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Abstract

This paper describes a novel sensitivity analysis method, able to handle dependency relationships between model pa-
rameters. The starting point is the popular Morris (1991) algorithm, which was initially devised under the assumption
of parameter independence. This important limitation is tackled by allowing the user to incorporate dependency infor-
mation through a copula. The set of model runs obtained using latin hypercube sampling, are then used for deriving
appropriate sensitivity measures.
Delft3D-WAQ (Deltares, 2010) is a sediment transport model with strong correlations between input parameters. Despite
this, the parameter ranking obtained with the newly proposed method is in accordance with the knowledge obtained
from expert judgment. However, under the same conditions, the classic Morris method elicits its results from model
runs which break the assumptions of the underlying physical processes. This leads to the conclusion that the proposed
extension is superior to the classic Morris algorithm and can accommodate a wide range of use cases.

Keywords: sensitivity analysis, parameter dependencies, copula, latin hypercube sampling, sediment transport, North
Sea

1. Introduction

Suspended particulate matter (SPM) is composed of
fine-grained particles of both inorganic and organic origin,
which are suspended in the water column. This material
plays an important role in the ecology of coastal areas, as
it influences the underwater light conditions (directly con-
nected to the phytoplankton growth), the amount of nu-
trients in the water, the material transfers to the seabed
and other environmental processes. As such, the SPM con-
centration plays a crucial role in the dynamics of aquatic
ecosystems. At the same time, the increasing number of
human activities along the shorelines (fishing, sand and
gravel extraction, tourism, industry) often disturb the nat-
ural equilibrium of the sediment transport processes. To
assess and monitor the possible impacts on the sediment
transport patterns, models are used to estimate and fore-
cast their movement, under the combined action of both
natural factors and human interference.

The current study concerns the southern North Sea
area, a marine system significantly affected by SPM, since
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it receives the run-off from major rivers and coastal in-
dustries. This area has seen rising interest in the sci-
entific community (Fettweis et al., 2006; Pietrzak et al.,
2011), which has led to the continuous development of
the Delft3D-WAQ (Deltares, 2010) sediment transport and
water quality model (see El Serafy et al., 2011; Blaas et al.,
2007). Delft3D-WAQ makes use of the hydrodynamic con-
ditions (velocities, discharges, water levels, vertical eddy
viscosity and vertical eddy diffusivity) and wave charac-
teristics (important in the sediment re-suspension and set-
tling) to simulate the complex interplay between the hy-
drodynamic, chemical and biological processes involved in
the sediment transport system.

However, calibrating this model is made difficult by
the large number of input parameters, some of which are
strongly correlated, due to physical constraints. Also, the
high running time for one simulation - approximately 11
hours in full resolution and 3 hours on a coarse grid -
imposes additional restrictions on the calibration efforts.
This gave rise to the question of whether the model pa-
rameters can be ranked, such that the calibration process
can be focused on only the subset to which the output is
most sensitive. The remaining parameters can be fixed to
their maximum likelihood values (determined, for exam-
ple, using an expert judgment exercise).

According to van Griensven et al. (2006), over-para-
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meterization is a widespread problem for environmental
models. At the same time, Shin et al. (2013) point out
that only few studies in the literature (see, e.g., Schmid
et al., 2003; Francos et al., 2003; Shen et al., 2008; Plecha
et al., 2010; Kurniawan et al., 2011) employ sensitivity
analysis methods (Campolongo et al., 2000; Makler-Pick
et al., 2011) to rank parameters and identify redundancies.
Among these, the method developed by Morris (1991) is
especially popular (Campolongo and Saltelli, 1997; Por-
tilla et al., 2009; Arabi et al., 2008) due to its simplic-
ity and computational efficiency. However, in its initial
formulation, the method assumes independence between
model parameters. This can be a limiting factor, since, in
many cases, the physically-induced dependencies can not
be overlooked. For example, in Campolongo and Gabric
(1997) the authors had to eliminate certain parameters
from their analysis, specifically because of this limitation.
Also, in (Salacinska et al., 2010), the sensitivity of the sim-
ulated chlorophyll-a concentration to a subset of ecologi-
cally significant input factors has been carried out with
the use of the Morris method and later enriched by the
computation of the correlation ratios of the selected pa-
rameters on the model response at a few selected locations
in the domain. The second step was crucial to obtain re-
sults in agreement with expert knowledge of the ecological
processes in the North Sea.

This paper proposes an extension to Morris’ method
which opens the possibility to control the sampling pat-
tern of the necessary model runs for sensitivity analysis,
based on prior information about dependencies between
model parameters. More specifically, this work incorpo-
rates this information into the sampling strategy of the
elementary effects in the Morris method. The dependen-
cies can be specified in terms of parameter correlations
or, more precisely, by providing their joint distribution.
This leads to the construction of the corresponding copula
Nelsen (2007) – a joint distribution on the unit hypercube
with uniform marginals – which is, finally, used to deter-
mine the set of model simulations required to conduct the
sensitive analysis study.

The application on the computationally expensive Delft
3D-WAQ sediment transport model confirms that the method
is able to provide physically sound results regarding the pa-
rameter ranking, even in cases where the feasible number
of simulations is limited. This confirms the relevance of the
method in identifying the parameters having the strongest
impact on the variability of the model predictions.

The content of the paper is structured as follows. First,
the Delft3D-WAQ sediment transport model and the de-
pendence relationships between the governing model pa-
rameters are introduced. Next, the classic Morris sensitiv-
ity analysis method is reviewed, which presents the oppor-
tunity to devise a geometrical reinterpretation of its ele-
mentary effect sampling strategy, separating it into three
successive stages. This new insight leads to the formu-
lation of mechanisms to constrain each stage of Morris
method, by incorporating the prior information about pa-

rameter dependencies in the form of a joint distribution
with corresponding copula. In Section 4, the basic theory
concerning copulas is summarized and Section 5 presents
the newly developed copula-based Morris method. Finally,
both methods are applied to the Delft3D-WAQ model and
the results are compared, leading to the conclusions.

2. The Delft3D-WAQ sediment transport model
for the southern North Sea

With an extensive history of maritime commerce, the
North Sea is one of the most intensively traversed sea ar-
eas. It is bordered by highly industrialized and densely
populated countries, which are actively engaged in min-
eral extraction, diking, land reclamation and other ac-
tivities. The main sources of sediments are the Dover
straits, the Atlantic Ocean, river bed and coastal erosion
(Kamel et al., 2014). The SPM concentration varies in
both time and space, as a response of the seabed to the
hydro-meteorological forces that result from the interac-
tion between river inflows, waves, winds, currents and ex-
ternal factors.

For example, the breaking waves in the near-shore ar-
eas, together with various horizontal and vertical current
patterns are constantly transporting beach sediments. Some-
times, this transport results in only a local rearrangement
of sand. However, under certain conditions, extensive dis-
placements of sediments along the shore take place, possi-
bly moving hundreds of thousands of cubic meters of sand
along the coast each year. During calm weather condi-
tions, the SPM settles and mixes with the upper bed lay-
ers. Subsequently, strong near-bed currents, generated by
tides or high surface waves, can trigger the resuspension
of the SPM from the seabed into the water column.

The Delft3D-WAQ (Deltares, 2010) model is capable
to describe the erosion, transport and deposition of SPM
in the southern North Sea with a good degree of accu-
racy (El Serafy et al., 2011). In the model, SPM consists
of three different fractions (Jiménez and Madsen, 2003):
medium (IM1, diameter 40 µm), coarse (IM2, diameter 15
µm) and fine sediments (IM3, diameter 1 µm). These ap-
pellations are a Delft3D internal name and will be used to
refer to three sediment types throughout the remainder of
this paper. The model computes the convection-diffusion,
settling and resuspension of the three silt fractions of SPM,
given the transport velocities, mixing coefficients and bed
shear stress adopted from the hydrodynamic and wave
models. The spatial domain is covered by an orthogo-
nal grid of 134 × 165 cells, with a resolution that varies
between 2 × 2 km2 in the coastal zone and 20 × 20 km2

further offshore, as illustrated in Fig. 1. Also, in order to
capture the vertical structure of the flow, together with
the stratification and mixing of SPM caused by the tidal
influence in the domain, the water depth is modeled by
12 so-called sigma layers, with different thicknesses (in-
creased resolution near the seabed). The water surface
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Figure 1: Delft3D-WAQ spatial discretization grid for the North Sea.

is represented by the first layer and represents 4% of the
column depth.

Recently, Delft3D-WAQ has been extended with an im-
proved parametrization of the resuspension and buffering
of the silt fractions (related to both IM2 and IM1) from
the seabed (van Kessel et al., 2011). This parametrization
enables a more realistic description of the periodic and
relatively limited resuspension during the tidal cycle and
the massive resuspension from deeper bed layers observed
during high wave events (El Serafy et al., 2011). Only the
main features of this approach are described below; more
details can be found in van Kessel et al. (2011).

The buffer model contains two bed layers, each inter-
acting with the water column in a specific way (Fig. 2).
The first layer, denoted as S1, is a thin fluffy mud layer
that is easily resuspended by tidal currents. On the other
hand, the sandy buffer layer, S2, can store fines for a longer
time and releases SPM only during highly dynamic condi-
tions, such as spring tides or storms. Both layers interact
with the water column, but with different rates, depend-
ing on the different physical processes involved in either
settling or resuspension mechanisms.

The deposition towards the layers S1 and S2 is influ-
enced by the settling velocity Vsed IMi [m/day] and the
saturation factor FrIMi sed S2 , which distributes the flux
to the seabed. The main equations describing this process
are:

D1 IMi
= (1− FrIMi sed S2

) Vsed IMi
CIMi

(1)

D2 IMi
= FrIMi sed S2

Vsed IMi
CIMi

, (2)

where CIMi
is the concentration of the inorganic fraction,

C
D1

D2

M1

M2

E1

E2

d2

d1

S2

S1

Figure 2: Schematic representation of the Delft3D-WAQ buffer
model. Layer S1 is the thin fluffy mud layer of thickness d1, while
the layer S2 is the sandy sea bed infiltrated with fines of thickness
d2. Dj is the deposition flux towards layer Sj , Ej is the erosion flux
from layer Sj , Mj is the mass sediment fraction in (j ∈ {1, 2}) and
C is the SPM concentration.

IMi (i ∈ {1, 2, 3}).
Under certain conditions, resuspension events from the

two layers occur. For the fluffy mud layer S1, the resuspen-
sion of the SPM fractions is proportional to the respective
critical shear stress levels τcr S1 IMi

[Pa], as well as the
resuspension rates Vres IMi

[1/day],

E1 IMi = Vres IMi M1 IMi

(
τ

τcr S1 IMi

− 1

)
, (3)

where τ [Pa] is the bottom shear stress and M1 IMi [g/m2]
is the mass sediment fraction. For the buffer layer S2, the
fines can be mobilized only beyond critical mobilization
conditions. Thus, the erosion process is mostly influenced
by the critical shear stress τShields [Pa] and the overall pick
up factor Factres Pup[kg/m2/s],

E1 IM2
= Factres Pup M2 IMi

(
τ

τShields
− 1

)1.5

, (4)

where M2 IMi
[g/m2] is the layer’s mass sediment fraction

and the exponent is due to the empirical pick-up function
for a sandy seabed from van Rijn (1993).

These parameters and their relationships are further
detailed in the next paragraph. The results presented in
this paper were obtained using version 4.5208 (released on
12-08-2010) of the Delft3D-WAQ model.

2.1. Parameters and dependencies

The Delft3D-WAQ model captures the effect of com-
plex mechanical, chemical and biological processes involved
in the sediment transport system. Consequently, a total of
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71 input parameters need to be specified in order to setup
a simulation scenario. However, for the purposes of the
current study, only the 14 parameters which govern the
deposition/resuspension processes described earlier, will
be considered for sensitivity analysis. They are listed in
Table 1, along with their expert elicited value ranges see
(van Kessel et al., 2011). The baseline values represent
the model parametrization before the present study. The
feasible ranges of the parameters were estimated based on
measurements, such as the average setting velocity of mud,
critical shear stress for erosion and erosion rate parame-
ter under given conditions. For further information see
(Winterwerp and van Kesteren, 2004; Gayer et al., 2006;
Fettweis, 2008).

The values of the 14 parameters need to respect the
physical laws and empirical relations governing the fluxes
of sediment within and between the water column and
the seabed. More specifically, the long term equilibrium
between the buffer capacity (sediment in the S2 layer)
and the water column needs to be preserved. Otherwise,
the model would result in unrealistic outputs, for exam-
ple localized accumulation or disappearance of sediments
to/from the seabed. This necessity has resulted in a de-
pendence structure between the model parameters, further
described by the following relationships:

• an increase in parameter Vsed IMi , needs to be ac-
companied by a decrease in parameter FrIMi sed S2

(or vice-versa), so that the settling into layer S2 is
roughly preserved and the annual equilibrium is re-
spected for each fraction i ∈ {1, 2, 3};

• the parameters τcr S1 IMi and Vres IMi need to in-
crease or decrease simultaneously, such that the year-
average resuspension from layer S1 is roughly con-
served for each fraction i ∈ {1, 2, 3};

• parameters τShields and Factres Pup need to increase
or decrease simultaneously, so that that the year-
average resuspension from layer S2 remains equal.

This leads to the specification of 7 pairs (as given in
Table 2), each pair formed by two parameters which:

1. are completely rank-correlated

2. vary in the same or opposite directions (according to
the rank-correlation)

3. vary simultaneously

Correlations between parameters belonging to different pairs
are considered by experts as insignificant, hence indepen-
dence is assumed. This amounts to a very sparse correla-
tion matrix, with 7 non-zero correlations.

2.2. Model output and MERIS Remote Sensing SPM

The purpose of the sensitivity analysis is to identify
the most important deposition/erosion parameters to be
later used to calibrate the model against measured data.

For this purpose, this paragraph will introduce a suitable
sensitivity objective function.

The model computes the total SPM concentration in
each water surface grid cell on an hourly basis (calcu-
lated as the summation of the concentration of the three
sediment fractions). In addition to this, SPM measure-
ments retrieved from the optical remote sensing system
ESA MERIS are available. This system supplies data from
the visible, upper part of the water column, during the
overpass of the Envisat satellite over the North Sea, oc-
curring nominally once per day between 9:00 and 12:00
AM UTC. As SPM is a natural constituent of water, it
affects the color of the sea. Therefore, the SPM concen-
trations in the water surface layer (several meters) can be
derived from satellite snapshots, using the VU-IVM HY-
DROPT algorithm (Eleveld et al., 2008). However, some
SPM pixels need to be rejected for technical or quality
reasons (cloudiness, land, unreliable retrieval, etc.) and
have, thus, been removed from the measurements data set
(Eleveld et al., 2008). Fig. 3 illustrates an example of the
MERIS data versus the model simulation results for the
surface layer at the same time instance.

This allows the model error, ε, to be defined as the
spatial and temporal mean of the absolute differences be-
tween the model prediction and the MERIS data. If a
measurement is not available in a given grid cell and time
instance, that specific model output is discarded from the
computation. Mathematically, this reads:

ε =
1

N

N∑
i=1

|Modeli −MERISi| (5)

where N is the number of measurements (in both time and
space). Note that the sampling by the MERIS sensor is
irregular in time and space, mainly due to factors such as
the low sun angle, cloudy weather and rough sea states.
Therefore, the number of available measurements varies in
time and space, with an average percentage coverage of
the model domain of up to 60%. The estimated concen-
trations range from 0 to 100 mg/l. Using this function
as sensitivity measure allows an assessment of the impact
of each parameter on the ability of the model to forecast
SPM concentrations.

The results of the sensitivity study will be detailed in
the following paragraphs.

3. The classic Morris method

In this section, the concept of the classic Morris method
is briefly presented, followed by a detailed discussion on
the interpretation of the Morris sensitivity measures.

Given a model, M , with n model parameters, x =
[x1, . . . , xn], the goal of the Morris method is to rank the
model parameters according to their average effect on a
particular model output. The method explores all model
parameters, with a so called one-at-a-time (OAT) design.
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Table 1: Delft3D-WAQ deposition and erosion parameters, with ranges and baseline values.

Parameter Minimum Baseline Maximum Unit Description

Vsed IM1
5.04 10.8 43.2

m/day Deposition velocitiesVsed IM2 43.2 86.4 172.8

Vsed IM3
0.1 0.1 5.04

FrIM1 sed S2
0.05 0.15 0.4

− S2 deposition fractionsFrIM2 sed S2 0.05 0.15 0.4

FrIM3 sed S2
0.05 0.15 0.4

Vres IM1
0.05 0.2 0.5

1/day S1 erosion velocitiesVres IM2
0.2 1 1.2

Vres IM3
0.2 1 1.2

Factres Pup 8e-9 3e-8 8e-8 kg/m2/s S2 erosion rate

τcr S1 IM1 0.05 0.1 0.2
Pa

S1 erosion crit. shear
stressesτcr S1 IM2

0.05 0.1 0.2

τcr S1 IM3
0.05 0.1 0.2

τShields 0.4 0.8 1.2 Pa
S2 erosion crit. shear

stress

Figure 3: Comparison between the MERIS data and the corresponding Delft3D-WAQ simulation result.
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Table 2: Completely rank-correlated pairs of parameters.

Pair Rank correlation

Vsed IM1
– FrIM1 sed S2

-1
Vsed IM2 – FrIM2 sed S2 -1
Vsed IM3 – FrIM3 sed S2 -1
Vres IM1

– τcr S1 IM1
1

Vres IM2
– τcr S1 IM2

1
Vres IM3

– τcr S1 IM3
1

τShields – Factres Pup 1

More precisely, the model parameters are varied in turn
and the effect each variation has on the output is then
measured. This is done using the so called elementary ef-
fects, which quantify the variation of the model output due
to the variation in the model parameters.

This technique enables the identification of the model
parameters xj affecting the output in a way that is: (a)
negligible, (b) linear and additive, (c) nonlinear or involved
in interactions with other parameters (Campolongo et al.,
2007). Note that in the case that the model has m > 1
outputs, y1, y2, . . . , ym, then, according to Shan and Wang
(2009), the effects can either be measured separately for
each yk (the split method) or in terms of a scalar-valued
function of the yk, also referred to as quantity of interest
(for example, an average or a norm).

After performing the sensitivity analysis, efforts can
then be focused on calibration and fine-tuning of the pa-
rameters in category (c), while keeping the other param-
eters fixed to predefined values. Therefore, in its classic
formulation, the Morris method is, essentially, a screening
technique.

3.1. Elementary effect analysis

The Morris method (Morris, 1991) determines the statis-
tics of the, so-called, elementary effects dj , defined as

dj =
M(x1, . . . , xj−1, xj + δ, xj+1, . . . , xn)−M(x1, . . . , xn)

δ
(6)

which serves as an approximation of the partial derivative
of M with respect to xj . In order to evaluate dj inde-
pendently of the parameter ranges, each xj is first scaled
to [0, 1]. This maps the parameter space to a unit hyper-
cube, [0, 1]n, which is subsequently discretized in p levels
(an example is illustrated in Fig. 4). The Morris step,

δ =
s

p− 1
s ∈ {1, . . . , p− 1} (7)

represents the magnitude of the variation and is chosen as
a multiple of the grid cell size, 1

p−1 .
In order to measure the average effect of the parame-

ter variation on the model output, elementary effects are
calculated r times for each parameter at randomly chosen
positions on the grid. This allows for the computation of

0

1

0.3333

0.6667

0.6667

1

1
0.3333

0.6667

0.3333

0
0

Figure 4: Unit hypercube representation of the parameter space for
n = 3 parameters and p = 4 discretization levels.

two sensitivity measures, the elementary mean and stan-
dard deviation:

µj =
1

r

r∑
i=1

dj
(i) σj =

√√√√ 1

r − 1

r∑
i=1

(
dj

(i) − µj

)2
(8)

which provide insight into the relative sensitivity to xj .
Other sensitivity measures could be defined, for example,
Portilla et al. (2009) use the value of

√
µj

2 + σj2 to build
a ranking of model parameters, while Campolongo et al.
(2007) recommend using the absolute elementary mean,

µ∗j =
1

r

r∑
i=1

∣∣∣dj(i)∣∣∣ j = 1, . . . , n (9)

instead of µj , in order to better capture elementary ef-
fects of opposing sign (which cancel each other out in the
calculation of µ).

The interpretation of µj , µ
∗
j and σj in assessing the

overall influence of parameter xj on the model output, is
as follows. If µj has a high amplitude, it implies not only
that the parameter has a large effect on the output, but
also that the sign of this effect does not vary significantly
over model simulations. Meanwhile, in the case that µj is
relatively low and µ∗j is high, xj has effects are of opposing
sign, varying with the point of evaluation. In addition, if
σj is high, then the elementary effects relative to this pa-
rameter are significantly different from each other. This
means that the value of xj ’s elementary effects are strongly
dependent upon the choice of the point in the input space
where it is evaluated, i.e., by the choice of the other pa-
rameters values. One may, therefore, conclude that this
parameter has a high interaction with other parameters.
On the other hand, a low value of σj indicates nearly con-
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0 0.3333 0.6667 1
0

0.3333

0.6667

1

(a) randomly sampled elementary effects

0 0.3333 0.6667 1
0

0.3333

0.6667

1

(b) effects grouped in elementary paths

Figure 5: Efficient sampling in the Morris method (n = 2, p =
4, r = 3, s = 1): random sampling results in 12 model evaluations
(left); this number can be reduced to 9 by forming elementary paths
(right).

stant values of the elementary effects, therefore implying
that the model is almost linearly dependent on xj .

The analysis described above implies performing a to-
tal of 2n · r model evaluations. Morris (1991) proposed an
efficient sampling scheme. It relies on elementary effects
that share endpoints on the latin hypercube grid (Fig. 5b),
effectively leading to (n + 1) · r elementary paths. Such a
path starts at a random position on the grid and sequen-
tially travels one step of length δ over each dimension. This
effectively reduces the number of required model evalua-
tions by a factor of 2.

The choices for p, r and s have a significant impact on
the outcome of the sensitivity analysis. If a high value of
p is considered, which means that a high number of levels
will be partitioned, one may think that the accuracy of
the sampling has been increased. However, if this is not

Figure 6: Scatter plot of 500 samples from a Gaussian copula with
correlations ρ(x1, x2) = ρ(x1, x3) = −0.7 and ρ(x2, x3) = 0.7.

related to a high value of r, many of the levels will remain
unexplored. Also, the value of s depends on the choice of p.
According to Morris (1991), a convenient choice is s = p

2
(assuming p is even), while previous studies (Campolongo
et al., 2007) have demonstrated that p = 4 and r = 10
produce valuable results in many cases.

A short introduction to copulas is presented in the next
section.

4. Copulas

A copula is a joint distribution, defined on an n-dimensional
unit hypercube with uniform marginal distributions (Nelsen,
2007). It is a very popular way of representing the joint
distribution, since it separates the influence of marginal
distributions from the influence of parameter dependen-
cies.

The joint cumulative distribution function F (x1, ..., xn)
of random variables X = (x1, . . . , xn) with marginal distri-
butions denoted as Fi(xi), i = 1, ..., n can be represented
with copula C as follows,

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)), (10)

which is unique if (x1, . . . , xn) are continuous (Nelsen, 2007).
The most popular copulas used in practice are Gaus-

sian, Student-t and copulas from the Archimedean family.
In Figure 6, a scatter plot of samples from a three di-
mensional Gaussian copula with correlations ρ(x1, x2) =
ρ(x1, x3) = −0.7 and ρ(x2, x3) = 0.7 is presented. The
larger concentration of points close to the (1,0,0) and (0,1,1)
is due to to the negative correlation between the first pa-
rameter and the remaining two.

5. Copula-based Morris method

The Morris method (Morris, 1991) was conceptually
designed for models with independent parameters. How-
ever, most often, model parameters are related to each

7



other; disregarding this association results in an invalid
description of the physical system. Sensitivity analysis
based on independent random sampling, as is the one per-
formed by the classic Morris method, is not applicable in
these cases, since it breaks the underlying model assump-
tions, possibly leading to unrealistic behavior. This has
motivated the need to develop a general method for sen-
sitivity analysis. For this reason, this section introduces
a novel copula-based approach, able to account for a wide
range of dependencies between the model parameters.

As discussed before, the elementary paths are the build-
ing blocks of the Morris method. Without loss of general-
ity, consider the case when the Morris step is equal to one
cell, i.e. δ = 1

p−1 . Then, as illustrated in Fig. 7, each path
runs on the contour of a grid cell, starting in one of its cor-
ners and ending in the opposite one (since all coordinates
are successively altered with ±δ).

The copula-based method relies on the key observation
that the sampling of a path can be done, equivalently, in
the following three steps:

1. Choosing the target grid block

2. Choosing the starting point as one of the corners of
the grid block

3. Choosing the traversal order of the contour segments,
in order to reach the opposite corner

For example, the path in Figure 7 was obtained by first
choosing the blue-shaded grid cell, then its lower-right cor-
ner as the starting point, A. In order to calculate the el-
ementary effects, a path must be chosen such that all the
parameters, three in this case, are varied, one at a time,
with δ. Note that there are 3! = 6 different ways of travers-
ing this grid cell from A to B. In this case, parameter x3
is changed first, followed by x1 and finally, x2. Thus, de-
termining an order of traversal is equivalent to choosing a
permutation of the set {1, 2, 3}.

Note that traversing a path in reverse (from B to A)
does not produce new results, since it decomposes into the
same elementary effects. Therefore, there are two different
ways to sample the same path: choosing its start corner
and corresponding permutation π, or choosing its end cor-
ner and the reverse of permutation π. Since this is true
for all elementary paths, their probability of being selected
remains uniformly distributed (in accordance to the clas-
sic formulation in Morris (1991)), without any alteration
of the sampling strategy.

If the Morris step is higher than one grid cell (7), the
only difference is that the path is drawn on the contour of a
s× s grid block (Figure 8). Note that, even though neigh-
boring blocks intersect each other, they spawn different
elementary paths and, hence, are conceptually disjunct.

This geometric interpretation allows us to compute the
total number of possible paths on the unit hypercube as:

Ncells = (p− s)n, Ncorners = 2n, Norders = n!,

Npaths = Ncells ·Ncorners ·Norders / 2

(11)
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Figure 7: Geometric reinterpretation of an elementary path (n =
3, p = 3, s = 1).
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Figure 8: Elementary path for n = 3, p = 4, s = 2.

where n is the number of parameters, p is the number of
discretization levels and s is the Morris step size. More
importantly, sampling dependence constraints can now be
introduced into each of the three steps enumerated above,
by appropriately altering the sampling probabilities of the
elementary effects.

5.1. Choosing the target grid block

The position of the grid block containing an elementary
path gives the range of values within which the parame-
ters are varied sequentially to compute elementary effects.
Previous studies state that having the paths sufficiently
spread within the unit hypercube is vital for the results of
the analysis. For this purpose, Campolongo et al. (2007)
introduce a penalty term based on Euclidean distances,
while van Griensven et al. (2006) use Latin Hypercube
Sampling (LHS, see McKay et al., 1979), instead of Monte-
Carlo.
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(a) Copula samples
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(b) Latin hypercube reordered samples

Figure 9: Using LHSD to ensure an even spread of the copula samples
within the parameter space (n = 2, p = 11, s = 1).
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The goal of the new method is to constrain the sam-
pling of the blocks in accordance to the available infor-
mation about parameter dependencies. To this end, the
first step is to specify a copula (Nelsen, 2007) which cap-
tures these dependencies. As presented in Section 4 one
can extract a copula from the joint distribution between
model parameters by transforming the margins to be uni-
form on (0,1). This can be done simply by linear scaling if
the parameters are uniformly distributed over their orig-
inal ranges, otherwise marginal distributions need to be
applied. Latin hypercube sampling is then performed on
the copula,thus ensuring a good coverage of the parameter
space. 1

For example, in n = 2 dimensions, there will be ex-
actly one sample in each row and each column (compare
Figure 9a with Figure 9b) as in the original latin hypercube
sampling method (McKay et al., 1979), with the added ef-
fect of preserving dependencies between parameters, due
to the copula. The algorithm used to achieve this is Latin
Hypercube Sampling with Dependence (LHSD) and has
been recently proposed by Packham and Schmidt (2008).
Formally, considering a hypercube of ln grid cells, LHSD
operates by taking l samples from the copula, u(1), . . . , u(l) ∈
Rn (as in Figure 9a) and arranges them to get one sample
in each row and column, while preserving their ranking.
More precisely,the rank statistics of the i-th sample of pa-
rameter j are computed as

Rj [i] =

l∑
k=1

1{u(k)[j]≤u(i)[j]} i = 1, . . . , l j = 1, . . . , n

(12)
where 1S denotes the indicator function of set S. Rj [i] ef-
fectively represents the order of the sample in (u(1)[j], ..., u(l)[j]).

Finally, the vector containing the coordinates of the
origin of the target cell (i.e. its lower-left corner) is deter-
mined as:

cell(i)[j] =
Rj [i]− 1

l
i = 1, . . . , l j = 1, . . . , n

(13)
Note that, by the nature of LHSD, the number of sam-

ples needs to be a multiple the size of the hypercube. How-
ever, sensitivity studies may require an arbitrary num-
ber of samples. To maintain the flexibility of the Mor-
ris method, the LHSD algorithm can be repeated several
times, until there is a sufficient number of samples (the
excess can be discarded).

1This part of the algorithm could be done differently if only in-
formation about correlations between parameters was available. One
could first obtain l Latin hypercube samples as specified in (McKay
et al., 1979) and impose correlation constraints with the Iman and
Conover (1982) method. However, since that method uses van der
Warden scores (based on the normal distribution) that are linearly
transformed with a lower triangular matrix obtained from the desired
correlation matrix, it is approximately equivalent with the method
presented in this paper, while employing a normal copula.

5.2. Choosing the starting point

For each sampled grid block, cell(i), the starting corner
of the path is randomly sampled such that the dependence
information between parameters is preserved. The idea is
simple – each corner in the grid is treated as a realization
of an n-dimensional discrete distribution with p possible
values, namely {0, 1, 2, ..., p− 1}, for each factor.

The advantage of using a copula is that the marginal
distributions of the factors are removed through marginal
transformation or linear scaling. The marginal probabil-
ity of each factor xi taking value j ∈ {0, 1, 2, ..., p − 1} is
Prob(xi = j) = 1

p . As such, the finite difference formula

presented in Nelsen (2007) can be used to compute the
probability of each point specified on the grid,

Prob(X1 = j1, . . . , Xn = jn) = ∆b1
a1

∆b2
a2
. . .∆bn

an
C, (14)

where ai = ji
p , bi = ji+1

p and

∆bk
ak
C = C(u1, . . . , uk−1, bk, uk+1, . . . , un) −

C(u1, . . . , uk−1, ak, uk+1, . . . , un)
(15)

Hence when n = 3

Prob(X1 = x1, X2 = x2, X3 = x3) =

C(b1, b2, b3)− C(a1, b2, b3)− C(b1, a2, b3) + C(a1, a2, b3)

−C(b1, b2, a3) + C(a1, b2, a3) + C(b1, a2, a3)− C(a1, a2, a3).
(16)

Consider the formula 16 when p = 2. In this case the
hypercube is composed of only one cell with eight corners.
Each factor can take only two possible values xi = {0, 1}.
p0,0,0 = Prob(X1 = 0, X2 = 0, X3 = 0) = C( 1

2 ,
1
2 ,

1
2 ), with

ai = 0, bi = 1
2 , i = 1, 2, 3, since any copula evaluated at

point zero is 0. Using a normal copula with the correlation
matrix presented in Section 4, p0,0,0 = 0.0633. Similarly,
p0,1,0 = p0,0,1= p1,1,0 = p1,0,1 = p1,1,1 = 0.0633. However,
the probability of the point (0,0,1) (as well as (1,1,0)) is
much higher (see Figure 6) and it can be calculated as
p1,0,0 = C(1, 12 ,

1
2 )− C( 1

2 ,
1
2 ,

1
2 ) = 0.3101 with ai = 0, bi =

1
2 , i = 2, 3 and a1 = 1

2 , b1 = 1. The starting point is
sampled according to the calculated distribution, hence
there is a much larger chance to choose point (1,0,0) or
(0,1,1) over the other options.

This procedure can be used to compute distributions of
corner points for each cell on the grid. However, for large
p it can prove to be a computationally demanding task.
It is only of interest to do this for the grid cells resulting
from LHSD, however If this is still a large number, one can
compute the distribution only once, as illustrated in the
example above for p = 2, and assume that it applies to all
grid cells. In the case of the Gaussian copula, this simpli-
fied procedure would be sufficient. For more complicated
copulas, i.e. with asymmetries and tail dependencies, how-
ever, the assumption would not hold.

Finally, after the starting corner is determined, the cor-
responding elementary path will end in the opposite cor-
ner, since it is composed of one elementary effect for each
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Figure 10: Binary representation of the nodes on the path, starting
in corner A (i.e. bs = (1, 0, 0)) and ending in B (i.e. be = (0, 1, 1)).

parameter. For convenience, each of the grid cell’s cor-
ners are assigned a binary representation, starting with
(0,0,0) in the origin (see Fig. 10). Then, the end point is
determined by negating the representation of the sampled
starting point. Note that there are 2n possible paths be-
tween these points – the choice between them is explained
in the next paragraph.

5.3. Choosing the traversal order

The order of traversal is given by a randomly sampled
permutation π(i) which describes the way to get from the
starting point to the opposite corner by changing one fac-
tor at the time. The path’s vertices are determined by se-
quentially negating the components in the starting point’s
binary representation (similar to a Gray code sequence,
obtained by swapping one bit at a time). For example,
the path in Figure 10 was obtained using the permutation
{3, 1, 2}, corresponding to the change along the {z, x, y}
axes:


x y z

bs → 1 0 0
1 0 1
0 0 1

be → 0 1 1


5.4. Method summary

To conclude, the copula-based Morris method follows
the following outline:

Prerequisites

• A model that takes n parameters, M(x1, . . . , xn),
with their corresponding ranges.

• A copula C that best describes the dependence be-
tween the parameters. In the absence of any prior in-
formation the independence copula can be assumed,

whereas, if there are known correlations between the
parameters, ρi,j , then a Gaussian copula is appropri-
ate. For more complex dependency structures (e.g.
tail dependence), one is free to use a copula from
the Archimedean family (Clayton, Gumbell, etc.) or
infer an empirical copula from a pre-existing set of
model runs.

• The number of levels, p, and step size, s, for the
Morris method.

• The number of desired paths, r, by taking into ac-
count that (n+ 1)× r model runs are necessary.

Algorithm

1. Define the grid as a p-level n-dimensional unit hy-
percube.

2. Sample r vectors, ui, from the copula C.

3. Compute the rank statistics (12).

4. Compute the LHSD samples (13), which represent
the grid blocks.

5. For each grid block, determine the start and corre-
sponding end point, as explained in paragraph 5.2.

6. Determine the order of traversal of the path’s seg-
ments by sampling a permutation, π(i), and deter-
mine the path, as explained in paragraph 5.3.

7. Evaluate the model at each point along the paths
and compute the elementary effects (6).

8. Compute and interpret the sensitivity measures µi,
µi
∗ and σi using (8) and (9).

6. Sensitivity analysis results

The methodology proposed in section 5 has been ap-
plied to the Delft3D-WAQ model (described in Section 2).
Recall that, in order to respect the interactions between
the parameters, we separate them into 7 perfectly corre-
lated pairs. This leads to the construction of a Gaussian
copula with the rank-correlations given in Table 2, which
enables the computation of cumulative elementary effects
of each pair, rather than that of each individual param-
eter. Due to this specific choice of correlation structure,
the sampling will favor grid cells lying on the hypercube’s
diagonal (anti-diagonal) for factors completely positively
(negatively) correlated. Subsequently, the same dependen-
cies are used to constrain the choice of starting points for
the elementary paths, while the order of traversal is ran-
domly sampled.

Since the Delft3D-WAQ model is computationally ex-
pensive (3 hours run time on a coarse grid and 11 hours
for a fine grid), the number of simulations that can be per-
formed for sensitivity analysis is limited. Therefore, the
parameter space (unit hypercube) was divided into p = 4
equidistant levels, on which r = 10 elementary paths were
sampled with a Morris step of s = 2 cells. Therefore,
a total number of 80 simulations were performed for the
sensitivity study.
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Figure 11: Copula-based Morris method sensitivity results.
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For the sake of comparison, a separate set of simula-
tions was performed, where the parameters were sampled
using Morris’ classic algorithm (thus, assuming complete
independence). The comparative results are depicted in
Fig. 11 and in Fig. 12 and detailed in Tables 3 and 4.

Table 3: Sensitivity measures for the correlated pairs, using the
copula-based approach. The ranking is done ordered in decreasing
order of µ∗.

Pair µ µ∗ σ

τShields – Factres Pup 0.023 2.857 3.331
Vsed IM1 – FrIM1 sed S2 -0.077 2.317 3.187
Vsed IM2 – FrIM2 sed S2 0.496 1.228 1.589
Vsed IM3

– FrIM3 sed S2 0.063 0.202 0.233
Vres IM1

– τcr S1 IM1 0.019 0.171 0.290
Vres IM2

– τcr S1 IM2 0.003 0.011 0.015
Vres IM3

– τcr S1 IM3 0.000 0.001 0.002

Table 4: Sensitivity measures for each parameter individually, using
the classic Morris method, which does not support dependencies.
The ranking is done ordered in decreasing order of µ∗.

Parameter µ µ∗ σ

Vres IM1 -0.160 5.002 8.193
τcr S1 IM2 -1.666 3.794 7.939
τcr S1 IM3 2.815 3.304 5.311
τShields -2.037 2.684 6.153

FrIM1 sed S2 -0.546 1.731 3.083
Vres IM3 -1.221 1.655 2.652
Vres IM2 -0.412 1.423 2.291

FrIM3 sed S2 -0.450 1.247 2.706
Vsed IM1 -0.732 1.037 2.228
τcr S1 IM1 0.660 1.037 1.678
Vsed IM2 0.918 1.013 2.235

FrIM2 sed S2 0.483 0.986 1.894
Vsed IM3 0.642 0.979 1.523

Factres Pup -0.251 0.749 1.559

The results of the copula-based Morris method match
the expectations induced by the physics of the system and
defined during the expert judgment exercise. The param-
eters to which the model is most sensitive to (presented in
pairs) are, in this order:

1. τShields – Factres Pup

2. Vsed IM1
– FrIM1 sed S2

3. Vsed IM2 – FrIM2 sed S2

As seen in Table 3, the values of µ and µ∗ for these pa-
rameter pairs differ significantly, which suggests a high in-
teraction with the other pairs. The pair τShields – Factres Pup

is mainly responsible for the sand resuspension processes
from the second bed layer releasing silt during high stress

events (e.g. high waves, spring tides) while the pairs Vsed IMi

– FrIMi sed S2
, i ∈ {1, 2}, are involved in the deposition

processes of the medium and coarse particles from the wa-
ter column into the two bed layers. Note that the pairs
Vres IMi

– τcr S1 IMi
, i ∈ {1, 2, 3}, which are involved in the

resuspension process from the fluffy bed layer by weaker
stress conditions (e.g. semi-diurnal tidal fluctuations), are
of less impact on the model output variability. From this
set, the resuspension for the medium size particles (IM1)
has the highest impact.

On the other hand, the results of the classic Morris
method rank the first-order resuspension rate for medium
particles Vres IM1

, the critical resuspension stress from the
layer S1 for the coarse and fine particles τcr S1 IMi

, i ∈
{2, 3}, and the critical shear stress τShields as the top four
most influential parameters. τShields appears in both rank-
ings as a sensitive parameter.

The comparison shows that, under the assumption of
independence, the dominant process is the resuspension
from layer S1 followed by the resuspension from the layer
S2, while under the copula-based approach, the dominant
process is the resuspension from the second layer succeeded
by deposition. In the model setup, S1 represents a thin
fluffy layer consisting of rapidly eroding mud, while most
sediment is stored in the sandy layer S2. When the bed
shear stress τShields exceeds a critical value (energetic con-
ditions such as spring tides or storms) the sandy layer be-
comes mobile and the sediment is released in the water
column. It is therefore expected that the total SPM con-
centration in the water column increases significantly. On
the other side, during calm conditions, the presence of sed-
iment in the water column is influenced by the deposition
rates. As such, the results of the copula-based sensitivity
analysis have a better correspondence with the expected
system behavior.

7. Conclusions

Computer-based models for real-life processes often con-
sist of systems of numerous nonlinear equations, with de-
terministic, as well as stochastic variables. Increases in
the level of detail or accuracy within these models often
imply an explosion in the number of degrees of freedom,
sometimes to the point where a high number of simulations
becomes unfeasible even on modern computing hardware.

This paper explored the prospect of performing sen-
sitivity analysis on the Delft3D-WAQ sediment transport
model, aiming to identify the parameters that have the
strongest effects on the variability of the model predictions.
The complexity and non-linearity of the model, along with
the engagement of a great number of parameters, led to
the application of the Morris method, due to its versatility
and computational efficiency.

An extension to Morris’ classical method was proposed,
allowing it to incorporate prior information about the de-
pendence structure between model parameters into the
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sampling strategy. The extended method introduces cop-
ulas, which can accommodate a wide range of dependence
constraints and are generally applicable. The sensitivity
analysis results correspond well with the expected behav-
ior and dynamics of sediment transport in shallow waters.
More specifically, the analysis revealed that the critical
shear stress and the factor responsible for re-suspension
from the sandy layer S2 have the highest impact on the
variance of the output. Consequently, and after expert as-
sessment, the results of this study were used as a screening
tool for subsequent model calibration, where the 5 signif-
icant pairs of parameters were subjected to a simulated
annealing algorithm, in order to determine the optimal
values which give the best fit between the model output
and the remote sensing data.

The results of the sensitivity analysis applied for a set
of dependent parameters demonstrate the potential use of
the extended Morris method in determining the key driv-
ing factors of a complex model. The method may be repre-
sentative for similar studies of complex models worldwide
and has been implemented in a generic approach. To that
end, the Matlab code used to obtain the results presented
in this paper is openly available (Ţene et al., 2015).

The dependence structure of parameters in the Delft3D-
WAQ sediment transport model was very specific (com-
plete positive / negative dependence between pairs of fac-
tors). This type of dependencies lead to exactly the same
sensitivity behavior of these factors. However the method
can accommodate other dependence structures, as well as
complicated joint distributions of factors in the model. It
would be of great importance to test the methodology pre-
sented in this paper for different types of models.
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