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Highlights 
 We present an approach to simulate climate and energy policy for the EU

 We reviews core challenges and approaches for modelling climate and energy

 We developed a flexible and modular agent-based modelling approach and a toolbox

 We present an configurable agent-based model of investment in power generation

 We describe a flexible model core and separate policy modules

Abstract 
We present an approach to simulate climate and energy policy for the EU, using a flexible and 

modular agent-based modelling approach and a toolbox, called the Energy Modelling Laboratory 

(EMLab). The paper shortly reviews core challenges and approaches for modelling climate and 

energy policy in light of the energy transition. Afterwards, we present an agent-based model of 

investment in power generation that has addressed a variety of European energy policy questions. 

We describe the development of a flexible model core as well as modules on carbon and renewables 

policies, capacity mechanisms, investment behaviour and representation of intermittent renewables. 

We present an overview of modelling results, ongoing projects, a case study on current reforms of 

the EU ETS, and we show their relevance in the EU context.  

Keywords: Agent-based modelling; energy transition; energy and climate policy; energy modelling 

laboratory; investment 

1. Introduction
We face inherent uncertainties regarding how our energy infrastructures can be shaped towards our 

policy objectives of a sustainable, affordable and secure supply of energy. While policy objectives are 

becoming more ambitious and firm, i.e. the COP21 agreement in Paris, it is yet unclear what would 

constitute the best set of policies for an effective and efficient transition. We cannot just rely on 

targets and we cannot expect the market to act by itself [1]. The question is how to intervene in the 

complex dynamics of our energy infrastructures [2].  
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In this paper, we present an agent-based modelling approach for designing and evaluating energy 

and climate policy. We do so with modular approach aiming to represent much detail of European  

electricity systems (cf. a complicated model as described in [3]). Therefore, the core objective of this 

paper is to illustrate how agent-based modelling can support energy and climate policy analysis. We 

focus on our model of the decarbonisation of the power sector, in particular on how energy and 

climate policy affects investment in electricity generation. The effects of policies, such as the 

European emissions trading scheme [4], are core to the analysis. The Energy Modelling Laboratory 

(EMLab) was developed to complement existing approaches in analysing policies for improving the 

EU emissions-trading scheme (EU ETS). This includes national CO2 price restrictions, the interaction of 

the EU ETS with national renewables policies and policy schemes for maintaining security of 

electricity supply under large scale renewables deployment. At the end of the day, we aim to 

contribute to the methodological question of how to model the impacts of interventions in complex 

dynamic systems.  

The decarbonisation of the power sector requires large investments. These investments are risky: 

they are capital intensive, the regulatory framework is in flux and the costs of resources such as fuel 

and CO2 are uncertain. The long lead times of investments (due to permitting and construction times) 

and the long life cycles of power sector assets create a delayed response and a physical path 

dependence. As a result, the power system is never in a long-term economic equilibrium. Imperfect 

behaviour of actors, such as investor and consumer risk aversion complicates the sector dynamics. 

Policy instruments may affect the objectives of other instruments; for example, renewable energy 

support affects generation adequacy as well as CO2 policy. These instruments may also create spill-

over effects into adjacent markets with which electricity is exchanged, e.g. in the form of cheap 

exports and/or price volatility. 

These factors need to be modelled in order to analyse the expected effectiveness of policy 

interventions. A policy that is aimed at stabilizing the system such as a capacity market or the Market 

Stability Reserve in the European Emission Trade System cannot be modelled with an equilibrium 

model. Such a model would assume the problem away, rendering an intervention by definition 

useless. Compound effects of multiple instruments, risk aversion of actors, physical path dependence 

and cross-border effects are also difficult to model with conventional models. Agent-based modelling 

can handle these aspects more easily. In this paper, focus on how to design an ABM that is suited for 

answering these types of questions.  

The structure of this paper is as follows: we illustrate the modelling questions that matter for the 

energy transition and outline the complementarity of agent-based modelling to current approaches 

(section 2), we describe the modelling laboratory (section 3), the main research projects and results 

were obtained with using it (section 4), supported by a case study about the improved proposal for 

the Market Stability Reserve (section 5) and end with conclusions (section 6).  

2. Modelling policies for the energy transition: existing approaches, 

challenges and the need for an agent-based toolbox 
Currently the policy objective in Europe is to decarbonize the electricity sector in the next decades. In 

this section, we highlight the challenges for energy and climate policy modelling, we introduce three 

dimensions to analyse existing modelling approaches, we shortly review the existing approaches and 

the need for an agent-based toolbox. We start from the desire to explore what the likely 



consequences are of (proposed) energy and climate policies with respect to achieving the policy 

objective(s) of energy saving, renewables and CO2 reduction. At the same time the energy and 

climate goals shall be in line with preserving affordability and security of energy supply. Numerous 

climate and energy policy instruments are needed to drive these radical changes; the most important 

climate policy in Europe is the EU emissions-trading scheme (EU ETS). The ongoing efforts to improve 

the performance of the EU ETS [5], and the debate around the German ‘Energiewende’ [6] illustrate 

the huge challenge of getting the ‘right’ policies in place for achieving the said objectives.  

2.1. The need for policy modelling 

For the case of climate and energy policy, it is difficult to determine without modelling what the side 

effects of policies are, because of the following sources of complexities in the system: 

 Cross-policy effects. The performance of various policies may be affected because they interact 

with others, for instance renewables policies interact with decarbonisation policies, because  

renewables are also options that reduce carbon emissions. 

 Cross-border effects. The various physical infrastructures and markets of European countries are 

linked, which means that cross-border effects of neighbouring countries may influence policies in 

place and should be considered.  

 Imperfect foresight. Substantial reductions in CO2 emissions need to be achieved by investments 

in low carbon technologies. Investments are made by heterogeneous actors, each deciding on 

the basis of their own preferences, on the basis of interactions with others, on the basis of their 

own belief system of the policies in place. Decisions to reduce energy consumption or invest in 

low carbon technologies are, therefore, not based on perfect forecasts and only financial 

reasons.  

 Lumpiness of investment. Furthermore, investment decisions are highly capital intensive, so 

each individual decision matters: any investment made influences additional opportunities to 

invest.  

 Differences in actor behaviour. In reality, significant differences exist between actors with 

respect to their preferences and assets [7]. These differences affect their investment decisions. 

 Path dependence. Climate and energy policies essentially target long-term changes in large-scale 

systems. All effects that play out dynamically over time need to be taken into account in order to 

have a realistic analysis of any of the policies. Over the course of decades, unwanted side effects 

may emerge out of the decisions made over time. In the long run, path dependency creates lock-

in effects [2], which, in turn, could make the energy transition costly and slow.  

In order to explore the possible effects of energy and climate policies, these complexities need to be 

somehow explored. 

2.2. Framework for energy policy modelling traditions 

Modelling traditions differ with respect to the methodology and logic with which they evaluate policy 

instruments. We distinguish the approaches among the three dimensions in Figure 1: how models 

deal with time (x-axis) because of the strong path dependence of investments, how they deal with 

scope (y-axis) because decarbonisation involves strong interdependencies between different 

subsystems and depends on many factors, and how they deal with uncertainty (z-axis) because large 

investments are strongly dependent on uncertain future developments.  
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Figure 1. A framework for energy policy modelling traditions. Questions vary in time, scope and uncertainty. 

With respect to the time horizon and resolution, some models are used to study today’s energy 

systems and evaluate their dynamics with a focus on short time scales. These models thus focus on 

how to get the energy transition going, rather than the structural changes that need to follow along 

the way. For instance, what can we expect from the CO2 price in the near future and what 

investment incentive for low carbon technologies can we expect. This can lead, for instance to an 

estimation of the need for or the cost of a policy instrument in the short to medium term. Models 

those are strong at representing todays energy systems often have a high resolution, and contain a 

large amount of data, which limits their scope to the short and medium term.  

At the other end, modelling studies can simulate a possible future end-state of an energy system. 

These essentially are similar to the short and medium time scale questions, but placed in the future. 

Simulations include technological choices under ideal, minimal societal cost conditions and 

determine the technological composition of the energy system in a particular future year. This results 

in visions on the energy mix in the next decades after the energy transition, and how a hypothetical 

energy system may function: what dynamics of the system can be expected, what electricity prices 

may be, how welfare may be distributed. It also allows a reference for parts of the system, such as 

the business case for energy storage, demand response, or grid expansion. 

In between are the models that deal with energy transition pathways, which need to consider long-

term dynamics. Typical are studies that include the search for the set of investments and actions that 

lead a particular energy transition vision. This gives insight into minimal or expected costs of the 

energy transition, it gives body to the pathway and the possibilities of achieving it. It also provides a 

baseline to compare real-world investments. These analyses may include an estimate of the policy 

consequences: for example shifts in the optimal pathway provoked by the interplay of subsidy and 

cost decrease of a technology. It also enables to implicitly estimate the costs for the policies. Some 

analyses with large models would also predict the effects on macro-economic parameters, such as 

jobs created.  

An important consideration is which aspects are dominant determinants of the long-term dynamics. 

For a variety of questions time scales from hours (if not minutes) to years are relevant and this poses 

significant difficulties to simulate validly, because of computational limitations. An example of such a 

question is what could be expected of the business case of storage in combination to demand 

response. 

Modelling questions vary widely in scope, in terms of the system and policy affected. A rather broad 

scope could be called ‘modelling the system’. In general, the ‘system’ covered in the model should be 

large enough so all aspects crucial for the policy are covered, and no crucial interactions with 



elements outside of the system boundaries are lost. This implies that the physical electricity system, 

power generators, demand, the grid and the interfaces to other systems (demand sectors, natural 

environment) are included in the scope. It also suggests that the behaviour of the main actors (e.g. 

power producers and system operators) are covered.  

Typically, a more focused scope is to ‘model the problem’. If for instance the problem is how to 

maintain grid stability when more wind is implemented, all system elements needed (the infeed from 

more wind, the grid and demand) needs to be included in the system scope. Though focusing on the 

particulars of a problem reduces the scope, developing a specific model for each problem may be 

infeasible, in terms of time and resources. This is particular the case when problems become more 

intertwined. 

Modelling the problem affects the system that needs to be represented. The other way around, how 

the system is modelled determines what kinds of policy interventions that can be modelled and how 

they can be assessed. Questions that aim to determine which policies would be needed to achieve a 

certain level of demand response, for instance, implicitly require the modelling of all actors offering 

demand response, i.e. small consumers and industrial sectors. If then we consider long-term 

dynamics, it means that a solid representation of these dynamics for those sectors becomes 

essential.  

Various types of uncertainties, such as exogenous drivers and actor behaviour do not only affect the 

modelling outcomes, but also how the modelling questions are phrased. For instance, possible side 

effects of policies, such as the ones emerging from the heterogeneity of actors in their response to 

policy interventions, the consequences of imperfect forecasting such as ‘pig cycles’ can be essential 

to the question as to how to judge a particular policy. This means that the modelling question may be 

formulated according to those phenomena. This includes effects of inertia and lock-in, perceptions 

and habits of actors, and so on. These uncertainties point at the systemic risks for the energy 

transition. This also includes the risk of and need for capacity mechanisms and revised market 

models in a system with high levels of renewables. 

The examples in Table 1 illustrates how to deal with uncertainties and risks, by varying the specificity 

of the modelling question. On the one hand there are rather specific questions that lead to particular 

outcomes. The examples show point-estimates of parameters at a particular point in the future. 

Though the result may have much detail, a disadvantage may be the limited validity: only under a 

strong set of assumptions the result is valid. It may also provide an extreme case and function as a 

reference. A broader perspective is embraced by questions that take into account some degree of 

uncertainty in the input and represent the potential consequences as ranges or distributions in the 

outcomes. Even broader are modelling questions strive for finding patterns in the outcomes, for 

instance finding the set of conditions under which a policy performs sufficiently. This provides insight 

into the robustness of the findings. 

Table 1: Examples of specific and broader modelling questions. 

Specific questions – specific outcomes Broader questions – robust findings 

What price for commodity electricity can we 
expect next year? 

How are electricity prices in the Netherlands 
affected by German RES levels? 

What is the expected cost of a feed-in tariff 
between 2020 and 2030 for transition pathway 

How do regional renewable policies interact 
within and across borders? 



to 30% offshore wind?  

What is the lowest-cost scenario in 2050 that 
meets the technical potentials? 

How can investment risks be reduced in order to 
make the EU ETS more effective? 

2.3. Current approaches to study energy and climate policy 

Computational analysis is widely accepted as a tool for problems that can be solved by making 

accurate system predictions [8]. The dominant approach for climate and energy policy has been to 

use optimization and equilibrium techniques, predominantly the class of computational general 

equilibrium (CGE) models (cf., the review by [9]) for top-down analysis of economy wide effects, as 

well as partial-equilibrium models and techno-economic optimisation models for more detailed 

bottom-up analysis of specific sectors. We describe these here according to the three axes defined 

above. The overview can be found in Table 2. 

Table 2: Existing approaches to study energy and climate policy. 

Axis Computational general 
equilibrium 

Partial 
equilibrium 

Techno-economic energy 
system models 

Time Equilibrium (either static, recursive-dynamic, 
or dynamic) 

Pathway or end-state 
(least-cost) 

Scope The economy as a whole 
with aggregates, and 
more details for particular 
sectors 

Individual sector 
in detail 

Individual sector with 
high technology detail 

Uncertainty Some uncertainties are included. Ignores uncertainties caused by system 
being out of equilibrium and the dynamics caused by policy uncertainty. 

 

Computational general equilibrium (CGE) models describe the overall economy by using 

representative agents (described by equations that define equilibrium conditions, not algorithmic 

descriptions of their behaviour) that represent a number of sectors in a highly aggregated manner 

(one example being the GEM-E3 model, in some models specific sectors are described with a bit 

more detail [10]). They answer policy questions by determining an equilibrium that would happen for 

a particular set of policies and exogenous assumptions, where the policies are modelled close to the 

theory. Alternatively, they are used to produce insight in what policy (results) would be needed (e.g. 

degree of RES support) to achieve certain objectives, or even to identify an optimal policy mix. For 

cap-based policies, such as emission-trading systems or renewable-certificate trading schemes, a 

simple constraint is imposed, thus it is implicitly assumed that the policy in place would lead to that 

target in a cost-effective way. Depending on whether the equilibrium is obtained respectively for a 

single period (static), sequentially over several periods (where past periods influence future periods, 

recursive-dynamic) or a full equilibrium over all periods (fully dynamic), CGE models vary widely in 

their assumptions regarding future expectations. Only the full dynamic approach describes an 

optimal pathway for transitions. 

Partial equilibrium models are similar to CGE models in that they are defined by stating equilibrium 

conditions for which a solver finds a (unique) solution. However, they are focussed on individual 

sectors, thus ignoring feedback loops to the overall economy, for example via income effects of 

households. Due to their limited scope they can incorporate greater technological detail, and more 

heterogeneous behavioural assumptions, for example limited banking capabilities of actors in the EU 



ETS [11] or stochastic foresight of agents. As with CGE models, they will compute an optimal 

equilibrium (point or pathway, depending on whether the model is static or dynamic). 

Techno-economic energy system models focus exclusively on the energy sector and model individual 

technologies in great detail. A pathway or final state of the energy system is computed via 

optimisation, finding a least cost solution to provide a predefined amount of (end-)energy to society, 

and usually ignoring the effect of prices on demand. An example of such a model is OSeMOSYS (cf. 

[13]).  

Despite the fact that some of these models include uncertainties and risks, they are not designed to 

adequately describe the system out of equilibrium. These typical approaches answer those policy 

questions that relate to what we may expect under the assumption that we are able to implement 

the proposed policies very effectively, i.e. with perfect foresight, risk-neutral investment, no 

regulatory uncertainty etc. However, if the model assumes that the policy target will be reached, it 

will not give you any reasons for it or conditions under which you would not reach it. Any relaxation 

of the assumption of optimality is left for the analysist, who then needs to, somehow, translate that 

into his policy advice. We see that interpretation as a crucial step in policy modelling, which is 

currently not at the heart of the approach.  

These modelling approaches have in common that they tend to be optimisation models. As a result, 

their outcomes should be interpreted in a normative way: they show how things (investment, policy 

choices) should be done, given certain assumptions and scenarios. As a consequence, these 

approaches tend to overlook side effects and the assumption of equilibrium ignores core dynamics – 

the process in which the equilibrium emerges remains black-box. While policies can be evaluated 

with traditional models using shocks, these shocks remain exogenous and do not endogenously 

develop out of the model itself: policies can thus not be endogenously investigated for their 

robustness to typical market movements, such as investment cycles, which are frequently observed 

in markets. This matters for policy design because a policy that is robust against movements away of 

the optimum/equilibrium is probably more effective in reality.  

Emergent side effects or risks of policy proposals are, therefore, essentially beyond the scope of 

existing policy modelling. This includes possible policy risks, the consequences of uncertainties, the 

heterogeneity of actors, the interaction effects of policies that make them move away from the 

optimum. How can the real-world levers for the decision makers be identified and how he can 

minimize possible issues; what interventions can the decision maker use? All of these are beyond the 

scope of the modelling method (or what modellers with this method tend to include).  

2.4. The need for an agent-based toolbox 

Research now takes up the challenge of using non-predictive models for policymaking [14]. The 

objective of modelling and simulation changes towards the search for good arguments on the basis 

of computational experiments instead of the perfect predictions [8]. Models then change from 

determining optimal trajectories to exploring what-if questions regarding how the sector could 

respond to policy interventions. This counts also outside the optimum [14], which is key for the many 

challenges in section 2.1. For this type of analysis, a descriptive approach is needed, one that does 

not assume optimal (investor) behaviour and that is not predicated on the assumption that the 

market is in equilibrium. 



Agent-based models (ABMs) are a promising approach for policy support [15] that can take up the 

challenges without relying on perfect predictions [14]. In contrast to more traditional approaches 

ABM captures the emergence of system level behaviour out of the individual behaviour of its actors 

[2], which complements all existing approaches in section 2.3. As [8] justifies, ABM can be used 

because of “(i) the unsuitability of competing modelling formalisms to address the problems of social 

science, (ii) agents as a natural ontology for many social problems, and (iii) emergence” [8]. The 

challenges for the energy transition, as mentioned above, essentially contain strong social aspects 

(heterogeneous actors, various types of decisions), for which ABM is suitable. “With ABM, it is 

possible to design irrational agents with incomplete information in relatively uncertain situations” 

[16]. 

So far, the real impact of agent-based models is limited and this paper aims to further develop their 

potential. There are a number of important challenges to current ABMs. First, they are typically 

developed as one-offs, tailored to very specific problems, in contrast to the existing models, which 

have broader scope, (they ‘model the system’) and are reusable. As a consequence, the development 

process is rather slow and tedious. Gained insights are hard to translate to other problems. Second, 

although intuitive in nature, they are not easy to develop and the implications of ABMs are not easy 

to understand: they include more uncertainty and this needs to be represented in the outcomes. 

Third, since specifying individual agent behaviour lies at the core of the ABM process, and since 

specification of such behaviour maybe based on different theoretical or empirical foundations and a 

diverse practices specific to modelling tools, the models ultimately appear to be diverse, and lacking 

clearly validated conventions. This makes modelling choices for individual projects appear arbitrary. 

ABMs are criticized for the assumptions on which they rely; however, they allow the relaxation of 

certain structural assumptions regarding the optimality of actor behaviour that underlie optimization 

models. Fourth, ABMs make it possible to provide a rich analysis of the effects of uncertainty upon 

the long-term development of a system. This enriches the nature of the outcomes and insights 

presented. It also affects their relevance in the policy process, in which policy makers and politicians 

would like to rely on clear, tangible and intuitive judgements of policy proposals. With EMLab-

Generation, we use agent-based modelling to provide insight in the expected long-term effects of 

policy interventions in a system in which heterogeneous decision-makers make key decision under 

uncertainty and develop this into an approach with various projects in the context of the energy 

transition. 

3. The Energy Modelling Laboratory (EMLab) approach 
In this section, the broad objectives of EMLab are outlined. The architectural framework of the 

model, AgentSpring, is introduced. Further, notions of time, scope, and uncertainty within modelling 

of the energy transition are translated into specific architectural and representational choices in the 

model.  

In order to represent time in both the short and the long term, certain algorithms (e.g., electricity 

spot market clearing) apply to a short-term time scale, while other algorithms (e.g., investment in 

power plants) apply to longer time scale.  Scope on the other hand is treated 1) with a combination 

of distinction between the data, and the core processes or the ‘agent layer’, and 2) with modularity 

between implemented policies. The distinction between data and ‘agent layer’ is explained in greater 

detail in section 3.2. The modularity between policies is described in section 3.3. Uncertainty is 

managed by two ways, one by incorporating randomness in the data sets, and conducting statistically 



sufficient repetitions during execution, and another by modularity. The modularity of the code is vital 

to allow for numerous configurations and consequently a thorough scenario analysis. Thereby, it aids 

robustness of the results. This is also described in section 3.3. 

3.1. The long-term development of the power sector 

The EMLab-Generation model describes the impact of policy instruments on investment in the 

electricity sector in the EU. Therefore it focuses on the long-term development. At the same time, 

short-term dynamics are also included, as they affect investment decisions . Energy companies base 

their investments on their individual imperfect forecasts. For investments, interacting policies 

matter, as do cross-border effects. We aim to support the exploration of policy proposals and policy 

improvements. 

The contribution of this ABM toolbox can be found in evaluating policies on the basis of their effects 

emerging out of the interactions of investors, each with their own portfolio of assets, information 

and investment profile. 

3.2. The AgentSpring framework 

Figure 2 summarizes the EMLab framework in three layers. The framework was developed with and 

alongside the AgentSpring agent-based modelling framework [17], [18] and makes use of it.  

The top layer is the engine layer, which contains a variety of user interfaces and contains the 

simulation controller. Three user interfaces are implemented: a web-based user interface in which 

model runs can be observed, an interface to run the model from R statistical computing, and a 

command-line interface for running the model in batch runs, for instance on high performance 

clusters. The user interface taps into the database of the model and allows for developing custom 

views while the model is running. The R interface allows running of specific analyses directly during a 

model run. The command line interface allows for capturing any data from the model for multi-run 

analysis.  

All user interfaces tap into the simulation controller, which is the model application that actually 

runs. It implements features to handle all user interventions coming from the interfaces, i.e. to 

initiate particular scenarios and to start and stop the simulation. 
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Figure 2. Energy Modelling Laboratory overview 

The middle layer is the data layer, which contains the system state and possible configurations of the 

model. The domain language is implemented as a Java class structure with object classes and their 

properties. These properties may be other objects, which creates an object graph. This is reflected in 

a graph database that is configured to capture the objects in the simulation. The complete system 

state is contained in this graph database, which uses nodes and edges and properties to store the 

data in the system. The object types (including agents) are reflected as nodes in the database and all 

links between objects become edges (according to the relations defined in the Java class structure). 

This means that graph data depends on the actual agents and other objects in the model and allows 

for semantic queries. Different query languages can be used to write the agent behaviour. The graph 

database also provides the link between to all user interfaces during the simulation. 

In addition to the database, the data layer contains customizable configurations using XML files, 

which includes all data needed to initialize the model: which agents are there, which decision mode 

do they use (if multiple options exist), the definitions of technologies (efficiencies and learning 

curves), how exogenous trends are defined (data in CSV files, or geometric trends), policy options 

and detailed policy choices. At the model start, the engine uses a selected XML file to initialize the 

model run and populate the database. 

The lower layer is the agent layer that contains the coded agent behaviour, called Roles, coded in 

Java classes. Particular to EMLab is the fact that agent behaviour is split up in parts, i.e. that an agent 

can have various Roles for different aspects of his behaviour (e.g. one for doing investments, one for 

bidding in the market, and one for paying for fuels), which makes the model as a whole modular and 

flexible. When agents execute a role, they query the graph database to retrieve information 

regarding the system state, ‘do’ something (a calculation, make a change) and save the result back to 

the database, which finishes the role. Roles can initiate others, and, as such, they form the script of 

the model. Typically, the script is worked through, finishing one simulation tick. Composing the 



scripts provides for modularity, where pieces can be combined, as desired and different alternative 

implementations for similar functionalities may co-exist in the code base. 

In addition to these layers, the framework includes code developing practices such as revision 

control, branching and merging on GitHub. The code is open access in order to allow for 

collaboration and retracing all assumptions and extend the model in various modelling projects.  

3.3. Model description: model core, agents and configurations 

This paper focuses on the EMLab-Generation model, which makes use of this framework and is built 

up out of the following elements: 

 There is a core of behavioural roles that was developed as a starting point and forms the basis for 

all modelling projects. This core is conceptualized with care to be efficient and enable various 

directions for development. The core model is specific enough to capture the short-term 

processes in the electricity sector, such as market clearing and dispatch and the long-term 

processes of the electricity sector, investment and dismantling. 

 A collection of modules that extend this core to make it applicable for particular modelling 

questions. Mostly this means additional behaviour that captures the response to particular policy 

proposals. 

 A number of data sets and scenarios connected to the model core and to the modules. 

 The system state, including the ‘objects’ in the system, in particular the power plants, are 

affected by the operation of the core module in each iteration, and, if applicable, the policies 

present.  

 Different representations of the core modules can also be implemented and tested.  

This section contains an excerpt from the full model description, which is published elsewhere [5], 
[20]. We will first describe the model core, the data used and the agents represented and their 
behaviour. Afterwards we describe the various modules and configurations that were developed in 
the project, and their findings. 

3.3.1. The model core 

We describe the main model core (see Table 3). The electricity sector in EMLab-Generation is 

conceptualized as (one or) two interconnected electricity markets and a common CO2 market. The 

electricity markets are effectively price zones, and the markets are cleared via market splitting. Each 

zone can represent either a country or a set of countries that each have one electricity price at a 

time. The choice to have two interconnected markets is that it is the simplest system that allows for 

exploration of policy difference between countries or regions that are interconnected but where the 

interconnection is limited. The effects of policy differences are crucial for understanding contributing 

to the energy policy debate in the EU that is primarily composed of different policies in the various 

EU member states, but with shared policy goals. There is a common CO2 market that represents the 

EU ETS, scaled down to the electricity sector (so other sectors are excluded). The most important 

elements in the model are the electricity markets, the energy producer agents and the power plants. 

Developments in fuel prices and demand are modelled as exogenous stochastic trends, with a time 

step of one-year length and a horizon until 2030 or 2050. The choice to have a yearly time step is 

necessary to limit run time. Additionally, this is in line with the focus on investment in power 

generation capacity, which is a long-term process. Nevertheless, some aspects within a year are 

represented, primarily to provide input to investment decisions. Electricity load is approximated via a 



load duration curve, which is segmented in a reasonable number of load levels that represent the 

different hours of the year, each with their corresponding demand.  

Each year, the energy producer agents submit bids to the electricity markets based on the fuel mix 

and efficiency of power plants and a mark-up representing their market power. They also pay for 

maintenance and loans, and dispatch their power plants based on what they sold on the electricity 

market. Energy producers invest endogenously in new generation capacity, based on bottom-up 

forecasts of the net present value (NPV) for each generation type. The NPV is determined for a 

reference year, varying between agents from 6 to 8 years ahead. NPVs are determined on the basis 

of a merit order analysis, using regressions for fuel prices, demand and CO2 price. Investors take 

turns and investments are reflected in subsequent NPV calculations of other agents. When no energy 

producer is willing to invest any more the investment rounds are stopped. The agents also decide on 

dismantling old plants that have passed their technical lifetime or that have not returned an 

operational profit for several years. 

The electricity spot market clears the joint electricity and CO2 market, including modelling the joint 

banking behaviour of the energy producers in the CO2 market. As modelled, it forms the bridge 

between equilibrium-style modelling and agent-based modelling, assuming that the short-term 

actions provide equilibrium in electricity and CO2 prices within the year. The choice to do this is to 

represent the processes within the year, but not focus on it. We come to reasonable electricity and 

CO2 prices that are input to the rest of the model. The process works by merging the two electricity 

spot markets into one, and clearing them for all segments of the load duration curve. For each of the 

segments, it is checked wither the existing interconnected capacity is not exceeded. If that is the 

case, the market is considered as cleared. Otherwise the two markets are cleared separately with the 

market loads adjusted by the interconnector capacity and, as a result, price differences between the 

markets. This clearing of the electricity markets is nested in an iterative price search for a CO2 

emissions price that clears the CO2 market. The price search is done when the CO2 cap is just met for 

the emissions in the current year and for expected emissions in the next three years, as well as 

fulfilling the hedging strategy of energy producers (which is to bank 80%, 50% and 20% of expected 

emissions in the coming three years ahead, respectively with some flexibility to deviate from these 

goals). 

The other processes in the model are implemented by other agents. The fuels are sold to the energy 

producers by commodity suppliers and the electricity is purchased by an energy consumer. Power 

plants can be purchased from the power plant manufacturer and maintenance is done by the power 

plant maintainer. Energy producers get loans from the bank. Each of these agents is relatively simple, 

but enable areas for expanding the model.  

Table 3: The modelling choices and assumptions in the model core. 

Component Core modelling choices and assumptions  

Time 
 

ABM with a yearly time step, using a segmented load duration curve, which is 
based on ENTSOE data. Model choices focus on how they fit the long term 
processes in the model, in particular investment. 

Electricity sector Two price regions are modelled as a power pool, governed by emissions-
trading system. Electricity spot markets and ETS are assumed to be in 
equilibrium. The two price zones typically represent Central Western Europe 
(CWE, consisting of Belgium, France, Germany, Luxembourg and the 



Netherlands) and Great Britain (GB). Other configurations are possible and data 
has been collected for all these combinations. 

Investment  Agents have different portfolios of assets. They invest based on NPV estimates 
in target year, which differs between agents (mostly by varying interest rates 
and forecasting horizons). Dismantling based on age and being out of the 
money.  

Operation  Includes consumption of fuels and maintenance.  

Exogenous 
variables 

Fuel prices are based on triangular distributions for lignite, biomass and 
uranium [19]. Hard coal and gas prices are correlated stochastic Ornstein-
Uhlenbeck processes [19], based on data from UK Department of Energy and 
Climate Change [20]. 

Technologies Power plant technology data is based on the World Energy Outlook 2011 New 
Policies Scenario [21] and additional assumptions [19]. 

3.3.2. Software availability 

The agent-based model and underlying framework are developed by TU Delft (the authors of this 

paper) and are Java applications. Both are open source and available on GitHub under 

https://github.com/EMLab/emlab-generation. This includes running instructions (which makes use of 

maven) and all data used for the papers published with the model. This paper does not present new 

model runs, but it presents the overall framework and a synthesis of earlier modelling results and 

conclusions. This means no new data was added to the GitHub repository particularly for this paper. 

All versions and extensions are available on GitHub and references in other papers describing 

individual modelling results. 

4. Results 
This section pertains to the question of how EMLab can support energy and climate policy analysis. It 

includes therefore, a list of research questions that have been tackled and answered using this 

approach, with detailed explanations of three specific projects, and the limitations of the approach in 

each project.  

The model has been used in various projects, using and expanding on the model core, which are 

summarized in Table 4. This indicates that developing larger models is indeed a team effort. The 

findings have been presented in one PhD thesis (2 more ongoing), various journal and conference 

articles and a series of MSc thesis reports. Describing all results is beyond the breadth of this paper, 

but the overall projects structure and key highlights – both in terms of content and the approach 

taken – are provided in the following table.  

Table 4. The projects using the model, main assumptions and usage 

Module Modelled additions Configurations Projects 

Carbon and 
renewables 
policies 

Hedging demand of 
power generators  
Investor meeting 
governments 
renewable targets 

Two price zones, 
CWE & GB 

Evaluating minimum and maximum 
prices on CO2 auction, either in one 
price region or both [19]  

Testing EU ETS Market Stability 
Reserve [22] 

Adjusting the CO2 cap for subsidized 
renewables [25] 

Renewable tender 
system 

Harmonized tenders for renewables 
[26] 

Security of Capacity market Single price zone Capacity market under dynamic 

https://github.com/EMLab/emlab-generation


supply policies A CO2 tax  
Energy storage 
 

modelled after the 
Netherlands 

conditions, with and without 
renewable target [27] [28] 

Two price zones, 
CWE & GB 

Capacity market under dynamic 
conditions, with penetrating 
renewables, and interconnection 
[29] 

Single price zone 
modelled after the 
Netherlands 

Influence of a capacity market on 
energy storage [30] 

Strategic reserve  Single price zone 
modelled after the 
Netherlands 

Strategic reserve under penetrating 
renewables [31] 

Hydropower 
Investment in 
interconnection 

Two price zones, 
Scandinavia & 
North-Western 
Europe 

The development of interconnection 
capacity between and the 
stimulation of renewable energy 
[32] 

Investment 
models 

Alternative 
investment models, 
including various 
risks, technology 
preferences, credit-
risk considerations 
and risk-averse 
behaviour 

Single price zone, 
modelled after the 
Germany or CWE 

Potential effects of risk aversion on 
technology choices and security of 
supply [33] 
Including various uncertainties in 
the investment [34] 
Including hard and soft factors for 
investments [35] 

Local opposition 
Permitting process 

Single price zone 
modelled after the 
Netherlands 

Impact of power plant location 
decisions [36] 

Improved 
representation 
of intermittency  

Load duration curve 
based on regional 
hourly production of 
renewables 

Single price zone 
modelled after the 
Netherlands 

Questions related to the role of 
energy storage, the role of the 
market at high penetration levels of 
renewables [18], [37] 

Short term 
optimization model 

Single price zone 
modelled after the 
Netherlands 

Development of an hourly dispatch 
and operational model using 
optimization (on-going) 

4.1. Improving the EU ETS requires price stability 

The first module is on the workings of the EU ETS and various improvements to the current design 

and the links with renewables policies, which in Europe are implemented on the country level. In 

general, the main pitfall of the EU ETS is that price stability is required for proper investment. At the 

same time prices are sensitive to allocation schemes, developments in demand and other policies. 

For instance, regional renewables policies tend to introduce more CO2 price volatility. Interactions 

between the different (renewables and carbon) policies are not intuitive. Delays in price stability may 

well trigger long delays in investment, longer than socially optimal – it is a system that remains out of 

equilibrium for a long time. In particular, we evaluated the Market Stability Reserve in the form of 

the original proposal by the EU commission and the refined form. This is the topic of the case study in 

section 5.  

In addition, some effects that differences between countries cause were explored. With two price 

zones – essentially two electricity markets and two different policy designs – we already showed 

what dramatic long-term consequences may be expected - a CO2 price floor in a smaller set of 



countries may have a long-term destabilizing effect on the prices in Europe [21]. These effects do not 

emerge in theory or in many model studies, as it is typically assumed investors would be able to 

accommodate for these future developments in their plans. But when they are not fully able to do 

so, the side effects of a policy proposal that aims to stabilize prices may actually lead to the opposite. 

4.2. Capacity mechanisms functioning in a dynamic context 

The second module deals with security of supply policies. In various projects the effects of a capacity 

market, a strategic reserve and an increase in interconnection have been evaluated under different 

conditions, such as high penetration levels of renewables. In this module, it is vital that policies can 

be enabled and disabled at will, in order to provide for experimentation with different sets of 

policies. Some of these are developed in this module, some in others. The merits of various capacity 

mechanisms that aim to improve security of supply (by providing for sufficient capacity) are 

determined. This is done in particular in the context where multiple countries have different security 

of supply policy, where we include the long term dynamics in a system that is undergoing transition 

and where we explore them under varying levels of intermittent renewables. One capacity 

mechanism is a strategic reserve, where the system operator contracts some of the capacity to 

remain in reserve. Contracting a strategic reserve when sized according to theory does not necessary 

succeed in attracting sufficient investment when investment decisions are imperfect. Also, a high 

share of intermittent renewable generation would likely require a redesign or replacement.  

An alternative is a capacity market, where the operator has a demand and willingness to pay for 

generators having capacity provided. The system to trade in capacity is difficult to setup properly. 

Nevertheless, it does not show the difficulty in dealing with growing renewables.  It does suppress 

investment in neighbouring markets if they don’t have a similar capacity market.  

These results point at the fact that the electricity market model may need overhauling under high 

levels of capital intensive, low variable costs technologies (wind, solar, and to a lesser extent nuclear 

and even coal). Other market models could be explored and tested. 

4.3. Different rule sets for investment behaviour 

Essentially, much of the dynamics that can be expected in the energy transition, are about 

investments, such as those in power generators. Therefore, the investment behaviour is a crucial 

component of the model core. In various projects, alternative investment models have been 

proposed, implemented and evaluated. This shows the modularity of the modelling approach: 

master students were able to develop a different set of investment rules, translate them to code, 

push them as their own model branch on GitHub and develop a model configuration that runs the 

model with their own investment behaviour. All this code can exist side by side, some of it only in 

student projects, and the rest in a flexible, shared core. It also points to the modularity of the model 

core in that it is able to accommodate well for quite a variety of projects. This also implies that not all 

code needs to be taken up in the main model. Therefore, the project keeps as a whole manageable. 

Various investment projects dealt with uncertainty and risks. Investors typically do their own 

evaluation of the future, which implies that the modelled investors have their own model inside the 

simulation. This inherently limits what can be done. When investors take more risks into account 

with NPV calculations capturing various uncertainties, investors invest less, in particular in gas plants 

[35]. This finding reflects to recent developments in the Netherlands, where a brand new natural gas 



plants was unused and later sold and shipped. Taking these risks better into account in a dynamic 

context could have helped avoid the decision in the first place. 

One of the projects takes into account detailed locational factors with respect to public opposition, 

the process of getting a permit. This has led to an overview of the most attractive power plant 

locations in the Netherlands over time, given the perspective of investors, the government and the 

public [36]. 

4.4. On-going work on representing intermittency 

Higher levels of renewables have a dampening effect on electricity prices. More and more hours of 

the year, only technologies with very low marginal costs are running. Lower electricity prices prevent 

additional investment, in particular in capital-intensive technologies (such as wind turbines, which 

primarily have upfront costs). This effect may well limit the achieved renewables levels, something 

that was found in many EMLab simulation results. 

Additionally, some analyses require to look at how the system develops hour after hour. For 

example, when looking at hydropower and other forms of energy storage. A second example is the 

study of ramping up and down of thermal power plants. A third is studying effects under high 

penetration levels of intermittent renewables. Results are imprecise with a base model that 

represents time as 20 different ‘sets’ of hours, which is required for limiting runtime. Some of the 

limitations were dealt with by rebuilding these 20 different sets of hours every simulated year, and 

this in some of the finished projects to take into account the short term slightly better. For instance, 

the role of energy storage has been explored in conjunction to a capacity market, which indicates 

that it is very challenging to gain insight in to what extent a capacity market will influence the 

business case for electrical energy storage. Reversely, if sufficient levels of energy storage are 

obtained, it may significantly lower the need for a capacity mechanism [30]. 

Ongoing work deals with this limitation by developing a replacement for the short-term dispatch 

model, by translating all short-term processes into one optimization problem for a single year. 

5. Case study: Improving the proposed Market Stability Reserve in the EU 

ETS 
This section describes an application of EMLab-generation model to the proposed Market Stability 

Reserve in the EU ETS (adapted from [5]). The EU ETS is a cap-and-trade system, with a (more or less) 

fixed, declining supply of emission allowances, which regulated companies need to obtain and hand 

in when they emit greenhouse gases. Allowances are, depending on the sector, freely allocated or 

auctioned to market participants, which are free to trade allowances or keep them for future time 

periods (so-called banking). The low prices in the European Union Emission Trading System (EU ETS) 

in combination with a large volume of allowances being banked (that is kept for use in later years), 

resulted in the European governments introducing the “Backloading” reform [37], which delays the 

auctioning of a significant volume of EU emission allowances (EUA) for several years. The European 

Commission also proposed the establishment of a market stability reserve ([38], labelled 

“CommMSR”, for Commission MSR), which is a policy instruments that withdraws and injects EUAs 

from the EU ETS auctions depending on the volume of EUAs in circulation. It aims to keep the volume 

of EUAs in circulation within a target corridor and thereby controlling the price. 



In order to study the low emission prices – and the proposed interventions – banking behaviour 

needs to be considered. A cap-and-trade system will only be efficient in achieving a cumulative 

emission target  over several years if unlimited banking and borrowing is permitted and the social 

discount rate is applied to banking decisions [39]. This description of banking behaviour usually does 

not differentiate between different actors in the market. Based on interviews, existing financial 

literature [40] and industry reports [41], [42] stipulates that at least two different market players are 

active on the market: hedgers and speculative bankers. Whereas the former are usually electricity 

producers and apply a lower discount rate (0-10%) to hedge their future sales, speculators need to 

take open positions regarding the carbon price development and apply a discount rate exceeding 10-

15% to their trading decisions. This clearly exceeds typically assumed social discount rates of 0-3%. 

As a result, in a situation of oversupply of allowance (e.g. due to a recession or technological shock) 

once the banking capability of hedgers is exhausted, a very high discount rate is applied to further 

bank additional allowances. 

The Market Stability Reserve aims to reduce the surplus to a level of the hedging corridor thus 

making the hedgers the marginal price setters again. The effects that it may have are still being 

debated. In [22] we reached the conclusion that the CommMSR might increase price volatility, mainly 

due to target corridors being set too low, because of the two year response time of the CommMSR 

and the late introduction time in 2021, which comes after the backloaded EUAs are returned to the 

market, which may lead to a price drop in the carbon market.  

Based on criticism on the original design, the Committee on the Environment, Public Health and Food 

Safety of the European parliament (CEPF) proposed various amendments to the CommMSR and 

proposed by the European Commission [43]. In this paper the amended MSR is labelled “ParlMSR” 

(for Parliamentary MSR). Three major revisions to the MSR were proposed by the [44] and accepted 

by the member states of the European Union: 1) The backloaded credits should not be returned to 

the market, but instead placed in the market stability reserve. 2) The market stability reserve should 

start operating the latest on 31 December 2018. 3) The response time of the MSR should be 

shortened to one year, from two years. 

The reform thus addressed points that we raised in our analysis. In the following we compare the 

newer MSR reform with the original proposal by the commission. We include a  base case without 

any market stability reserve, labelled “PureETS”. 

 



Figure 3. Simulation findings: carbon prices in the simulations 

Figure 3 shows the development of CO2 prices over time in the investigated scenarios. The black line 

depicts the median, the darker grey area the 50% envelope and the lighter grey area the 90% 

envelope. It is visible that in the PureETS case the initial years have very low CO2 prices, which are 

followed by a rapid price increase around the year 2026. After a price drop over the next decade, the 

CO2 price rises until the end of the simulate period. The CommMSR does not prevent the initial price 

collapse, since it only starts operating in the year 2021. It leads to an exaggeration of the peak CO2 

price in 2020 to 2030 (see also [22]). The ParlMSR avoids the initial price collapse in the years 2011 to 

2020, due to the earlier start date in 2017. As a result, the price peak in the years 2021 to 2028 is 

lower and shorter than in the CommMSR case. 

 

 
Figure 4. Simulation findings: CO2 emissions in the simulations 

 
Figure 5. Simulation findings: costs for mitigation of CO2 

In terms of emissions and mitigation costs further differences between the scenarios exist. As in the 

simulation period banking levels do not fall below the lower trigger levels of the CommMSR and 

ParlMSR they effectively lead to lower emissions levels than the PureETS, and more spread out 

emissions as the MSR mechanisms bring some flexibility to the emission certificate supply (see Figure 

4). In terms of mitigation costs over the simulation horizon the CommMSR does not represent an 

improvement over the PureETS (compare Figure 5). The ParMSR however does reduce mitigation 

costs. This is due to the avoided price slump in the beginning of the scenario, which causes the other 

two scenarios to have stranded assets (coal power plants) that increase the system cost compared to 

the abated emissions. 

 

This case study illustrates that EMLab-Generation can adequately compare different policy scenarios 

in electricity and emissions markets. By analysing the original carbon market and the two scenarios 

for reforms of that system, we deduce the expectation that the improved proposal is better capable 



of stabilizing the carbon price than the original improvements. The fact that we analysed this on the 

basis of agents that invest in power generators under myopic conditions and that we test the 

robustness of the findings with an uncertainty analysis over different fuel price and demand 

scenarios illustrate the added value of this approach: these prove to be key ingredients to assess the 

robustness of the policy instruments that Europe has to curb our carbon emissions. 

6. Conclusions 
We present a method for designing climate and energy policy for the EU, using a flexible and 

modular agent-based modelling approach and toolbox, called the Energy Modelling Laboratory, or 

EMLab. 

Input to this process is a systematic overview of the policy design options, and the traditions of how 

this has been translated to modelling approaches. This indicates the need for a modular and flexible 

approach that is able to explore how to decide between various policies, which in turn interact with 

each other, beyond borders and systems, driving the energy transition. This leads to possible side 

effects, which, we argue, need to be taken seriously. 

We have developed a flexible model core and worked on modules that focus on carbon and 

renewables policies, capacity mechanisms, investment behaviour and representing intermittent 

renewables. Each of those was developed and used in various modelling projects. The results suggest 

that the policy questions related to the ongoing energy transition in Europe more and more 

interrelate with other sectors and countries and are surrounded by fundamental uncertainties that 

cannot be taken away. As a consequence, scoping policy advice has become much more difficult, if 

not impossible. Only a flexible modelling approach that makes side effects of imperfect investment 

behaviour explicit, combined to other types of studies (including normative ones, such as 

development of qualitative and quantitative scenarios) is able to address todays questions. We show 

that agent-based modelling can fill this need by developing this large-scale, open source agent-based 

model of the electricity sector.  

We have chosen a particular technical setup with a graph database and behavioural rules in pieces, 

to enable developing a model suite: an approach that allows for flexible configurations. This does 

affect runtime – making simulations slower than necessary (if all would be more tightly integrated). 

So far, we see the choices beneficial – reflecting the reality of a tangled web of research projects. 

EMLab-Generation led to a wide range of policy scenarios in electricity and emissions markets. The 

case study illustrated three scenarios for the EU ETS market reforms. Factoring in agent-behaviour, 

especially myopia, as well as uncertainty analysis over different fuel price and demand scenarios are 

key ingredients to assess the robustness of such policy instruments. 

Future developments may include a representation of electricity grids, expanding the number of 

price zones, and interconnections to other sectors, further developing EMLab as a platform for open 

source, multi-tool, multi-model, multi-level energy modelling. 
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