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Tree-based ensemble methods for sensitivity analysis of environmental models: a
performance comparison with Sobol and Morris techniques

Marc Jaxa-Rozen®*, Jan Kwakkel®

% Faculty of Technology, Policy and Management, Delft University of Technology, Jaffalaan 5, Delft 2628 BX, The Netherlands

Abstract

Complex environmental models typically require global sensitivity analysis (GSA) to account for non-linearities and
parametric interactions. However, variance-based GSA is highly computationally expensive. While different screening
methods can estimate GSA results, these techniques typically impose restrictions on sampling methods and input types.
As an alternative, this work evaluates two decision tree-based methods to approximate GSA results: random forests, and
Extra-Trees. These techniques are applicable with common sampling methods, and continuous or categorical inputs.
The tree-based methods are compared to reference Sobol GSA and Morris screening techniques, for three cases: an
Ishigami-Homma function, a HIN1 pandemic model, and the CDICE integrated assessment model. The Extra-Trees
algorithm performs favorably compared to Morris elementary effects, accurately approximating the relative importance
of Sobol total effect indices. Furthermore, Extra-Trees can estimate variable interaction importances using a pairwise
permutation measure. As such, this approach could offer a user-friendly option for screening in models with inputs of

mixed types.
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1. Introduction

Sensitivity analysis (SA) is recognized as a key step for
analyses which involve the assessment and propagation of
uncertainty in mathematical models (Frey and Patil, 2002;
Helton and Oberkampf, 2004). In particular, techniques
for global sensitivity analysis (GSA) have become an ac-
cepted standard for the evaluation of the impact and in-
teractions of uncertain inputs in complex environmental
models (as described in this journal by e.g. Saltelli and
Annoni 2010; Nossent et al. 2011; Pianosi and Wagener
2015). These techniques consider the output behaviour of
the model over the full domain of uncertain inputs; specif-
ically, this implies that the full distribution of each input
parameter should be evaluated, and that the importance
of each input should be evaluated across the domain of
all other parameters (Liu and Homma, 2009). This is in
contrast to “one-at-a-time” (OAT) sensitivity analysis —
which focuses on response to changes in individual inputs
around an initial baseline value, and which for instance
inadequately captures non-additive responses caused by
interactions between input parameters. These properties
make GSA particularly relevant for applications such as
integrated assessment models, which frequently combine a
large number of highly uncertain inputs with a non-linear,
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non-additive structure. In these conditions, a OAT analy-
sis can lead to an incomplete or misleading interpretation
of model uncertainty. As such, GSA can help analysts
and decision-makers better understand and communicate
the results of complex models, and ultimately make these
models more credible in a decision support context. How-
ever, the computational cost of existing GSA methods can
quickly become prohibitive with complex simulation mod-
els.

This paper therefore draws on the statistical learning
literature to evaluate the performance of decision tree-
based ensemble methods, when applied to typical sensi-
tivity analysis problems. These methods rely on ensem-
bles of decision trees which match partitions of the input
space with a predicted output, and are commonly imple-
mented using the random forests and Extra-Trees algo-
rithms (Breiman, 2001; Geurts et al., 2006). These tech-
niques perform well at relatively small sample sizes for
non-linear regression or classification problems in which
input interactions are significant; they are also able to han-
dle both numerical and categorical inputs (Louppe, 2014).
Building on previous investigations of decision tree meth-
ods for sensitivity analysis (e.g. Harper et al., 2011), this
paper will show that these methods can replicate some
of the key insights of GSA by estimating relative variable
importances and interactions, at a much smaller compu-
tational cost.

In the context of GSA, Saltelli et al. (2008) summarize
four analysis objectives, or “settings”: i) factor prioritiza-
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tion, which identifies inputs (or groups of inputs) which
contribute the most towards output uncertainty; ii) factor
fixing, which conversely identifies inputs which have a neg-
ligible contribution to output uncertainty and may thus be
fixed at a given value; iii) variance cutting, which investi-
gates the assumptions on input values under which output
uncertainty can be reduced below a given threshold; and
iv) factor mapping, which identifies regions of the input
space associated with a given output space. Factor priori-
tization is especially valuable for identifying uncertain in-
puts on which additional data collection and modelling ef-
forts should be focused, while factor fixing can make mod-
els easier to test and interpret by discarding non-influential
inputs. These two settings are arguably the most common
for sensitivity analysis in environmental modelling. Vari-
ance cutting can be applied in risk and reliability analysis,
in which analysts may need to meet a certain tolerance
(e.g. Plischke et al., 2013; Saltelli and Tarantola, 2002),
while factor mapping can be related to techniques for sce-
nario discovery (e.g. Bryant and Lempert, 2010; Kwakkel
and Jaxa-Rozen, 2016; Guivarch et al., 2016).

GSA results are typically interpreted through quan-
titative importance indices, which can be used to com-
pare the uncertain inputs in the context of the desired
setting (e.g. factor prioritization or factor fixing). Liu and
Homma (2009) and Saltelli (2002b) describe several fea-
tures of an ideal uncertainty importance index. Notably,
the measure should be i) unconditional, in the sense of the
index being independent of assumptions about the input
value (so that the sensitivity metric of an input is not con-
ditional on a given baseline value); ii) easy to interpret,
for instance by representing an input’s proportional con-
tribution to output uncertainty; iii) easy to compute nu-
merically; iv) stable across different samples (e.g. robust
to bootstrapped resamples); and v) model-free, so that the
indices are independent from structural properties of the
model such as linearity and additivity. Borgonovo (2007)
and Pianosi and Wagener (2015) further propose vi) mo-
ment independence as a criteria, so that the influence of
the entire input distribution can be assessed on the output
distribution independently of the shape of the latter, with-
out being conditional on a specific moment of the output
distribution.

In practice, the estimation of these indices often presents
analysts with a trade-off between computational cost, and

the information gained from the sensitivity analysis. Variance-

based GSA (Sobol, 2001; Saltelli, 2002b) is arguably the
most prominent approach in the literature. This technique
can be used under factor prioritization or factor fixing set-
tings to directly assess the contribution of uncertain inputs
to unconditional output variance. A typical application of
the Sobol technique provides first-order and total indices,
which respectively describe the fraction of output variance
contributed by each factor on its own, and by the sum of
first-order and all higher-order interactions for each factor.
Additional terms which decompose these higher-order in-
teractions, such as pairwise second-order interactions be-

tween variables, can be computed at an additional compu-
tational cost. These indices satisfy the above requirements
except for moment independence (by relying on variance
as a proxy for output uncertainty — which may cause is-
sues with multimodal or skewed distributions, e.g. Pianosi
and Wagener, 2015). Given their clear mathematical inter-
pretability and straightforward computation, Sobol indices
have for example been increasingly applied for hydrologi-
cal and integrated assessment models (Tang et al., 2006;
Pappenberger et al., 2008; Nossent et al., 2011; Herman
et al., 2013; Butler et al., 2014). The indices can also be
extended to cover non-scalar inputs — e.g. “switches” for
structural model uncertainties — in addition to scalar in-
put ranges (Baroni and Tarantola, 2014). However, the
use of variance-based GSA can be difficult for models with
a large number of input parameters. In principle, the
model evaluations N required to calculate Sobol indices
grow linearly with the number of input parameters p, so
that N = n(p + 2) for the calculation of first-order and
total indices (where n is a baseline sample size). In prac-
tice, this baseline sample size also tends to increase sig-
nificantly for complex models with multiple parameters,
and may vary from 100 to 10,000 or more (e.g. Butler
et al., 2014, in which n > 130,000 was needed for a sim-
ulation model with 30 inputs). The computational cost
of variance-based GSA may therefore prevent its use for
models with a significant runtime.

The literature presents a variety of alternative methods
which can be used under such circumstances to reproduce
some of the insights of variance-based GSA, at a smaller
number of model evaluations. These are often used in
a factor fixing setting to screen non-influential variables
(see e.g. Kleijnen, 2009 for a review of screening tech-
niques). The elementary effects method (Morris, 1991;
Campolongo et al., 2007) is commonly applied to estimate
sensitivity measures, using an efficient sampling design to
cover the domain of uncertain inputs with a set of sam-
pling trajectories. However, while elementary effects in-
dices can be used to rank inputs based on their influence
on model output, the interpretation of the indices is essen-
tially qualitative rather than quantitative, as their relative
values may not match the relative importances estimated
by variance-based methods. In addition, the sampling tra-
jectories assume uniformly distributed continuous inputs,
so that these indices are unsuitable for models with cate-
gorical or non-scalar inputs; they also do not provide infor-
mation about specific interactions between variables. The
specific input sampling required for elementary effects is
also a drawback: for instance, this prevents the use of
model datasets which may have been generated from a
typical uncertainty analysis, and which could be reused
for SA under a “given data” approach (Borgonovo et al.,
2017; Plischke et al., 2013). A generic input sampling can
otherwise support a multi-method framework which cov-
ers complementary aspects of model sensitivity at the same
computational cost (such as Pianosi et al. (2017)’s frame-
work for the estimation of first-order indices, density-based



indices, and interactions using a Latin Hypercube sample).
Under Liu and Homma (2009)’s criteria, the elementary
effects indices would therefore be suboptimal in terms of
interpretability and ease of computation.

These sensitivity analysis methods have largely been
developed and applied in the context of model-based risk
analysis and environmental science. However, a parallel
domain of research has also focused on the problem of
feature selection in statistical learning, which offers some
useful analogies to the factor fixing setting in sensitivity
analysis. As described by Guyon and Elisseeff (2003), fea-
ture selection aims to reduce the dimensionality of the in-
put data used in a learning problem by selecting a subset
of the original variables, and eliminating variables which
are not relevant. This process offers several advantages,
such as making output data easier to analyze, making the
prediction model more understandable, or improving the
accuracy of the prediction model by avoiding overfitting.
Several definitions of variable relevance (described more
extensively in e.g. Blum and Langley, 1997; Kohavi and
John, 1997) can be followed, leading to different paths
for feature selection. For instance, the feature selection
literature describes wrapper methods, in which variables
are assessed based on their relevance for a given predic-
tor (Kohavi and John, 1997). In this application, feature
selection aims to select a subset of variables which maxi-
mizes the accuracy of a predictor, which is considered as
a “black box”. When combined with a suitable predictor,
this approach enables a more flexible analysis, for instance
by relaxing assumptions on input types or distributions
(Lazar et al., 2012). Decision trees are a popular exam-
ple of such a predictor, which combine several desirable
properties for statistical learning in general, and for fea-
ture selection in particular. As such, these predictors can
represent, arbitrary relations between inputs and outputs,
without prior assumptions about inputs or structural rela-
tionships (Louppe, 2014). They can also be used for non-
linear problems with heterogeneous input data (such as
continuous or categorical parameters), and implicitly ac-
count for variable interactions. Decision trees are therefore
a popular option for feature selection (Guyon and Elisseeff,
2003); they are commonly used within ensemble methods
which combine multiple decision trees to improve perfor-
mance, such as random forests and Extra-Trees (see e.g.
Hapfelmeier and Ulm, 2013 for a review of random forests
in a feature selection context).

It is therefore interesting to assess whether insights
from the literature on feature selection can be transferred
to the sensitivity analysis of complex environmental mod-
els. In particular, decision tree-based predictors may mit-
igate some of the drawbacks of common screening tech-
niques, as they can be applied with generic input sam-
pling designs and categorical uncertainties, while support-
ing the study of variable interactions. This work builds on
past applications of decision tree-based predictors in the
environmental modelling literature, such as Harper et al.
(2011); this study combined random forests and individual

trees to evaluate variable importances and interactions in
a model of cottonwood dynamics. Similarly, Almeida et al.
(2017) and Singh et al. (2014) used individual classification
trees to study critical thresholds in a factor mapping set-
ting, for a hydro-climactic watershed modelling framework
and for a model of slope stability, respectively. Given the
demonstrated performance and widespread availability of
the random forests and Extra-Trees ensemble predictors,
this paper will focus on comparing both of these methods
with the reference Sobol and elementary effects techniques,
using typical model cases.

Section 2 of the paper provides more background about
the Sobol and elementary effects methods for global sen-
sitivity analysis, and describes the selected decision tree-
based methods. Section 3 then compares the performance
of the tree-based ensemble methods against reference GSA
results, for three cases: an Ishigami test function, a HIN1
flu pandemic model, and the CDICE integrated assess-
ment model. Section 4 discusses the results and describes
potential avenues for future work.

2. Methods

2.1. Reference methods for global sensitivity analysis
2.1.1. Variance-based Sobol indices

The Sobol technique for global sensitivity analysis uses
variance decomposition to establish the contribution of
each uncertain input to the unconditional output variance
of a model, which can be non-linear and non-additive (e.g.
Sobol (2001); Homma and Saltelli (1996)). Given a model
output Y and aset X = (1, ..., zp) of independent param-
eters, the corresponding function f(X) can be decomposed
into terms of increasing order:

V= f(X) = f(e1, ., 2p) (1)

f(.%‘l, ...,:L‘p) Zf()—l— Z fj(l‘j)-i- Z Z fjk(l’j7$k>
j=1

j=1k=j+1
+...+f1,...,p(x17"'7mp) (2)

The unconditional variance V(Y") can correspondingly
be decomposed into partial variances, where e.g. V; and
Vjk represent the variances of f; and f;x, respectively:

V(Y) = / 2(X) dX — f2 3)
(9]

p
V(Y) :Z V+ Z Vie+...+Vi,..p (4)
j=1 J=1k=j+1

Using these partial variances, the first-order, second-
order and total Sobol sensitivity indices can then be de-
fined in relation to the total variance:
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The first-order index S; , or main effect, represents the
fraction by which the output variance would be reduced
on average by fixing x; within its range. The second-order
index S, then represents the fraction of output variance
linked to inputs z; and x; which is not captured by the
superposition of each input’s first-order index, and thus
corresponds to interaction effects in a non-additive model.
Finally, the total effect S7T; includes the contribution of the
first-order effect and the sum of all higher-order interaction
effects. For a non-additive model, the difference ST; — S
thus indicates the importance of interaction effects, which
can be directly assessed for pairwise interactions using the
second-order Sj index. These indices can be used for fac-
tor prioritization, in which the input parameters with the
highest main effect S would be assessed as the most influ-
ential. Conversely, for factor fixing, input parameters with
ST =~ 0 can be judged to be non-influential and discarded
from the analysis, given that they do not contribute to out-
put variance either through their main effect or through
interactions (Saltelli et al., 2008). As shown by Baroni
and Tarantola (2014), these indices can similarly be ap-
plied to assess the contribution of non-scalar inputs (such
as structural model “switches”) to output variance.

In practice, the unconditional variance V (Y) typically
needs to be estimated using Monte Carlo integrals rather

than an analytical form. Saltelli (2002a) for instance presents

an input sampling strategy which can be used to estimate
the first-order, second-order and total indices at a cost
of N = n(2p + 2) evaluations. This sampling design has
been implemented in a variety of software packages; for the
purposes of this work, the Python SALib library (Herman
and Usher, 2017) is used to generate input samples, and
to calculate the resulting Sobol indices with bootstrapped
confidence intervals.

2.1.2. Morris elementary effects

For models with a large number of uncertain inputs
and/or a high computational cost, the elementary effects
method is used as a standard screening technique for fac-
tor fixing (Morris, 1991; Campolongo et al., 2007). The
method relies on a systematic sampling of the input space
to generate a randomized ensemble of “one-at-a-time” ex-
periments. Taking a set X = (z1,...,x,) of independent

input parameters transformed so as to be uniformly dis-
tributed in the interval [0,1], a certain number r of sam-
pling “trajectories” of (p+ 1) points are then constructed
to vary one input at a time, across k levels of the [0,1] in-
put domain. Starting from a given value of X and taking
Ae{l/(k-1),..,1—-1/(k—1)}, the elementary effect of
x; is given by:

xp) — f(X)
(8)

The distribution F} of this elementary effect can then
be obtained by sampling multiple initial values of X. Mor-
ris (1991) originally proposed using the mean p and stan-
dard deviation o of this distribution to respectively as-
sess the overall influence of the variable on output, and
the magnitude of higher-order effects due to non-linearities
and interactions. However, the yu measure was shown to
be vulnerable to type II error (i.e. potentially ignoring in-
fluential variables) in the case of non-monotonic models,
as elementary effects may cancel each other out at differ-
ent points of the input set X. Campolongo et al. (2007)
thus introduced a measure p*, which takes the mean of
the distribution of the absolute values of the elementary
effects. This index was shown to acceptably estimate the
ST indices obtained from a variance-based global sensi-
tivity analysis. The elementary effects technique can thus
reliably be used to identify factors which have a negligible
influence, and which may be discarded from the analysis.
However, the index o is more difficult to interpret; it com-
bines the effect of interactions as well as non-linearities, so
that specific interactions between pairs of variables cannot
be evaluated. The assumption of uniformly distributed
scalar inputs X also makes the indices unsuitable for non-
scalar inputs.

As with the Sobol technique, the SALib library will
be used to sample input trajectories (with the efficient
trajectories introduced by Campolongo et al. (2007)) and
to estimate the elementary effect indices.

ey T AT, ..
EEJ(X): (f(xh y Lj lax]+ Aﬂxj+17

2.2. Decision tree-based ensemble methods

Decision trees are a simple and well-established general
approach for statistical learning; such trees aim to iden-
tify the splitting criteria which describe the relationship
between a set of input combinations, and regions of the
output space (graphically illustrated for an idealized case
in Figure 1). Decision trees can be fitted through several
specific algorithms, such as classification and regression
trees (CART; Breiman et al., 1984). The right panel of
Figure 1 presents a simple example of a regression tree for
a test case y = f(X). The tree is fitted to an output
vector y = (y1,...,y:)7 , with vectors of predictor values
xzj = (v14,.2i;)" for j € {1,2}, forming the matrix
X = (x1,x2). The depth of the tree is here artificially
constrained to create a small number of nodes t¢; each of



the terminal nodes t3,14,t5,tg corresponds to a rectangu-
lar region of the input space shown in the left panel of the
figure. The predicted value y; at each node (i.e. for each
corresponding combination of ranges for the predictor val-
ues) is then the mean of the output values in each node,
y; € L.

Starting from the root node tg, the tree is “grown” us-
ing an optimization procedure to search over all possible
binary splits s = (x; < ¢) , and identify the splitting point
c across the values of variable x; which leads to the great-
est reduction in the impurity of the resulting “child” nodes
(typically using Gini impurity for classification, or mean
square error for regression). We let ¢;, and tp represent
the left and right child nodes obtained when partitioning
node ¢ with a binary split. The reduction in impurity from
split s at node t is then:

Eiftr) )

where Ny, Ny1,, N;r are the number of samples in the
parent node and the left and right child nodes. For re-
gression, we use the mean square error as a measure of
impurity:

Ai(s,t) = i(t) — ===i(ty) —

Ny

- > - (10)

i=1

ir(t)

In the example shown in Figure 1, this leads to the
selection of a splitting value ¢y = 2.572 on x5 in the root
node. This splitting procedure is repeated until a stopping
criterion is reached, which can be e.g. the depth of the
tree, or the maximum number of samples to be found in a
terminal node.

Individual decision trees will typically display high lev-
els of variance, so that small changes in the selected input
data may cause significant changes in the structure of the
fitted tree. As such, ensemble methods — in which multiple,
randomly generated instances of an estimator are aggre-
gated — can increase the accuracy of decision trees for clas-
sification and regression. The most popular of these has
been the random forests algorithm (RF; Breiman, 2001),
in which multiple CARTSs are fitted to bootstrap samples
of the data and aggregated (or “bagged”). The trees are
randomized by selecting a subset of the input variables as
candidates for splitting at each node. Their predictions are
then simply averaged for a regression problem, or taken as
a majority vote for classification. Geurts et al. (2006) add
an additional randomization step for the construction of
“extremely randomized trees” (or Extra-Trees), in which
the random selection of variables for splitting is combined
with randomized cutting points at each node (typically
using the full input set, rather than bootstrap samples).
This step can improve accuracy as well as computational
performance. This paper will thus focus on the RF and
Extra-Trees (ET) algorithms, due to the demonstrated ac-
curacy and versatility of these techniques for non-linear re-

gression problems with heterogeneous inputs (Hastie et al.,
2009; Louppe, 2014).

The performance of random forests and Extra-Trees
can be tuned with parameters which control the construc-
tion of the ensemble. The most significant of these are i)
the number of trees T used in the ensemble, ii) the size
of the candidate subset m of the input variables p which
is assessed for each split of the individual trees, and iii)
the depth to which the trees are grown (which can be con-
trolled with the same criteria described above for individ-
ual trees, such as the minimum number of samples Njcqf
to be left in the nodes created after a split).

Increasing the number of trees T" used in the ensemble
will in principle reduce prediction error, with the meth-
ods being robust to overfitting (Geurts et al., 2006). In
practice, the size of the ensemble is likely to be driven by
computational constraints, with a trade-off between accu-
racy and time. The size of the subset of variables m will
affect correlation between the trees within the ensemble,
with a smaller value increasing randomness; in the extreme
case of m = 1, each split is determined by a single ran-
dom input, and the trees are said to be totally randomized.
The choice of this parameter depends on the problem, with
m = p/3 as a starting point for regression (Hastie et al.,
2009). Finally, the depth of the trees will affect general-
ization error: fully developed trees may overfit the data,
while smaller trees will typically have larger bias. The em-
pirical results presented by Geurts et al. (2006) suggest a
value of Np,;m = 5 as a robust starting point for regres-
sion, for the minimum number of samples required to split
a node.

Variable importance metrics

Different measures can be used to assess the impor-
tance (or predictive strength) of input variables in random
forests and Extra-Trees. The most common metrics are
Mean Decrease Impurity (MDI) and Mean Decrease Accu-
racy (MDA) (Breiman, 2001; detailed in Louppe, 2014).
MDI relies on the criterion used to select an optimal split
in CART (defined in eq. 9), extending it across the en-
semble of trees. The MDI importance of a variable x; can
thus be computed from the total decrease in node impu-
rity (across the trees in the ensemble) which is obtained
when z; is used for splitting. A variable associated with a
large decrease in impurity is then influential. We use the
definition given by Louppe (2014), with an ensemble of T
trees:

MDI(w) = 1 30 Y 1t =) | iG] )
T=11t€p,

where the change in impurity Aé(ss, t) is summed in
tree ¢, over all nodes t in which z; is used for splitting,
weighted by the fraction of total samples present in the
node (N¢/N); j; is the variable used for splitting at node t.
This value is averaged over all trees ¢, in the ensemble.



% 7
< s X1

X2 <2572
mse =4.2208
to samples = 1000
value = 6.848

X2 <1.9346 x1<0.5941
t mse = 0.9804 mse =6.4718 t
1 | samples =819 samples = 181 2
value = 6.1434 value = 10.0362

False

TV l False True l

mse =0.2192 mse = 1.4418 mse = 1.2785
amples =616 samples =203 samples = 68
value = 5.7549

value = 7.3225 value = 7.3334

t t t

3 4 5

Figure 1: Graphical representation of a regression tree. Left panel: two-dimensional partition of a feature space; right panel: decision tree

corresponding to the partition.

An alternate measure is given by the MDA (or per-
mutation) importance, in which the change in prediction
accuracy of the ensemble is assessed after randomly per-
muting the input values for variable x;. When using boot-
strapping, MDA can be estimated on the out-of-bag (OOB)
samples at each tree, i.e. the samples which were not
part of the bootstrapped training set for each tree. Fol-
lowing Strobl et al. (2008), we compare prediction accu-
racy on the OOB samples for the original vector of in-
put values x; = (2;1,...,%i,), and for a vector £™; in
which the values of x; are permuted across the observa-
tions i1 ™ = (i1, .., Trji),j> Tijt1s - Tirp). An in-
fluential variable will cause a large decrease in prediction
accuracy, while a non-influential variable would not sig-
nificantly change the performance of the ensemble. The
mean square error is typically used as a measure of pre-
diction accuracy for regression. Taking ¢,, = ¢ (x;) as
the prediction given by tree ¢, for observation i, averaging
over each observation in the set of OOB samples B” | then
averaging over the ensemble of trees, we obtain:

> (Wi —or (™)) = (yi — or(x0))?

1 i€BT
P

|B7|
(12)

These variable importance measures have been exten-
sively studied and refined in the context of RF and feature
selection (e.g. Ishwaran, 2007; Strobl et al., 2007, 2008;
Wright et al., 2016; Bureau et al., 2005). An advantage of
the measures is their implicit consideration of interactions
across variables, which follows from the tree induction pro-
cess. This makes RF importance measures a potential can-
didate for approximating the total effect indices obtained

through global sensitivity analysis. In feature selection,
Qi et al. (2006) for instance found that RF outperformed
five other classifier methods for the detection of interac-
tions in large datasets. However, the MDI metric tends
to be biased towards especially salient variables, due to
the underlying bias of the splitting criterion. In the case
of categorical variables, MDI also tends to be biased to-
wards inputs with a larger number of categories (Strobl
et al., 2007). The bias of the MDA measure was less ob-
vious in the results discussed by Strobl et al. (2007) but
can nonetheless affect the reliability of the measures, par-
ticularly in the case of correlated predictors. Strobl et al.
(2009) and Altmann et al. (2010) thus introduced revised
metrics to address these characteristics. For the purposes
of this work, the relative values of the ST and p* indices
obtained from the Sobol and elementary effects techniques
will be compared to the standard MDI importance index,
which offers better computational performance than MDA
on large datasets. The revised metrics of e.g. Strobl et al.
(2009) are less relevant for this application, due to the
typical assumptions on uncorrelated parameters which are
used when sampling inputs for sensitivity analysis.

In addition to MDI, we use a variant of the MDA met-
ric (Bureau et al., 2005) to directly estimate the effect
of pairwise interactions between variables, by permuting
both of the corresponding input samples across observa-
tions in a vector £™F; | and subtracting individual MDA
importances. For variables x;,x, the pairwise MDA is
then given by:



MDA(zj,x,) =
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T ; |B7|
— MDA(z;) — MDA(ay) (13)

To assess the stability of the MDI indices, we use a con-
vergence criterion presented by Touzani and Busby (2014)
(eq. 14), where V5 = (v1,...,vp) is the vector of esti-
mated variable importance indices at a sample size of N
observations. The criterion considers the Euclidean norm
I]| of the vector rather than individual indices, so that
more influential indices have a greater effect on measured
convergence. We compute the indices sequentially over an
increasing sample size at intervals of AN total samples.
The convergence criterion xn is then computed backwards
from N over t intervals, with t and AN being specified for
each case study. This criterion will also be used to ensure
the stability of the reference vector of Sobol ST indices,
ST.

t
%ZS_I VN —VN_sanl
o _
N IVl

Finally, the accuracy of the proportional estimated vari-
able importances is assessed with the root mean square
error and mean bias error of V , relative to ST. As the
indices measure different quantities (e.g. the decrease in
mean square error for MDI, and fraction of output vari-
ance for ST), the values are not directly comparable; how-
ever, by first rescaling each vector relative to its maximum
value across all p variables, we can compare the propor-
tional importances estimated by each method. We avoid
normalizing the estimated importances over [0, 1] to pre-
serve negative values which may indicate numerical arti-
facts. RMSE is used as an overall indicator of accuracy,
while MBE provides information about the average over-
estimation or under-estimation of variable importances.

(14)

IST/ max(ST) — V x/ max(V n)]|

RMSE =
VP

(15)

(ST /max(ST) — V n/max(V n))
p

MBE = (16)

2.8. Software availability

The model cases are tested in the Python environment

using the Exploratory Modeling Workbench (Kwakkel, 2017).

This library provides an interface for sensitivity analy-
sis using the scikit-learn implementation of the random
forests and Extra-Trees algorithms (Pedregosa et al., 2011),
as well as the Sobol and Morris techniques through the
SALib library (Herman and Usher, 2017). These libraries

are available through the pip package manager for Python.
Alternative implementations of the tree-based methods can
be found in the R environment, with the party and extra-
Trees packages (Hothorn et al., 2017; Simm and de Abril,
2015).

3. Model cases

This section will present model case studies in increas-
ing order of complexity, using the benchmark Ishigami-
Homma function (Ishigami and Homma, 1990), an ex-
ploratory SIR model of the A(HIN1)v swine flu epidemic
(Pruyt and Hamarat, 2010), and the CDICE simulation
version of the DICE-2007 integrated assessment model (But-
ler et al., 2014; Nordhaus, 2007). Each case will first
present reference sensitivity analysis results with the Sobol
and Morris techniques. These results will then be com-
pared with the MDI and pairwise MDA variable impor-
tances, as estimated from the random forests and Extra-
Trees ensemble techniques.

8.1. Ishigami test function

The first test case is the Ishigami-Homma function
(Ishigami and Homma, 1990), which is a common test case
for sensitivity analysis due to its analytical tractability and
non-additive properties:

Y = sin(zy) + asin(zz)? + frisin(z) (17)

where 21, x9, x5 are uniformly distributed in [—m, 7],
with o = 7 and 8 = 0.1. Using a Latin Hypercube sample
with NV = 1500 yields the output distribution shown in
Figure 2.

Ishigami function output with
Latin Hypercube sample (N=1500)

Figure 2: Output distribution for Ishigami function.

Figure 3 presents the convergence of the Sobol (top
panel, left) and elementary effects (middle panel, left) in-
dices as a function of the total number of input samples,
and the relationships between the key indices provided by
each technique (right panels). The Sobol sample size of
N = 15000 is chosen to achieve a convergence criterion
of ky < 0.01 (using intervals of AN = 400 samples and
t = 4 intervals); the shaded envelopes present 95% confi-
dence bounds for the indices. The relationship between the



first-order and total Sobol indices indicates higher-order
interactions for x1 and 3, as expected from the structure
of the function, while S and ST are identical for xs.

Using k = 8 levels, with A = k/[2(k — 1)] as recom-
mended by Campolongo et al. (2007), the variable rank-
ing obtained from the pu* elementary effects converges at a
relatively small number of samples. However, the ranking
does not match the order of the ST indices, underesti-
mating the relative importance of x1. This is illustrated
in the bottom panel of the figure by plotting the propor-
tional values of the px and ST indices against each other;
the values of each group of indices are scaled relatively
to the maximum value in each group, for N = 5000 and
N = 15000 respectively. x1 and x3 show relatively higher
values on the o index, compared to their values for the
px index. This could potentially be related to their in-
teraction effects (which, in this case, can be inferred from
the structure of the model), but the contribution of in-
teractions towards the value of ¢ cannot be distinguished
from the contribution of non-linearities (Saltelli and An-
noni, 2010). This is indeed highlighted by 2, which has
approximately the same value on o as x3; although it has a
non-linear impact, it does not interact with other variables
in the model structure.

Figure 4 shows the convergence of the mean MDI im-
portance indices for the random forests (top panel, left)
and Extra-Trees (bottom panel, left) techniques over a
Latin Hypercube sample, using 50 bootstrap resamples to
estimate confidence bounds (shown by shaded envelopes
which contain the full range of estimated values). Ap-
pendix A presents detailed convergence results, indicating
that both algorithms stabilize below xky < 0.02 around
N = 3000 samples, similarly to the Morris indices. Both
algorithms are parameterized with 7" = 100 trees, m =~
p/3 =1 (so that the trees are totally randomized), and a
stopping criterion of Njeos = 2. The right panels compare
the mean estimated MDI importances (scaled relative to
the highest MDI value at N = 5000), against the scaled
reference ST indices.

For both techniques, Appendix A shows the root mean
square error (RMSE) and mean bias error (MBE) esti-
mated over all scaled MDI values, compared to scaled ST
values (where positive bias is linked with an underestima-
tion of relative variable importances compared to ST; eq.
15). Compared to the Morris p* results, both ensemble
techniques correctly rank the input variables; compared
to random forests, Extra-Trees show quicker convergence,
and a lower error compared to the relative ST values.

A potential drawback of the ensemble techniques is the
requirement of choosing suitable tuning parameters. Fo-
cusing on the Extra-Trees technique due to its favorable
performance, Figure 5 shows the RMSE (relative to scaled
ST values) for scaled estimated importances, bootstrapped
confidence interval on RMSE across 50 resamples, and
MBE. These metrics are presented across a range of values
for the number of trees T', the number of splitting features
m (subplot rows) and the minimum number of samples per

node Nieqy (subplot columns).

RMSE appears robust to the number of trees T. The
combination of m and Nj..s has a significant influence
on RMSE; the starting point of m =~ p/3 suggested by
Hastie et al. (2009) provides good results on RMSE, when
combined with a small value for Nje.s (which controls the
depth of the trees). Njeqs has a significant influence on
MBE at a given value of m, which is particularly relevant
for sensitivity analysis: a positive value indicates that rel-
ative variable importances are underestimated compared
to ST, which could lead to a type II error in a screening
setting (i.e. discarding potentially influential variables).
Smaller trees appear more vulnerable to this error, which
emphasizes more salient variables (27 and z3). This can
be compensated by increasing m to decrease the random-
ness of the trees; however, at smaller values of Njeqs (e.g.
m = 3 and Njeqy = 1), this increases RMSE.

As indicated by the relative values of ST and S for z
and z3, the interaction between these variables contributes
significantly to the output behavior. The left panel of
Figure 6 shows the pairwise interaction importances es-
timated by the second-order Sobol S2 indices; the right
panel presents MDA interaction importances estimated
with Extra-Trees (averaged over 50 bootstrap resamples,
on a 1500 sample set). The analytical relationship between
x1 and x3 is therefore identified by both techniques, with
other pairwise importances being negligible.

8.2. HINI swine flu epidemic model

Pruyt and Hamarat (2010) present a simple exploratory
system dynamics model of the 2009 swine flu epidemic,
based on a two-region SIR model. This provides a more
complex test case for sensitivity analysis due to the larger
number of input variables (with 17 continuous inputs and
two structural switches), and a broad output distribution.
Table 1 shows the input variables and their bounds, as-
suming uniform distributions for all continuous variables.
Figure 7 presents the resulting output distribution on the
outcome of interest (defined as the number of fatalities in
region 1 of the model) with a Latin Hypercube sample.

For this example, the Sobol technique requires N >
150,000 for a stable estimation of variable rankings, as
shown in the top panel of Figure 8. A reference value
of N = 800,000 was chosen by setting the convergence
criterion to ky < 0.01 (using intervals of AN = 40,000
samples and ¢ = 4 intervals). The relationship between ST
and S indicates that higher-order interactions are present
for most of the variables, with a group of 7 variables con-
tributing significantly to output behavior.

The middle panel shows Morris results with k£ = 8 levels
and A = k/[2(k—1)]. While the same group of 7 variables
is identified by the p* indices, they require a relatively
large sample size for a stable estimation. Appendix A
presents a convergence analysis with AN = 10,000 sam-
ples and t = 4 intervals, which requires approximately
190,000 samples for a stable convergence at ky < 0.02.
Although both of the structural “switch” uncertainties
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Figure 3: Results of Sobol (top panel) and elementary effects (middle panel) methods for the Ishigami test function. The vertical line indicates
the k < 0.02 convergence criterion for the p indices.
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Figure 4: Estimation of MDI variable importances with the random forests (top panel) and Extra-Trees (bottom panel) techniques for the
Ishigami test function. Vertical lines indicate the k < 0.02 convergence criterion.

are correctly ranked by px, their relative estimated im-
portance is less stable than the continuous uncertainties
across sample sizes.

Figure 9 shows the convergence of the MDI variable
importances for the random forests (top panel, left) and
Extra-Trees (bottom panel, left) techniques over a Latin
Hypercube sample, using 30 bootstrap resamples to es-
timate confidence bounds. Both algorithms are parame-
terized with 7' = 100 trees, m =~ p/3 = 6, and a stopping
criterion of Njeqy = 6. The right panels compare the mean
estimated importances (scaled relative to the highest MDI
at N = 150,000) with the scaled reference ST indices.

As with the Ishigami function, Extra-Trees are more
accurate than random forests and the Morris p* indices for
approximating ST; under the parameterization used, ran-
dom forests present a higher error relative to ST than the
Morris p* indices. ET and random forests converge more
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quickly than the px indices (in particular for the “switch”
uncertainties), with a largely stable variable ranking for
N > 10,000, and a convergence criterion xky < 0.02 above
80,000 samples.

Figure 10 shows the influence of the tuning parameters
on RMSE and MBE, compared to the reference scaled ST
values. In this application, totally randomized (m = 1),
fully grown (Njeqs = 1) trees perform significantly worse.
The assumption of m =~ p/3 = 6 provides consistent per-
formance, and the mean bias can be tuned by adjusting the
value of Nieqyr in a range of approximately 1 to 16 without
introducing a larger error. Nj.s has a similar effect as
in the Ishigami-Homma test case, with relatively smaller
trees having a smaller negative bias.

As evidenced by the large difference between the ST
and S indices, higher-order interactions are influential for
output behavior. The left panel of Figure 11 shows second-



Table 1: Input variables for HIN1 flu model
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Figure 5: Extra-Trees performance relative to ST across key tun-
ing parameters, for Ishigami function (N=3000). The figure shows
RMSE (top three panels), bootstrapped confidence interval on
RMSE (middle), and MBE (bottom panels) across a range of val-
ues for the number of trees T', the number of features considered for
splitting m (subplot rows), and the minimum number of samples per
node Nicqs (subplot columns).
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[ Name \ 1D [ Min. | Max. |
Structural switch on immunity immunity_switch {0,1}
Structural switch on contact rate lookup function lookup_switch {0,1,2,3
Additional seasonal immune population fraction - region 1 x11 0.1 0.5
Additional seasonal immune population fraction - region 2 x12 0.1 0.5
Fatality rate - region 1 x21 0.01 0.1
Fatality rate - region 2 x22 0.01 0.1
Initial immune fraction of the population - region 1 x31 0.1 0.5
Initial immune fraction of the population - region 2 x32 0.1 0.5
Normal interregional contact rate x41 0.1 0.9
Permanent immune population fraction - region 1 x51 0.1 0.5
Permanent immune population fraction - region 2 x52 0.1 0.5
Recovery time - region 1 x61 0.1 0.8
Recovery time - region 2 x62 0.1 0.8
Root contact rate - region 1 x81 1 10
Root contact rate - region 2 x82 1 10
Infection rate - region 1 x91 0.01 0.1
Infection rate - region 2 x92 0.01 0.1
Normal contact rate - region 1 x101 10 100
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Figure 6: Comparison of pairwise variable interactions in the
Ishigami function, using Sobol S2 indices (left) and Extra-Trees MDA
pairwise permutation importances (right).

H1N1 flu model output with
Latin Hypercube sample (N=25000)
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Figure 7: Output distribution for HIN1 model.

order interaction importances as estimated by the Sobol
S2 indices, for the same sample size of N = 800,000. The
right panel presents the mean pairwise MDA interaction
importances estimated with Extra-Trees (with 30 boot-
strap resamples on a 50,000 sample set). These estimated
importances for each interacting pair are plotted in the
bottom panel, after scaling relatively to the highest value
in each set (S2 and MDA).

The interpretation of these results should take into ac-
count the numerical sensitivity of the reference S2 results.
As shown on the left panel, each of the second-order inter-



Sobol ST index

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.8

0.6

0.4

0.2

0.0

Convergence of Sobol ST indices (Flu model)

ST vs. S with N = 800000 (Flu model)

swt_immunity
.

x91
°

x101
O
x61
.

x21
©® swt_lookup
°

x81

.\/°_\ L]

. ] ¢
T T T T T T T T T
0 200000 400000 600000 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Total experiments S
1e7  Convergence of u* indices (Flu model) M * vs. o with N =200000 (Flu model)
K <0.02
) ) ° . .
swt_immunity
L]
x91
L]
x101
L]
. . ® x61 °
x21 swt_lookup
L]
x81
P e — — —3—3 — —
j== 5
T T T T T T T T T T T T
0 25000 50000 75000 100000 125000 150000 175000 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Total experiments o 1e7

M * vs. Sobol ST (Flu model)

200000
o
®
1

swt_immunity
L ]

x91

x101

.
x61

swt_lookup x21 °
)

o
(=]
I

x81
.

Scaled u* with N
I
»
1

oo {

0.0

o
N

T T T T T
0.2 0.4 0.6 0.8 1.0
Scaled Sobol ST index with N = 800000

Figure 8: Results of Sobol (top panel) and elementary effects (middle panel) methods for HIN1 flu model. The vertical line indicates the
Kk < 0.02 convergence criterion for the p* indices.

12



Convergence of RF feature importances (Flu model)

RF feature importance vs. Sobol ST with N = 150000

o o o =

S o © o
1 1 1 1
\

Scaled RF feature importance

o
N
1

0.0 T T T T T T T

swt_immunity
- .

x91
x101 °

x61

x21
swt_lookup
.

x81

k>

Total experiments

0 20000 40000 60000 80000 100000 120000 140000

Convergence of ET feature importances (Flu model)

0.0

T T T T T
0.2 0.4 0.6 0.8 1.0 1.2
Scaled Sobol ST index with N = 800000

ET feature importance vs. Sobol ST with N = 150000

1.2
1.0 A 4 .
swt_immunity
@
o
5
£ 0.8 1 4 °
9] o 91
Q
£ x101
o
:é 0.6 —/_’/——’V_*A 4 x61
© 0.02
3 K<
E o ~ X Sa— )
s . i x21
Q04 4 L — ] o
= — swt_lookup
O
1) W
x81
02 o 4
N a .
0.0 T T T T T T T T T T T T
0 20000 40000 60000 80000 100000 120000 140000 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Total experiments

Scaled Sobol ST index with N = 800000

Figure 9: Estimation of MDI variable importances with the random forests (top panel) and Extra-Trees (bottom panel) techniques for HIN1

flu model. Vertical lines indicate the x < 0.02 convergence criterion.

action terms only contributes a small portion of variance,
which is typically smaller than the 95% confidence inter-
val provided by SALib. This remains the case at signifi-
cantly larger sample sizes (N > le6). The bottom panel
illustrates this result with light gray markers for values of
the S2 indices which are smaller than the estimated con-
fidence interval, and are therefore likely to be unreliable.
Nonetheless, the pairwise permutation generally performs
well for identifying more significant interactions, for which
the S2 index is outside the confidence interval (e.g. be-
tween the infection rate £91 and other parameters to which
it is structurally related in the model, such as the normal
contact rate 101 and the structural switch on immunity).

3.3. CDICE integrated assessment model

The last case study uses the CDICE model (Butler
et al., 2014), which replicates the outcomes of the globally-
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aggregated DICE-2007 integrated assessment model (Nord-
haus, 2007) under given policy scenarios. This model rep-
resents a simplified global economy, coupled with a 3-
reservoir carbon cycle model and a 2-reservoir climate model;
the feedbacks between these components lead to highly
non-linear outputs. When used in an optimization setting,
DICE yields an optimal policy for the time series of GHG
emission control rates and investments that maximize the
discounted utility of consumption over the modelled time
frame. Conversely, the CDICE simulation version intro-
duced by Butler et al. (2014) can be used to evaluate the
impact of exogenous uncertainties on the performance of
policy scenarios.

The full version of this model uses 31 exogenous input
variables, shown with their input ranges in Table 2. With
uniform input distributions, these assumptions yield the
output distribution shown in Figure 12 for the NPV of
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abatement costs. This outcome will be used for the anal-
ysis due to its relatively quicker convergence with Sobol

measures.

F%gure 13 S'hOWS the con'ver.gence of ST (tOp panel) and Table 2: Input variables for CDICE model (baseline scenario)
Morris p* (middle panel) indices, for the NPV of abate- [ | Mmn [ Max ]
ment costs. Due to the large number of parameters, the popasym 5000 13000
Sobol indices require N > 9e6 for a stable ranking. As gpogo 00622)2 06325
shown by the low values of the first-order S indices rela- dgzla 5001 0,016
tive to ST, higher-order interactions are significant for the sig0 0.13364 | 0.15273

. . gsigma -0.16 -0.07
behavior of this outcome. Isig 0001 0.003
The Morris results use a sampling of & = 10 levels dsig2 0 0.0002
. . . . . : eland0 9 15
and A =k/ [Z(k 1)], yielding a mostly stable estimation S T T
of variable rankings above N > 150,000. However, the bi2 0.155288 | 0.223288
bottom panel of Figure 13 shows several inconsistencies in b23 0.025 0.1
. . . Tex0 0.3 0
the variable rankings given by pu* compared to scaled ST Fox1 02 05
values. t2xco2 1 8

Figure 14 shows the convergence of the MDI variable fczzfx g:g 0?594
importances for the random forests (top panel, left) and c3 0.27 0.33
Extra-Trees (bottom panel, left) techniques over 30 re- Z‘i 0'%45 g'ggf
samples on a Latin Hypercube sample, for the same out- 22 0.002255 | 0.003123
come. The algorithms are parameterized with 7" = 100 ba3k0 (1)-2 g
trees, m = p/3 = 10, and Njeqr = 8. The right panels I;h:fag 56 3
compare the scaled mean estimated importances with the backrat L5 2.5

o gback 0.045 0.055
scaled reference ST indices. SartfracT 01 T

The Extra-Trees variable rankings mostly stabilize for partfrac2 | 0.25372 1
N > 100,000, with a better approximation of relative ST g;’;ﬂrg‘; 0(')5 0125
values than the Morris px indices. For random forests, saverate0 0.2 0.24

however, the variable ranking shows some discrepancies
with the ST results. Appendix A presents a convergence
analysis with AN = 16,000 samples and ¢ = 4 intervals;
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Figure 11: Comparison of pairwise variable interactions in the HIN1 flu model, using Sobol S2 indices (left) and Extra-Trees MDA pairwise
permutation importances (right). The bottom panel plots scaled Sobol S2 and Extra-Trees interaction importances against each other, with
light gray markers corresponding to S2 values which are within the confidence bounds estimated by SALib.
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Figure 12: Output distribution for CDICE model (NPV of abatement
costs).

both ensemble methods, as well as Morris indices, reach a
criterion of Ky < 0.02 with approximately 150,000 sam-
ples.
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Figure 15 shows the performance of the Extra-Trees
estimation across the tuning parameters, compared to the
scaled relative ST values. As with the HIN1 flu model,
highly randomized and fully developed trees do not per-
form adequately, but the estimated importances are robust
in a range of m/p of 0.3 to 0.6 (m = 9 to m = 18). The
MBE metric also presents a comparable pattern to the
HIN1 model results, with larger values of m/p leading to
a negative bias unless compensated by a larger stopping
criterion Nieqy.

The left panel of Figure 16 shows second-order interac-
tion importances estimated by the Sobol S2 indices, with
the same sample of N = 9.22e6. The right panel presents
the mean pairwise MDA interaction importances estimated
with Extra-Trees (with 30 bootstrap resamples, on a 100,000
sample set).

The scaled estimated importances for each interacting
pair are plotted against each other in the bottom panel.
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Figure 13: Results of Sobol (top panel) and elementary effects (middle panel) methods for the CDICE model (NPV of abatement costs). The
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Figure 14: Estimation of MDI variable importances with random forests (top panel) and Extra-Trees (bottom panel) for the CDICE model
(NPV of abatement costs). Vertical lines indicate the x < 0.02 convergence criterion.

The most significant pairwise interactions appear to be
identified by the permutation measure, such as the inter-
actions involving the a3 exponent of the model’s climate
damage function. As with the HIN1 flu model, however,
the S2 indices may be numerically unreliable due to rela-
tively large confidence bounds. It can be noted that some
of the S2 indices present negative values, which is clearly a
numerical artifact. The analysis was in this case limited by
the computational costs of the larger input samples which
would be required for a stable estimation of S2 indices.

4. Discussion and conclusions

This paper assessed the performance of decision tree-
based ensemble methods for the estimation of global sen-
sitivity analysis measures, focusing on the random forests
and Extra-Trees algorithms. Compared to the Morris ele-
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mentary effects method which is commonly used for screen-
ing non-influential variables, the Extra-Trees technique in
particular performed well to estimate relative Sobol ST to-
tal effect indices, using the Mean Decrease Impurity (MDI)
metric for variable importance. Across the three case stud-
ies presented in the paper, Extra-Trees therefore outper-
formed the Morris p* indices on measures of RMSE and
variable ranking error, compared to the proportional val-
ues of ST indices. For the more complex HIN1 and CDICE
cases, a sample size of less than 10% of the Sobol sam-
ple size was sufficient for a stable estimation of variable
rankings. Furthermore, a pairwise Mean Decrease Accu-
racy (MDA) permutation metric allowed for the study of
variable interactions with Extra-Trees. While the more
common random forests algorithm performed well on the
benchmark Ishigami-Homma test function, it was less re-
liable in the more complex cases.
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of values for the number of trees T', the fraction of features considered for splitting m/p (subplot rows), and the minimum number of samples

per node Njeq5 (subplot columns).

The Extra-Trees estimation of variable importances was
systematically assessed across a range of tuning parame-
ters for the algorithm. Based on the case studies and pre-
vious literature (Hastie et al., 2009), values of T' = 100
trees and a number of splitting features m = p/3 appear
to be suitable starting points. The choice of a stopping
criterion significantly affects bias, which is especially rele-
vant for a screening application. In order to avoid possible
type II errors, a conservative guideline would be to use
fully developed trees (Njeqr = 1) for N ~ 1000, then to
introduce a stopping criterion Njeq s o VN for larger sam-
ples. Values of 6 and 8 for Nje.s thus performed well for
N = 50,000 and N = 100, 000 with the HIN1 and CDICE
models.

The variable importance metrics provided by the tree-
based methods can be assessed in relation to the criteria
summarized by Pianosi and Wagener (2015) for an “ideal”
sensitivity metric. As such, the MDI and MDA metrics
largely meet these criteria, by being suitable for global
sampling designs, independent of model structure, rela-
tively easy to implement numerically, and stable across
sample sizes and bootstrap resamples. Compared to Sobol
indices, a downside of these metrics is the lack of a straight-
forward mathematical interpretation, as they only pro-
vide information about the relative importance of inputs,
rather than their direct effect on output variance. How-
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ever, for practical purposes, the accurate estimation of
relative total effects should be sufficient for a factor fix-
ing application. Compared to the px indices for elemen-
tary effects (which share this limitation on mathematical
interpretability), MDI more accurately estimates the rela-
tive values of ST indices, is suitable for non-scalar inputs,
and appears more stable at smaller sample sizes. MDA
additionally estimates relative pairwise interaction effects,
which are not identified by the elementary effects o in-
dices. MDI and MDA can also be computed from generic
Latin Hypercube or Monte Carlo sampling designs. This
makes it easier to reuse existing datasets which may have
been generated from an uncertainty analysis, or to com-
bine the ensemble methods with other analysis techniques
in a multi-method analysis framework.

In parallel, Appendix B compares the total runtime re-
quired to compute importance metrics (as well as the total
model evaluation runtime), for the more complex HIN1
and CDICE cases. With the software libraries used in this
work, the MDI and Morris indices have a similar computa-
tion runtime at a given sample size, with the computation
runtime largely scaling in proportion to sample size N.
The pairwise MDA metric is slightly costlier and scales
with the square of the number of input variables p. In the
presented cases, the analysis runtime for these metrics was
typically small relative to the total evaluation runtime re-



popasym
gpop0
ga0

dela

sig0
gsigma
dsig
dsig2
eland0
dtree

gback
partfrac1
partfrac2
partfracn
dpartfrac
saverate0

popasym
gpoj

0.30

0.040 "]
0.24 8
0.032 e
b=
[o]
% Q
8 £
0.024 £ 0.18 §
o | b=
] -
—_ =}
2
0.016 O 012 &
[0
2
&
0.008 0.06
0.000 0.00
28 I NS PN O AT BT N RENEE S5 RS
geo8n 5t EEoasd ey SSESESsET
2o 2 "o R S58oEEEGD
o CTOCQ>
Q Q g

0.8

0.6

0.2 A

Scaled perm. importance with N = 100000

0.0 A

-0.2 T T
-0.2 0.0 0.2

0.4

0.6 0.8 1.0

Scaled Sobol S2 index with N = 9216000
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quired by the simulation models; it was also significantly
smaller than the computation time for Sobol indices. In an
analysis setting focused on estimating the relative impor-
tance of variables and their interactions, the smaller sam-
ple size required by the MDI and MDA metrics can there-
fore significantly reduce the overall computational cost of
the analysis.

In a broader perspective, however, it should be noted
that all of the techniques evaluated in this paper followed
a variance-based approach to global sensitivity analysis —
either by directly calculating variance-based indices with
the Sobol method, or by approximating the proportional
importance of the latter with elementary effects and tree-
based methods. As described by Pianosi and Wagener
(2015), variance may not be an appropriate measure of
uncertainty for multi-modal or highly skewed output dis-
tributions; in these cases, an approach based on the prob-
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ability density function of the output may be preferable.
This property was demonstrated by the authors with a
simple non-linear model, for which variance-based GSA
did not properly distinguish variable importances. This
has clear implications for the cases studied in this paper,
as the outputs of the HIN1 and CDICE models showed
highly skewed distributions under the uncertainty ranges
used to generate input samples. Given the possible limita-
tions of variance-based methods under such conditions, it
would be useful to compare the reference Sobol results with
a density-based method, and to evaluate the performance
of Extra-Trees across a wider range of output distribution
shapes.
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Appendix A. Variable importance metrics

Figures A.17, A.18 and A.19 present detailed results
for the estimation of scaled variable importances in each
case study.

Appendix B. Comparison of analysis runtimes

Table B.3 presents representative runtimes for each of
the key analyses presented in the paper, using the EMA
Workbench 1.1 library to sample and simulate experiments,
and SALib 1.1.3 (for Sobol and Morris) and scikit-learn
0.18.1 (for Extra-Trees) to compute sensitivity indices. The
analyses were performed on an Intel Xeon E5-2620 CPU
with the Anaconda 3.6 Python 64-bit distribution.



1.0 7 EEE Sobol ST
I Morris u*
0.8 - I RF MDI
§ Emm ET MDI
£
c 0.6
Q.
E
o
904 1
®
O
(%]
0.2
0.0
-~ &) [
x x x
012 Convergence criterion for estimation of indices (Ishigami)
—— Morris
—— RF
0.10 — FET
0.08 -
c
9o
8 0.06 -
G
0.04
0.02
000 T T T T T
0 1000 2000 3000 4000 5000
Total experiments
| [ Sobol ST (N=17000) | Morris g+ (N=5000) | RF MDI (N=5000) | ET MDI (N=5000) |
RMSE - 0.250 0.069 0.051
MBE - -0.016 -0.054 0.021

Figure A.17: Scaled variable importances and error measures for Ishigami function.

HIN1 flu model CDICE model
Model evaluation (s) | Analysis (s) | Model evaluation (s) | Analysis (s)
Sobol (S1, 52, ST) 8778 (N=8¢5) 105 4661 (N=9.22¢6) 735
Morris (u*, o) 2131 (N=2eb) 5.8 126 (N=2.88e5) 7.8
ET (MDI importances) 1614 (N=1.5€5) 6.4 128 (N=2.88e5) 9.6
ET (pairwise MDA) 1059 (N=5e4) 16.4 42.4 (N=1e5b) 51.8

Table B.3: Representative runtimes for the evaluation of the HIN1 and CDICE test cases, and for the computation of sensitivity indices. The
sample size used in each model/analysis combination is indicated in parentheses.
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Figure A.18: Scaled variable importances and error measures for HIN1 flu model.



1.0 A IEm Sobol ST
® [ Morris p*
2 08 7 = RF MDI
g == ETMDI
S 06 A
£
B 04 A
o
O
P02 A
0.0
ER2 R 2 E29B IR RXNTITVITIRSLIESTSIE &9
799846 5885550088 ¢4y S 3 ¥ 3 &L L E B
g ° 5 "o S £ 858255582
(=% Q aQ Q T ﬁ
0.08 Convergence criterion for estimation of indices (CDICE model)
~— Morris
0.07 A
0.06
0.05 A
c
ks
$0.04 A
S
0.03 A
0.02
0.01 A
0.00 T T T T
50000 100000 150000 200000 250000 300000

Total experiments

| Sobol ST (N=9.22e6) | Morris p* (N=2.88¢5) | RF MDI (N=2.88¢5) | ET MDI (N=2.88¢5) |

RMSE - 0.149 0.094 0.035
MBE - -0.099 -0.064 -0.023

Figure A.19: Scaled variable importances and error measures for CDICE model (NPV of abatement costs).
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