure, rather than finding the global optimum. The use of continuous 

functions for describing the on/off status of pumps and control valves enables 

a significant reduction in the degree of difficulty of the problem. 

 The model is applied to a regional WDS system, which mixes water from 

aquifers and a desalination plant, and delivers it to various customer groups. 

 Test networks: (1) Southern Arava Regional Water Distribution Network 

(incl. 29 nodes), Israel. 

19. Savic et al. (1997) 

SO, MO 

Optimal pump operation applying both 

single-objective and multi-objective 

approach using hybrid GA. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) penalty costs for violating 

constraints. 

Objective (2): Minimise the number of 

pump switches. 

Constraints: (1) Min/max reservoir water 

levels, (2) recovery of the initial reservoir 

water level at the end of the simulation 

period. 

Decision variables: (1) Pump statuses 

(binary). 

Note: One SO model including objective 

(1), one MO model including both 

Water quality: N/A. 

Network analysis: 

Not specified (EPS). 

Optimisation method: 

Hybrid GA, where 

GA is combined with 

2 local 

(neighbourhood) 

search techniques. 

 An extension of the paper by Mackle et al. (1995) implementing (i) a 

hybridisation of GA and (ii) multi-objective approach. The improvement of 

GA includes a progressive assignment of penalties for constraint violations, 

and an introduction of feasibility of solutions as an additional objective to 

ensure that there are no infeasible solutions in final population. 

 The number of pump switches is used as a surrogate measure for pump 

maintenance costs. 

 Time horizon is 24 hours divided into 1-hour intervals. 

 The robustness of GA is tested using alterations of demands and initial 

reservoir water levels. 

 Test networks: (1) Simple system with 4 pumps and 1 reservoir. 
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objectives. 

20. Lingireddy and Wood (1998) 

SO 

Three examples demonstrating 

economic and hydraulic benefits of 

using variable speed pumps to improve 

the operation of WDSs using GA. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge) while using variable speed pumps. 

Constraints: (1) Min piezometric surface 

over the network. 

Decision variables: (1) Pump speeds. 

Water quality: N/A. 

Network analysis: 

Head-flow-

efficiency-speed 

curves for variable 

speed pumps used; 

the direct calculation 

algorithm (DCA) to 

calculate the pump 

speeds (Wood et al. 

1992); EPS. 

Optimisation method: 

GA in conjunction 

with DCA. 

 The following three examples of benefits of using variable speed pumps are 

presented. 

 (i) Replacement of fixed speed pumps by variable speed pumps to maintain 

minimum pressure requirements while reducing the pumping costs and 

lowering the leakage due to lower operating pressures. 

 (ii) Optimisation of pump operation using variable speed pumps (the model is 

described in the columns on the left hand side). Time horizon is 24 hours 

with a varied energy tariff. It is noted that the “average amount of overhead 

storage available is considerably reduced using the variable speed pumps”. 

 (iii) Potential use of variable speed pumps in controlling hydraulic transients. 

 Test networks: (1) Skeletonised medium sized WDS (incl. 16 nodes), (2) 

network based on an existing WDS (incl. 39 nodes), (3) simple pump-fed 

WDS (incl. 9 nodes).  

21. Boccelli et al. (1998) 

SO 

Optimal scheduling of booster 

chlorination stations in drinking WDSs 

using LP. 

Objective (1): Minimise (a) the total 

disinfectant mass dose, injected per 

scheduling cycle. 

Constraints: (1) Min/max disinfectant 

concentrations at monitoring locations. 

Decision variables: (1) Disinfectant doses. 

Water quality: 

Chlorine (first order 

kinetics for chlorine 

decay). 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

MINOS (Murtagh 

and Saunders 1987) 

using the simplex 

algorithm. 

 The optimisation problem is formulated as a LP problem. The principle of 

linear superposition is used, which implies that disinfectant concentration at a 

monitoring location is the sum of all individual disinfectant injection 

influences. 

 Hydraulic dynamics and concentrations are assumed to be periodic, as well as 

disinfectant mass injection rates. This allows reducing an infinite-time 

problem into a finite-time problem. Time horizon is 24 hours. 

 “Among the five cases investigated, the best schedule was found when a 

booster station was located at a storage reservoir, eliminating the need to 

maintain significant residual in the large volume of tank water, for 

distribution during high demand periods”. 

 Test networks: (1) Cherry Hill-Brushy Plains portion of the South Central 

Connecticut Regional Water Authority network (incl. 34 nodes), U.S. 

22. Goldman and Mays (1999) 

SO 

Optimal pump operation with water 

quality constraints in drinking WDSs 

using SA. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) penalty function for violating 

constraints. 

Constraints: (1) Min/max nodal pressure 

heads, (2) min/max tank water levels, (3) 

min tank water level to provide emergency 

fire flow storage, (4) tank water level to 

recover at the end of the simulation period, 

(5) min/max chlorine concentrations. 

Decision variables: (1) Length of the pump 

operation time during time period 

Water quality: 

Chlorine. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

SA. 

 The pump schedule repeats every 24 hours. Time horizon is 12 days divided 

into 1-hour intervals. This extended period is designed to wash out initial 

water quality conditions from the system and to reach steady state behaviour. 

 It is suggested that the SA program be adapted to the SCADA system due to 

the following benefits: real-time optimisation of pump operation for fire 

events or locally increased demands (flushing the system), unexpected 

chlorine level deficiencies. 

 Test networks: (1) North Marin Water District - Navato, California (incl. 102 

nodes) (EPANET Example 3 (USEPA 2013)). 
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(discrete). 

23. Sakarya and Mays (1999) 

SO 

Optimal pump operation for drinking 

WDSs considering water quality either 

as a constraint or an objective function 

using NLP. 

Objective (1): Minimise (a) the deviations 

of the actual constituent concentrations 

from the desired values, (b) penalty 

function for violating bound constraints. 

Objective (2): Minimise (a) the total pump 

operation time, (b) as above. 

Objective (3): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) as above. 

Constraints (objective (1)): Lower/upper 

bounds on (1) pump operation time, (2) 

nodal pressure head, (3) storage water 

levels. 

Constraints (objectives (2-3)): (1)-(3) as 

above, (4) lower/upper bounds on nodal 

constituent concentrations. 

Decision variables: (1) Length of the pump 

operation time during time period 

(discrete), (2) penalty function parameters. 

Note: Three SO models, each including 

one objective. 

Water quality: Non-

conservative 

parameter. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

NLP solver GRG2 

(Lasdon and Waren 

1984). 

 The optimisation problem is formulated as a NLP problem. 

 Two different penalty function methods are used for handling constraints, the 

augmented Lagrangian method and the bracket penalty method. These 

methods delivered similar results. 

 Time horizon is 12 days divided into 2-hour intervals with a constant energy 

tariff. The pump schedule repeats every 24 hours. 

 It was found out that if pump operation schedules are cyclic for a certain 

period, the system reaches steady state with the initial and final tank water 

levels being equal. Therefore, there is no need to use a constraint which 

forces tank water level to recover at the end of the simulation period. 

 The results demonstrate that using concentration violations as a constraint 

gives better results than using the minimisation of the constituent 

concentration from the desired values as an objective. 

 Test networks: (1) North Marin Water District Zone 1 (incl. 91 nodes) 

(EPANET Example 3 (USEPA 2013)). 

24. Cembrano et al. (2000) 

SO 

Optimal operation of WDSs in real-

time linked to the SCADA system 

using NLP. 

Objective (1): Minimise the performance 

index including (a) the cost of water 

acquisition, (b) pump operating costs 

(energy consumption charge). 

Constraints: (1) Operational limits on 

reservoir volumes, (2) pressure limit at one 

junction node, (3) initial and final volumes 

in reservoirs are equal. 

Decision variables: (1) Pump set points 

(treated as continuous, converted into 

discrete), (2) valve ratios. 

Water quality: N/A. 

Network analysis: 

WATERNET (Greco 

1997) simulation 

module. 

Optimisation method: 

WATERNET optimal 

control module using 

generalised reduced 

gradient method 

(Abadie and 

Carpentier 1969). 

 Optimal control strategies ahead of time are generated. The optimisation 

process consists of (i) obtaining current network status from the SCADA, (ii) 

predicting future demands using fuzzy inductive reasoning (Lopez et al. 

1996), (iii) running optimisation. This process is executed and updated at 

regular intervals. 

 The original network model is simplified in order to reduce time of hydraulic 

simulation within the optimisation procedure. The optimisation results 

obtained are validated using the original (detailed) network model. 

 Time horizon is 24 hours (ahead of time) divided into 1-hour intervals.  

 The results demonstrate cost savings of 18%. 

 Test networks: (1) Sintra network (incl. 204 nodes, but simplified network is 

used in the optimisation), Portugal. 

25. Cohen et al. (2000a) 

SO 

Optimal operation of multiquality 

WDSs considering WTPs and water 

quality requirements using NLP. 

Objective (1): Minimise the cost of 

operation including (a) the water supply 

costs from sources, (b) water treatment 

costs, (c) transportation costs (related to 

hydraulic properties of a pipe), (d) yield 

reduction costs, (e) penalty costs for 

Water quality: 

Salinity, magnesium, 

sulphur, considered 

as conservative. 

Network analysis: 

Explicit mathematical 

 A flow-quality (Q-C) model is formulated. 

 The model equations are defined to allow the flow to reverse during the 

optimisation procedure. The transportation cost function and dilution 

equations are smoothed using exponential smoothing procedure. The problem 

is reduced to a NLP problem with linear constraints. It is solved by 

decomposing the problem into inner-outer problems, which enables 
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violating water quality constraints. 

Constraints: (1) Quality parameter function 

(interdependency of quality parameters), 

(2) pipe discharge limits, (3) supply 

discharge limits, (4) water quality limits 

for customers (iii), (5) treatment limits on 

removal ratios. 

Decision variables: (1) Water flow, (2) 

water quality distribution, (3) removal 

ratios in the treatment plants. 

formulation (steady 

state). 

Optimisation method: 

Modified projected 

gradient method. 

incorporation of a large number of water quality parameters. 

 The customers are categorised into three groups: (i) agricultural, (ii) domestic 

and industrial, (iii) customers with concentrations limits. Their requirements 

are implemented differently into the model, such as a relative yield function, 

the water treatment cost at customer connection points, and water quality 

constraints, respectively. 

 Test networks: (1) Water supply system in the Arava Valley (incl. 9 nodes), 

Southern Israel, (2) WDS of the Central Arava region (incl. 38 nodes), 

Southern Israel. 

26. Cohen et al. (2000b) 

SO 

Optimal operation of multiquality 

WDSs considering pumps and valves 

using NLP. 

Objective (1): Minimise the cost of 

operation including (a) the water supply 

costs from sources, (b) pump energy costs 

at boosters, (c) pump energy costs at pump 

stations. 

Constraints: Limits on discharges for (1) 

boosters, (2) valves, (3) pump stations, (4) 

sources, (5) limits on pressure heads at 

customer nodes, (6) limits on opening ratio 

of valves, (7) given discrete configurations 

of pump stations. 

Decision variables: Q0-H problem: (1) 

pumping heads at pump stations, (2) 

headlosses in control valves, (3) artificial 

variables to assure a mathematical 

solution. Q-H problem: (4) circular flows. 

Water quality: N/A. 

Network analysis: 

Explicit mathematical 

formulation (steady 

state). 

Optimisation method: 

Q0-H (inner) problem 

solved using 

sequential LP. Q-H 

(outer) problem 

solved using 

projected gradient 

method coupled with 

the complex method. 

 A flow-head (Q-H) model is formulated. 

 The original discrete optimisation problem is transformed into a continuous 

and smooth model. The head-flow performance curves for pumps are 

represented by smoothed two dimensional functions. The final problem is a 

NLP problem with linear constraints, which is decomposed into inner-outer 

problems. For a given initial flow distribution in the network Q0, the Q0-H 

problem (i.e. inner problem) is solved. The flow distribution is then modified 

by changing the circular flows (i.e. outer problem), such that the locally 

optimal solution at the next point has a better value of the objective function. 

This process is repeated until the termination criteria are satisfied. 

 Test networks: (1) Water supply system in the Arava Valley (incl. 9 nodes), 

Southern Israel, (2) WDS of the Central Arava region (incl. 38 nodes), 

Southern Israel. 

27. Cohen et al. (2000c) 

SO 

Optimal operation of multiquality 

WDSs considering pumps, valves, 

WTPs and water quality requirements 

using NLP. 

Objective (1): Minimise the total cost of 

operation including (a) the water supply 

costs from sources, (b) pump energy costs 

at boosters, (c) pump energy costs at pump 

stations, (d) water treatment costs, (e) yield 

reduction costs, (f) penalty costs for 

violating water quality constraints. 

Constraints: Limits on discharges for (1) 

boosters, (2) valves, (3) pump stations, (4) 

sources, (5) limits on pressure heads at 

customer nodes, (6) limits on pumping 

heads, (7) limits on opening ratio of 

valves, (8) quality parameter function 

(interdependency of quality parameters), 

(9) treatment limits on removal ratios. 

Water quality: 

Salinity, magnesium, 

sulphur, considered 

as conservative. 

Network analysis: 

Explicit mathematical 

formulation (steady 

state). 

Optimisation method: 

Q0-H (inner) problem 

solved using 

sequential LP. Q-C-H 

(outer) problem 

solved using 

projected gradient 

 A comprehensive flow-quality-head (Q-C-H) model is formulated, which 

combines two previous Q-C and Q-H models (Cohen et al. 2000a,b). 

 The paper uses the solution methods developed earlier in Cohen et al. 

(2000a,b) for Q-C and Q-H subproblems as building blogs. Accordingly, the 

original integer NLP problem is transformed into a NLP problem with linear 

constraints. The problem is solved by decomposing it into inner-outer 

structures. 

 There are three customer groups with different water quality requirements: (i) 

agricultural, (ii) domestic and industrial, (iii) customers with concentrations 

limits. 

 Test networks: (1) Water supply system in the Arava Valley (incl. 9 nodes), 

Southern Israel, (2) WDS of the Central Arava region (incl. 38 nodes), 

Southern Israel. 
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Decision variables: Q-C-H problem: (1) 

circular flows, (2) removal ratios in 

treatment plants, (3) water quality 

distribution. Q0-H problem: (4) opening 

ratios of valves, (5) configurations of 

pump stations, (6) headlosses in control 

valves, (7) bypass flows. 

method coupled with 

the complex method. 

28. Sakarya and Mays (2000), Sakarya 

and Mays (2003) 

SO 

Optimal pump operation for drinking 

WDSs considering water quality either 

as a constraint or an objective function 

using NLP. 

Objective (1): Minimise (a) the deviations 

of the actual constituent concentrations 

from the desired values, (b) penalty 

function for violating bound constraints. 

Objective (2): Minimise (a) the total pump 

operation time, (b) as above. 

Objective (3): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) as above. 

Constraints (objective (1)): Lower/upper 

bounds on (1) pump operation time, (2) 

nodal pressure head, (3) storage water 

levels. 

Constraints (objectives (2-3)): (1)-(3) as 

above, (4) lower/upper bounds on nodal 

constituent concentrations. 

Decision variables: (1) Length of the pump 

operation time during time period 

(discrete), (2) penalty function parameters. 

Note: Three SO models, each including 

one objective. 

Water quality: Non-

conservative 

parameter. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

NLP solver GRG2 

(Lasdon and Waren 

1984). 

 The optimisation problem is formulated as a NLP problem. Constraints are 

incorporated as penalty functions using augmented Lagrangian method. 

 The solution methodology is a two-step loop procedure, with the Lagrangian 

parameters update in the outer loop and GRG2-EPANET combination in the 

inner loop. 

 Time horizon is 12 to 50 days divided into 1-hour intervals, where 24-hour 

pump schedule is repeated over the time horizon. The length of the time 

horizon is to assure that steady state for both hydraulic and water quality 

analysis is reached, as well as periodic behaviour of water levels at storage 

tanks. 

 To reduce the number of EPANET calls, a simplified method is used as 

follows. When the change in control variables between consecutive iterations 

is small, the change in the state variables is assumed to be also small, thus 

EPANET is not called and GRG2 continues to use the previous state 

variables. 

 Test networks: (1) Hypothetical WDS with 1 reservoir, 1 pump and 1 storage 

tank (incl. 17 nodes). 

29. Wegley et al. (2000) 

SO 

Optimal pump operation considering 

variable speed pumps using PSO. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Min/max nodal pressures, 

(2) min/max tank water levels, (3) 

min/max pump speeds.  

Decision variables: (1) Pump speeds 

(continuous). 

Water quality: N/A. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

PSO (Eberhart and 

Kennedy 1995). 

 Variable speed pumps are considered. 

 PSO derives solutions from both local and global searches by using a value of 

the inertial weight. The search process for new solutions includes previously 

found best solutions. 

 Unlike GA, PSO uses continuous decision variables. Since PSO considers 

unconstrained problems, a penalty function is used to handle constraints. 

 Test networks: Not specified. 

30. Boulos et al. (2001) 

SO 

Optimal pump operation using GA. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge and demand charge). 

Constraints: (1) Min/max pressure at 

nodes, (2) max flow velocity in pipes, (3) 

Water quality: N/A. 

Network analysis: 

H2ONet (EPS). 

Optimisation method: 

H2ONet scheduler 

 The paper focuses on the development of an optimisation tool within H2ONet 

analyser, which utilizes GA to generate the optimal pump schedules for 

groups of pumps in a WDS over a time horizon of usually 24 hours. 

 The optimisation model uses the number of pump switches as a surrogate 

measure for pump maintenance costs. 
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min/max water level in tanks, (4) volume 

deficit in tanks at the end of the scheduling 

period, (5) max number of pump switches. 

Decision variables: (1) Pump control 

settings (binary, 0 = pump off, 1 = pump 

on). 

using GA.  The optimisation tool was tested and verified on a number of actual large 

scale WDSs. 

 Test networks: (1) Small network with 52 pipes, 1 treatment plant, 3 pumps 

located at treatment plant, 1 variable storage tank, 1 PRV (incl. 45 nodes). 

31. Sotelo and Baran (2001) 

MO 

Optimal pump operation considering 

both energy and demand charges using 

strength Pareto evolutionary algorithm 

(SPEA). 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Objective (2): Minimise (a) the number of 

pump switches. 

Objective (3): Minimise (a) the difference 

between initial and final water levels in 

tanks. 

Objective (4): Minimise (a) max (daily) 

power peak (demand charge). 

Constraints: (1) Min/max reservoir water 

levels, (2) min/max pipeline pressure 

constraints. 

Decision variables: (1) Pump statuses 

(binary, 0 = pump off, 1 = pump on, for 

each hour of the day). 

Note: One MO model including all 

objectives. 

Water quality: N/A. 

Network analysis: 

Simplified hydraulic 

model, mass balance 

mathematical model 

(Ormsbee and Lansey 

1994), EPS. 

Optimisation method: 

SPEA. 

 The number of pump switches is used as a surrogate measure for pump 

maintenance costs. 

 The maximum daily peak power is minimised, because it may be penalised 

by some electricity companies if it exceeds a contracted value. 

 Time horizon is 24 hours divided into 1-hour intervals, considering two 

energy tariffs and three demand loads (low, medium and high). 

 Constraints are handled by a heuristic algorithm. 

 Test networks: (1) Simplified system with 1 source, 5 pumps and 1 elevated 

reservoir (based on the main pump station in Asuncion, Paraguay). 

32. Biscos et al. (2002) 

SO 

Optimal operation of drinking WDSs 

using MINLP. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) weighted sum of squared 

deviations of storage volumes, (c) 

weighted sum of squared deviations of 

chlorine concentrations from set points. 

Constraints: (1) Valve openings between 0 

and 1, (2) min/max flows in pipes, (3) 

min/max storage volumes, (4) min/max 

chlorine concentrations. 

Decision variables: (1) Continuous valve 

statuses (0 to 1), (2) binary valve statuses 

(0 or 1), (3) binary pump switching. 

Water quality: 

Chlorine (first order 

decay). 

Network analysis: 

Explicit mathematical 

formulation 

(unsteady state). 

Optimisation method: 

Unspecified MINLP 

solver. 

 The optimisation problem is formulated as a MINLP problem. 

 The model of the water distribution network is based on the use of a standard 

element. The standard element consists of a vessel with one input leg and two 

output legs. The vessel is assigned a liquid volume and chlorine 

concentration, whereas legs are associated with pressure available at their 

ends, valve statuses and pipe flows. The standard elements are linked 

together to define the entire system. 

 Time horizon is 48 hours. The optimisation problem is formulated as a 

predictive control problem with a moving period of 12 hours ahead of the 

present time. 

 Test networks: (1) A portion of the Durban WDS with 1 reservoir, 2 pumps 

and 4 storages, South Africa. 

33. Tryby et al. (2002) 

SO 

Optimal location and injection doses of 

booster disinfectant stations for 

Objective (1): Minimise (a) the total 

disinfectant mass applied. 

Constraints: (1) Min/max disinfectant 

concentrations at monitoring nodes, (2) 

Water quality: 

Chlorine (first order 

kinetics for chlorine 

decay). 

 According to Boccelli et al. (1998), the principle of linear superposition is 

used for disinfectant dosage responses. 

 System hydraulic dynamics, and therefore the system demands which drive 

them, are periodic over a 24-hour cycle. Disinfectant dosage rate and 
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drinking WDSs using MILP. zero disinfectant mass if a booster station 

is not present, (3) max number of booster 

disinfectant stations, (4) nonnegative 

dosage multipliers. 

Decision variables: (1) Presence of 

a booster disinfectant station at network 

location (binary, 0 = no, 1 = yes), (2) 

dosage multiplier (continuous). 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

CPLEX (ILOG 2001) 

using the simplex 

algorithm. 

disinfection concentration dynamics are assumed to be also periodic. 

 The tradeoff between the average disinfectant mass dosage rate and the 

number of disinfectant booster stations is examined. It was found out that the 

total average mass dosage rate depends not only on the number of sources, 

but also on how those sources are operated. “The total dosage rate decreases 

significantly as the first few booster stations are added-after which the 

marginal improvement in the total dosage rate per booster station 

diminishes”. 

 It is concluded that booster disinfection has the potential to reduce aggregate 

exposure of the population to chlorine, while simultaneously improving 

disinfectant residual in the network periphery. 

 Test networks: (1) WDS with 1,034 links (incl. 829 nodes) in eastern U.S. 

34. Biscos et al. (2003) 

SO 

Optimal operation of drinking WDSs in 

real-time considering pumps, valves 

and water quality requirements using 

MINLP. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) weighted sum of squared 

deviations of storage volumes, (c) 

weighted sum of squared deviations of 

chlorine concentrations from set points. 

Constraints: (1) Min/max storage volumes, 

(2) min/max chlorine concentrations, (3) 

valve openings between 0 and 1. 

Decision variables: (1) Continuous valve 

statuses (0 to 1), (2) binary valve statuses 

(0 or 1), (3) discrete pump statuses. 

Water quality: 

Chlorine (first order 

decay). 

Network analysis: 

Explicit mathematical 

formulation 

(unsteady state). The 

hydraulic equations 

are simplified to be 

linear. 

Optimisation method: 

GAMS using MINLP 

solvers (Brooke et al. 

1998). 

 An extension of the paper by Biscos et al. (2002). 

 The optimisation is realised in real-time, with a predictive control mechanism 

of 8 hours ahead of present time. The model requires the anticipation of a 

consumer demand profile, which is obtained from historical data stored by 

the SCADA system. The actual optimised volumes in storages and 

concentrations are used in the calculations at the next time step. With the time 

horizon of 24 hours, 32 hours of data should be fed into the model. 

 The optimisation procedure is based on a network model with a basic 

element, which consists of one input and two outputs, linked through a vessel 

of variable volume. Different components of the network such as pipes, 

storages, valves and pumps are all defined using the same basic element. The 

overall network is defined by linking those basic elements. 

 Test networks: (1) Network with 1 source, 4 storages, 1 pump station, 4 

binary valves. 

35. Cohen et al. (2003) 

SO 

Comparison of optimisation methods 

for solving optimal operation of 

multiquality WDSs. 

Objective (1): Minimise the cost of 

operation including (a) the water supply 

costs from sources, (b) water treatment 

costs, (c) transportation costs (related to 

hydraulic properties of a pipe), (d) yield 

reduction costs, (e) penalty costs for 

violating water quality constraints. 

Constraints: (1) Quality parameter function 

(interdependency of quality parameters), 

(2) pipe discharge limits, (3) supply 

discharge limits, (4) water quality limits, 

(5) treatment limits on removal ratios. 

Decision variables: (1) Water flow, (2) 

water quality distribution, (3) removal 

Water quality: 

Salinity, magnesium, 

sulphur, considered 

as conservative. 

Network analysis: 

Explicit mathematical 

formulation (steady 

state). 

Optimisation method: 

Decomposed 

projected gradient 

(DPG) method and 

sequential quadratic 

programming (SQP) 

 An extension of the papers by Cohen et al. (2000a,c) using two DPG 

approaches, full mixing step (FMS) and partial mixing step (PMS), being 

tested against SQP. 

 Several scenarios (referred to as ‘cases’) are tested. These scenarios include 

modifications of the network (i.e. absence or presence of WTPs), the number 

of water quality parameters, constraints, cost of water at sources, penalty gain 

factor values, starting points (i.e. initial solutions), scaling (i.e. decision 

variables and/or their coefficients are on different scales). Scaling issues arise 

when treatment plants are introduced. 

 It was found that SQP obtains slightly better solutions for small networks, but 

is sensitive to the penalty gain factor, the choice of starting points and 

scaling. For bigger networks (20-50 pipes and nodes), SQP did not reach a 

feasible optimal solution. 

 Test networks: (1) Water supply system in the Arava Valley (incl. 9 nodes), 
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ratios in the treatment plants. method are 

compared. 

Southern Israel (Cohen et al. 2000c), (2) WDS of the Central Arava region 

(incl. 38 nodes), Southern Israel (Cohen 1991). 

36. Dandy and Gibbs (2003) 

SO 

Optimal operation of drinking WDSs 

considering pumps and water quality 

requirements using GA. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Min/max chlorine 

concentrations. 

Decision variables: (1) Tank trigger levels 

for energy peak and off-peak periods to 

control pumps (different trigger levels may 

be set for peak and off-peak periods), (2) 

concentration of chlorine downstream of 

the pump. 

Water quality: 

Chlorine. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

GA. 

 Time horizon is 48 hours, but only the last 24 hours are considered in order to 

remove effects of initial conditions. Two energy tariffs are used, peak and 

off-peak. 

 The system was first optimised without considering water quality. The GA 

results were then verified by complete enumeration and suitable GA 

parameters (i.e. population size) selected. 

 When taking into account water quality, the tank trigger levels are different 

than those when considering pumping costs only. The upper trigger level for 

the water quality case is lower during the peak period so as to reduce the 

detention time and loss of chlorine in the tank. 

 The tank trigger levels do not appear too sensitive to variations in demands 

neither are they too sensitive to the minimum required chorine concentration 

in the network. 

 Test networks: (1) Hypothetical network (incl. 15 nodes) with 1 reservoir 

from which water is pumped into a high level tank, which gravity feeds 

distribution system of 19 pipes and 6 loops. 

37. Kelner and Leonard (2003) 

MO 

Optimal pump operation considering 

both fixed and variable speed pumps 

using GA. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Objective (2): Minimise (a) the number of 

pump switches. 

Constraints: (1) Recovery of the initial 

reservoir water level at the end of the 

simulation period, (2) customer demands 

satisfied at any time, (3) min/max reservoir 

water levels. 

Decision variables: (1) Pump statuses 

(binary, 0 = pump off, 1 = pump on) for 

each hour of the day, (2) rotating speed of 

the pump (real), (3) pressure loss 

coefficient for the control valve (real). 

Note: One MO model including both 

objectives. 

Water quality: N/A. 

Network analysis: 

Not specified (EPS). 

Optimisation method: 

Genetic algorithm for 

pump scheduling 

(GAPS). 

 The number of pump switches is used as a surrogate measure for pump 

maintenance costs. Both fixed and variable speed pumps are used. 

 Time horizon is 24 hours divided into 1-hour intervals. 

 GAPS combines ranking by multiple objective genetic algorithm (MOGA) 

(Fonseca and Fleming 1993) and penalised tournament selection scheme. 

 Gaps is written in C++ and was applied to several test cases by Poloni and 

Pediroda (2000); Van Veldhuizen and Lamont (1998); Zitzler et al. (2000) 

involving both continuous and discrete variables. 

 Test networks: (1) Real system with 3 reservoirs, 1 pump station with 

3 pumps and 3 customers, located in Liege, Belgium. 

38. Munavalli and Kumar (2003) 

SO 

Optimal scheduling of booster chlorine 

stations for drinking WDSs using GA. 

Objective (1): Minimise (a) the squared 

deviations of the chlorine concentrations 

from a min required value at monitoring 

nodes, (b) penalty costs for violating 

minimum and maximum chlorine 

Water quality: 

Chlorine. 

Network analysis: 

Network hydraulics 

(EPS) solved by 

 The optimisation problem is formulated as a NLP problem. 

 It is assumed that chlorine dosage at water quality sources and network 

dynamics are cyclic over a simulation period. Time horizon is 24 to 672 

hours depending on the network size. 

 The location of water quality sources is determined through trial simulations. 
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concentrations at monitoring nodes. 

Constraints: (1) Min/max chlorine 

concentrations at monitoring nodes. 

Decision variables: (1) Chlorine dosages 

applied at water quality sources over 

discrete time intervals (binary). 

Tewarson-Chen 

adaptation of the 

Newton-Raphson 

iterative technique, 

water quality by 

Lagrangian time-

driven method (Liou 

and Kroon 1987). 

Optimisation method: 

GA. 

Water quality sources, at which chlorine dosages are estimated, include 

concentration, flow-paced (booster), set point or mass rate types. 

 Improved GA is used including a niche operator and creep mutation. Water 

quality analysis is run for each iteration, which represents a considerable 

computational expense. 

 Both linear and nonlinear chlorine reaction kinetics are used. The principle of 

linear superposition is utilised for linear kinetics. It helps to compute chlorine 

concentrations without running the water quality simulation model. 

 Test networks: (1) WDS of Brushy plains zone of the South Central 

Connecticut Regional Water Authority (incl. 34 nodes), U.S. (Clark et al. 

1993; Boccelli et al. 1998), (2) North Marin Water District (incl. 91 nodes) 

(EPANET Example 3 (USEPA 2013)), (3) a portion of Bangalore city WDS 

(Kalasipalyam network) (incl. 23 nodes). 

39. Cohen et al. (2004) 

SO 

Sensitivity of total operating costs of a 

multiquality WDS to various 

parameters of the problem using NLP. 

Objective (1): Minimise the cost of 

operation including (a) the water supply 

costs from sources, (b) water treatment 

costs, (c) transportation costs (related to 

hydraulic properties of a pipe), (d) yield 

reduction costs, (e) penalty costs for 

violating water quality constraints. 

Constraints: (1) Quality parameter function 

(interdependency of quality parameters), 

(2) pipe discharge limits, (3) supply 

discharge limits, (4) water quality limits, 

(5) treatment limits on removal ratios. 

Decision variables: (1) Water flow, (2) 

water quality distribution, (3) removal 

ratios in the treatment plants. 

Water quality: 

Salinity. 

Network analysis: 

Explicit mathematical 

formulation (steady 

state). 

Optimisation method: 

Projected gradient 

method. 

 An extension of the paper by Cohen et al. (2000a), testing sensitivity of the 

solution to income from unit crop yield, water quality limits, conveyance 

costs, network topology and supply capacity of the source with the following 

outcomes. 

 An increase in the unit income from crop yield causes an increase in the total 

costs, because more fresh water is used to increase the income from 

agriculture. 

 The total costs decrease with an increase in salinity limits, however the cost 

change is not significant due to low percentage of water used for drinking 

purposes. 

 The effect of conveyance cost as well as the supply capacity of the sources on 

the total costs is relatively small. 

 Overall, the highest sensitivity displays the income from unit crop yield. 

 Test networks: (1) WDS of the Central Arava region (without WTPs) (incl. 

37 nodes), Southern Israel (Cohen 1991). 

40. Goldman et al. (2004) 

SO 

Optimal operation of drinking WDSs 

including pumps and chlorine booster 

stations using NLP and SA. 

Objective (1): Minimise (a) the deviations 

of the actual constituent concentrations 

from the desired values, (b) penalty 

function for violating bound constraints. 

Objective (2): Minimise (a) the total pump 

operation time, (b) as above. 

Objective (3): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) as above. 

Objective (4): Minimise (a) the amount of 

chlorine used by chlorine booster stations, 

(b) as above. 

Water quality: 1) 

Non-conservative 

parameter, chlorine. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

NLP solver GRG2 

(Lasdon and Waren 

1984), SA. 

 Mathematical programming is used to solve optimisation problems with 

objectives (1)-(3) (see also Sakarya and Mays (1999)), and SA to solve 

optimisation problems with objectives (3)-(4). 

 Time horizon is: 12 days with 2-hour intervals for a mathematical 

programming approach, 1 day with 1-hour intervals for SA (pump energy 

optimisation, objective (3)), and 7 days with 6-hour intervals (chlorine 

booster optimisation, objective (4)). 

 For pump energy optimisation (objective (3)), mathematical programming 

and SA are compared. NLP required about one third of the iterations than SA. 

However, SA was shown to be more flexible and adaptable than NLP. It is 

also noted that many unbalanced unfeasible solutions existed in the vicinity 

of the optimum solution of SA in contrast to NLP. 
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Constraints (objective (1)): Lower/upper 

bounds on (1) pump operation time, (2) 

nodal pressure head, (3) storage water 

levels. 

Constraints (objectives (2-3)): (1)-(3) as 

above, (4) lower/upper bounds on nodal 

constituent concentrations, (5) tank 

volume deficit at the end of the simulation 

period (only for SA approach). 

Constraints (objective (4)): (1) 

Lower/upper bounds on nodal constituent 

concentrations. 

Decision variables (objectives (1-3)): (1) 

Pump controls. 

Decision variables (objective (4)): (1) 

Flow rate at the chlorine booster stations. 

Note: Four SO models, each including one 

objective. 

 For chlorine booster optimisation (objective (4)), the hydraulic conditions of 

the system are constant, with demands and flow rates repeated every 24 

hours. Chlorine booster pumps are treated as sources with fixed 

concentration. Two cases are analysed, the first with only one chlorine 

booster station, the second with six chlorine booster stations. The chlorine 

usage of the former case is considerably higher than the chlorine usage of the 

latter case. 

 Challenges noted: No model incorporates design, operation and reliability of 

WDS together, no universally accepted definition of reliability, etc. 

 Test networks: (1) North Marin Water District Zone 1 (incl. 91 nodes) 

(EPANET Example 3 (USEPA 2013)), (2) WDS for city of Austin Northwest 

B pressure zone (incl. 98 nodes), Texas (Brion and Mays 1991), (3) Cherry 

Hill-Brushy Plains (incl. 34 nodes), South Central Connecticut Regional 

Water Authority (data same as in Boccelli et al. (1998)). 

41. Moradi-Jalal et al. (2004) 

SO 

Optimal design and operation of 

irrigation networks using GA. 

Objective (1): Minimise the total annual 

costs including (a) the pump operating 

costs (energy consumption charge) and 

maintenance costs, (b) depreciation cost of 

the initial investment. 

Constraints: (1) Max pump discharge, (2) 

total pump discharge equals to total 

demand for each time interval, (3) 

min/max pumping heads. 

Decision variables: (1) Pump system 

design including the type and the number 

of pumps, (2) pump system operation. 

Water quality: N/A. 

Network analysis: 

Simplified hydraulic 

simulation within 

WAPIRA program 

(unsteady state). 

Optimisation method: 

WAPIRRA program 

using GA. 

 WAPIRRA software is developed to be used by operators. It is spreadsheet 

based and uses Microsoft Excel for input data and output results. The 

software can work with any number of pumps, pump types, time steps, and 

different unit energy costs on every time step, but the maximum number of 

pumps used in a station is limited. 

 Time horizon is 1 year divided into monthly intervals. 

 The results for the optimum pump set are compared with three pre-sets of 

practical design. It is found out that savings in annual depreciation cost 

between the optimum set and pre-sets are not significant. The main savings, 

nearly 33%, occurred in the annual pump operating cost due to energy 

consumption. 

 Test networks: (1) The main pumping station of the Farabi Agricultural and 

Industrial Project, Iran. 

42. Ostfeld and Salomons (2004) 

SO 

Optimal operation of multiquality 

WDSs including pump energy costs, 

water treatment costs and purchasing 

water costs using GA. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) water treatment costs, (c) 

purchasing water costs. 

Constraints: (1) Min/max pressure heads at 

the consumer nodes, (2) min/max 

concentrations at the consumer nodes, (3) 

max removal ratios at the treatment 

facilities, (4) max permitted amounts of 

Water quality: 

Salinity. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

OptiGA (Salomons 

2001). 

 Time horizon is 24 hours, with a varied energy tariff and unsteady water flow 

conditions. It is noted that cyclic water quality behaviour is not 

accomplished, so the results depend, to some extent, on the initial settings of 

the concentrations at the nodes. 

 Seven sensitivity analyses are undertaken, which explore the impact of data 

and constraints modifications on an optimal solution. Sensitivity analyses 

include increasing unit water treatment cost at a WTP, increasing demand at a 

node, excluding a control valve, increasing unit water purchase cost at a 

source, increasing threshold concentration constraint at several nodes, 
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water withdrawals at the sources, (5) tank 

volume deficit at the end of the simulation 

period. 

Decision variables: (1) Scheduling of the 

pumping units (binary), (2) control valve 

settings (i.e. valve openings) (real), (3) 

treatment removal ratios at the treatment 

facilities (real). 

switching a node from being a consumer node to being a source node, 

converting a tank into three equal floating tanks, reducing the elevation of the 

highest consumer node. 

 Test networks: (1) Two-loop network with 3 sources (incl. 6 demand nodes), 

(2) EPANET Example 3 (incl. 94 nodes) (USEPA 2013). 

43. Prasad et al. (2004) 

MO 

Optimal location and injection rates of 

booster disinfectant stations for 

drinking WDSs using NSGA-II. 

Objective (1): Minimise (a) the total 

disinfectant dose. 

Objective (2): Maximise (a) the volumetric 

percentage of water supplied with 

disinfectant residuals within specified 

limits, titled ‘safe drinking water’ (SDW). 

Constraints: (1) Nonnegative disinfectant 

doses, (2) lower bound on the value of the 

objective (2), (3) upper bound on 

disinfectant concentrations at monitoring 

nodes. 

Decision variables: (1) Locations of 

booster disinfection stations (integer), (2) 

disinfection injections schedules (real). 

Note: One MO model including both 

objectives. 

Water quality: 

Disinfectant (first 

order kinetics for 

disinfectant decay). 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

NSGA-II. 

 The theory of linear superposition is used for water quality modelling to 

calculate concentrations at network nodes. All demand nodes are considered 

as monitoring nodes. 

 Hydraulics and booster injections are assumed to be cyclic, with a period of 

24 hours. Time horizon is 1,008 hours. 

 Both constant mass and flow proportional type boosters are considered. 

 Tradeoffs between (i) disinfectant dose and the number of booster stations, 

and (ii) disinfectant dose and percentage of SDW (level of constraint 

satisfaction) are presented. It is concluded that “the addition of the first few 

booster stations reduces the total disinfectant dose significantly, after which 

the rate of reduction is insignificant”. Additionally, “there is a critical point in 

the level of constraint satisfaction (about 99% SDW), after which the 

disinfectant dosage rate increases significantly in order to satisfy the 

remaining constraints”. 

 Test networks: (1) Real network supplied by gravity (incl. 829 nodes), 

eastern U.S. (Tryby et al. 2002). 

44. Propato and Uber (2004a) 

SO 

Optimal location and injection rates of 

booster disinfectant stations for 

drinking WDSs using mixed integer 

quadratic programming (MIQP). 

Objective (1): Minimise (a) the squared 

deviations of the disinfectant (i.e. chlorine) 

concentration from desired values. 

Constraints: (1) Zero disinfectant doses if a 

booster station is not present, (2) max 

feasible value of disinfectant doses, (3) 

max number of booster disinfectant 

stations, (4) nonnegative disinfectant 

doses. 

Decision variables: (1) Disinfectant doses 

(i.e. injections) (continuous), (2) presence 

of a booster disinfectant station at network 

location (binary, 0 = no, 1 = yes). 

Water quality: 

Chlorine. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

MATLAB (Moler 

1980) using branch-

and-bound algorithm 

(Bemporad and 

Mignone 2001). 

 An extension of the paper by Propato and Uber (2004b) including locations 

of booster disinfectant stations as decision variables. 

 The optimisation problem is formulated as a MIQP problem with linear 

constraints. The size of the problem is dependent only on the number of 

booster stations and injection rates and is independent on the number of 

consumer nodes or the size of the network. 

 A tradeoff between the number of booster disinfectant stations and water 

quality across the network is investigated. Conclusions are drawn for 

particular locations and dosages of chlorine booster stations and their impact 

on water quality across the network. 

 Test networks: (1) WDS with 1 source, 1 pump station, 1 tank (incl. 34 

nodes) (Clark et al. 1993; Boccelli et al. 1998). 

45. Propato and Uber (2004b) 

SO 

Optimal injection rates of booster 

Objective (1): Minimise (a) the squared 

deviations of the disinfectant (i.e. chlorine) 

concentration from desired values. 

Water quality: 

Chlorine. 

Network analysis: 

 The locations of booster stations are assumed to be known. 

 Disinfectant doses are periodic over a 24-hour cycle. Time horizon is several 

days to reach stationary conditions. 
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disinfectant stations for drinking WDSs 

using quadratic programming (QP). 

Constraints: (1) Nonnegative disinfectant 

doses. 

Decision variables: (1) Disinfectant doses 

(i.e. injections). 

EPANET (EPS). 

Optimisation method: 

MATLAB (Moler 

1980) using linear 

least square (LLS) 

solver. 

 Two chlorine source models are used: mass booster and flow-paced booster, 

because the input-output dynamics is linear. 

 The optimisation problem is formulated as a LLS problem. The objective 

function includes arbitrary weights on the contribution of disinfectant 

residual at each customer node. The paper includes comparison of a LLS 

approach with LP approach of Boccelli et al. (1998). 

 “Booster disinfection can be effective in reducing network-wide variation in 

disinfectant residual, while reducing the total mass of disinfectant used”. 

 Test networks: (1) WDS with 1 source, 1 pump station, 1 tank (incl. 34 

nodes) (Clark et al. 1993; Boccelli et al. 1998). 

46. Van Zyl et al. (2004) 

SO 

Optimal pump operation using hybrid 

GA. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) penalty costs for volume 

deficit in tanks at the end of the simulation 

period, (c) penalty costs for violating the 

limit on the number of pump switches. 

Constraints: (1) Min/max water levels in 

tanks, (2) no volume deficit in tanks at the 

end of the simulation period, (3) limit on 

the number of pump switches. 

Decision variables: (1) Tank trigger levels 

for energy peak and off-peak periods to 

control pumps (different trigger levels may 

be set for peak and off-peak periods). 

Water quality: N/A. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

Hybrid GA, where 

GA is combined with 

2 hillclimber (local) 

search methods, 

namely Hooke and 

Jeeves method, and 

Fibonacci method. 

 Time horizon is 24 hours divided into 1-hour intervals. 

 The GA identifies the region of an optimal solution and subsequently 

a hillclimber method finds a local optimum. The process is repeated until the 

termination criteria are met. 

 Due to the nature of the problem, hillclimber search methods are limited to 

methods, which use objective function values, not gradients. Hook and Jeeves 

method gives better results than Fibonacci method. 

 The efficiency of the hybrid GA is compared to the pure GA and pure Hook 

and Jeeves method. The hybrid GA gives better solution and converges with 

the significantly lower number of function evaluations compared to the pure 

GA. Pure Hooke and Jeeves method gives inferior solutions compared to 

both the hybrid GA and pure GA. 

 Test networks: (1) Small water distribution network with 1 source, 1 main 

pump station, 2 tanks at different elevations and 1 booster pump station (incl. 

13 nodes), (2) Richmond WDS (incl. 836 nodes), UK. 

47. Baran et al. (2005) 

MO 

Optimal pump operation considering 

both energy and demand charges using 

multiple evolutionary algorithms (EAs) 

being compared. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Objective (2): Minimise (a) the number of 

pump switches. 

Objective (3): Minimise (a) the difference 

between initial and final water levels in 

tanks. 

Objective (4): Minimise (a) maximum 

(daily) power peak (demand charge). 

Constraints: (1) Min/max reservoir water 

levels, (2) min/max pipeline pressure 

constraints. 

Decision variables: (1) Pump statuses 

(binary, 0 = pump off, 1 = pump on, for 

Water quality: N/A. 

Network analysis: 

Simplified hydraulic 

model, mass balance 

mathematical model 

(Ormsbee and Lansey 

1994), EPS. 

Optimisation method: 

SPEA, NSGA 

(nondominated 

sorting genetic 

algorithm), NSGA-II, 

CNSGA (controlled 

elitist nondominated 

sorting genetic 

 An extension of the paper by Sotelo and Baran (2001) applying multiple EAs. 

 The optimisation problem is solved by six EAs (listed on the left). Unlike 

other EAs, SPEA works with two populations, where the second (archive) 

population stores the best solutions found during algorithm iterations. 

 The results from six EAs are compared using a set of six metrics proposed in 

Van Veldhuizen (1999). Average metric’s values from 10 typical runs of each 

EA are used for a comparison. SPEA gives the best overall results, followed 

by NSGA-II. 

 It is noted that it is difficult to conduct a fair comparison of EAs due to 

various algorithm parameters, which affect the quality of the results and the 

efficiency of the algorithm. 

 Test networks: (1) Simplified system with 1 source, 5 pumps and 1 elevated 

reservoir (based on the main pump station in Asuncion, Paraguay). 
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each hour of the day). 

Note: One MO model including all 

objectives. 

algorithm), NPGA 

(niched Pareto 

genetic algorithm), 

MOGA are 

compared. 

48. Lopez-Ibanez et al. (2005) 

MO 

Optimal pump operation using SPEA2. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Objective (2): Minimise (a) the number of 

pump switches. 

Constraints: (1) Pressures at demand 

nodes, (2) min/max tank water levels, (3) 

tank volume deficit at the end of the 

simulation period. 

Decision variables: (1) Pump statuses 

(binary, 0 = pump off, 1 = pump on, for 

each hour of the day). 

Note: One MO model including both 

objectives. 

Water quality: N/A. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

SPEA2. 

 The number of pump switches is used as a surrogate measure for pump 

maintenance costs. 

 Time horizon is 24 hours divided into 1-hour intervals, with two electricity 

tariffs used. Fixed speed pumps are considered only. 

 Constraints are incorporated using a methodology based on the dominance 

relation (Deb and Jain 2003) rather than a penalty function. 

 The results are assessed by means of empirical attainment surfaces (da 

Fonseca et al. 2001). The number of functions evaluations is 6,000 with 30 

repetitions of each configuration. 

 Test networks: (1) Small water distribution network (incl. 13 nodes) (Van Zyl 

et al. 2004). 

49. Ostfeld (2005) 

SO 

Optimal design and operation of 

multiquality WDSs including total 

construction costs and annual operation 

costs using GA. 

Objective (1): Minimise (a-D?) the 

construction costs of pipes, tanks, pump 

stations and treatment facilities, (b-OP??) 

annual operation costs of pump stations 

and treatment facilities. 

Constraints: (1) Min/max heads at 

consumer nodes, (2) max permitted 

amounts of water withdrawals at sources, 

(3) tank volume deficit at the end of the 

simulation period, (4) min/max 

concentrations at consumer nodes, (5) 

removal ratio constraints. 

Decision variables: D: (1) Pipe diameters, 

(2) tank max storage, (3) max pumping 

unit power, (4) max removal ratios at 

treatment facilities, OP: (5) scheduling of 

pumping units, (6) treatment removal 

ratios. 

Water quality: 

Unspecified 

conservative 

parameters. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

GA. 

 Time horizon is 24 hours, with a varied energy tariff and unsteady water flow 

conditions. Similar to Ostfeld and Salomons (2004), cyclic water quality 

behaviour is not accomplished, so the results depend on the initial settings of 

the concentrations at the nodes. 

 Multiple loading conditions (demands) are used. 

 Sensitivity analysis is performed with the following modifications to the data 

or constraints. Test network (1): increased minimum pressure constraint at 

one consumer node, increased maximum concentration limit for all consumer 

nodes, increased operational unit treatment cost coefficient. Test network (2): 

reduced unit power cost of pump construction and energy tariffs, altered 

pressure and concentration constraints at one consumer node, decreased 

elevation at one consumer node. 

 Test networks: (1) Two-loop network with 3 sources (incl. 6 demand nodes) 

(Ostfeld and Salomons 2004), (2) Anytown network (Walski et al. 1987) with 

modifications (incl. 16 nodes). 

50. Kurek and Brdys (2006) 

MO 

Optimal location of booster chlorine 

stations for drinking WDSs using 

Objective (1): Minimise (a) the number of 

booster chlorine stations. 

Objective (2): Minimise (a) the mean value 

of chlorine concentrations. 

Water quality: 

Chlorine 

Network analysis: 

EPANET (EPS). 

 Multiple demand scenarios are considered. 

 24-hour chlorination patterns are used for booster stations as well as water 

treatments plants. 
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NSGA-II. Objective (3): Minimise (a) the mean value 

of instances of not meeting quality 

requirements. 

Constraints: (1) Min/max number of 

booster stations, (2) min/max chlorine 

concentrations, (3) min chlorine 

concentration at treatment plants. 

Decision variables: (1) Presence of 

a booster station at network node (binary, 

0 = no, 1 = yes), (2) chlorine 

concentrations at booster stations and 

treatment plants (real). 

Note: One MO model including all 

objectives. 

Optimisation method: 

MATLAB using 

modified NSGA-II. 

 Objective (2) allows defining minimum preferred chlorine concentration in 

the network by a user. 

 It was identified that chlorine concentrations in the network decrease with the 

increased number of chlorine booster stations. “However at some point 

adding another booster stations yields smaller improvements”. 

 It was also identified that different demand scenarios require different 

number of chlorine booster stations to ensure safe drinking water. 

 Test networks: (1) EPANET Example 3 (incl. 92 nodes) (USEPA 2013). 

51. Ostfeld and Salomons (2006) 

SO 

Optimal operation of drinking WDSs 

including scheduling of pumps, 

scheduling of booster chlorination 

stations and their locations using GA. 

Objective (1) ‘Min Cost’: Minimise (a) the 

pump operating costs (energy consumption 

charge), (b) booster chlorination 

operational injection costs, (c) booster 

chlorination design costs. 

Objective (2) ‘Max Protection’: Minimise 

(a) the difference between actual and 

maximum desired chlorine concentrations 

at consumer nodes. 

Constraints: (1) Min/max pressure at the 

consumer nodes, (2) min/max chlorine 

concentrations at the consumer nodes, (3) 

tank volume deficit at the end of the 

simulation period. 

Decision variables: (1) Locations of 

booster chlorination stations (integer), (2) 

pump schedules (binary), (3) control valve 

settings (i.e. valve openings) (real), (4) 

booster chlorination injection rates. 

Note: Two SO models, each including one 

objective. 

Water quality: 

Chlorine (first order 

decay). 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

OptiGA (Salomons 

2001). 

 Pump schedules are optimised in conjunctions with booster chlorination 

injection rates, because resulting disinfectant concentrations depend on the 

flow regime in the network, thus pump schedules. 

 Objective (2) ‘Max Protection’ maximises the system protection by 

maintaining chlorine residual as close as possible to the upper bound level. 

 Time horizon is 24 hours, with a varied energy tariff. 

 Five sensitivity analyses are undertaken, which include an addition of an 

extra booster chlorination station, operation of booster chlorination stations 

for ‘Max Protection’, change of a booster chlorination cost coefficient, 

change of a lower chlorine concentration bound, exclusion of components (b) 

and (c) from the objective (1) ‘Min Cost’. 

 It is identified that “the two problems of minimising energy cost and 

minimising the total CL [chlorine] dose injected are mutually connected-

calling upon a multi-objective optimisation approach to further explore the 

tradeoff between these two goals“. 

 Test networks: (1) EPANET Example 3 (incl. 94 nodes) (USEPA 2013). 

52. Prasad and Walters (2006) 

SO 

Minimising water age by rerouting 

flows in the network to improve water 

quality using GA. 

Objective (1): Minimise (a) the water age 

at network nodes (maximum, weighted 

average and average water age are 

considered), (b) penalty costs for violating 

pressure head. 

Constraints: (1) Min pressure at the nodes, 

Water quality: Water 

age (as a surrogate 

measure for water 

quality). 

Network analysis: 

EPANET (steady 

 It is noted that various strategies can be used to minimise water age in the 

network, but this paper considers pipe closures only. 

 The type of GA used generates a connected tree network. This tree network is 

to ensure connectivity throughout the whole network, which standard GA 

algorithms fail to produce. The decision variables are represented by two sets 

of pipes. The first set represents pipes which are open and form a tree. The 
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(2) upper limit on the flow velocity in the 

pipes. 

Decision variables: (1) Settings of 

isolation valves (open/closed) represented 

by open/closed pipes. 

state, but results are 

tested by conducting 

an EPS). 

Optimisation method: 

GA. 

second set contains pipes which are open and addition of which to the tree 

layout form loops. 

 Test networks: (1) Network with 1 source and 47 pipes (incl. 34 nodes), (2) 

real network in the UK with 632 pipes (incl. 535 nodes). 

53. Jamieson et al. (2007) 

SO 

Optimal operation of WDSs in real-

time using ANN and GA, the first 

paper of potable water distribution 

management (POWADIMA) series. 

Objective (1): Minimise (a) the pump 

operating costs. 

Constraints: Not specified. 

Decision variables: (1) Pump controls 

(binary), (2) valve controls (binary). 

Water quality: N/A. 

Network analysis: 

ANN (process-

driven, EPS) as a 

substitute for a 

hydraulic simulation 

model. 

Optimisation method: 

GA. 

 The paper presents an introduction to the POWADIMA research project. It 

describes the concept of a design of a real-time control system for WDSs. In 

this concept, ANN is proposed to replace a hydraulic simulator to increase 

the computational efficiency. 

 The POWADIMA project is divided into seven work packages, split between 

several universities. Subsequent papers (Alvisi et al. 2007; Martinez et al. 

2007; Rao and Alvarruiz 2007; Rao and Salomons 2007; Salomons et al. 

2007) describe various parts of the project. 

 SCADA and demand forecast are used. 

 The ANN model is to be tested on the Anytown network and applied to two 

real networks. 

 Test networks: (1) Anytown network (Walski et al. 1987) with modifications 

(incl. 19 nodes), (2) portion of Haifa WDS (incl. 112 nodes), Israel, (3) 

Valencia WDS (incl. 725 nodes), Spain. 

54. Kim et al. (2007) 

SO 

Optimal pump operation using integer 

programming (IP). 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Reservoir lower limitation 

(determined by a statistical analysis based 

on correction of the demand forecasting 

model), (2) pump limitation. 

Decision variables: (1) The number of 

pumps required. 

Water quality: N/A. 

Network analysis: 

Not specified (EPS). 

Optimisation method: 

LINGO (LINDO 

2014) using IP. 

 Three methods are tested and compared for a 3 month period: (i) time index, 

(ii) multiple regression + time index, and (iii) Fourier series + transfer 

autoregressive integrated moving average (ARIMA). Time index and 

multiple regression methods were selected to forecast the hourly water 

demands for a 2 week period. 

 Energy tariff varies monthly and hourly. 

 Test networks: (1) Supply system in the southern part of Seoul, Korea. 

55. Martinez et al. (2007) 

SO 

Optimal operation of WDSs in real-

time using ANN and GA, the sixth 

paper of POWADIMA series. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) water production costs. 

Constraints: (1) Min/max pressure at 

demand nodes, (2) min flow rate at pipes, 

(3) min/max tank water levels, (4) tank 

water level equal or above a prescribed 

level at a specified time each morning, (5) 

installed power capacity at pump stations. 

Decision variables: (1) Pump settings 

(on/off) for fixed speed pumps, (2) valve 

settings representing valve openings 

Water quality: N/A. 

Network analysis: 

ANN (process-

driven, EPS) as a 

substitute for a 

hydraulic simulation 

model (Rao and 

Alvarruiz 2007). 

Optimisation method: 

GA. 

 Optimisation package dynamic real-time adaptive genetic algorithm 

(DRAGA)-ANN is used (Rao and Salomons 2007), which is linked with 

SCADA. 

 The test network is supplied from two WTPs, each equipped with a pump 

station and a tank. There are no booster pumps and tanks in the network 

itself, so the system is dependent largely upon gravity and several operating 

valves. Fixed speed pumps are considered. 

 Electricity tariffs vary hourly and monthly. 

 Time horizon is 24 hours divided into 1-hour intervals. Demand forecast, 

based on seasonal, weekly and daily periodic components, is discussed in the 

fourth paper of POWADIMA series (Alvisi et al. 2007). 

 The performance of the optimisation package was evaluated by running 
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(binary coded). optimisation for the entire year of 2001 and comparing results with EPANET. 

 For the Valencia network, ANN is about 94 times faster than EPANET, while 

for the Haifa-A network (Salomons et al. 2007) it is about 25 times faster. 

 Test networks: (1) Valencia WDS (incl. 725 nodes), Spain. 

56. Murphy et al. (2007) 

SO 

Optimal operation of a large drinking 

WDS considering water age using GA. 

Objective (1): Minimise (a) the pumping 

power costs, (b) utility turnout costs, 

penalty costs for (c) violating the turnout 

flow constraints, (d) violating reservoir 

water level constraints, (e) average water 

age greater than 5 days. 

Constraints: (1) Constraints on flows via 

the utility turnouts, (2) min/max reservoir 

levels, (3) min/max reservoir return levels, 

(4) min reservoir turnover. 

Decision variables: (1) Pump on/off times, 

(2) flows and hours of operation for the 

utility turnouts where water is purchased 

from another utility, (3) PRV settings, (4) 

flow control valves settings, (5) open/close 

pipe decisions. 

Water quality: Water 

age. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

GA. 

 The redevelopment of the current system of the water utility in Las Vegas, 

Energy and Water Quality Management System, is presented to better 

address water quality issues. This system is used for daily operational 

planning since 2005. 

 Water age is used as a surrogate for disinfection by-products (DBPs). 

 3-day and 7-day operating cycles for a winter operation condition are used for 

the EPS of 27 and 28 days to allow water age to reach steady state. 

 A large number of decision variables (there is 13,968 hourly on/off pumping 

decisions for a single GA run for a 3-day operating cycle) was significantly 

reduced by selecting feasible pump combinations rather than hourly on/off 

decisions for each pump, and other simplifications of the pump schedules. 

 Optimisation run times are estimated to be 139 days on a single computer, 

which is unacceptable for operational needs. Therefore, parallel computing is 

used to provide more realistic times. 

 Optimisation results represent 12.8% reduction in the average water age in 

reservoirs. 

 Test networks: (1) Large WDS in Las Vegas valley, U.S., containing 

approximately 8,000 pipe sections, 194 pumps and 28 reservoirs (incl. over 

6,000 nodes). 

57. Rao et al. (2007) 

SO 

Optimal operation of WDSs in real-

time linked to the SCADA system 

including pumps and valves using 

ANN and GA. 

Objective (1): Minimise (a) system 

operating costs (energy and production). 

Constraints: (1) System operational 

constraints, (2) lower/upper limits on 

control variables (pump and valve 

settings), (3) lower/upper limits on state 

variables (tank water levels, pressures, 

flows). 

Decision variables: (1) Pump settings, (2) 

valve settings (open/closed). 

Water quality: N/A. 

Network analysis: 

ANN (process-

driven, EPS) as a 

substitute for a 

hydraulic simulation 

model. 

Optimisation method: 

Energy cost 

minimisation system 

(ENCOMS) 

incorporating GA and 

ANN. 

 The paper presents an extension of the POWADIMA project, where GA and 

ANN are combined in a software ENCOMS. The system is generic and can 

be applied to any WDS due to customisability; ANN is first run offline for a 

large number of simulations, then trained and tested. 

 Real-time control operates continually and is updated at short intervals by 

data transmitted from the SCADA and the updated demand forecasts. Time 

horizon is the next 24 hours of system operation using 1-hour time step. 

 The repetitive nature of real-time control enables a reduction in the number of 

generations used for the next update of the operating strategy. This is due to 

the existing operating strategy not being very different from the next 

operating strategy. The initialisation process can be non-random, where a 

large portion of the current population is used as an initial population for the 

next step after the updates. 

 Test networks: (1) Valencia WDS (incl. 725 nodes), Spain. 

58. Rao and Salomons (2007) 

SO 

Optimal operation of WDSs in real-

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) cost of water at sources. 

Water quality: N/A. 

Network analysis: 

ANN (process-

 ANN development is described in the second paper of POWADIMA series 

(Rao and Alvarruiz 2007). 

 As a constraint handling procedure, the multiplicative penalty method is used, 
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time using ANN and GA, the third 

paper of POWADIMA series. 

Constraints: (1) Min/max pressure at 

junction nodes, (2) min/max velocities at 

pipes, (3) min/max tank water levels, (4) 

installed power capacity at pump stations. 

Decision variables: (1) Pump settings 

(on/off) for fixed speed pumps, (2) pump 

settings for variable speed pumps, (3) 

valve settings representing valve openings 

(binary coded). 

driven, EPS) as a 

substitute for a 

hydraulic simulation 

model (Rao and 

Alvarruiz 2007). 

Optimisation method: 

GA. 

in which the objective function is multiplied by a penalty factor proportional 

to the extent of the constraint violation. 

 Time horizon is 24 hours divided into 1-hour intervals. Demand forecast, 

based on seasonal, weekly and daily periodic components, is discussed in the 

fourth paper of POWADIMA series (Alvisi et al. 2007). 

 A dynamic version of the method, DRAGA-ANN, is developed, where the 

updated information (such as forecasted demands for the next 24 hours, 

current control settings and water levels from SCADA) is fed into the GA-

ANN optimiser every hour in order to produce more up to date schedule. 

Only 1-hour schedules are implemented via the SCADA, whilst the 

remaining schedules are retained for re-initialising the control variables at the 

next time interval using the updated SCADA data. This approach can reduce 

the number of generations. 

 Test networks: (1) Anytown network (Walski et al. 1987) with modifications 

(incl. 19 nodes) (Rao and Alvarruiz 2007). 

59. Rico-Ramirez et al. (2007) 

SO 

Optimal location and injection rates of 

booster disinfectant stations for 

drinking WDSs including uncertainties 

using stochastic decomposition 

algorithm. 

Objective (1): Minimise (a) the cost of 

booster stations installation (first stage), 

(b) the cost of the disinfectant mass 

required to maintain concentration 

residuals within the network (second 

stage). 

Constraints: (1) The total max number of 

booster stations, (2) lower/upper bounds of 

disinfectant residual concentrations, (3) 

max disinfectant dosage multiplier, (4) 

nonnegative dosage multipliers. 

Decision variables: (1) Presence of 

a booster station at network node (binary, 

0 = no, 1 = yes) (first stage), (2) 

disinfectant dosage (second stage). 

Water quality: 

Disinfectant (first 

order decay). 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

Stochastic 

decomposition 

algorithm. 

 An extension of the paper by Tryby et al. (2002) incorporating uncertainties. 

 The optimisation problem is formulated as a two stage stochastic problem, 

the first stage is a MILP problem, the second stage is a LP problem. It 

indirectly incorporates uncertainties on demands, pipe roughnesses and 

chemical reactions of the disinfectant via linear coefficients of the proposed 

model, which are computed through EPANET. 

 A comparison with deterministic results is performed. The results indicate 

that the number of booster stations is larger and the total costs lower in the 

stochastic solution than in the deterministic solution. An explanation could be 

that increased flexibility and better disinfectant distribution exist due to the 

extra number of stations. However, the CPU (central processing unit) time 

obtained in order of weeks could be prohibitive in some applications. 

 Test networks: (1) EPANET Example 2 (incl. 34 nodes) (USEPA 2013). 

60. Salomons et al. (2007) 

SO 

Optimal operation of WDSs in real-

time using ANN and GA, the fifth 

paper of POWADIMA series. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Min pressure at demand 

nodes, (2) min/max tank water levels, (3) 

tank water level equal or above a 

prescribed level at a specified time each 

morning, (4) installed power capacity at 

pump stations. 

Decision variables: (1) Pump settings 

Water quality: N/A. 

Network analysis: 

ANN (process-

driven, EPS) as a 

substitute for a 

hydraulic simulation 

model (Rao and 

Alvarruiz 2007). 

Optimisation method: 

GA. 

 Optimisation package DRAGA-ANN is used (Rao and Salomons 2007). 

Optimisation runs continuously in 1-hour intervals, implementing a new 

schedule via SCADA for the current time interval, then waiting for the next 

update of the SCADA data, which is to be used for the subsequent 

optimisation run together with updated demands and electricity tariffs. 

 The test network has hilly topography with six separate pressure zones, each 

supplied by a dedicated set of pumps and each containing one or more tanks. 

The network includes one PRV. Fixed speed pumps are considered. 

 Electricity tariffs vary three times a day, also with seasons, weekends and 

holidays. 
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(on/off) for fixed speed pumps, (2) valve 

settings (PRV). 
 Time horizon is 24 hours divided into 1-hour intervals. Demand forecast, 

based on seasonal, weekly and daily periodic components, is discussed in the 

fourth paper of POWADIMA series (Alvisi et al. 2007). 

 The performance of the optimisation package was evaluated by running 

optimisation for the entire year of 2000 and comparing results with EPANET. 

 Test networks: (1) Haifa-A WDS (incl. 112 nodes), Israel. 

61. Ulanicki et al. (2007) 

SO 

Optimal operation of WDSs using 

SQP. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) water price at sources, (c) 

penalty cost associated with the final state 

of reservoir water levels. 

Constraints: (1) Min/max reservoir water 

levels, (2) min/max flows through pump 

stations, (3) the number of pumps in a 

pump station, (4) min/max pump speeds, 

(5) min/max valve openings, (6) min/max 

source flows. 

Decision variables: (1) Pump controls 

(integer), (2) pump speeds (continuous), 

(3) valve controls (continuous), (4) source 

flows (continuous). 

Water quality: N/A. 

Network analysis: 

Explicit mathematical 

formulation 

(unsteady state). 

Optimisation method: 

SNOPT, SQP 

algorithm (Gill et al. 

2002). 

 Both fixed and variable speed pumps are considered. 

 Two stage suboptimal algorithm is used: (i) a relaxed continuous problem is 

solved to produce optimal reservoir trajectories, then (ii) a mixed integer 

solution is found using branch and bound and time decomposition. This paper 

deals with the first stage. The relaxed continuous problem is obtained by 

assuming that the integer variable of pump controls is continuous. 

 Reduced gradients of the objective and constraint functions are calculated. 

 Time horizon is 24 hours divided into 1-hour intervals. 

 A full parameterisation (FP) approach and partial parameterisation (PP) 

approach are compared. In the FP approach, all variables (control, state and 

algebraic) are treated as decision variables while in the PP approach, only 

control variables are treated as decision variables. The results obtained by 

both approaches are very similar. However, PP approach requires fewer 

iterations with fewer variables, and can be integrated with an existing 

network models, which makes it attractive for industry applications. 

 Test networks: (1) Raw water and irrigation network (incl. 48 demand 

nodes), South of France. 

62. Wu (2007) 

SO 

Optimal pump operation considering 

both fixed and variable speed pumps 

using fast messy GA (fmGA). 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Min/max pressure at 

nodes, (2) max allowable flow velocity, (3) 

min tank water level, (4) min/max 

disinfectant concentrations.  

Decision variables: (1) Pump statuses for 

fixed speed pumps (binary, 0 = pump off, 

1 = pump on), (2) pump speeds for 

variable speed pumps (continuous). 

Water quality: 

Disinfectant. 

Network analysis: 

Unspecified solver 

(EPS). 

Optimisation method: 

fmGA (Wu and 

Simpson 2001). 

 Constant and variable speed pumps are considered. 

 Time horizon is 24 hours divided into 1-hour intervals. 

 The solution for fixed speed pumps is compared with the solution for variable 

speed pumps, showing that the cost of pumping is smaller for variable speed 

pumps even though they operate continuously over a 24-hour period. 

 The results are compared with the results of the previous study (Mays 2000), 

which used a mathematical programming (NLP) approach and SA. It is 

illustrated that fmGA is more effective in searching for the optimal pump 

schedule. 

 Test networks: (1) EPANET Example 3 (incl. 91 nodes) (USEPA 2013), 

adapted from Mays (2000). 

63. Bagirov et al. (2008) 

SO 

Optimal pump operation using discrete 

gradient method. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) penalty costs for violating 

constraints. 

Constraints: (1) Min/max pressure at 

nodes, (2) min/max tank water levels. 

Water quality: N/A. 

Network analysis: 

Not specified (EPS). 

Optimisation method: 

Discrete gradient 

method (Bagirov 

 The optimisation problem is formulated as a nonsmooth optimisation 

problem. 

 Time horizon is 24 hours divided into 1-hour intervals, with peak and off-

peak energy tariffs used. 

 The number of pump switches is included in the optimisation model as a 

decision variable, not as a constraint. The formulation allows for the pump 
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Decision variables: (1) On/off switches for 

the pumps (continuous), (2) pressure at 

each pump for each time interval 

(continuous). 

2002). switches to occur at any time, not at given discrete time intervals. 

 The results are compared with the real usage in December 2006 indicating 

energy cost savings. 

 Test networks: (1) Simplified model of the Ouyen subsystem of the Northern 

Mallee Pipeline, Victoria, Australia. 

64. Ewald et al. (2008) 

MO 

Optimal location of booster chlorine 

stations for drinking WDSs using 

a distributed multi-objective GA. 

Objective (1): Minimise (a) the number of 

booster chlorine stations. 

Objective (2): Minimise (a) the mean value 

of chlorine concentrations. 

Objective (3): Minimise (a) the mean value 

of instances of not meeting quality 

requirements. 

Constraints: (1) Min/max number of 

booster stations, (2) min/max chlorine 

concentrations at booster stations and 

treatment plants. 

Decision variables: (1) Presence of 

a booster station at network node (binary, 

0 = no, 1 = yes), (2) chlorine 

concentrations at booster stations and 

treatment plants (real). 

Note: One MO model including all 

objectives. 

Water quality: 

Chlorine. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

Distributed multi-

objective GA (based 

on the island GA) 

implemented using 

grid computing. 

 Objective (2) evaluates disinfectant distribution throughout the network. 

 Objective (3) evaluates feasibility of the booster allocation and the 

corresponding control schedules. 

 Several demand scenarios are considered simultaneously. These scenarios are 

defined so that meeting the constraints for each of them entails meeting the 

constraints for all practical scenarios.  

 The grid implementation of a distributed multi-objective GA is based on a 

modified island GA, which uses independent subpopulations, and 

subgenerations are computed using the modified NSGA-II. 

 The performance of the grid implementation is compared with a classic 

algorithm. It was found out that the algorithm with grid implementations 

reduced overall computation time and reached better solutions (over the same 

running time) than the classic algorithm. 

 Test networks: (1) Chojnice drinking WDS (incl. 188 nodes), Poland. 

65. Lopez-Ibanez et al. (2008) 

SO 

Optimal pump operation using ACO 

compared to hybrid GA. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Min/max tank water 

levels, (2) min pressure at demand nodes, 

(3) tank volume deficit at the end of the 

simulation period, (4) max number of 

pump switches. 

Decision variables: (1) On/off duration 

periods (in hours) for each pump (integer). 

Water quality: N/A. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

ACO, compared to 

hybrid GA (Van Zyl 

et al. 2004) and 

simple GA. 

 Time horizon is 24 hours. 

 The solution space is reduced by introducing a constraint on the number of 

pump switches, and having a decision variable representing on/off durations 

for each pump as opposed to a binary representation of on/off statuses for 

every hour of the day. 

 Rather than using a penalty function for constraint violations, the constraint 

violations are ordered by the importance and solutions are ranked. The 

ranking makes feasible solutions always preferable over infeasible solutions. 

 Test networks: (1) Small water distribution network (incl. 13 nodes) (Van Zyl 

et al. 2004), (2) Richmond WDS (incl. 836 nodes), UK. 

66. Ostfeld and Tubaltzev (2008) 

SO 

Optimal design and operation of WDSs 

including construction costs and annual 

operation costs using ACO. 

Objective (1): Minimise (a) the pipe 

construction costs, (b) annual pump 

operation costs, (c) pump construction 

costs, (d) tank construction costs, (e) 

penalty function for violating pressure at 

nodes. 

Constraints: (1) Min/max pressure at 

Water quality: N/A. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

ACO, compared to 

the previous study 

also using ACO 

 Time horizon is 24 hours, with a varied energy tariff. 

 Multiple loading conditions (demands) are used. 

 Sensitivity analysis is performed for algorithm parameters, such as the 

maximum number of iterations, the discretisation number, quadratic and 

triple penalty functions, the initial number of ants, the number of ants 

subsequent to initialisation, the number of best ants solutions for pheromone 

updating. 
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consumer nodes, (2) max water 

withdrawals from sources, (3) tank volume 

deficit at the end of the simulation period. 

Decision variables: (1) Pipe diameters, (2) 

pump power at each time interval. 

(Maier et al. 2003).  The proposed ACO produced better results than the ACO of Maier et al. 

(2003). However, it is difficult to anticipate which method is better in general 

as the performance always depends on model calibration for a specific 

problem. 

 Test networks: (1) Two-loop network with 3 sources (incl. 6 demand nodes) 

(Ostfeld and Salomons 2004), (2) Anytown network (incl. 16 nodes) (Walski 

et al. 1987) with modifications. 

67. Shamir and Salomons (2008) 

SO 

Optimal operation of WDSs in real-

time using a reduced model (RM) and 

GA. 

Objective (1): Minimise (a) the pump 

energy costs. 

Constraints: (1) Constraints on tank water 

levels, (2) constraints on demand junction 

pressures. 

Decision variables: (1) Pump statuses for 

fixed speed pumps, (2) valve statuses 

(pressure reducing and pressure regulating 

valves). 

Water quality: N/A. 

Network analysis: 

Unspecified solver 

(EPS), RM is used. 

Optimisation method: 

GA. 

 The paper is based on the POWADIMA work. ANN is not used, instead a 

reduced (skeletonised) model of the network is developed to reduce the 

simulation time. The RM is created by an algorithm developed by Ulanicki et 

al. (1996). 

 Time horizon is 24 hours, but only schedules for 1 hour ahead of the current 

time are implemented via SCADA. After 1 hour, the SCADA data is updated 

from the field data, which is used for the subsequent optimisation run to 

obtain new schedules and so on. 

 Unlike in the POWADIMA project, a simple demand forecast is used. 

Recorded daily quantities by pump stations in 2004 are used to produce 

demands, which are divided equally among the nodes according to an hourly 

pattern based on a similar WDS. 

 The skeletonised network reduces simulation time about 15 times. 

 The developed RM-GA methodology is tested for 2 months in 2004, January 

(low demands) and July (high demands). Compared to operation scheduled 

by the system operators, cost savings are in order of 10%. 

 Test networks: (1) Haifa-B WDS (incl. 867 nodes, a reduced model 77 

nodes), Israel. 

68. Cohen et al. (2009) 

SO 

Optimal operation of regional 

multiquality WDSs considering the 

total operation costs, inclusive of water 

supply, pump energy and water 

treatment costs using projected 

gradient method. 

Objective (1): Minimise the total cost of 

operation including (a) the water supply 

costs from sources, (b) pump energy costs 

at boosters (c) pump energy costs at pump 

stations, (d) water treatment costs, (e) yield 

reduction costs, (f) penalty costs for 

violating water quality constraints. 

Constraints: Limits on discharges for (1) 

boosters, (2) valves, (3) pump stations, (4) 

sources, (5) limits on pressure heads at 

customer nodes, (6) limits on pumping 

heads, (7) limits on opening ratio of 

valves, (8) quality parameter function 

(interdependency of quality parameters), 

(9) treatment limits on removal ratios. 

Water quality: 

Salinity, magnesium, 

sulphur, considered 

as conservative. 

Network analysis: 

Explicit mathematical 

formulation (steady 

state). 

Optimisation method: 

Projected gradient 

method. 

 An extension of the paper by Cohen et al. (2000c) using the same 

optimisation model and applied to the following three case studies: (i) 

network without treatment plants and salinity as the only water quality 

parameter, (ii) network with treatment plants and salinity as the only water 

quality parameter, (iii) network with treatment plants and three conservative 

water quality parameters. 

 The paper emphasises the relation between irrigation and drinking water 

supply through the same system, where there are agricultural irrigation 

customers on one hand and on the other hand village drinking water 

customers within one WDS. 

 Most of the paper is devoted to describing a real regional multiquality 

network in semi-arid climate in Israel with a complete hydraulic and water 

quality solution for optimal operation. 

 The results are as follows. In the case study (i), yield loss is the highest part 

of the total operation costs. In the case study (ii), the addition of treatment 



47 

 

Decision variables: Q-C-H problem: (1) 

circular flows, (2) removal ratios in 

treatment plants, (3) water quality 

distribution. Q0-H problem: (4) opening 

ratios of valves, (5) configurations of 

pump stations, (6) headlosses in control 

valves, (7) bypass flows. 

plants results in savings (more than one third) in the total operation costs, the 

majority of these savings are due to yield loss reduction. In the case study 

(iii), there are higher total operation costs than in (ii) but lower than in (i). 

 Test networks: (1) WDS of the Central Arava Valley (incl. 38 nodes), 

Southern Israel. 

69. Kang and Lansey (2009) 

SO 

Optimal operation of drinking WDSs in 

real-time combining optimal settings of 

valves and chlorine booster injection 

doses to improve water quality using 

GA. 

Objective (1): Minimise (a) the difference 

between the actual and specified minimum 

chlorine concentration at nodes. 

Constraints: (1) Min/max chlorine 

concentrations at nodes, (2) min/max 

pressure head at nodes, (3) volume deficit 

at tanks at the end of the decision period 

posed as limit on tank water level. 

Decision variables: (1) Source chlorine 

injection rates, (2) booster chlorine 

injection rates, (3) control valve settings 

(% of valve closure). 

Water quality: 

Chlorine. 

Network analysis: 

EPANET (EPS, and 

steady state to predict 

system pressure). 

Optimisation method: 

GA. 

 A real-time optimisation model is presented. Control valves are used to alter 

flow distribution and direct chlorine laden-water where required. 

 Demand forecasting is synthetically generated for each node during the 

simulation period by adding random deviations to base demand patterns. 

Demand forecasting is conducted every 6 hours. 

 To predict pressure at nodes, a steady state simulation is undertaken by 

EPANET to avoid overestimating the system pressure while demands are 

declining using an EPS. 

 Decision time step is 1 hour for both demand forecasts and decision 

variables. 

 For each run, only the first 6-hour solutions are implemented since a new set 

of decisions will be determined with improved demand forecasts after 6 

hours. 

 Test networks: Not specified. 

70. Ormsbee et al. (2009) 

SO 

A review of optimisation formulations, 

both explicit and implicit, used for a 

pump scheduling problem. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Min pressure at nodes, (2) 

pump starting time to be less than pump 

stopping time (for unrestricted explicit 

formulation). 

Decision variables: (1) Pump controls. 

Water quality: N/A. 

Network analysis: 

N/A. 

Optimisation method: 

N/A. 

 

 The paper reviews approaches to formulate a pump scheduling problem in 

terms of decision variables as follows. 

 (i) Implicit formulation: decision variables are represented by either pump 

flows, pump pressures or tank trigger levels. 

 (ii) Restricted explicit formulation: decision variables are represented by 

duration (in hours) of pump operation. 

 (iii) Unrestricted explicit formulation: decision variables are represented by 

start/end times for pump operations. 

 (iv) Composite explicit formulation: a single decision variable is introduced 

for each pump station and each time interval. It consists of an integer 

identifying pump combination which operates and time interval percentage 

during which this pump combination operates. This formulation significantly 

reduces the total number of decision variables. 

 Test networks: N/A. 

71. Pasha and Lansey (2009) 

SO 

Optimal pump operation in real-time 

using LP. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Min/max tank water 

levels, (2) bounds on pump station flows. 

Water quality: N/A. 

Network analysis: A 

simplified linear 

model (EPS). 

Optimisation method: 

 Time horizon is 24 hours divided into 1-hour intervals. 

 The optimisation problem is formulated as a LP problem, which is solved in 

real-time. The model is limited to a single tank system. 

 First, the WDS physical data is collected. Second, a simplified linear WDS 

model is developed based on offline extensive simulation using linear 
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Decision variables: (1) Pump station 

discharges. 

LP. regression. Third, forecast demands are derived. Fourth, a LP model is 

formed using these demands and the linear WDS model in order to determine 

the optimal pump stations discharges. Last, those discharges are converted 

into actual pump operations. 

 The global solution may not be guaranteed due to linearisation inaccuracies, 

but a comparable solution is obtained in real-time. 

 Test networks: (1) Anytown network (incl. 19 nodes) (Walski et al. 1987). 

72. Wu and Zhu (2009) 

SO 

Optimal pump operation considering 

both fixed and variable speed pumps 

using parallel computing and GA. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Limits on pressure at 

nodes, (2) limits on pipe flow velocity, (3) 

limits on storage tanks. 

Decision variables: (1) Pump schedules. 

Water quality: N/A. 

Network analysis: 

Unspecified solver 

(EPS). 

Optimisation method: 

fmGA. 

 Time horizon is 24 hours. 

 The paper compares different paradigms for parallel computing on a single 

multi core PC and a cluster of PCs: a task parallelism, data parallelism and 

hybrid parallelism. 

 A scalable and portable parallel optimisation framework is applied to a pump 

scheduling problem. The parallel computing model found the same solutions 

in less than 50% of execution time compared to the sequential model. It is 

concluded that N+1 processes seem to gain maximum speedup on an N-core 

CPU. 

 Test networks: (1) EPANET Example 3 (incl. 91 nodes) (USEPA 2013), 

adapted from Mays (2000). 

73. Alfonso et al. (2010) 

MO, SO 

Optimisation of operational responses 

by manipulating valves, hydrants and 

pumps to contamination of WDSs 

using NSGA-II and GA. 

Objective (1): Minimise (a) the number of 

polluted nodes (NPN), polluted at least one 

time step during the simulation period. 

Objective (2): Minimise (a) the number of 

the operational interventions (OIs) needed. 

Constraints: (1) Positive nodal pressures, 

(2) topological checking to ensure network 

connectivity, (3) technical operational 

capacity to implement interventions. 

Decision variables: (1) OIs for valves, 

hydrants and pumps (binary, 0 = 

closed/switched off, 1 = open/switched 

on). 

Note: One MO model including both 

objectives, one SO model combining 

objectives (1) and (2) into one objective 

function. 

Water quality: 

Conservative 

contaminant. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

MO: NSGAX 

software (Barreto et 

al. 2006) using 

NSGA-II; SO: 

GLOBE software 

(Solomatine 1999) 

using GA. 

 Objective (1) represents the damage to public health associated with the 

contamination of the network. A ‘polluted node’ is a node with pollution 

concentration above a specified threshold. 

 Objective (2) represents the operational effort required to set the network to a 

desirable condition (e.g. closing certain valves and/or opening hydrants for 

flushing the contaminant). In real life applications, however, the actual costs 

associated with the OI should be used. 

 Changing operation in pollutant affectation (COPA) module developed in 

Borland Delphi is used to link GLOBE/NSGAX with EPANET. 

 Due to the very large search space requiring an enormous computational 

effort, two-phase procedure is adopted to eliminate some of the decision 

variables during the optimisation process thus reduce the computation time. 

 For both test networks, three scenarios (SC1 to SC3) of injecting contaminant 

into the network are analysed. 

 Three basic factors exist in all solutions found, such as (i) isolating the 

contaminant, (ii) flushing it out and/or (iii) diluting it. 

 Test networks: (1) Simple hypothetical network with 41 pipes and 1 source 

(incl. 25 nodes), (2) real WDS in Villavicencio, Sector 11 (incl. 247 nodes), 

Colombia. 

74. Bene et al. (2010) 

SO 

Optimal pump operation using neutral 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge; demand charge included by 

Water quality: N/A. 

Network analysis: 

Explicit mathematical 

 Time horizon is 24 hours divided into 1-hour intervals, with peak and off-

peak energy tariffs used. 

 The principle of neutrality is used and implemented to balance the 
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search technique with micro GA. constraint (3)). 

Constraints: (1) Min/max reservoir 

capacity, (2) volume deficit in reservoirs at 

the end of the scheduling period, (3) upper 

limit on the total power consumed by a 

pump station (i.e. the limit on the number 

of pumps allowed to run simultaneously). 

Decision variables: (1) On/off pump 

statuses. 

formulation (friction 

losses considered 

negligible compared 

to the geodetic height 

differences, unsteady 

state). 

Optimisation method: 

Neutral search 

technique with micro 

GA (Coello and 

Pulido 2001). 

evolutionary search through grouping. Based on the objective function, 

similar individuals are grouped. Fitness functions are assigned to these 

groups, hence the individuals within a group have equal fitness. The aim is to 

decrease the selection pressure on the highly fit individuals introducing 

higher diversity. 

 The constraints are merged with the objective function as such that the 

superiority of feasible solutions over infeasible ones is strictly ensured. 

 Neutral search with micro GA is compared to two conventional GA 

approaches with constraints handled by the penalty method and the method of 

Powell and Skolnick (1993). Neutral search shows good performance without 

the need to fine tune parameters through experimentation. 

 Test networks: (1) Simplified model of a WDS of Sopron, Hungary. 

75. Broad et al. (2010) 

SO 

Optimal operation of WDSs for a 

planning horizon of 25 years using 

ANN and GA. 

Objective (1): Minimise (a) the energy 

costs for operating pumps (net present 

value (NPV) over 25 years), (b) capital 

costs of new chlorinators, (c) maintenance 

costs of existing and new chlorinators 

(NPV over 25 years), (d) costs of chlorine 

(NPV over 25 years), (e) penalty costs for 

violating minimum pressure, (f) penalty 

costs for violating residual chlorine 

concentrations.  

Constraints: (1) Min pressure at nodes, (2) 

min allowable residual chlorine 

concentration. 

Decision variables: (1) Tank trigger levels 

to control pumps, (2) chlorine dosing rates. 

Water quality: 

Chlorine. 

Network analysis: 

ANN (process-

driven, EPS) as a 

substitute for a 

hydraulic simulation 

model in order to 

provide savings in 

computational 

expenses; EPANET 

to train ANN. 

Optimisation method: 

GA. 

 An extension of the paper by Broad et al. (2005) catering for more complex 

WDSs inclusive of water quality considerations. 

 The metamodelling approach taken is to create several ANNs, one for each 

output (pressure, energy consumed, chlorine residual, etc.), as opposed to a 

single ANN with several outputs. This approach is used because “calibrating 

an ANN model for a single output generally improves predictive 

performance”. 

 Time horizon is 700 hours (i.e. maximum water age in the test network), 

cyclic 24-hour demand patterns are used, a hydraulic time step is 1 hour, 

water quality time step is 6 minutes. 

 The results show that for the test network, some degree of skeletonisation of 

the ANN model is required to achieve suitably accurate metamodels. 

 The best solution found represents a saving of 14% compared with the 

current operating regime with an estimated NPV of $1.56 million. ANN-GA 

run time was 1.4 hours compared to estimated EPANET-GA run time of over 

1,000 days. 

 Test networks: (1) WDS in Wallan (over 1,700 nodes), Victoria, Australia 

76. Gibbs et al. (2010a) 

SO 

Optimal operation of a real WDS 

including costs of pumping and 

disinfecting water using GA. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge; demand charge included by 

constraint (1)), (b) costs of dosing calcium 

hypochlorite tablets in reservoirs, (c) 

penalty costs for violating constraints. 

Constraints: (1) Peak electricity demand 

bound, (2) min chlorine concentration, (3) 

min water level in reservoirs, (4) volume 

deficit in reservoirs at the end of the 

simulation period, (5) min flow from one 

Water quality: 

Chlorine (first order 

decay). 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

GA. 

 Total chlorine is used as a surrogate for the chloramine, because only total 

chlorine measurements were available to calibrate the model. 

 Initially, the hydraulic model is calibrated, after which the chlorine decay 

model is added. The ‘triangular distribution’ model of calcium hypochlorite 

tablet dosing influence on the total chlorine concentration is developed. 

 The daily demand is forecast assuming it will be the same as the previous 

days demand obtained from SCADA. 

 Five different control periods over the day are used, these were derived from 

the electricity daily tariff. 

 Four different scenarios are used in the optimisation: with varying initial 

reservoir water levels, and with or without water quality constraints. For 
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of the water storages to the treatment plant. 

Decision variables: (1) Reservoir trigger 

levels to control pumps, (2) yes/no 

decisions for dosing calcium hypochlorite 

tablets in the reservoirs. 

scenarios without water quality constraints, time horizon is 24 hours. For 

scenarios with water quality constraints, time horizon is 57 hours to observe 

the influence of the tablet dosing in the network. 

 The solutions found can save up to 30% compared to the real operation of the 

system. Also by allowing reservoir levels to be lower overnight, more 

pumping can be shifted to the off-peak period. 

 Test networks: (1) Woronora WDS, Sydney, Australia. 

77. Gibbs et al. (2010b) 

SO 

Comparison of GA parameter setting 

methods in optimal operation of 

drinking WDSs. 

Objective (1): Minimise (a) the mass of 

chlorine added to the system at six 

possible locations. 

Constraints: (1) Min/max chlorine 

concentrations at nodes. 

Decision variables: (1) Mass of chlorine 

injected at each dosing point. 

Water quality: 

Chlorine. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

GA. 

 The paper compares the following six GA calibration methods: (i) 

parameterless GA, (ii) convergence due to genetic drift, (iii) GA with 

typically/commonly used parameter values, (iv)-(vi) all the previous methods 

in a self-adaptive framework. In the methods (i)-(iii), crossover and mutation 

are fixed, whereas in the methods (iv)-(vi) they self-adapt. 

 The results: All methods consistently located better solutions than the typical 

GA parameter values, indicating the importance of identifying suitable values 

for a particular case. Furthermore, the methods with fixed parameter values 

generally located better solutions than the methods with self-adapting values. 

 Test networks: (1) Cherry Hill-Brushy Plains portion of the South Central 

Connecticut Regional Water Authority network (incl. 34 nodes), U.S. (data 

same as in (Boccelli et al. 1998)). 

78. Kang and Lansey (2010) 

SO 

Optimal operation of drinking WDSs in 

real-time combining optimal settings of 

valves and chlorine booster injection 

doses to improve water quality using 

GA. 

Objective (1): Minimise (a) the excess 

chlorine residuals at the consumer nodes, 

(b) penalties for violating constraints. 

Objective (2): Minimise (a) the total mass 

of injected chlorine at sources/boosters, (b) 

as above. 

Constraints: (1) Min/max chlorine 

concentrations at nodes, (2) min/max 

pressure head at nodes, (3) min/max tank 

water level, (4) volume deficit at tanks at 

the end of the decision period posed as 

limit on tank water level. 

Decision variables: (1) Source water 

chlorine injection concentrations, (2) 

booster chlorine injection concentrations, 

(3) control valve settings (% of valve 

closure). 

Note: Two SO models, each including one 

objective. 

Water quality: 

Chlorine. 

Network analysis: 

EPANET (EPS, and 

steady state to predict 

system pressure). 

Optimisation method: 

GA. 

 An extension of the paper by Kang and Lansey (2009) including four 

operation cases as follows: (i) disinfectant supplied at a WTP with a constant 

injection rate, (ii) varied disinfectant injection rate, (iii) three additional 

booster stations with varied injection rates, (iv) additionally considers valve 

operation. 

 Time horizon is 24 hours which is acquired by four real-time runs performed 

every 6 hours. Nodal demands vary in space/time, hydraulic behaviour is 

non-periodic. 

 Pump operation schedules are assumed to be given. 

 A warm up simulation period is used for water quality analysis in order to 

obtain better initial concentrations. 

 Because demands do not change rapidly, solutions obtained on previous days 

can be used as initial solutions on the next runs, which saves time and 

provides better solutions as opposed to starting with a fully random initial 

population. 

 The results: Objectives (1) and (2) can be used equally as they are directly 

correlated. Using valves improves water quality by reducing disinfectant 

contact time and preventing slow moving water within the looped system. 

However, it can deteriorate water quality in tanks by increasing its residence 

times. A booster station is necessary for the nodes which are directly affected 

by water from tanks. 
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 Test networks: (1) Medium-sized WDS with 1 WTP, 5 pumps and 3 booster 

stations (incl. 67 nodes). 

79. Ostfeld et al. (2011) 

SO 

Optimal operation of multiquality 

WDSs including chemical water 

stability due to blended desalinated 

water using GA. 

Objective (1): Minimise (a) the pumping 

costs, (b) water treatment costs. 

Constraints: (1) Min pressure head at the 

consumer nodes, (2) min/max CCPP limits 

at the selected nodes, (3) max pH at the 

selected nodes, (4) tank volume deficit at 

the end of the simulation period. 

Decision variables: (1) Scheduling of the 

pumping units (binary), (2) alkalinity level 

required at each of the desalination 

treatment plants (real). 

Water quality: Total 

dissolved solids 

(TDS), alkalinity, 

temperature, acidity, 

calcium, CCPP, pH. 

Network analysis: 

EPANET (EPS), 

STASOFT4 

(Loewenthal et al. 

1988). 

Optimisation method: 

OptiGA (Salomons 

2001). 

 An aspect of chemical water instability, which can be a result of mixing 

desalinated water with surface and/or groundwater, is included in the optimal 

operation of WDSs. Chemical water stability is quantified through CCPP 

representing the precise potential of a solution to precipitate (or dissolve) 

CaCO3. 

 The solution scheme links three components: GA (OptiGA), EPANET and 

STASOFT4. EPANET simulates TDS, alkalinity, temperature, acidity, 

calcium as conservative parameters, STASOFT4 simulates CCPP and pH. 

Time horizon is 24 hours. 

 The intensive computational effort is highlighted, which needs to be 

addressed in further research. 

 Test networks: (1) Two-loop network with 3 sources (incl. 6 demand nodes) 

(Ostfeld and Salomons 2004), (2) EPANET Example 3 (incl. 94 nodes) 

(USEPA 2013). 

80. Bagirov et al. (2012) 

SO 

Optimal pump operation with explicit 

and implicit pump scheduling using 

grid search with Hooke-Jeeves method. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) penalty costs for violating 

constraint (4). 

Constraints: (1) Min/max water level at 

storage tanks, (2) volume deficit at storage 

tanks at the end of the scheduling period, 

(3) min/max pressure at nodes, (4) 

consecutive pump start/end run times, (5) 

limits on downstream pressure trigger 

values. 

Decision variables: (1) Pump start/end run 

times, (2) downstream pressure trigger 

values to control pumps. 

Water quality: N/A. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

Grid search with 

Hooke-Jeeves 

method. 

 The optimisation problem is formulated to combine the explicit and implicit 

pump scheduling into one optimisation model. Explicit pump schedules are 

represented by the start/end run times of pumps, while implicit pump 

schedules are represented by downstream pressure trigger values. 

 For the explicit pump scheduling, the number of pump switches is limited a 

priori. For the implicit pump scheduling, the number of pump switches, 

which is dependent on a difference between downstream pressure trigger 

values, can be defined by a user. 

 Time horizon is 24 hours, two energy tariffs are used. 

 Test networks: (1) Small water distribution network (incl. 13 nodes) (Van Zyl 

et al. 2004). 

81. Bene and Hos (2012) 

SO 

Optimal pump operation to fill a 

reservoir using series of the local 

optima (SLO) technique. 

Objective (1): Minimise (a) the pump 

energy costs to fill a reservoir. 

Constraints: Not specified. 

Decision variables: (1) Pump statuses 

(binary, 0 = pump off, 1 = pump on, for 

each time interval). 

Water quality: N/A. 

Network analysis: 

Simplified 

hydraulics. 

Optimisation method: 

SLO technique. 

 A problem of filling a reservoir using a variable speed pump is considered. 

Artificial but qualitatively proper performance curves are used. The time to 

fill up the reservoir is unbounded. Two scenarios are analysed: an infinitely 

large reservoir and a finite reservoir. 

 The method developed is based on sequentially updating the operating point 

corresponding to instantaneous minimal energy consumption, which is 

calculated analytically. 

 The SLO technique is compared to the multipurpose global optimisation 

solver SBB (GAMS 2014). The results show that the SLO technique gives 

similar results with significantly less computational effort. 
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 Test networks: (1) System with a source, a pump, a pipe network 

(representing losses), an upper reservoir and a node in which the consumption 

is concentrated. 

82. Giustolisi et al. (2012) 

MO 

Optimal operation of WDSs including 

the non-revenue water costs due to 

leakage and pump operating costs 

using GA. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) cost of non-revenue water 

(water losses) due to leakage. 

Objective (2): Minimise (a) the constraint 

(1), (b) the constraint (2), (c) the constraint 

(3). 

Constraints: (1) Min pressure for sufficient 

service expressed as the number of times 

in which it is not satisfied, (2) tank volume 

deficit at the end of the simulation period, 

(3) min tank levels as the number of times 

in which it is not satisfied, (4) max tank 

levels, (5) global mass balance in each 

tank during an operating cycle. 

Decision variables: (1) On/off statuses 

(binary) of pumps (and gate valves). 

Note: One MO model including both 

objectives. 

Water quality: N/A. 

Network analysis: 

Generalised steady-

state model, where 

EPS is performed as a 

sequence of steady 

state simulation runs. 

Optimisation method: 

WDNetXL 

(Giustolisi et al. 

2011) using 

optimised multi-

objective genetic 

algorithm 

(OPTIMOGA) 

(Laucelli and 

Giustolisi 2011). 

 A demand-driven analysis is used to calculate pressures, a pressure-driven 

analysis is used to calculate water losses. 

 Time horizon is 24 hours divided into 1-hour intervals, with a varied energy 

tariff. 

 During the optimisation process, if three constraints on minimum and 

maximum tank levels and minimum nodal pressure are not satisfied, the 

computation of EPS is stopped to reduce the computational burden. 

 Three scenarios for water leakage are considered, where water losses are 

10%, 20% and 40% of the daily volume of customer demands. Also, the case 

of only pumping cost is compared to the case of pumping and water loss 

costs. 

 It was found out that the pump energy costs and water losses due to leakage 

are conflicting objectives. Minimisation of just pump energy costs moves the 

pumping to the night time when the pressures in the system are higher and 

thus more leakage occurs. When the cost of non-revenue water is introduced, 

more pumping occurs during the day time and leakage reduces. 

 It was found that the non-revenue water cost dominates the energy cost of 

pumping water, although the unit volume cost of water is assumed rather low. 

Therefore, it could be a better practice to pump during the day time in order 

to control leaks. 

 Test networks: (1) Network with 1 reservoir, 3 pumps, 1 tank (incl. 30 

nodes). 

83. Gleixner et al. (2012) 

SO 

Optimal pump operation using MINLP. 

Objective (1): Minimise (a) the cost of 

purchasing water at the sources, (b) the 

pump operating costs (energy consumption 

charge). 

Constraints: (1) Min/max flows through 

pumps, (2) max pump head, (3) min/max 

flows through valves, (4) min/max flows 

through pipes, (5) min/max pressure at 

junctions, (6) pressure at sources is fixed. 

Decision variables: (1) On/off pump 

statuses (binary), (2) flow direction 

through valves (binary), (3) indicator 

whether node is real (binary), (4) flows in 

pipes (continuous). 

Water quality: N/A. 

Network analysis: 

Explicit mathematical 

formulation (steady 

state). 

Optimisation method: 

SCIP solver 

(Achterberg 2009) 

using branch and 

bound method for 

general MINLP 

problems. 

 The aim is to find the epsilon-globally optimal solution. 

 Problem specific presolving steps are used to reduce the size and difficulty of 

the model. These steps include merging subsequent pipes, contracting pipe-

valve sequences, etc. 

 A distinction is made between so called real and imaginary flows. Head 

levels at nodes without water (caused by a closed valve or inactive pump) and 

flow induced by these heads according to Darcy-Weisbach equation are said 

to be imaginary as opposed to real. Therefore, Darcy-Weisbach equation is 

enforced only between real nodes. 

 Two scenarios are tested: the first with all tanks half full, the second with 

certain tanks set to their minimum levels. 

 It is demonstrated that defined optimisation problems can be solved to global 

optimality in short running times in order of seconds. 

 Test networks: (1) Small network with 1 reservoir, 4 tanks, 12 pumps and 6 

valves (incl. 20 nodes), (2) large network with 15 reservoirs, 11 tanks, 55 
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pumps and 9 valves (incl. 62 nodes). 

84. Selek et al. (2012) 

SO 

Optimal pump operation using micro 

GA with constraint handling using 

neutrality. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge; demand charge included by 

constraint (6)). 

Constraints: (1) Min/max reservoir 

volumes, (2) volume deficit in reservoirs at 

the end of the scheduling period, (3) limit 

on the number of pump switches for well 

pumps (variable speed pumps), (4) max 

pump capacity, (5) min/max water volume 

delivered from wells, (6) upper energy 

limit. 

Decision variables: (1) Pump flows 

(integer for fixed speed pumps, continuous 

for variable speed pumps). 

Water quality: N/A. 

Network analysis: 

Not specified (EPS). 

Optimisation method: 

Micro GA with 

constraint handling 

using neutrality. 

 An extension of the paper by Bene et al. (2010) including detailed description 

of constraint handling using neutrality. 

 The principle of neutrality is that individuals in the same partition (rather than 

each individual) are assigned the same fitness value, so they do not dominate 

each other, thus have an equal probability to propagate through generations. 

The advantage of neutrality is to achieve a good tradeoff between 

exploitation and exploration. 

 Time horizon is 24 hours divided into 1-hour intervals. Initial flow rates are 

determined by operators and serve as an input for the optimisation algorithm. 

 The methodology is compared to constraint handing using a penalty 

approach, the Powell’s method (Powell and Skolnick 1993) and Deb’s 

method (Deb 2000). All are incorporated into a micro GA. 

 The results indicate that in terms of pump operating costs, there is a marginal 

improvement over the other methods, however there is a significant 

improvement of 37.6% in the speed. 

 Test networks: (1) WDS of Sopron, Hungary. 

85. Arai et al. (2013) 

SO 

Optimal operation of drinking WDSs 

using ISM and multipurpose fuzzy LP. 

Objective (1): Minimise total energy 

consumption for (a) water treatment at 

treatment plants, (b) supplying water from 

treatment plants, (c) water distribution 

from supply stations. 

Objective (2): Minimise (a) water quality 

distance. 

Constraints: (1) Max treatment capacity of 

WTPs, (2) the total water volume flowing 

into a reservoir must not exceed its 

volume, (3) the total water volume flowing 

into a distribution area must satisfy its 

demand. 

Decision variables: (1) Water volumes. 

Note: One SO model combining both 

objectives. 

Water quality: Total 

organic carbon 

(TOC). 

Network analysis: 

ISM (Warfield 1982) 

as a substitute for a 

hydraulic simulation 

model. Calculates 

(yearly) volumes. 

Optimisation method: 

LP, multipurpose 

fuzzy LP 

(Zimmermann 1978). 

 Two optimisation requirements are adopted to account for water quality: (i) 

the amount of organic substances contained in water and (ii) the distance 

travelled by water containing TOC should be minimal. 

 Decision variables represent water volumes to be supplied via WTPs and 

supply stations. 

 First, hierarchisation of the WDS is performed using ISM. Second, each 

objective is minimised separately using LP. Third, multipurpose fuzzy LP is 

used, where linear membership functions are applied to normalise and 

combine both objectives. By introducing a supplementary variable, a 

multipurpose fuzzy LP problem is converted into a standard LP problem. 

 A tradeoff of conflicting nature between total energy consumption and water 

quality is obtained. It is commented that the results are affected by the shape 

of membership function. 

 Test networks: (1) WDS including 11 WTPs, 9 supply stations and 10 water 

distribution districts. 

86. Bagirov et al. (2013) 

SO 

Optimal pump operation with start/end 

run times of pumps as decision 

variables using grid search with 

Hooke-Jeeves method. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). (b) penalty costs for violating 

constraint (4). 

Constraints: (1) Min/max water level at 

storage tanks, (2) volume deficit at storage 

tanks at the end of the scheduling period, 

Water quality: N/A. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

Grid search with 

Hooke-Jeeves 

method. 

 The proposed methodology significantly reduces the number of decision 

variables in the pump scheduling optimisation problem. 

 Time horizon is 24 hours, two energy tariffs are used. 

 The number of pump switches is limited a priori. 

 First, a set of pump schedules is generated using a grid. Second, hydraulic 

simulator EPANET is used to check the feasibility of the schedules. Third, 

the modification of Hooke-Jeeves method is applied to improve the feasible 
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(3) min/max pressure at nodes, (4) 

consecutive pump start/end run times. 

Decision variables: (1) Pump start/end run 

times, (2) binary indicator showing 

whether the pump is on or off at the initial 

time interval. 

schedules. The algorithm iterates between EPANET and Hooke-Jeeves 

method. Last, the local solutions identified are ranked, and the solution with 

the lowest objective function value is selected. 

 Test networks: (1) EPANET Example 3 (incl. 94 nodes) (USEPA 2013), (2) 

small water distribution network (incl. 13 nodes) (Van Zyl et al. 2004). 

87. Bene et al. (2013) 

SO 

Optimal pump operation using 

approximate dynamic programming 

(ADP). 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Objective (2): Minimise (a) the number of 

pump switches. 

Constraints: (1) Max power output of 

power supplies, (2) min/max flow from 

wells, (3) limit on the number of operating 

points of well pumps, (4) min/max limits 

for the exploited water for wells, (5) 

min/max reservoir volumes. 

Decision variables: (1) Pump flows 

(discrete for fixed speed pumps, 

continuous for variable speed pumps). 

Note: Two SO models, each including one 

objective. 

Water quality: N/A. 

Network analysis: 

‘Flow only’ model 

(EPS) (Cembrano et 

al. 2000). 

Optimisation method: 

ADP. 

 A modified approach to DP is used. The method is based on two key ideas. 

First, the network is split into smaller parts in order to reduce the state and 

action space of the solvable submodels compared to the original model. 

Second, the state space of the WDS is further reduced to the key reservoirs. 

 It is noted that due to the hilly terrain of the test network, the water level 

variations in the reservoirs and friction losses are negligible compared to 

geodetic heights. Hence, the operating point of the pumps can be determined 

in advance, so there is no need for hydraulic simulation during the 

optimisation process. 

 Time horizon is 24 hours divided into 1-hour intervals. 

 Nine test cases with different initial water volumes of the reservoirs are 

defined. 

 The results are compared with GA and six other general purpose 

deterministic solvers available from NEOS (2014). The benefits and 

drawbacks of these methods are highlighted. 

 Test networks: (1) WDS of Sopron, Hungary. 

88. Fanlin et al. (2013) 

SO 

Optimal location and injection rates of 

booster disinfectant stations for 

drinking WDSs using matrix based 

algorithm. 

Objective (1): Maximise (a) the coverage 

of the booster disinfection stations to the 

target nodes, which have a disinfection 

deficiency problem (so called ‘target 

cases’). 

Objective (2): Minimise (a) the 

disinfection injection rate. 

Constraints: (1) Positive injection rate, (2) 

lower/upper concentration limits at nodes. 

Decision variables: (1) Number of booster 

disinfection stations, (2) locations of 

booster disinfection stations, (3) injection 

rate (flow paced). 

Note: One SO model as a two-step single 

optimisation problem. 

Water quality: 

Chlorine (first order 

decay). 

Network analysis: 

EPANET (EPS) in 

the set up phase, 

linear superposition 

in the solution phase. 

Optimisation method: 

Matrix based 

algorithm.  

 The aim is to improve the current disinfection state of the network. 

 The solution procedure consists of two phases as follows. (i) Set up phase: 

EPANET is used to determine ‘target cases’. The candidate set of booster 

stations is, instead of subjectively selected, narrowed down to the disinfection 

weak points with the aid of the hydraulic calculation by particle backtracking 

algorithm (PBA) (Shang et al. 2002). (ii) Solution phase (approached as a 

two-step single optimisation problem): The optimisation is performed based 

on matrix calculations (so called ‘coverage matrix’) using the principle of 

linear superposition. If more than one solution with maximum coverage is 

obtained, the minimisation of the injection rates is performed. 

 It is assumed that the number of booster stations is known before the 

optimisation of locations and injection rates. After each optimisation, the 

number is increased by one and in the end a tradeoff is observed between the 

number of booster stations and improvement of the water quality in the 

network. 

 Hydraulic cycle is 24 hours divided into 1-hour monitoring intervals. 

 The results show that adding booster disinfection stations to 0.1% of nodes 

can satisfy the chlorine residual at about 97.5% of total nodes. 
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 Test networks: (1) WDS in Beijing (incl. 3,339 nodes), China. 

89. Giacomello et al. (2013) 

SO 

Optimal pump operation in real-time 

using a hybrid method where LP is 

combined with a greedy algorithm 

(LPG). 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Min pressure at nodes, (2) 

min/max tank water levels, (3) recovery of 

water levels in tanks at the end of the 

scheduling period, (4) constant reservoir 

levels. 

Decision variables: LP: (1) Hourly flow 

rates in all network pipes and pumps, (2) 

heads at all network nodes; Greedy 

algorithm: (1) hourly pump statuses for the 

pumps which are still on (i.e. open) after 

the execution of the LP method. 

Water quality: N/A. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

Hybrid LPG method. 

 Time horizon is 24 hours divided into 1-hour intervals. 

 Two stage optimisation method is used. Firstly, the optimisation model is 

linearised and LP applied to find a near optimal solution. Secondly, all the 

linearisation is removed and the greedy local search algorithm coupled with 

EPANET explores the vicinity of identified solutions to improve them. This 

procedure allows obtaining the solutions in a computationally efficient way. 

 For the Anytown network, the best solution found is compared to the 

previously obtained solution using GA (Vamvakeridou-Lyroudia et al. 2005). 

The optimal pumping costs are slightly lower than in the previous study, with 

computation time of 4 seconds. 

 For the Richmond network, GA was implemented for a comparison. The best 

solution found is 1.6% more expensive than the best solution by GA, 

however, it is found in 23 seconds only compared to 90 minutes by GA. 

 Test networks: (1) Anytown network (incl. 19 nodes) (Walski et al. 1987), (2) 

Richmond WDS (incl. 41 nodes), UK. 

90. Kougias and Theodossiou (2013) 

MO 

Optimal pump operation considering 

both energy and demand charges using 

HSA. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Objective (2): Minimise (a) the quantity of 

pumped water. 

Objective (3): Minimise (a) the electric 

energy peak consumption (demand 

charge). 

Objective (4): Minimise (a) the number of 

pump switches. 

Constraints: (1) Min/max water levels in 

storage tanks, (2) volume deficit at storage 

tanks at the end of the scheduling period 

(final discharges equal to ±10% of the 

daily demand). 

Decision variables: (1) Pump statuses. 

Note: Two MO models, the first including 

objectives (1), (2), (3), the second 

objectives (1), (2), (4). 

Water quality: N/A. 

Network analysis: 

Not specified (EPS). 

Optimisation method: 

MO-HSA and Poly-

HSA. 

 Time horizon is 24 hours divided into 1-hour intervals. 

 The modifications to a single objective HSA are made to cater for a MO case, 

which results in MO-HSA and the development of Poly-HSA. The algorithms 

are evaluated using standard multi-objective test functions (Zitzler et al. 

2000). 

 The performance of MO-HSA and Poly-HSA is evaluated using three 

performance metrics: C-metric, diversity metric - Δ and the hypervolume 

indicator. 

 Two penalty functions are used to handle constraints. The first penalty adds a 

constant value to the objective function for the solutions which violate tank 

water levels. The second penalty ensures that the solutions cover the ±10% 

range of the daily demand. Therefore, the second penalty adds an extra cost 

to the objective function, analogous to the distance from the defined range. 

 Test networks: (1) Operational pumping field, Paraguay. 

91. Kurek and Ostfeld (2013) 

MO 

Optimal operation of drinking WDSs 

including costs of pumping, water 

quality considerations and costs of 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Objective (2): Minimise (a) the evaluation 

function of disinfectant concentrations at 

Water quality: Water 

age and disinfectant 

(i.e. chlorine). 

Network analysis: 

EPANET (EPS). 

 An extension of the paper by Kurek and Ostfeld (2014) including additional 

objectives such as water age and tank costs. 

 Variable speed pumps are considered. 

 Two optimisation problems are solved, each includes a different water quality 

measure, the first chlorine concentrations and the second water age. 
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tanks using SPEA2. monitoring nodes (including tanks). 

Objective (3): Minimise (a) the water age 

for all nonzero demand nodes. 

Objective (4): Minimise (a) the costs of 

tanks. 

Constraints: (1) Pressure at nodes, (2) tank 

volume surplus/deficit at the end of the 

simulation period, (3) storage reliability 

constraint to guarantee a sufficient amount 

of stored water at any time. 

Decision variables: (1) Pump speeds (real), 

(2) disinfectant concentrations at treatment 

plants (real), (3) tank diameters (integer). 

Note: Two MO models, the first including 

objectives (1), (2), (4), the second 

objectives (1), (3), (4). 

Optimisation method: 

SPEA2 (Zitzler et al. 

2001). 

 The costs of tanks vary with the location and diameter. 

 Time horizon is 24 hours divided into 1-hour intervals. 

 The ‘balanced’ solution is selected according to the utopian mechanism 

(Miettinen 1999). 

 It was found out that the operation of the tanks is significantly different for 

two optimisation problems. In the first problem with chlorine concentrations, 

water levels in tanks nicely fluctuate. Whereas in the second problem with 

water age, water levels in tanks fluctuate much less or are almost constant. 

This operation for the second problem is caused by the exclusion of tanks 

from the objective (3) where only nonzero demand nodes are considered. 

 Test networks: (1) EPANET Example 3 (incl. 94 nodes) (USEPA 2013). 

92. Price and Ostfeld (2013a) 

SO 

Optimal pump operation with 

linearised Hazen-Williams (H-W) 

head-loss equation using LP. 

Objective (1): Minimise (a) the annual 

pump operation cost, (b) flow change 

penalty. 

Constraints: (1) Tank volume water 

balance closure over the optimisation 

period, (2) min/max tank water levels, (3) 

min/max pressure heads at nodes, (4) max 

total head at pumping stations. 

Decision variables: (1) Pipe flow rates, (2) 

total pump heads. 

Water quality: N/A. 

Network analysis: 

Explicit mathematical 

formulation 

(unsteady state). 

Optimisation method: 

COIN-OR (COIN-

OR 2014) using 

branch and cut LP 

method. 

 The paper deals with the linearisation of the H-W equation for subsequent use 

in a LP optimisation model. 

 Time horizon is 1 year or 1 week. 

 The methodology is based on a water balance model with no hydraulic 

equations (no head-loss equations). The model is extended to include the H-

W equation, which is partitioned into two sub-equations. The first sub-

equation represents the constant part of the H-W equation dependent only on 

pipe geometry. The second sub-equation represents the linearisation of the 

nonlinear flow Q1.852 as a linear equation, subject to linearisation coefficients. 

These two sub-equations are then combined into one linear H-W head-loss 

equation. 

 The linearisation algorithm is developed. At each iteration of the optimisation 

algorithm, linearisation coefficients are updated. The advantage of the 

proposed methodology is short solution times. 

 Test networks: (1) Basic WDS with 1 pump (incl. 2 nodes), (2) complex 

WDS with 3 pressure zones (incl. 15 nodes). 

93. Price and Ostfeld (2013b) 

SO 

Optimal pump operation with 

linearised H-W head-loss and leakage 

equations using LP. 

Objective (1): Minimise (a) the annual 

pump operation cost, (b) source cost 

penalty, (c) flow change penalty. 

Constraints: (1) Max pump station flow 

rate, (2) water leakage equation, (3) flow 

change constraint, (4) min/max water tank 

volumes, (5) min/max heads at nodes, (6) 

max total head at pumping stations. 

Water quality: N/A. 

Network analysis: 

Explicit mathematical 

formulation 

(unsteady state). 

Optimisation method: 

GAMS/CLP (COIN-

OR 2014). 

 An improved version of the iterative linearisation method (Price and Ostfeld 

2013a) is proposed. 

 The H-W head-loss equation, water leakage equation and pump energy 

consumption equation are linearised. Water leakage is pressure-dependent. 

 Time horizon is 1 week divided into 1-hour intervals. 

 Fixed speed pumps are not handled because their inclusion would transform 

the original smooth NLP problem into a discrete mixed integer programming 

(MIP) problem. 
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Decision variables: (1) Pipe flow rates, (2) 

leakage at nodes, (3) total pump heads. 
 The flow change penalty is introduced to all iteration steps to prevent solution 

oscillation, which occurs between two similar solutions in the final iteration 

steps and prevents convergence. It was found out that the flow change 

penalty helps to reach the optimal solution in less iteration steps. 

 Several scenarios (cases) are analysed, constraints are increasingly 

implemented into scenarios. 

 Test networks: (1) Complex WDS with 3 pressure zones (incl. 15 nodes). 

94. Ghaddar et al. (2014) 

SO 

Optimal pump operation using 

Lagrangian decomposition with 

improved limited discrepancy search 

(ILDS) algorithm. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Upper bound for pipe 

flows, (2) pump must be on for the water 

to flow in the corresponding pipe, (3) 

min/max tank water levels, (4) 

nonnegativity for pipe flows, (5) min 

length of time for a pump to be on, (6) min 

length of time for a pump to be off, (7) 

max number of pump switches, (8) no 

deficit in tanks at the end of the simulation 

period. 

Decision variables: (1) Pipe flows, (2) pipe 

headlosses, (3) node pressures, (4) pump 

statuses (binary, 0 = pump off, 1 = pump 

on). 

Water quality: N/A. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

Lagrangian 

decomposition 

combined with ILDS. 

 Lagrangian decomposition, which is a relaxation, breaks the original problem 

into smaller subproblems. Due to the relaxation of the original problem, the 

solutions of the subproblems may not be feasible for the original problem. 

Hence, a heuristic ILDS is used to find feasible solutions. The ILDS provides 

an upper bound on the optimal objective function value, while the Lagrangian 

relaxation provides a lower bound, so the proposed approach provides 

solutions of guaranteed quality. 

 The approach is compared with the MILP relaxation of the original MINLP 

problem, which is solved by CPLEX. 

 Time horizon is 24 hours, and the decisions to turn a pump on or off are made 

at 30 minute intervals. 

 Two electricity pricing schemes are used. First, a fixed day/night scheme; 

second, a dynamic scheme with prices changing every 30 minutes. 

 The results show that the ILDS can find better solutions than CPLEX in 

significantly less time. Optimised pump schedules typically lead to a decrease 

in tank water levels. 

 An impact of electricity pricing schemes on the pump operating costs is 

evaluated. The dynamic pricing results in up to 34% of cost reduction. 

 Test networks: (1) Small network with 1 reservoir, 2 pumps, 2 tanks (incl. 1 

node), (2) Poormond network (incl. 47 nodes) adapted from Richmond 

network (Giacomello et al. 2013). 

95. Goryashko and Nemirovski (2014) 

SO 

Optimal pump operation with demand 

uncertainty using LP. 

Objective (1): Minimise (a) the pump 

operating costs (including two 

components: energy consumption charge 

and the price of water). 

Constraints: (1) Bounds on tank levels, (2) 

bound on pump capacity, (3) bound on 

source capacity. 

Decision variables: (1) The amount of 

water pumped into the system during a 

time interval. 

Water quality: N/A. 

Network analysis: 

Explicit mathematical 

formulation/ 

EPANET (EPS). 

Optimisation method: 

MOSEK software 

(MOSEK 2014) using 

LP. 

 The original problem of minimisation of pumping cost is simplified to a LP 

problem, in which the demands are treated as uncertain. To cater for demand 

uncertainty, the robust counterpart methodology is employed, which involves 

obtaining the ‘worst-case’ cost over all possible data from the ‘uncertainty 

set’, ensuring that all the constraints are satisfied for all realisations of the 

demands. Using the robust counterpart methodology, the uncertain LP model 

is converted to a linearly adjustable robust counterpart. The results obtained 

are referred to as linear robust optimal (LRO) policy. 

 Time horizon is 24 hours divided into 1-hour intervals. 

 The obtained LRO policy with the uncertainty level set to 20% is tested in 

EPANET to ensure the appropriate hydraulic behaviour. For testing purposes, 

the demands were perturbed in EPANET. The results show that the warnings 
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in EPANET (negative pressure etc.) start appearing when the perturbations 

become as large as 50%. 

 Test networks: (1) Anytown network (incl. 19 nodes) (Walski et al. 1987) 

with modifications. 

96. Ibarra and Arnal (2014) 

SO 

Optimal pump operation using parallel 

programming techniques and MIP. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Min/max operational tank 

volumes, (2) the number of start/stop 

events of the pumps. 

Decision variables: (1) Pump statuses 

(binary, 0 = pump off, 1 = pump on during 

a time interval), (2) special binary 

variables Ai and Pi to model start/stop 

events of the pumps (they are used to 

reduce the number of start/stop events). 

Water quality: N/A. 

Network analysis: 

Explicit mathematical 

formulation, 

simplified hydraulic 

equations (unsteady 

state). 

Optimisation method: 

COIN-OR libraries 

(COIN-OR 2014) 

using branch and 

bound method and 

demand prediction. 

 The optimisation problem is formulated as a MIP problem. 

 Time horizon is 24 hours. 

 The near real-time optimal pump scheduling is proposed based on the 

demand forecast. The demand forecast is determined every hour for the next 

24 hours and the next 7 days using the seasonal autoregressive integrated 

moving average (SARIMA) (Makridakis et al. 2008) models from the 

statistical time series theory. 

 The parallel programming is implemented on both shared and distributed 

memory multiprocessors. The stochastic scenario tree evaluation and 

multisite problems (multiple networks controlled from a single control 

centre) are solved. 

 Test networks: (1) WDS of Granada, Spain. 

97. Hashemi et al. (2014) 

SO 

Optimal pump operation considering 

variable speed pumps using ACO. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Volume deficit in tanks at 

the end of the simulation period. 

Decision variables: (1) Pump speeds for 

each interval. 

Water quality: N/A. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

Ant system iteration 

best (ASib) algorithm. 

 Time horizon is 24 hours divided into 1-hour intervals. 

 Sensitivity analysis to find the best performing values of ASib stochastic 

parameters is performed. 

 For the Richmond network, the results with single speed pumps are compared 

to the results with variable speed pumps. Cost savings of about 10% are 

obtained for the network with variable speed pumps. 

 For the Anytown network, the size of the search space is reduced using two 

approaches, ‘Replacing reservoir’ (RR) and ‘In-station scheduling’ (ISS). RR 

involves replacing one of the pumping stations by the reservoir and 

optimising head and flow supplied by that reservoir. The decision variable is 

the water level. ISS involves transforming obtained heads and flows to a 

pump schedule. The search space is reduced more than 1038 times. 

 Test networks: (1) Simplified Richmond WDS (incl. 13 nodes) (Van Zyl et 

al. 2004), (2) optimised design of the Anytown network (incl. 22 nodes) 

(Murphy et al. 1994). 

98. Kurek and Ostfeld (2014) 

MO 

Optimal operation of drinking WDSs 

including pumping cost and water 

quality objectives using SPEA2. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Objective (2): Minimise (a) the evaluation 

function of disinfectant concentrations at 

monitoring nodes. 

Constraints: (1) Pressure at nodes, (2) tank 

volume surplus/deficit at the end of the 

Water quality: 

Disinfectant (i.e. 

chlorine). 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

SPEA2 (Zitzler et al. 

2001). 

 Variable speed pumps are considered. 

 Time horizon is 72 hours divided into 1-hour intervals. Only the last 24 hours 

are used to evaluate the values of objective functions and constraints in order 

to minimise the effect of initial conditions. 

 Tradeoffs between energy consumed by pumps and water quality are 

obtained: more energy consumed by pumps results in better water quality, 

conversely, limiting the amount of energy consumed by pumps results in 

deterioration of water quality. 
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simulation period, (3) storage reliability 

constraint to guarantee a sufficient amount 

of stored water at any time. 

Decision variables: (1) Pump speeds (real), 

(2) disinfectant concentrations at treatment 

plants (real). 

Note: One MO model including both 

objectives. 

 Sensitivity analysis is performed to test the change in energy tariffs to the 

solution, indicating the higher use of pumps during the cheap tariff. 

 An introduction of the storage reliability constraint (3) caused the algorithm 

to reduce the volume of water stored. Sensitivity analysis is performed to test 

the change in volume of water stored to the solution. An increase in volume 

of water stored caused an increase in energy consumed by pumps and 

deterioration of water quality. 

 Test networks: (1) Anytown network (incl. 16 nodes) (Walski et al. 1987), (2) 

EPANET Example 3 (incl. 94 nodes) (USEPA 2013). 

99. Mala-Jetmarova et al. (2014) 

MO 

Optimal operation of regional 

multiquality WDSs including pumping 

cost and water quality objectives using 

NSGA-II. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) penalty costs for violating 

constraints. 

Objective (2): Minimise (a) the deviations 

of the actual constituent concentrations 

from the required values, (b) as above. 

Constraints: (1) Min pressure at customer 

demand nodes, (2) min/max water levels at 

storage tanks, (3) volume deficit in storage 

tanks at the end of the scheduling period. 

Decision variables: (1) Pump statuses 

(binary, 0 = pump off, 1 = pump on during 

a time interval). 

Note: One MO model including both 

objectives. 

Water quality: 

Unspecified 

conservative 

parameters. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

NSGA-II. 

 Tradeoffs between water quality and pumping costs are explored using 14 

scenarios, which reflect different water quality conditions in the source 

reservoirs. A time variability for the source water quality as well as customer 

requirements is introduced. 

 Time horizon is 24 hours divided into 1-hour intervals. 

 It was discovered that for the majority of the scenarios, there is a tradeoff 

with a competing nature between the objectives. It was also discovered that 

the problem can be reduced, in certain instances, to a single-objective 

problem. This outcome is dependent upon the water quality configuration of 

the system (i.e. how source water qualities relate to customer water quality 

requirements), and upon the system operational flexibility. 

 Some particular conclusions are drawn for both a WDS with multiple water 

sources and a WDS with a single water source, which suggest how changes in 

source water qualities or customer water quality requirements may impact on 

the system operation. 

 Test networks: (1) Network with 3 sources (incl. 9 nodes) (Ostfeld and 

Salomons 2004; Ostfeld et al. 2011), (2) Anytown network (incl. 19 nodes) 

(Walski et al. 1987). 

100. Price and Ostfeld (2014) 

SO 

Optimal pump operation including 

leakage using LP. 

Objective (1): Minimise (a) the annual 

pump operation cost, (b) sum of the 

penalty variable given by the discrete 

pump operation constraint (3), (c) flow 

change penalty. 

Constraints: (1) Max pump station flow 

rate, (2) water leakage equation, (3) 

discrete pump operation constraint, (4) 

flow change constraint, (5) min/max water 

tank volumes, (6) min/max heads at nodes, 

(7) max total head at pumping stations. 

Decision variables: (1) Pipe flow rates, (2) 

leakage at nodes, (3) total pump heads. 

Water quality: N/A. 

Network analysis: 

Explicit mathematical 

formulation 

(unsteady state). 

Optimisation method: 

GAMS/CLP (COIN-

OR 2014). 

 An extension of the papers by Price and Ostfeld (2013a) and Price and 

Ostfeld (2013b) including a discrete pump operation algorithm which 

encourages the continuous pump operation over time without frequent pump 

switching. 

 Time horizon is 1 month, 1 week or 1 day divided into 1-hour intervals. 

 Iterative LP is used, which iteratively introduces a discrete pump operation 

constraint into the optimisation model encouraging the pump to work for the 

whole time interval. The iterative process calculates an index, which is high 

for the pumping intervals with high flow rates and low energy consumption. 

The constraint is introduced to the pumping interval with the highest index. 

The model is reevaluated at each iteration, with constraints being removed 

from the intervals which failed the constraint (due to water balance or water 

head constraints) and added to the new intervals with a high index. The 
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process stops when all the time intervals have been covered. 

 For a small test network, the methodology is compared to a complete 

enumeration, with the optimal cost being within 0.2% of the global 

minimum. For more complex networks, several scenarios are analysed 

including changes in tank volumes, nodal head constraints, presence /absence 

of leakage etc. 

 Test networks: (1) Basic WDS with 1 pump (incl. 2 nodes), (2) complex 

WDS with 3 pressure zones (incl. 15 nodes), similar to Price and Ostfeld 

(2013b), (3) large network with 5 pressure zones (incl. 75 nodes). 

101. Reca et al. (2014) 

SO 

Optimal pump operation of irrigation 

systems using LP. 

Objective (1): Minimise (a) the annual 

pump operating costs (energy consumption 

charge). 

Constraints: (1) Max pumping capacity of 

each pumping system for each period, (2) 

min/max storage capacity, (3) restriction 

on a total pumped volume to prevent 

volume deficit at storages in the final 

period, (4) nonnegativity constraints on 

variables. 

Decision variables: (1) Water volumes 

pumped for each pumping system in each 

price discrimination period.  

Water quality: N/A. 

Network analysis: 

Explicit mathematical 

formulation 

(unsteady state), with 

the operating points 

confirmed by 

EPANET. 

Optimisation method: 

Revised simplex 

method. 

 The optimisation problem is formulated as a LP problem. 

 The model is aimed to help decision makers identify which energy tariff 

structures are more economical and determine optimal pumping policies. 

Three electricity tariff structures, which differ in the number of tariff periods, 

prices in each period and their daily and annual distribution, are examined. 

 The test network consists of 15 submerged pumps which lift water from 3 

groups of wells, and 3 booster stations which deliver water to the network. 

The system is simplified as follows. Each group of wells is replaced by one 

equivalent pump, the joint operation of every well group and its associated 

booster station is modelled as two pumping systems in series, the hourly 

demands are estimated from the daily demands using a daily mean demand 

pattern. 

 Two operating scenarios are compared: pump stations operating 

simultaneously or independently. An independent operation proves to be 

more energy efficient. 

 Test networks: (1) Irrigation WDS, Almeria, Spain. 

102. Wu et al. (2014a) 

SO 

Optimal operation of parallel pumps to 

achieve their best operating point using 

GA. 

Objective (1): Minimise (a) pump power. 

Constraints: (1) Min/max rotational speed 

ratios, (2) min/max flow rates for each 

pump, (3) head of each pump greater than 

demanded head. 

Decision variables: (1) Pump rotational 

speed, (2) valve positions. 

Water quality: N/A. 

Network analysis: 

N/A. 

Optimisation method: 

GA. 

 The aim is for pumps to operate as close as possible to the designed 

conditions at their maximum efficiency. 

 The results indicate that control valves help improve efficiency and reliability 

of a single pump. However, valve throttling losses cause a significant decline 

in efficiency in the system of parallel pumps. 

 Test networks: (1) Two identical parallel pumps, (2) multiple parallel pumps 

with different characteristics. 

103. Wu et al. (2014b) 

SO 

Optimal disinfectant dosing rate in 

chloraminated drinking WDSs using 

ANN and GA. 

Objective (1): Minimise (a) maximum 

absolute relative error for the total chlorine 

and free ammonia levels. 

Constraints: (1) Lower/upper bounds of 

ammonia dosing rate, (2) the target value 

for total chlorine, (3) the target value for 

free ammonia. 

Decision variables: (1) Ammonia dosing 

Water quality: 

Chloramine, chlorine, 

ammonia. 

Network analysis: 

ANN (data-driven, 

EPS) to forecast both 

total chlorine and free 

ammonia levels. 

 The objective is to control total chlorine and free ammonia levels to be close 

to their desired values. 

 The water in the test network is used for both agricultural and domestic 

purposes. 

 There is no process-based hydraulic/water quality model for the test network. 

Therefore, a data-driven ANN model is developed to forecast both total 

chlorine and free ammonia levels. Data for the development of the ANN 

model was gathered from the SCADA system and was converted into hourly 
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rate at the source. Optimisation method: 

GA. 

average values. 

 Time horizon is 5 days (120 hours). 

 It is demonstrated that the model predictive control system for a 

chloraminated WDS can potentially provide additional information to water 

quality operators on dosing rate control. 

 Test networks: (1) Goldfield and agricultural water system, Perth, Australia. 

104. Kim et al. (2015) 

SO 

Optimal pump operation using DP. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Constraints: (1) Max daily pumping 

capacity, (2) min/max limit for reservoir 

storage capacity, (3) min/max limit for 

pipe conveyance from pump station to 

reservoir. 

Decision variables: (1) Pump schedules. 

Water quality: N/A. 

Network analysis: 

Not specified (EPS). 

Optimisation method: 

CSUDP program 

(Labadie 1999) using 

DP. 

 Time horizon is 24 hours. Electricity tariff varies with the time of the day and 

the seasons. 

 Four pump operating scenarios are tested. These include the inclusion of 

standby pumps and different demands, demand patterns and electricity tariff. 

 The results demonstrate that operating standby pumps together with existing 

pumps is more effective due to taking a full advantage of low electricity 

tariff. Optimised pump schedules represent cost savings of 6.3% compared to 

the current mode of operation, and cost savings of 19.2% while using standby 

pumps. 

 Test networks: (1) YangJu, Korea. 

105. Mala-Jetmarova et al. (2015) 

MO 

Optimal operation of regional 

multiquality WDSs including pumping 

cost and two water quality objectives 

using NSGA-II. 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge), (b) penalty costs for violating 

constraints. 

Objective (2): Minimise (a) the turbidity 

deviations from the allowed values, (b) as 

above. 

Objective (3): Minimise (a) the salinity 

deviations from the allowed values, (b) as 

above. 

Constraints: (1) Min pressure at customer 

demand nodes, (2) min/max water levels at 

storage tanks, (3) volume deficit in storage 

tanks at the end of the scheduling period. 

Decision variables: (1) Pump statuses 

(binary, 0 = pump off, 1 = pump on during 

a time interval). 

Note: One MO model including all 

objectives. 

Water quality: 

Turbidity, salinity, 

considered as 

conservative. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

NSGA-II. 

 The optimal system operation is analysed using six network scenarios, which 

represent different water quality conditions in two source reservoirs in terms 

of turbidity and salinity levels. These water quality conditions as well as 

different customer types were adapted from a real system titled the Wimmera 

Mallee Pipeline, western Victoria, Australia. 

 Time horizon is 5 days (120 hours) divided into 1-hour intervals. 

 It was discovered that two types of tradeoffs, competing and noncompeting, 

exist between the objectives and that the type of a tradeoff is not unique 

between a particular pair of objectives for all scenarios. The nature of a 

tradeoff between pumping costs and water quality objectives, and between 

multiple water quality objectives, can be categorised by consistent water 

quality (CWQ) or inconsistent water quality (IWQ) sources. These sources 

are identified based on the relationship between water quality conditions in 

source reservoirs and customer water quality requirements. 

 The proposed methodology can assist in the long-term operational planning 

for the optimal pump and water quality control. 

 Test networks: (1) EPANET Example 3 (incl. 94 nodes) (USEPA 2013). 

106. Odan et al. (2015) 

MO 

Optimal pump operation in real-time 

including demand forecasting and 

system operational reliability using a 

Objective (1): Minimise (a) the pump 

operating costs (energy consumption 

charge). 

Objective (2): Maximise (a) operational 

reliability. 

Water quality: N/A. 

Network analysis: 

EPANET (EPS). 

 The operational reliability objective is represented by four alternative 

measures: (i) entropy, (ii) modified resilience index, (iii) minimum reservoir 

level, (iv) surplus head. 

 Demand forecasting is performed 24 hours ahead using the hybrid dynamic 

neural network (DAN2-H) (Odan and Reis 2012). 
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multialgorithm genetically adaptive 

method (AMALGAM). 

Constraints: (1) Min pressure at any 

network node, (2) tank water levels at the 

end of the scheduling period, (3) max 

number of pump switches, (4) occurrence 

of hydraulic simulation errors and negative 

pressures. 

Decision variables: (1) Pump statuses 

(binary, 0 = pump off, 1 = pump on). 

Note: One MO model including both 

objectives. 

Optimisation method: 

AMALGAM (Vrugt 

and Robinson 2007). 

 To reduce the search space, decision variables are combined applying relative 

time control triggers (Lopez-Ibanez et al. 2011). 

 Time horizon is 24 hours divided into 1-hour intervals. The optimisation is 

performed every hour for the next 24 hours, with only the first hour pump 

schedule being implemented. Optimised pump schedules are postprocessed to 

ensure that the nominated number of pump switches is not exceeded. 

 Real-time data from the SCADA system is used for the optimisation and 

optimal pump schedules implemented back via SCADA. 

 The reliability measures based on a minimum reservoir level and surplus 

head seem the most suitable for real-time pump scheduling. The results 

demonstrate 13% of energy cost savings compared to the historical system 

operation. 

 Test networks: (1) Araraquara WDS (incl. 1,236 nodes), São Paulo, Brazil. 

107. Stokes et al. (2015a) 

MO 

Optimal pump operation including 

GHG emissions using NSGA-II. 

Objective (1): Minimise (a) the pump 

operating costs (as the cost of electricity). 

Objective (2): Minimise (a) the GHG 

emissions associated with the use of 

electricity from fossil fuel sources for 

pumping purposes. 

Constraints: (1) Min pressure at network 

nodes, (2) min total volume of water 

pumped into each district metered area. 

Decision variables: (1) Pump schedules 

(integer). 

Note: One MO model including both 

objectives. 

Water quality: N/A. 

Network analysis: 

EPANET (EPS). 

Optimisation method: 

NSGA-II. 

 Different emission factors (EFs), the majority of them time-varying, are used. 

These include the actual 1-year EF, average EF, estimated 24-hour EF curve, 

and modified estimated 24-hour EF curve including various amounts of 

renewable energy generated. Sensitivity analysis of six scenarios with 

different EFs is performed. 

 Time horizon of 7 days or 1 year is used dependent on the scenario. 

 The results indicate that (i) optimal solutions can be significantly affected by 

time-varying EFs, (ii) estimated 24-hour EF curves can be used to accurately 

replace actual EFs, and (iii) the amount of renewable energy generated can 

affect the magnitude of EF time variations, thus optimal solutions. 

 Test networks: (1) D-Town network (incl. over 350 demand nodes) 

(Salomons et al. 2012). 

Note: *SO = Single-objective (approach/model), MO = Multi-objective (approach/model). +Objective function is referred to as ‘objective’ in the column below due to space savings. 

**Conservation of mass of flow, conservation of energy, and conservation of mass of constituent (for water quality network analysis) are not listed. ++Control variables are listed, state variables 

resulting from network hydraulics are not necessarily listed. ?D = Design. ??OP = Operation. 
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