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ABSTRACT 

Sea-level rise poses considerable risks to coastal communities, ecosystems, and infrastructure.  

Decision makers are faced with uncertain sea-level projections when designing a strategy for 

coastal adaptation.  The traditional methods are often silent on tradeoffs as well as the effects 

of tail-area events and of potential future learning.  Here we reformulate a simple sea-level rise 

adaptation model to address these concerns.  We show that Direct Policy Search yields 

improved solution quality, with respect to Pareto-dominance in the objectives, over the 

traditional approach under uncertain sea-level rise projections and storm surge.  Additionally, 

the new formulation produces high quality solutions with less computational demands than an 

intertemporal optimization approach.  Our results illustrate the utility of multi-objective 

adaptive formulations for the example of coastal adaptation and point to wider-ranging 

application in climate change adaptation decision problems. 
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SOFTWARE AVAILABILITY 

Model source code and data are available at https://doi.org/10.18113/D3XD32.  Model 

requires Gnu C++ compiler 5.3.1 (https://gcc.gnu.org/), OpenMPI 1.10.1 (https://www.open-

mpi.org/), NetCDF 4.4.1 (https://www.unidata.ucar.edu/software/netcdf/), Boost 1.61.0 

(http://www.boost.org/), and Borg 1.8 (http://borgmoea.org/) or later versions.   

 

1. INTRODUCTION 

Sea-level rise (SLR) drives considerable risks to coastal communities, ecosystems, and 

infrastructure around the world (Eijgenraam et al., 2014; Le Cozannet et al., 2015; Miller et al., 

2015; Moftakhari et al., 2015; Nicholls and Cazenave, 2010).  The Intergovernmental Panel on 

Climate Change reports that global mean sea-levels will likely rise by 0.52 to 0.98 m by the year 

2100 (relative to the 1986-2005 period) under a high greenhouse gas concentration scenario 

(Church et al., 2013) and that a collapse of portions of the Antarctic ice sheet would irreversibly 

drive SLR well beyond this range (DeConto and Pollard, 2016; Pollard et al., 2015; Wong et al., 

2017; Wong and Keller, 2017).  Additionally, climate change is contributing to changes in the 

distribution of storm surge events, especially with regard to the extreme tail-area events (Arns 

et al., 2017; Grinsted et al., 2013, 2012; Neumann et al., 2015).  Though SLR and storm surge 

have been, and continue to be, extensively studied, they remain deeply uncertain across 

decision-relevant time scales (Buchanan et al., 2016; Hinkel et al., 2014; Le Cozannet et al., 

2015; Lempert et al., 2004; Lempert et al., 2012).  Those in position to enable coastal 

adaptation strategies rely on decision support tools to process this deeply uncertain 

information to inform their decisions (Lempert et al., 2004; Lempert et al., 2012; Liverman et 

al., 2010).   
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Developing and applying these decision support tools poses conceptual and methodological 

challenges. One approach is to build an optimization tool that finds the time-series of dike 

heighteneings that minimizes the total economic cost of building dikes or levees (Eijgenraam et 

al., 2014; Kind, 2014; Slijkhuis et al., 1997; Speijker et al., 2000; Van Dantzig, 1956; van der Pol 

et al., 2014).  To incorporate uncertainty, this process can be repeated over various sets of 

model parameters and the expectation of the total costs can be minimized. 

This approach, however, is silent on several key aspects of decision making.  First, the single-

objective formulation can hide important tradeoffs among stakeholder preferences of which 

the decision maker must be aware (Garner et al., 2016; Quinn et al., 2017; Singh et al., 2015).  

For example, a climate mitigation strategy derived by maximizing the expectation of an a priori 

defined utility function may be blind to important tradeoffs in environmental objectives and 

remove relevant stakeholders from the negotiations (Garner et al., 2016).  Second, insufficient 

sampling of uncertainty can under-represent extreme events that may weigh heavily in the 

decision (Garner et al., 2016; Lempert et al., 2004).  Lastly, this formulation does not make use 

of important state-related information, such as the level of the water with respect to the top of 

the dike, that can be used to inform the decision (Quinn et al., 2017; van der Pol et al., 2014).  

The Robust Decision Making (RDM) framework provides a means of approaching these 

concerns (Herman et al., 2015; Kwakkel et al., 2016; Lempert et al., 2006; Weaver et al., 2013).  

We expand on this framework with an additional component to include endogenous learning 

and adaptive decision making. 

In this study, we reformulate the problem to begin addressing these concerns.  Specifically, we 

split up the total cost metric into its investment cost and damage components to illustrate the 

direct tradeoffs between the two objectives.  We use a states-of-the-world (SOWs) approach 

about SLR and storm surge to introduce uncertainty to the SLR adaptation model and provide 

coverage of tail-area events.  Finally, we apply Direct Policy Search (DPS), an adaptive state-

based method of endogenous learning, to incorporate new information and adapt the decision 

through the simulation period (Deisenroth et al., 2013; Giuliani et al., 2016).  We hypothesize 

that these changes will provide an improvement in solution quality over the traditional 

approach.   
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2. METHODS 

The following sub-sections describe our approach to formulating the problem and designing the 

experiment.  The sub-sections largely follow the taxonomy proposed in the XLRM framework 

where the decision problem is comprised of exogenous uncertainties (X), levers or actions at 

the disposal of the decision maker (L), the model or relationship (R) mapping the decision 

maker’s actions to the performance metrics or objectives (M) (Lempert et al., 2006).   

2.1 Base Model (R) 

The base model used in this analysis is an SLR adaptation model used in the Netherlands to help 

inform safety standards for the numerous dikes protecting the country.  The model is described 

extensively in (Eijgenraam et al., 2014). The key components are briefly summarized below. 

The objective is to find the time series of annual dike heightenings ut that minimizes the total 

discounted social cost over the simulated time horizon of 300 years 

min {∑ 𝐼(ℎ𝑡
−, 𝑢𝑡)𝑒

−𝛿𝑡 + 𝑆𝑡𝑒
−𝛿1𝑡

𝑡
} , (1) 

where I is the investment cost to heighten the dike and St is the expectation of damages at year 

t.  Both investment cost and the expectation of damages are discounted by a factor of  and 1 

respectively.  The investment cost component is defined by an exponential function of the 

increase in dike height at a given time 

𝐼(ℎ𝑡
−, 𝑢𝑡) = {

                      0                  𝑖𝑓 𝑢𝑡 = 0 

  (𝜅 + 𝜐𝑢𝑡)𝑒
𝜆(ℎ𝑡

−+𝑢𝑡)    𝑖𝑓 𝑢𝑡 > 0
, (2) 

where 𝜅, 𝜐, and 𝜆 are positive constants and ut is the additional height added at time t to the 

dike at height ℎ𝑡
−.  The increase in dike height reduces the probability of a flood (Pt) and thus 

reduces the expectation of damages according to 

𝑆𝑡 = 𝑃𝑡𝑉𝑡 (3) 

𝑉𝑡 = 𝑉0
−𝑒𝛾𝑡𝑒𝜁(𝐻𝑡−𝐻0

−), (4) 
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where Vt is the damage incurred in the event of a flood at time t, V0
- is the damage incurred by 

a flood before t = 0, Ht is the dike height at time t, H0
- is the dike height just before t = 0, γ is the 

economic growth rate within the area protected by the dike, and ζ is the increase in loss per 

unit of dike heightening.  Values for these parameters are listed in Table 1, which are consistent 

with the parameter values for dike ring 16 in (Eijgenraam et al., 2014).  The probability of 

flooding (Pt) is handled differently in our formulations and is discussed in section 2.2. 

 

Parameter (symbol) Value Unit 

Discount rate of investment cost      () 0.04 yr-1 

Discount rate of expected damages    (1) 0.04 yr-1 

Initial investment cost to heighten dike     () 324.6287 Euros 

Linear parameter in investment cost     () 2.1304 Euros/yr 

Exponential parameter in investment cost     () 0.01 cm-1 

Economic growth rate within dike     () 0.02 yr-1 

Increase in loss per unit of dike heightening     () 0.002032 cm-1 

Initial height of dike prior to t=0  (H0
-) 118.6837 cm 

Loss due to flood prior to t=0  (V0
-) 22656.5 Euros 

 

Table 1.  Parameter values of the economic component of the base model 

 

2.2 Uncertainty in SLR and Storm Surge (X) 

In the base model, the probability of flooding is represented by an exponential distribution of 

extreme flood events.  A steady rate of increase in the effective water height is used to 

represent rising sea-levels, and in the case of the Netherlands, land subsidence.  This rate 

parameter is used in the exponential distribution to determine the probability of a dike failure 

as a function of time.  Sea-level rise, however, is a deeply uncertain consequence of a changing 

climate (Church et al., 2013) and a steady rate of sea-level rise represents only one possible 

future state.  In the reformulated analysis, the probability of flooding is replaced with an explicit 
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representation of states of the world (SOWs) (Garner et al., 2016; R. J. Lempert et al., 2012; 

Singh et al., 2015).  In this approach, parameters that represent future states of the world do 

not have a single value, but rather a distribution of possible values.  Drawing a sample from 

each parameters’ distribution would represent a single state over which the model is evaluated.  

Repeating this process provides a series of outcomes from which expectations and reliability 

metrics can be calculated. 

In order to use the SOW approach to represent uncertainty, we incorporate new structural 

representations of sea-level rise and storm surge events into the base model.  Future mean 

annual sea-level rise is approximated by the approach used in Lempert et al. (2012) 

𝑧𝑡 = {
            𝑎 + 𝑏𝑡 + 𝑐𝑡2                     𝑖𝑓 𝑡 ≤ 𝑡∗

 𝑎 + 𝑏𝑡 + 𝑐𝑡2 + 𝑐∗(𝑡 − 𝑡∗)       𝑖𝑓 𝑡 > 𝑡∗
, (5) 

where parameters a, b, and c are the initial sea-level rise anomaly, linear rate of change of sea 

level, and the acceleration of sea-level change respectively.  The c* and t* parameters represent 

a potential abrupt change in sea-level rise such as the sudden collapse of an ice sheet (DeConto 

and Pollard, 2016; Pollard et al., 2015).  The linear rate would increase by c* when t exceeds t* 

in the simulation.  The joint distribution of these parameters are estimated through the 

calibration process described in Oddo et al. (2017) and used in this analysis to derive SOWs. 

Storm surge events occur on top of the mean annual sea level.  These events are estimated 

through inverse-transform sampling of the stationary generalized extreme value (GEV) 

distribution calibrated in Oddo et al. (2017). 

𝑥𝑡 =

{
 
 

 
    𝜇 + 𝜎ln (

1

ln(1 𝑝⁄ )
)       𝑖𝑓 𝜉 = 0

𝜇 +
𝜎((ln(1 𝑝⁄ ))−𝜉)

𝜉
     𝑖𝑓 𝜉 ≠ 0

, (6) 

where , , and  are the location, scale, and shape parameters of the GEV function and p is a 

quantile randomly sampled from a uniform distribution from zero to one inclusive.  A draw 

from this distribution represents an annual maximum surge event (xt) that is added to the mean 

annual sea level (zt) at time step t.  Note that this distribution is stationary and does not 

account for changes in the maximum surge event over time.  Additionally, the distribution was 
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calibrated to observations with the annual mean sea-level signal removed.  Tides, wave set up, 

and wave run up contribute to extreme water levels, but were not addressed in the calibration 

process.  Estimates of the joint distribution of the parameters in equation 6 from Oddo et al. 

(2017) are used in this analysis to derive SOWs. 

To represent a large portion of the tails of the distributions of this uncertainty, this analysis 

produces 100,000 SOWs.  We evaluate the model over each SOW to produce the objective 

values described in section 2.3. 

 

2.3 Objectives (M) 

The original objective in the base model is to minimize the total social cost (eq. 1).  The total 

social cost is the discounted sum of two components, the total investment cost of building up 

the dike height (eq. 2) and the total expectation of damages (eq. 3).  While this seems like a 

reasonable objective, it neglects the distinct possibility that multiple decision makers, 

representing diverse stakeholder preferences, may be involved in the negotiations.  For 

example, some stakeholders are so risk-adverse that the decision makers, acting on their behalf 

at the negotiations, are willing to invest heavily into infrastructure in order to minimize 

expected damages (Eijgenraam et al., 2014; Kind, 2014) while decision makers representing 

fiscally-conservative stakeholders would argue for low investment-cost solutions.  In either 

case, a traditional single-objective function masks these tradeoffs leading to a single optimal 

solution that could be inconsistent with these stakeholders’ preferences (Garner et al., 2016). 

Instead of combining the two components of the total social cost into a single metric, this 

analysis defines the two components as separate objective functions, both of which are to be 

minimized 

            𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 1: 𝑚𝑖𝑛 {∑ 𝐼(ℎ𝑡
−, 𝑢𝑡)𝑒

−𝑡

𝑡
} (7) 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 2: 𝑚𝑖𝑛 {∑ 𝑆𝑡𝑒
−𝑡

𝑡
} . (8) 
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Note that these objectives use the same discount factor  as opposed to the separate discount 

factors used in the objective function in the base model (eq. 1).  Additionally, the probability of 

the water level exceeding the dike height at time 𝑡 used in calculating the expected damages 

(𝑃𝑡 in eq. 3) is replaced with the proportion of SOWs with water levels that exceed the dike 

height at that time.  The result is, instead of a single optimal build policy, a set of Pareto-

optimal solutions for which it is not possible to find another solution that reduces investment 

(damage) costs without increasing damage (investment) costs. 

 

2.4 Decision Variables – Intertemporal and Direct Policy Search (L) 

One straight-forward approach to this optimization problem is to treat the heightening at every 

time-step in the simulation as a decision variable.  With a time-horizon of 300 years and an 

annual time-step, this results in an intertemporal optimization with 300 decision variables.  In 

this approach, the heightening at each time-step is exogenously prescribed to the model. 

One important drawback of this approach is that the same build policy is used regardless of the 

state of the system.  For example, a specific policy that is appropriate for a rapid increase in 

water height would unnecessarily heighten the dike if the water levels rise slowly or not at all.  

Conversely, a policy that is appropriately built for slow-rising water levels would be 

catastrophically underprepared if the water levels rise abruptly and quickly.  Additionally, this 

approach can be a poor approximation of how adaptation decisions are made in real-world 

situations.  If a dike fails or is clearly in danger of failing, action would be taken to replace or 

strengthen the dike outside of the planned heightening policy in place.  In other words, new 

observations provide information about the system that can be used in further decisions.  This 

learning process is absent from the intertemporal approach, but can be included using Direct 

Policy Search (DPS) (Deisenroth et al., 2013; Giuliani et al., 2016; Quinn et al., 2017). 

In the DPS approach, the decision whether or not to heighten the dike in any given time-step 

depends on the state of the system.  A state variable is defined as some observable metric that 

relates back to the current state of the system.  A function then maps the state variable or 

variables to one or more signposts that trigger actions.  For example, the proximity of the water 
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level with respect to the top of the dike may trigger a heightening of the dike to prevent 

overtopping.  Since DPS is state-dependent, applying it to a model with uncertainty should 

reduce unnecessary heightenings in slow SLR states and be robust to situations of abrupt 

acceleration of SLR. 

Our analysis considers two state variables for the DPS formulation, the observed mean annual 

rate of change in the water level at the dike (𝛽𝑡) and the square root of the sum of squared 

residuals (𝑠𝑟𝑠𝑠𝑡) between the observed water level and fitted water levels derived from a linear 

model regressed on the previous 30 simulation years of water level (mean annual SLR and 

surge) at time t.  Let 𝑖 = {1,2, … ,30} represent the 30 simulation-year window prior to time t 

over which a linear model is regressed (i.e. when 𝑡 = 2100, 𝑖 = 1 refers to 𝑡 = 2070 and 

𝑖 = 30 refers to 𝑡 = 2099).  The linear model is 

𝑦̂𝑖 = 𝛼𝑡 + 𝛽𝑡𝑖, (9) 

where 𝑦̂𝑖  is a fitted water level height at the 𝑖𝑡ℎ position in the 30 simulation-year window, 𝛼𝑡  is 

the fitted intercept and 𝛽𝑡  is the fitted slope. 

𝛽𝑡 =
∑𝑖𝑦𝑖 −

1
𝑛
∑𝑖 ∑𝑦𝑖

∑ 𝑖2 − 1
𝑛
(∑ 𝑖)2

   ;     𝛼𝑡 = 𝑦̅ + 𝛽𝑡𝑖.̅ (10) 

The value 𝑦̅ is the mean of the water levels in the 𝑛 = 30 simulation-year window and 𝑖 ̅is the 

mean of set 𝑖.  The value 𝑦𝑖  is the water level at the 𝑖𝑡ℎ position in the 30 simulation-year 

window (𝑦𝑖 = 𝑧𝑡−𝑛+𝑖 + 𝑥𝑡−𝑛+𝑖; eqs. 5,6).  Each of the summations integrate from 𝑖 = 1 to 𝑛.  

The 𝑠𝑟𝑠𝑠𝑡 is thus defined as 

𝑠𝑟𝑠𝑠𝑡 = √∑ (𝑦̂ − 𝑦𝑖)2
𝑖

. (11) 

Each of these state variables contributes to the two quantities that determine the action for the 

associated time-step.  The first quantity is the buffer height, which acts as the signpost and is 

defined as the minimum distance between the water level and the top of the dike that is 

considered safe.  If the difference between the water level and the height of the dike is less 

than the buffer height, action is triggered and the dike is heightened.  The second quantity is 
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the freeboard height, which is the additional heightening built on top of the minimum 

heightening that would bring the dike back to a safe height.  A freeboard height is often applied 

(Davis et al., 2008; Gui et al., 1998) to reduce the probability of needing dike heightenings in 

consecutive years since there is an initial cost to starting the heightening process (parameter c 

in eq. 2) and heightening in consecutive simulation years would be expensive. 

The state variables map to the buffer height and freeboard height through quadratic 

relationships 

𝐵𝐻𝑡 = 𝑣1𝛽𝑡
2 + 𝑣2𝛽𝑡 + 𝑣3𝑠𝑟𝑠𝑠𝑡

2 + 𝑣4𝑠𝑟𝑠𝑠𝑡 + 𝑣5 (12) 

𝐹𝐻𝑡 = 𝑣6𝛽𝑡
2 + 𝑣7𝛽𝑡 + 𝑣8𝑠𝑟𝑠𝑠𝑡

2 + 𝑣9𝑠𝑟𝑠𝑠𝑡 + 𝑣10, (13) 

where 𝑣𝑗 are the decision variables provided by the optimization process.  At time t, the 

freeboard and buffer heights are calculated and a heightening for time t is determined. 

𝑢𝑡 = {
                     0                              𝑖𝑓 𝐵𝐻𝑡 < ℎ𝑡

− − 𝑦𝑡
 𝑦𝑡 − (ℎ𝑡

− − 𝐵𝐻𝑡) + 𝐹𝐻𝑡        𝑖𝑓 𝐵𝐻𝑡 ≥ ℎ𝑡
− − 𝑦𝑡

, (14) 

For example, if the water level is 30 cm, the dike height is 40 cm, the buffer height is 15 cm, and 

the freeboard height is 10 cm, then a heightening of the dike would be triggered (15 cm > 40 

cm – 30 cm), the dike would be heightened by the amount needed to achieve the buffer height 

(5 cm) plus the freeboard height (10 cm) resulting in a final dike height of 55 cm. 

For comparison, we discuss the results from both an intertemporal (non-adaptive) approach 

and the DPS (adaptive) approach described above in the following sections.  The objectives, 

uncertainty, and other modeling aspects are consistent between the two approaches.   

 

2.5 Optimization 

We use the Master-Slave Borg Multiobjective Evolutionary Algorithm (MS Borg-MOEA) (Hadka 

and Reed, 2012) to optimize the system and identify the Pareto-optimal solution set for both 

the intertemporal and DPS formulations.  Evolutionary algorithms are common in optimization.  

The basic idea is to propose a set of possible solutions, select a set of well performing solutions 

based on the values of the objective functions, and mutate these solutions to produce the next 
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set of proposed solutions.  This process continues until a set time or number of function 

evaluations has been performed.  We briefly describe some of the key features specific to the 

MS Borg-MOEA that are pertinent to this problem below. 

First, MS Borg-MOEA auto-adapts its search based on the level of performance each of its six 

operators achieves with respect to producing improvements in the solution archive.  Search 

operators that produce large Pareto improvements in the solution archive are given more 

weight in subsequent iterations.  This allows the algorithm to quickly navigate to and converge 

upon the Pareto-front in objective space.  Second, the epsilon-dominated archive allows user-

defined resolution in objective space and guarantees solution diversity by requiring that a 

solution provide a Pareto improvement no less than a threshold (epsilon) change in the 

objective values.  These were desired features given the complexity of the two problem 

formulations in this study. 

Evolutionary algorithms, including MS Borg-MOEA, rely on random number generation.  The 

choice of seed value to the random number generator is critical to the performance of the 

optimization algorithm.  It is possible that, in a predefined number of function evaluations, two 

seed values can lead to very different results.  To mitigate this problem, the optimization 

process is repeated 50 times, each with a unique seed value passed to the random number 

generator in MS Borg-MOEA.  Results from each of the 50 runs are combined and sorted to find 

the Pareto-optimal solution set. 

The experiment is summarized in Table 2.  Aside from the number of decision variables in each 

of the formulations (300 for the intertemporal formulation and 10 in the DPS formulation), both 

formulations consisted of the same base model, SOWs, objectives, and number of random 

number generator seeds to test in the optimization process.  Runtime dynamics, consisting of 

operator selection probabilities, archive snapshots, wall time, and number of function 

evaluations, were captured at every 200 function evaluations.  We require solutions to be 

somewhat consistent with practice in that no adaptation solution should perform poorly with 

respect to reliability.  However, imposing too high of a reliability constraint would make it 

difficult to find feasible solutions within the allotted function evaluations of the experiment.  To 
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achieve a balance between these points, we apply a relatively loose reliability constraint where 

the adaptation solution must achieve at least 80% reliability over time and across SOWs.  

 

 Direct Policy Search Intertemporal 

Decision Variables 10 (1, 2, …, 10; Eqs. 12,13) 300 (u1, u2, …, u300) 

Objectives Investment cost (min), Expected damages (min) 

Constraints 80% reliability over time and SOWs 

Uncertainty Sea-level rise and storm surge (100k SOWs) 

Optimization 
Iterations 

50 seed values, 200k function evaluations, snapshots every 200 

function evaluations 

 

Table 2.  Experiment implementation.  Both the Direct Policy Search and Intertemporal 
formulations use the same objectives, constraints, uncertainty, and optimization settings.  The 
only difference is the type and number of decision variables (row 1). 

 

3. RESULTS 

The DPS formulation produces solutions that completely dominate the intertemporal 

formulation with respect to investment cost and expected damages (Fig. 1).  Our 

implementation of the intertemporal formulation (magenta) is unable to produce a solution 

with investment costs below €251 million whereas 90% of our DPS formulation solutions 

produce investment costs below €250 million.  Furthermore, the expected damages incurred 

with the minimum investment cost solution from the intertemporal formulation is over three 

orders of magnitude greater than the expected damages from the DPS solution of equal 

investment cost (intertemporal - €29.7 billion; DPS - €11.9 million).  The minimum cost solution, 

akin to the objective of the base model, is four times greater in the intertemporal formulation 
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compared to the DPS formulation (intertemporal – €972 million; DPS – €236 million), largely 

due to the difference in investment cost. 

 

 

Figure 1. Tradeoff curves (Pareto-fronts) of the intertemporal formulation (magenta) and the 
DPS formulation (cyan).  Points along each of the curves are solutions that cannot improve in 
one objective without deteriorating in another.  The ideal solution (gold star) is a solution that 
produces zero investment costs and zero expected damages.  The minimum total cost solution 
(black circle) is the solution that minimizes the sum of the discounted investment costs and 
expected damages akin to the objective of the base model. 

 

The added complexity in the DPS formulation adds additional computation time to a single 

function evaluation when compared to the intertemporal formulation; however, solutions of 

the same relative quality are found in fewer function evaluations in the DPS formulation than in 
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the intertemporal formulation (Fig. 2).  Hypervolume is a measure of Pareto-dominated volume 

in objective space relative to a reference solution set.  Fig. 2 illustrates the evolution of the 

Pareto-front through the optimization process for both the DPS (cyan) and intertemporal 

(magenta) formulations.  A hypervolume of 0% indicates that no solutions have been found 

while a hypervolume of 100% indicates that the Pareto-front being tested dominates the same 

volume of objective space as the reference solution set.  In this analysis, the reference set to 

which each formulation is assessed is the overall Pareto-front across both formulations.  The 

DPS formulation begins finding solutions an order of magnitude faster than the intertemporal.  

Every seed tested in the DPS formulation was able to find at least one solution within 200 

function evaluations and a tradeoff between the objectives (2 or more solutions) within 2000 

function evaluations.  In contrast, the intertemporal formulation required 3600 function 

evaluations to find a solution and 6800 function evaluations to find a tradeoff in any of the 

tested seeds.  When the intertemporal formulation begins finding solutions, the DPS 

formulation has already covered over 98% of the volume of the reference solution set.  Finally, 

when the DPS formulation comes within 1% of the volume of the reference solution set, the 

intertemporal formulation has covered only approximately 11.5% of the reference solution set.  

While we do not quantify convergence of solutions within a specific formulation, the spread in 

the intertemporal hypervolume obtained by the final function evaluations across the seeds 

suggests that many of the seeds tested in the intertemporal formulation may not have 

converged over the 200,000 function evaluations allotted in the experiment. 
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Figure 2.  Evolution of the Pareto-front hypervolume during the optimization process for the 
DPS (cyan) and intertemporal (magenta) formulations.  Hypervolume is a metric of the volume 
of objective space dominated by a specific Pareto-front.  In this application, zero hypervolume 
indicates no feasible solution has been found and 100% hypervolume means the solution 
archive has converged onto the overall Pareto-front combined from both experiments shown in 
Fig. 1.  Thick-dark lines are the best solutions for each formulation when combining all 50 runs.  
Thin-light lines are individual runs.   

 

The drastic difference between the two formulations, with respect to the minimum total social 

cost solution, can be explained by the build policies generated by the formulations (Fig. 3).  The 

minimal total cost solution from the intertemporal formulation produces a single build policy 

that is independent of the SOW (black line) whereas the minimal total cost solution from the 

DPS formulation adjusts the build policy depending on the observed state.  Note that for any 

given time, the observed state is derived from the prior 30 years of the water level in a specific 

SOW (see section 2.4).  For example, decision to build in year 2150 depends on the SOW, the 
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height of the dike, and the water level from the years 2120 – 2149.  As a result, the 

intertemporal formulation, in order to satisfy the strict reliability constraint, is required to 

considerably heighten the dike over time to prevent overtopping in the most extreme water 

level cases.  The DPS solution reduces the investment costs by reacting to the observed state 

and building appropriately.  In the high-water level example (red), the build policy is slightly 

more aggressive than the intertemporal solution, but for the low and medium water level 

examples (green and blue, respectively) the build policy relaxes, building less frequently and in 

shorter height increments over the simulation.  The magnitude and the rate of the heightenings 

are also much more consistent in the DPS formulation compared to the intertemporal.  

 

Figure 3.  Time series of dike height for the minimum total cost solution for the intertemporal 
formulation (solid black line) and DPS formulation (solid color lines).  The water level (color 
dots) for three different SOWs (low – green, med – blue, high – red) are provided as example 
observations that are used to derive the buffer and freeboard heights for their respective 
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SOWs.  The color of the dike height for the DPS formulation matches the color of the water 
level for that specific SOW.   

 

The state-varying freeboard and buffer heights enable the DPS formulation to Pareto-dominate 

the intertemporal formulation (Fig. 4, 5).  The largest advantage to this method is in identifying 

the threshold event.  The state variables used in the DPS formulation are able to provide a 

signal that produces a shift in both the freeboard height and the buffer height (Fig. 4).  The 

freeboard height, largely controlled by the 𝑠𝑟𝑟𝑠𝑡 (Fig. 5), tends to decrease approximately 10 

cm across the time of the threshold event and the variance approximately triples.  The buffer 

height, also largely influenced by the 𝑠𝑟𝑟𝑠𝑡 (Fig. 5), follows an inverse pattern where the height 

increases by approximately 8 cm across the threshold event, but the variance remains the same 

before and after the threshold event.   
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Figure 4.  Calculated freeboard height (blue) and buffer height (orange) from the minimum total 
cost solution from the DPS formulation.  The dotted line and shaded region represent the mean 
and range respectively across the SOWs.  The solid color lines represent a time-series of 
freeboard and buffer heights from randomly-selected SOWs. 

 

While the DPS formulation produces superior solutions when compared to the intertemporal 

formulation with respect to the objectives, there exist a small percentage of individual SOWs 

where the DPS formulation falls short of the intertemporal formulation.  Of the 100,000 SOWs 

in this analysis, the intertemporal formulation outperforms the DPS formulation in 0.668%, 

1.366%, and 1.054% of the SOWs with respect to investment costs, damages, and total cost 

respectively in their respective minimum total cost solutions.  Additionally, each of the SOWs 

where the intertemporal formulation outperforms the DPS formulation in total costs can be 

found in the set of SOWs for the investment cost (179) and damages (882).  There are seven 

SOWs where both the investment cost and damages are less than those in the DPS solution. 
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Figure 5.  Mapping of state variables (𝛽𝑡  - a., c.; srsst – b., d.) to the freeboard (a., b.) and buffer 
(c., d.) heights for the minimum total cost solution from the DPS formulation.  The black line 
maps the contribution of the state variable to the appropriate height (left y-axis).  The gray 
polygons are the empirical distributions of the state variables over all SOWs.  The dotted line 
represents the expectation of the contribution given the distribution of the state variables (i.e. 
black line times the gray polygon; right y-axis). 

 

There is a complex relationship among the parameters that define the SOWs that lead to the 

intertemporal formulation outperforming the DPS formulation for the minimum total cost 

solution.  We were unable to identify a generalized rule for when this occurs; however, the 

marginal distributions of the SOW parameters indicate a shift in the shape parameter () and, 

to a lesser extent, the location parameter () of the surge model as well as the c* parameter 

associated with the SOWs that favor the intertemporal formulation over the DPS formulation 

(Fig. 6).  These shifts are consistent with SOWs that have a high probability of large and abrupt 

changes in water level, either due to a threshold event or the storm surge characteristics, from 

one simulation year to the next. 
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Figure 6.  Marginal empirical cumulative distribution functions of SOW parameters from Eqs. 5 
and 6 as calibrated in Oddo et al. (2017) (black).  Each of the color lines are the distributions of 
the SOW parameters that lead to the intertemporal formulation producing lower investment 
cost (green), lower expected damages (orange), and lower total costs (blue) than the DPS 
formulation for the respective minimum total cost solutions.  Numbers to the right of the 
categories in the legend are the number of SOWs that define the distribution. 

 

4. DISCUSSION AND CONCLUSION 

We demonstrate that a revised problem formulation that leverages environmental 

observations can drastically reduce the total social costs of a coastal adaptation problem while 

increasing the robustness of the fortification to uncertain sea-level rise and storm surge.  The 

DPS formulation, which adapts actions to an observed state of the system, can produce 

solutions with simultaneously lower expected investment costs and expected damages relative 

to a more traditional intertemporal approach in far fewer function evaluations.  Finding high-

quality solutions quickly can open the door to more complex hypothesis testing, such as 

interactions with other mitigation/adaptation strategies and broader hydrologic system 

management through reallocation of development and computation time. 

The selection of state variables can be vital to the DPS approach.  We derive the state variables 

used in our analysis from a relatively easy-to-observe quantity (maximum annual water level); 

nevertheless, these state variables provide enough of a signal about the current state of the 

world for the decision rule to adapt accordingly.  More complex derivations of state variables 

could shift the Pareto-optimal solutions even closer to the ideal solution and better inform SLR 

adaptation decisions. 

While a DPS formulation yields superior solutions relative to the intertemporal formulation, 

SOWs that have abrupt changes in water level from year to year (i.e. a large surge event or a 

threshold event that greatly accelerates SLR) can cause the DPS formulation to fail.  Our 

analysis suggests that a great economic value of information may be associated with learning 

more about the distribution of extreme surge events and the detection of potentially 

irreversible threshold events that can lead to abrupt SLR.  Gaining a better understanding of 
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these deeply uncertain consequences can directly improve the way decisions are made with 

respect to SLR adaptation. 

The results and discussion in this analysis are dependent upon a number of key assumptions 

and simplifications.  First, the base model used in this analysis assumes a single-standing 

homogenous dike ring.  In reality, a single dike is part of a larger hydrologic management 

system that interacts with other system components.  Second, the build policies from both 

formulations assume that once a decision is made, the heightening is done within the same 

year.  It often takes years to make a decision once the evidence is presented and years more to 

put the decision to action.  Furthermore, with the exception of a dike failure, decision makers 

do not expect to revisit the dike-heightening situation for several years once the dike has been 

heightened.  While the structure of the model used in this analysis discourages heightening in 

consecutive years, we do not explicitly account for this constraint.  Third, this analysis assumes 

the economic parameters, such as those related to the investment costs and damages, are 

known and certain.  In many cases, these parameters are deeply uncertain.  As a last example, 

this analysis assumes that the state variables are perfectly observable and observed with 

enough time to analyze and act accordingly.  We used state variables derived from the height of 

the water against the dike, which is fairly straight-forward to measure.  In other climate 

adaptation decisions, there may be situations where the appropriate state variables needed to 

inform the decisions are not easy to observe, cannot be observed in time for action, or cannot 

be observed at all. 

In our analysis, we use specific structural models for uncertain SLR and storm surge that were 

calibrated to local SLR projections and tide gauge data.  Additionally, the SLR model allowed for 

abrupt changes in SLR rates that were uncertain in both onset and magnitude.  This treatment 

of uncertainty allows us to extensively sample a single SLR distribution and a single storm surge 

distribution; however, both SLR and storm surge are deeply uncertain and this treatment can 

limit our insights to the real risk surrounding coastal defense infrastructure.  As such, the 

formulation used in this analysis could be complemented by the robust decision making 

framework to assess the performance of the adaptation solutions to higher-order uncertainties. 
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We use a discount rate of 4% in this analysis, which is broadly consistent with discount rates 

used in integrated assessment modelling and cost-benefit analyses of climate change (Adler et 

al., 2017; Anthoff et al., 2009; Nordhaus, 2017).  The use of discount rates in climate-change 

related decision problems, where action now offsets future damages, is highly-debated (Adler 

et al., 2017; Heal and Millner, 2014; Nordhaus, 2007; Stern, 2008).  Furthermore, we assign the 

discount rates for both investment costs and damages to the same value.  Applying a lower 

discount rate overall or applying a lower discount rate for future damages relative to the 

investment cost (i.e. risk-premium) would tend to lead to quicker and/or more aggressive 

adaptation solutions.  Investigating the sensitivity of these results to the choice of discount 

rates and risk-premiums would be an informative expansion on this work. 

Coastal defense infrastructure is required to meet or exceed strict reliability standards.  In our 

analysis, we use a relatively low reliability constraint of 80% for reasons described in section 

2.5.  Applying a more realistic reliability constraint (e.g. 99% - 99.99%) would make finding 

feasible solutions more difficult for both formulations (more so for the intertemporal 

formulation than the DPS formulation).  For the sake of our experiment, finding feasible 

solutions was vital to comparing the two formulations; however, additional analysis with a 

more strict reliability constraint would provide valuable insight into the viability and practicality 

of solutions provided by each formulation. 

Many of the caveats described above provide avenues to expand this work.  This analysis, 

however, illustrates the need for particular attention to the formulation of the overall problem.   

SLR and storm surge are deeply uncertain consequences of a changing climate.  Using the 

intertemporal approach and taking expectations over these uncertain SOWs could be leaving 

valuable information unused.  The DPS approach uses this information to learn about the state 

of the system and determine the appropriate action.  The result is a solution set that Pareto-

dominates the traditional approach and is more robust to uncertainty.  The speed in which the 

DPS approach converges to Pareto-optimal solutions affords time and resources that can be 

spent analyzing more complex systems and testing alternative hypotheses.  Our analysis 

demonstrates that multi-objective adaptive formulations can provide important insights for the 

design of coastal adaptation problems and can identify improved strategies. 
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