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Abstract  11 

Probabilistic predictions from hydrological models, including rainfall-runoff models, provide valuable 12 

information for water and environmental resource risk management. However, traditional 13 

“deterministic” usage of rainfall-runoff models remains prevalent in practical applications, in many 14 

cases because probabilistic predictions are perceived to be difficult to generate. This paper introduces a 15 

simplified approach for hydrological model inference and prediction that bridges the practical gap 16 

between “deterministic” and “probabilistic” techniques. This approach combines the Least Squares (LS) 17 

technique for calibrating hydrological model parameters with a simple method-of-moments (MoM) 18 

estimator of error model parameters (here, the variance and lag-1 autocorrelation of residual errors). A 19 

case study using two conceptual hydrological models shows that the LS-MoM approach achieves 20 

probabilistic predictions with similar predictive performance to classical maximum-likelihood and 21 

Bayesian approaches, but is simpler to implement using common hydrological software and has a lower 22 

computational cost. A public web-app to help users implement the simplified approach is available. 23 

Keywords: probabilistic prediction, rainfall-runoff modelling, method of moments, maximum 24 

likelihood 25 

Highlights 26 

 New simplified approach for producing probabilistic hydrological predictions 27 

 Similar performance to maximum-likelihood approach, at lower computational cost 28 

 Web-app available to facilitate uptake of probabilistic predictions 29 

  30 
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Software availability  31 

Product title: Interactive Probabilistic Predictions 32 

Description: Web application for implementing Stage 2 of the LS-MoM approach introduced in this 33 

study 34 

Developer: David McInerney, Bree Bennett, Mark Thyer, Dmitri Kavetski 35 

Contact Address: David McInerney, School of Civil, Environmental and Mining Engineering, 36 

University of Adelaide, SA, Australia 37 

Contact Email: david.mcinerney@adelaide.edu.au 38 

Software Required: Web browser supported by R Shiny Server (Google Chrome, Mozilla Firefox, 39 

Safari) 40 

Available Since: September 2017 41 

Availability: http://www.probabilisticpredictions.org 42 
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1. Introduction 44 

Predictions from hydrological models, particularly rainfall-runoff models, provide essential inputs to the 45 

planning and operation of water resource systems (Loucks et al., 1981). Probabilistic inference and 46 

prediction approaches, where probability models are used to describe data and model uncertainty, are of 47 

particular interest to enable uncertainty quantification and risk assessment (Vogel, 2017). Probabilistic 48 

techniques are well-known in the hydrological research community and include method-of-moments 49 

(MoM), maximum-likelihood (ML) and Bayesian techniques (e.g., Salas, 1993, Martins and Stedinger, 50 

2000), with rainfall-runoff model applications typically employing Bayesian techniques (e.g., Kuczera, 51 

1983, Krzysztofowicz, 2002, Schoups and Vrugt, 2010, Smith et al., 2010, Li et al., 2016, McInerney et 52 

al., 2017, Kavetski, 2018). Maximum-likelihood and Bayesian techniques require the specification of a 53 

likelihood function, which in rainfall-runoff modelling is typically derived from a residual error model, 54 

such as the widely used independent Gaussian error model. In most cases, residual error models include 55 

calibrated parameters of their own, such as error variance, lag-1 autocorrelation, and so forth. 56 

In contrast to the research literature, practical hydrological modelling applications tend to rely on 57 

“deterministic” approaches, e.g., where rainfall-runoff models are calibrated using goodness-of-fit 58 

objective functions and quantification of uncertainty in predictions is typically considered the domain 59 

of applied research (Vaze et al., 2012). Least Squares (LS) objective functions (e.g., the sum-of-squared-60 

errors (SSE) and equivalent Nash-Sutcliffe efficiency (NSE)) are widely used in research and practice; 61 

they are computed directly or from transformed flows (Chapman, 1970, Chiew et al., 1993, Oudin et al., 62 

2006, Pushpalatha et al., 2012). Many hydrological modelling and calibration platforms implement LS 63 

objective functions. For example, the popular calibration package PEST supports weighted SSE 64 

(Doherty, 2004), HEC-HMS (Scharffenberg et al., 2006), the Australian “eWater Source” (Welsh et al., 65 

2013) and HBV Light (Seibert, 2005) support log-transformed SSE (often used to better capture low 66 

flows), the Hydromad R package (Andrews et al., 2011) allows for objective functions based on Box-67 

Cox transformed flows, and the recent airGR R package (Coron et al., 2017) provides built-in log, 68 

square-root and inverse-transformed SSE objective functions. Some of these software packages have 69 

capabilities for estimating parameter uncertainty and its impact on predictions. For example, PEST 70 

supports linear/nonlinear parameter uncertainty analysis including the null space Monte Carlo method 71 

(Tonkin and Doherty, 2009), and Hydromad implements the DREAM MCMC approach of Vrugt et al. 72 

(2009) (http://hydromad.catchment.org; see Joseph and Guillaume (2013) for an application). 73 

The statistical modelling needed to derive the likelihood function and estimate the error model 74 

parameters creates a perception that probabilistic prediction requires substantial additional effort. For 75 

http://hydromad.catchment.org/


Short Communication submitted to EMS 

 

Page 4 of 21 

example, in the software packages listed above, it is (relatively) easy to implement new objective 76 

functions, but non-trivial to incorporate calibrated error model parameters. This perception can delay the 77 

uptake of probabilistic techniques, especially in practical applications. The motivation of this study is to 78 

develop a simplified approach that produces high-quality probabilistic rainfall-runoff model predictions 79 

at a minor additional effort beyond that required for traditional deterministic predictions. 80 

The specific aims of this study are: 81 

Aim 1. Develop a simplified “LS-MoM” approach to generating probabilistic hydrological predictions, 82 

exploiting a combination of Least Squares (LS) and method-of-moments (MoM) approaches; 83 

Aim 2. Empirically compare the LS-MoM, maximum-likelihood and Bayesian approaches in terms of 84 

predictive performance and computational cost, in a case study using conceptual hydrological models; 85 

Aim 3. Introduce a public web-app to help practitioners apply the LS-MoM approach. 86 

The paper continues by outlining the likelihood-based framework in Section 2. The LS-MoM approach 87 

is developed in Section 3. Section 4 describes the empirical case study methods, with results reported in 88 

Section 5. Sections 6-7 discuss and summarize the key findings. 89 

2. Likelihood-based parameter inference 90 

2.1. Theory 91 

A hydrological (rainfall-runoff) model, H, simulates streamflow { , 1,.., }H H

tQ t Tθ θ
Q  over a series of 92 

time steps t, as a function of forcing data X, hydrological model parameters Hθ  and initial conditions 93 

0S , 94 

 
0( ; , )H

HHθ
Q θ X S  (1) 95 

To estimate Hθ  from observed streamflow data { , 1,.., }tQ t T Q  and observed forcing data X  using 96 

a maximum-likelihood approach, a likelihood function ( ; )Hθ Q  should be specified and maximized 97 

with respect to Hθ . The likelihood function is derived from an assumed probability model of observed 98 

data, ( ; ) ( | , )H Hpθ Q Q θ X , e.g., by considering the probability distribution of residual errors 99 

assumed to describe the combined contributions of all sources of predictive error (Renard et al., 2011). 100 

Residual errors of hydrological model are typically heteroscedastic (larger errors in larger flows) and 101 

persistent (similar errors several time steps in a row) (e.g., Sorooshian and Dracup, 1980). In many cases, 102 
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error heteroscedasticity is represented using streamflow transformations (e.g., logarithmic or Box-Cox), 103 

and error persistence is represented using an autoregressive lag-1, AR(1), model (e.g., Sorooshian and 104 

Dracup, 1980, Evin et al., 2014). Under these assumptions, and ignoring terms at t=1, the (approximate) 105 

likelihood is 106 

   2

2

( , , ; ) ( | , , , ) '( ; ) ( , , ; , );0,
T

F H Z H Z t Z N t H Z y

t

p QZ f y   


 θ θ θ Q Q θ θ θ X θ θ θ Q X  (2) 107 

The terms in equation (2) are as follows: 108 

1) ( )Z Q  is the streamflow transformation used to describe error heteroscedasticity, and ' /Z dZ dQ is 109 

its Jacobian. Here we employ the ubiquitous Box-Cox transformation (Box and Cox, 1964), 110 

  

( ) 1
if 0

( ; , )

log( ) otherwise

Q A

Z Q A

Q A




 

  


 
 

 (3) 111 

where   and A  are transformation parameters, grouped into Zθ  in equation (2). When 0A  , the Box-112 

Cox transformation with 0  , 0.5, and -1 is equivalent to the log, square-root and inverse 113 

transformations respectively. 114 

The offset A  can be non-dimensionalized by a typical streamflow magnitude, such as the mean 115 

observed flow, 116 

 / mean( )A A  Q  (4) 117 

2) The quantity 
ty  is the “error innovation” at time step t , defined from a zero-mean homoscedastic 118 

Gaussian AR(1) model of residuals of transformed streamflows, 119 

 ( ); ( ; )H

Zt Zt tZ Q Z Q   θ
θ θ  (5) 120 

  
1t t ty       (6) 121 

  ~ (0, )t yNy   (7) 122 

where ( , )N    denotes the Gaussian distribution with mean   and variance 2 , and probability density 123 

function (pdf) 2( ; , )Nf x   . The residual error model in equations (3)-(7) has parameters { , }y  θ , 124 

where 
  is the lag-1 autoregressive parameter and 

y  is the standard deviation. 125 
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2.2. Two-stage post-processor implementation 126 

A two-stage post-processing (PP) approach for parameter estimation is employed: 127 

Stage 1: Calibrate hydrological and transformation parameters, 
Hθ  and 

Zθ , neglecting error 128 

autocorrelation, i.e., maximizing the likelihood in equation (2) while fixing 0  . The parameter 
y  129 

is also calibrated, but then discarded in Stage 2. The transformation parameter   can be either fixed a 130 

priori or calibrated (e.g., Wang et al., 2012, McInerney et al., 2017); 131 

Stage 2: Calibrate error model parameters, { , }y  θ , by maximizing the likelihood in equation (2) 132 

while keeping 
Hθ  and 

Zθ  fixed at the values estimated in Stage 1. Stage 2 is computationally very fast 133 

because it works solely with observed data and optimal streamflow predictions from Stage 1, and hence 134 

does not require additional hydrological model runs. 135 

The adopted PP approach is empirically more robust than joint calibration, because it avoids problematic 136 

interactions between hydrological and error model parameters (see Evin et al., 2014, and Supplementary 137 

Material Section S1). As both stages are implemented using maximum-likelihood, we will refer to this 138 

approach as the ML-ML approach. 139 

When parsimonious hydrological models such as GR4J (e.g., Perrin et al., 2003) are calibrated to long 140 

observed time series using residual error models such as those in Section 4, the contribution of 141 

parametric uncertainty to total predictive uncertainty in streamflow is generally small (Kuczera et al., 142 

2006, Yang et al., 2007, Sun et al., 2017, Kavetski, 2018). For this reason, hydrological prediction and 143 

forecasting applications tend to focus on residual errors and often ignore posterior parameter uncertainty 144 

(e.g., Engeland and Steinsland, 2014, McInerney et al., 2017). This is the strategy employed in this study, 145 

where calibration is undertaken solely through optimization of the likelihood function. The suitability of 146 

this approach is illustrated as described in Section 4.1, with limitations discussed in Section 6.4. 147 

3. Simplified approach for parameter inference 148 

The simplified approach has two stages that mimic those of the ML-ML approach: 149 

Stage 1: Estimate hydrological model parameters 
Hθ  by Least Squares optimization (e.g., by 150 

minimizing SSE). Transformation parameters 
Zθ  (if any) must be fixed a priori; 151 

Stage 2: Estimate error model parameters θ  from the residuals η  using the method-of-moments. 152 
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We will refer to this approach as LS-MoM; its respective equations are presented next. 153 

3.1. Stage 1 154 

When the transformation parameters 
Zθ  are fixed, the Jacobian term in equation (2) no longer depends 155 

on any inferred quantity, and represents a proportionality constant. With the additional assumption that 156 

η  is uncorrelated (UC), 0  , equation (2) reduces to 157 

   2

1:

1

( , ; , ) ( , ; , ) | 0,t

T

UC H Z N t H Z t

t

f Q   


θ Q θ θ θ X  (8) 158 

where 
  is the standard deviation of η  (McInerney et al., 2017). 159 

Expanding 2( ; , )Nf x    and taking logarithms, equation (8) can be re-written as 160 

  
1 2 1:( , ; , ) ( ; , ,log ( ) c) ( ns) o tUC H Z SSE t ZH t         θθ Q X θQθ  (9) 161 

where 
2

1 ln( ) / 2T    and 
2

2( ) 1/ 2     are functions solely of 
 , and 162 

  
2

1

( ; ) ( ; )
T

SSE t

t

H H


 θ θ  (10) 163 

is the sum of squared errors (SSE) of transformed flows, viewed solely as a function of Hθ . 164 

Noting that 2 0  , the  hydrological parameter values Hθ  that maximise log UC
 (and hence UC ) are 165 

the same ones that minimize SSE . This equivalence is verified algebraically in Supplementary Material 166 

Section S2, and is well-known in the statistical literature (e.g., Charnes et al., 1976). 167 

In other words, under the assumptions of uncorrelated Gaussian residuals and provided the 168 

transformation parameters are fixed, Stage 1 of the ML-ML approach can proceed through Least Squares 169 

optimization of transformed flows. Table 1 provides the correspondence between common objective 170 

functions and the SSE applied to Box-Cox transformed flows. 171 

Note that, given the reduction in the number of optimized quantities in Stage 1 – which is the only stage 172 

that requires running the hydrological model – it can be expected that LS-MoM is computationally 173 

cheaper than ML-ML for a given optimization algorithm. 174 
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Table 1. Correspondence between common objective functions used in the hydrological literature and 175 

Box-Cox transformation parameters applied to SSE. 176 

Objective function Transformation 

parameters 

References 

Sum of squared errors (SSE) of 

untransformed flows 

Root mean squared error (RMSE) 

Nash Sutcliffe Efficiency (NSE) 

1   and * 0A   Servat and Dezetter (1991), Gan et al. 

(1997), Oudin et al. (2006), Kumar et al. 

(2010) 

NSE of square root transformed flows 0.5   and * 0A   Chapman (1970), Chiew et al. (1993), 

Ye et al. (1998), Perrin et al. (2003), 

Oudin et al. (2006), Pushpalatha et al. 

(2012) 

NSE of log transformed flows 0   and * 0A   Dawdy and Lichty (1968), Chapman 

(1970), Oudin et al. (2006), Kumar et al. 

(2010) 

Likelihood function based on log 

transformed flow with non-zero offset  

0   and * 0A   Bates and Campbell (2001), Smith et al. 

(2010) 

 177 

3.2. Stage 2 178 

Given estimated values ˆ
Hθ  from Stage 1 and fixed values of Zθ , the estimated residuals η̂  in equation 179 

(5) are themselves fixed. The method-of-moments can then be used to estimate the error model 180 

parameters ˆ
θ  from sample statistics of η̂ . 181 

The lag-1 autoregressive parameter ˆ
  is estimated as the sample lag-1 autocorrelation coefficient 182 

    ˆ ˆ1 12
2ˆ

1ˆ ˆ ˆˆacorr [ ]
( 1)

T

t t

t

m m
T s

  



   



   


η  (11) 183 

where ˆ
ˆmean[ ]m  η  and 

2

ˆ
ˆvar[ ]s  η  denote, respectively, the sample mean and variance of η̂ . 184 

The innovation variance 
2ˆ
y  is estimated from the well-known relationship between conditional and 185 

marginal variances of an AR(1) process (Box and Jenkins, 1970), 186 

   
22 2

ˆ ˆ

1

1
ˆˆ ˆvar[ ]

1

T

t

t

s m
T

   


   

η  (12) 187 

   2 2 2ˆˆ ˆ 1y       (13) 188 
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Once again, no additional hydrological model runs are required in Stage 2. 189 

4. Case study methods 190 

4.1. Experiments and residual error schemes 191 

The objective of the case study is to establish if the simple LS-MoM approach (described in Section 3) 192 

is competitive with the more complex ML-ML approach (described in Section 2.2) in hydrological 193 

modelling applications. This comparison is carried out for the Box-Cox error models recommended by 194 

McInerney et al. (2017), as follows: 195 

1) Benchmarking of the LS-MoM approach against a “well-performing” ML-ML approach:  196 

a) For the residual error schemes recommended by McInerney et al. (2017), namely the Log ( 0 197 

), BC0.2 ( 0.2  ) and BC0.5 ( 0.5  ) schemes in perennial catchments, and the BC0.2 and 198 

BC0.5 schemes in ephemeral/low-flow catchments, we compare LS-MoM with fixed 0A   199 

against the ML-ML approach with inferred *A  (Section 2.2). The value 0A   is of particular 200 

interest in the LS-MoM approach because it provides the closest correspondence to common 201 

objective functions (Table 1); 202 

b) When applying the Log scheme in ephemeral/low-flow catchments, ML-ML with inferred A  203 

performs poorly (McInerney et al., 2017), and LS-MoM with 0A   is not applicable. Hence, 204 

in these scenarios, we set 110A   in both the ML-ML and LS-MoM approaches; 205 

2) Analysis of the LS-MoM approach with 0A  , 410  and 110   (with 0A   excluded when using 206 

the Log scheme in ephemeral/low-flow catchments). This experiment establishes the impact of the 207 

offset, which must be specified a priori in the LS-MoM approach and could potentially impact on 208 

calibration and prediction. 209 

Given that the LS-MoM and ML-ML approaches compared in this work are set to ignore parameter 210 

uncertainty, the contribution of parameter uncertainty to total predictive uncertainty in streamflow is 211 

evaluated by comparing LS-MoM and ML-ML to two Bayesian setups, namely to a full Bayesian 212 

approach where Hθ  and Zθ  are inferred jointly, and to a Bayesian implementation of Stage 1 from 213 

Section 2.2. The details of this comparison are reported in Supplementary Material Section S1. 214 

4.2. Hydrological data and models 215 

The case study setup from McInerney et al. (2017) is used, with 11 Australian catchments 216 

(http://www.bom.gov.au/water/hrs) and 12 US catchments (Duan et al., 2006). For modelling purposes, 217 
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catchments are classified into two types: 11 catchments where the minimum observed flow is below 2% 218 

of the mean observed flow are referred to as “ephemeral/low-flow”; the remaining 12 catchments are 219 

termed “perennial” (see Supplementary Material Table S1 for details of the catchments). This 220 

classification was found to correlate better with probabilistic model performance than an earlier 221 

classification based on the proportion of zero flow days (McInerney et al., 2017), and is not intended as 222 

a classification from a hydrological process perspective. 223 

Two conceptual rainfall-runoff models, GR4J (Perrin et al., 2003) and HBV (Bergström, 1995) are used. 224 

A cross-validation framework is implemented over a 10-year period (McInerney et al., 2017, Table 5) 225 

and used to produce a concatenated 10-year series of daily streamflow predictions. Predictive 226 

distributions are computed as described in Appendix A. Parameter optima are obtained from 100 quasi-227 

Newton optimizations (Kavetski and Clark, 2010). The offset *A  is given a lower bound of 710  to avoid 228 

the Jacobian in equation (2) becoming undefined for 0tQ  ; all other bounds are taken from McInerney 229 

et al. (2017). “Typical” parameter values are obtained from a single calibration over the entire 10-year 230 

period. 231 

4.3. Evaluation criteria 232 

Predictive performance is assessed in terms of reliability, precision and bias, using the metrics from 233 

McInerney et al. (2017) (see Supplementary Material Section S4 for details). Reliability describes the 234 

degree of statistical consistency of predictive distributions and observations; precision refers to the width 235 

of predictive distributions; bias measures overall water balance errors. In all metrics, lower values 236 

indicate better performance. 237 

Estimates of parameters A , 
  and 

y  from the LS-MoM and ML-ML approaches are compared, 238 

including a check of how often the inferred *A  lies within machine precision of its lower bound. 239 

Computational cost is quantified by the number of objective function evaluations (equivalent to the 240 

number of hydrological model calls), averaged over 100 independent optimizations, required for 241 

parameter optimization in Stage 1. This stage dominates the total cost in all schemes, because each 242 

objective function call in Stage 1 requires running the hydrological model; the cost of a single objective 243 

function evaluation in Stage 1 is essentially the same in all schemes. 244 

  245 
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5. Results 246 

Figure 1 shows the predictive performance of all approaches. To facilitate comparison, Figure 2 shows 247 

the distribution of differences in metric values against a baseline approach. The baseline is taken as LS-248 

MoM with * 0A   in all scenarios except for the use of the Log scheme in ephemeral/low-flow 249 

catchments, where * 0A   is not applicable and the baseline is hence LS-MoM with * 110A  . 250 

5.1. Comparison of LS-MoM and ML-ML approaches 251 

Figure 1 shows that the LS-MoM approach with * 0A   (red) has similar performance to the ML-ML 252 

approach (dark blue), for most residual error schemes, catchments and metrics (excepting the Log 253 

scheme applied in ephemeral/low-flow catchments). In most cases, performance metrics vary by about 254 

0.01  (Figure 2). Even the largest difference between LS-MoM and ML-ML approaches, in the 255 

precision of the BC0.2 scheme in ephemeral/low-flow catchments (Figure 2d, LS-MoM approach is 256 

better by a median value ≈0.02), is much smaller than the differences between BC0.2 vs BC0.5 schemes 257 

(median differences of ≈0.11 and ≈0.08 for LS-MoM and ML-ML approaches respectively). 258 

The values of the offset and error model parameters in the two approaches are also similar. In the ML-259 

ML approach, the inferred value of A  is at its lower bound of 710  in 114 of 116 scenarios (excluding 260 

Log in ephemeral/low-flow catchments), effectively matching the value 0A   used in the LS-MoM 261 

approach. The values of error model parameters   and y  estimated using the two approaches differ 262 

by less than 1%. 263 

In ephemeral/low-flow catchments, the Log scheme with inferred offset A  yields poor precision and 264 

large biases (Figure 1d,f; see also McInerney et al. (2017)). Figure 1 shows that fixing the offset A   to 265 

a larger value of 110  is highly beneficial, making the Log scheme competitive with the BC0.2 and 266 

BC0.5 schemes; importantly ML-ML and LS-MoM approaches once again perform very similarly. 267 

5.2. Sensitivity of LS-MoM approach to the offset parameter 268 

The impact of the offset A  on the LS-MoM approach is shown in Figures 1 and 2 for fixed values of 269 

0A    (red), 410A   (green) and 110A   (cyan). 270 

  271 
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Figure 1: Predictive performance metrics of the LS-MoM approach with fixed 4 10,1{ 0 ,10 }A    and 

the ML-ML approach with inferred A . The whiskers represent 90% probability limits computed over 

the 23 case study catchments. Results of applying the Log scheme in ephemeral/low-flow catchments 

are presented with modifications: (i) LS-MoM with 0A   is not applicable (marked by red X), (ii) 

ML-ML with 110A   is included because ML-ML with fitted A  performs very poorly. 

   272 
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Figure 2: Difference in predictive performance metrics of the LS-MoM and ML-ML approaches in 

Figure 1. The baseline is given by the LS-MoM approach with 0A  , except for applications of the 

Log scheme in ephemeral/low-flow catchments, where the baseline is LS-MoM with 110A  . 

Positive differences indicate schemes with better performance than the baseline LS-MoM approach. 
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In perennial catchments, all three values of A  lead to similar predictive performance, with the largest 274 

changes occurring when 110A  . For example, increasing A  from 0 to 110  worsens reliability in all 275 

schemes (Figure 2a, median change ≈0.01). However, this difference is much smaller than differences 276 

between the Log and BC0.5 schemes (Log scheme is better by a median value ≈0.06). 277 

In ephemeral/low-flow catchments, the offset parameter plays a bigger role. The impact is most evident 278 

in the Log scheme, where 0A   is not applicable and increasing A  from 410  to 110  substantially 279 

improves predictive performance (median precision tightens from ≈3 to ≈0.4, and median bias reduces 280 

from ≈0.7 to ≈0.12). For the BC0.2 scheme, increasing A  from 0 to 410  improves reliability (Figure 281 

2b, median change ≈0.01) and precision (Figure 2d, median change ≈0.07). Increasing A  to 110  282 

worsens reliability (median increase ≈0.03), but further improves precision (median change ≈0.18). The 283 

offset value is less important in the BC0.5 scheme; the most noticeable difference is the worsening of 284 

reliability when 110A   (median change ≈0.02). 285 

5.3. Effect of ignoring posterior parametric uncertainty 286 

Supplementary Material Section S1 reports the results of comparing LS-MoM and ML-ML against 287 

Bayesian implementations of the same residual error schemes. As shown in Supplementary Material 288 

Figure S1, the contribution of posterior parameter uncertainty to total predictive uncertainty in 289 

streamflow is small to negligible, and predictive performance metrics of LS-MoM are comparable to or 290 

better than the Bayesian approaches over the majority of catchments. These results are in line with 291 

theoretical expectations and previous empirical investigations (Kuczera et al., 2006, Yang et al., 2007, 292 

Sun et al., 2017, Kavetski, 2018, and others). 293 

5.4. Comparison of computational cost 294 

Figure 3 compares the number of objective function evaluations required for calibrating GR4J and HBV 295 

using the ML-ML approach with fitted *A  versus the LS-MoM approach with * 0A   (excluding the 296 

Log scheme in ephemeral/low-flow catchments). When using GR4J, the LS-MoM approach more than 297 

halves the computational cost (based on the median value over all scenarios). When using HBV, the 298 

savings are slightly smaller, around 40%. 299 
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Figure 3: Computational cost of parameter optimization in Stage 1 of the ML-ML vs LS-MoM 

approaches. The number of objective function calls per invocation of a quasi-Newton optimizer is 

shown (averaged over 100 multistarts). Boxplots indicate results over all catchments and residual error 

schemes in Figures 1 and 2 (except for the Log scheme in ephemeral/low-flow catchments). 

 300 

6. Discussion 301 

6.1. Bona fides of the LS-MoM approach 302 

The similar predictive performance of the LS-MoM and ML-ML approaches is explained by the 303 

calibrated parameters having similar values. In particular, with the exception of the Log scheme applied 304 

in ephemeral/low-flow catchments, the inferred *A  is generally close to 0, and hence to the fixed values 305 

used in the LS-MoM approach with * 0A  . Given similar values of *A , the similarity of the two 306 

approaches is expected from theory: the equivalence of Stage 1 hydrological parameter optima is shown 307 

in Section 3.1, and the similarity of Stage 2 error parameter estimates reflects the general consistency of 308 

maximum-likelihood and method-of-moments estimators of AR(1) process parameters. 309 

The computational savings of the LS-MoM approach can be attributed to fewer estimated parameters, 310 

as Stage 1 no longer calibrates *A  and 
y . For example, in the case of GR4J, the dimension of the 311 

search space is reduced by 33%. The cost savings might vary depending on the particular optimization 312 

algorithm used, and further savings are likely if optimization algorithms adapted to LS-type objective 313 
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functions, such as the Levenberg-Marquardt method (e.g., Doherty, 2004), are exploited. Cost savings 314 

are expected to be even larger in comparison to a Bayesian approach using MCMC. 315 

6.2. Selection of offset value 316 

In the experiments reported here, as *A  increases, precision generally improves but reliability worsens. 317 

This trade-off is most evident in ephemeral/low-flow catchments, especially when the BC0.2 scheme is 318 

used, and is reminiscent of the trade-offs seen when changing the Box-Cox parameter   (McInerney et 319 

al., 2017). Given that the LS-MoM approach requires all transformation parameters, including *A , to be 320 

fixed a priori, we recommend starting with a value of 0A   and increasing it while monitoring relevant 321 

aspects of predictive performance. The exception is when the Log scheme is used in ephemeral/low-322 

flow catchments, in which case a larger offset of 110A   can improve the precision and reduce bias. 323 

6.3. Web-app implementing the LS-MoM approach 324 

A public-access web-app is provided at www.algorithmik.org.au/apps/probabilisticPredictions to 325 

implement Stage 2 of the LS-MoM approach. The web-app assumes the user has already calibrated their 326 

hydrological model (Stage 1), using their preferred software and objective function (e.g., Table 1). The 327 

user uploads the observed and calibrated streamflow time series, and specifies *{ , }Z Aθ  used in 328 

Stage 1. The web-app then estimates the error model parameters { , }y  θ  (Stage 2) and generates 329 

probabilistic predictions. The web-app includes interactive display of probabilistic predictions and 330 

observed data time series, performance metrics and residual diagnostic plots. Figure 4 demonstrates the 331 

application of the web-app to the Gingera catchment on Cotter River (Australia), using GR4J pre-332 

calibrated to the log-flow NSE ( 0   and * 0A  ). 333 

  334 
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Figure 4: A selection of figures constructed from results obtained using LS-MoM approach web-app. 

Predictions for the Gingera catchment over the period May-October 1978 are shown, based on the 

GR4J model pre-calibrated to the NSE of log transformed flows. Shown are (a) 50% and 90% 

probability limits of the streamflow time series; (b) predictive quantile-quantile (PQQ) plot to assess 

the reliability of predictions; (c) residual error diagnostic plot of the dependence of standardized 

residuals η  on the predicted streamflow; and (d) probability density of standardized residuals 

compared to the assumed error model. See Evin et al. (2013) for additional details on these diagnostics. 

 335 

6.4. Limitations and future work 336 

Several limitations of the LS-MoM approach warrant further investigation: 337 

1. The a priori fixed transformation parameters can affect performance. Guidance is available for 338 

selecting the Box-Cox parameters   (McInerney et al., 2017) and *A  (Section 6.2). For other 339 

transformations, such as the log-sinh (Wang et al., 2012), less guidance might be available; 340 

2. The LS-MoM approach may be difficult to apply to more complex non-Gaussian residual error 341 

models, including those that treat zero flows (Smith et al., 2010, Wang and Robertson, 2011), use 342 

mixture-based distributions (Schaefli et al., 2007), include skewness/kurtosis (Schoups and Vrugt, 343 

2010), etc.; 344 
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3. The assumption that posterior parametric uncertainty is small, while often appropriate when 345 

parsimonious hydrological models are calibrated to long time series using simple residual error 346 

models (Supplementary Material Section S1), might break down for more heavily parameterized 347 

models, and/or when working with short data sets (e.g., Thyer et al., 2002). Under these scenarios, 348 

especially if independent information is available, Bayesian approaches will be preferable. Further 349 

analysis is recommended to clarify the range of hydrological model complexity and data length for 350 

which posterior parametric uncertainty is sufficiently small to be ignored in practical streamflow 351 

prediction contexts. 352 

The LS-MoM approach and the web-app can be used for environmental modelling applications beyond 353 

hydrology, whenever the residual error assumptions hold and parametric uncertainty is relatively small. 354 

In addition, LS-MoM and the web-app can be used with environmental models calibrated using methods 355 

other than (transformed) Least Squares objective functions, taking particular care to monitor predictive 356 

performance metrics and residual error diagnostics because inconsistencies between the objective 357 

function and the error model can lead to poor probabilistic predictions. These model setups are of 358 

practical interest (Li et al., 2016) and warrant further investigation. 359 

7. Conclusions 360 

This study introduces a simplified approach for generating probabilistic predictions. The LS-MoM 361 

approach uses Least Squares (LS) optimization to estimate hydrological model parameters and simple 362 

method-of-moments (MoM) estimators of error model parameters to describe uncertainty in predictions. 363 

It can be used in combination with many existing hydrological modelling packages, and achieves similar 364 

predictive performance to more complicated maximum-likelihood and Bayesian approaches while 365 

reducing computational costs by factors of two or more. A public web-app is made available to help 366 

users apply the LS-MoM approach, and bridge the gap between deterministic and probabilistic 367 

prediction techniques in practical hydrological applications. 368 

Appendix A. Generation of probabilistic predictions 369 

In both the LS-MoM and ML-ML approaches, probabilistic predictions are represented using replicates 370 

( ) ( ){ , 1,.., }r r

t t TQ Q  for 1,..,r R . Given parameter values { , , }H Z θ θ θ , the rth replicate is generated 371 

as follows: 372 
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1. At time step t , sample innovation 
( ) 2(0, )r

t yy N   and calculate residual 
( ) ( ) ( )

1

r r r

t t ty     , as per 373 

equations (6)-(7). Note that for 1t  , we directly sample 
( ) 2

1 (0, )r N   ; 374 

2. Calculate replicate ( )r

tQ  by rearranging equation (5), 375 

 ( ) 1 ( )( ( ) )Hr r

t t tQ Z Z Q  θ  (14) 376 

3. Repeat for 1t  , etc. 377 

For practical purposes, ( )r

tQ  is truncated if it falls outside min 0Q   and max 10 max( )Q   Q . 378 
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