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A B S T R A C T

This study introduces a novel framework for land change simulation that combines the traditional Land
Transformation Model (LTM) with data clustering tools for the purposes of conducting land change simulations
of large areas (e.g., continental scale) and over multiple time steps. This framework, called “LTM-cluster”,
subsets massive land use datasets which are presented to the artificial neural network-based LTM. LTM-cluster
uses the k-means clustering algorithm implemented within the Spark high-performance compute environment.
To illustrate the framework, we use three case studies in the United States which vary in simulation extents, cell
size, time intervals, number of inputs, and quantity of urban change. Findings indicate consistent and substantial
improvements in accuracy performance for all three case studies compared to the traditional LTM model im-
plemented without input clustering. Specifically, the percent correct match, the area under the operating
characteristics curve, and the error rate improved on average of 9%, 11%, and 4%. These results confirm that
LTM-cluster has high reliability when handling large datasets. Future studies should expand on the framework
by exploring other clustering methods and algorithms.

1. Introduction

Land change science is now challenged with a massive quantity of
(freely available) high resolution land cover data that is generated by a
multitude of satellite and airborne platforms - many with continental or
global coverage. Advancements in computational methods (Denning
and Lewis, 2017) have facilitated land change modeling toward larger
spatial extents and longer time frames (e.g., Pijanowski et al., 2014;
Tayyebi et al., 2013). Numerous models have been developed to si-
mulate land change at a variety of extents (Liu and Phinn, 2003; Yang
et al., 2008; Omrani et al., 2015; Shafizadeh-Moghadam et al., 2015;
Basse et al., 2016; Azari et al. 2016; Shafizadeh-Moghadam et al.,
2017a; b; c). Among these, machine learning-based (ML) models
(Pijanowski et al., 2014) have proven their potential in quantifying
complex relationships and interactions among drivers while improving
land change forecasts (Shafizadeh-Moghadam et al., 2017a; b; Tayyebi

et al., 2014b; Omrani et al., 2017a,b). Model fitting over large areas has
commonly relied on smaller training samples. Besides, dividing the area
into multiple sub-regions and simulating these separately is also
common (e.g., see Pijanowski et al., 2014). We propose an alternative
method that relies on data partitioning algorithms.

The aim of this research is to introduce a novel data-driven frame-
work, called “LTM-cluster”, to address the aforementioned modeling
challenges by splitting the input data into clusters using a partitioning
algorithm prior to machine learning which we implement in the big
data high performance computing (HPC) environment called Spark. We
address the following research questions:

1. Does clustering prior to learning scheme coupled with the LTM
improve the model's goodness-of-fit during calibration (training)
and validation (testing)?

2. Do these techniques work equally well in areas that differ in spatial
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extent, cell size, and quantity of land change?
3. What is the gain in computational efficiency of porting traditional

ML algorithms to Spark?

To address these questions, we compare the performance of the
traditional artificial neural network-based (ANN) Land Transformation
Model (LTM; Pijanowski et al., 2014) and the proposed LTM-cluster
framework using Spark enabled k-means clustering algorithms. Our
research builds upon a few studies that utilize data clustering prior to a
learning scheme as an alternative for handling large datasets
(Ayyadurai and Jayanthi, 2012). To ensure that the approach has broad
applicability, we tested our scheme on three diverse land use change
datasets from the USA. The study sites vary in size, number of inputs,
cell resolution, time interval, as well as in number of observations and
quantity of change (i.e., urban gain).

2. Literature review

2.1. Generating a scalable and automated framework for large extent
dataset using clustering

Scalability and automation are important aspects when modeling
land change. Clustering data prior to model fitting can support both
aspects. The objective of data clustering is to determine groupings of
data values (Jain et al., 1999; Berkhin, 2006; Jain, 2010; Han et al.,
2011). A clustering algorithm divides n number of objects into k groups
based on some metric of similarity. Similarity metrics can be generated
from one or many variables (i.e., dimensions or alternatively a collec-
tion of patterns). An ideal cluster places a portion of the n data into a
compact group isolated from other groups. Clustering is often con-
sidered as an unsupervised task because no training with specific labels
is provided. The process of clustering involves four steps (Jain et al.,
1999): feature extraction, pattern proximity determination (i.e., es-
tablishing distance values between pairs), clustering (i.e., grouping),
and abstraction (e.g., selecting from the clusters a small subsample
statistically representing the complete dataset). A variety of clustering
methods have been introduced, among which some focus on (1) cen-
troid models (e.g., k-means, k-medians, k-medoids), (2) connectivity
models which define distances between objects (often called hier-
archical which can be top-down or bottom up), and (3) data distribu-
tion models (i.e., those that are grouped according to statistical dis-
tributions). We use the k-means clustering technique because of its ease
of use and well-known performance (Kanungo et al., 2002).

2.2. Leveraging ML algorithms in HPC with Spark

For larger datasets, a variety of technologies are available to ensure
that computation, storage, and data workflow are optimized and that
scalability can be achieved for potentially larger scale modeling. These
computational scaling technologies include the operationalization of
the MapReduce concept (Bello-Orgaz et al., 2016), which partitions
data into units for parallel processing. Processed units are then mapped
back into the larger dataset for further analyses. The Apache Hadoop
computation platform is designed to utilize the MapReduce concept by
providing a HPC environment including massive storage, a distributed
file system, and advanced processing power. Spark is an open-source
implementation of an HPC framework that is optimized for the use of R,
Python, and Java when big data analysis is required (Hashem et al.,
2015). It uses a more complex distributed clustering model (i.e., not the
dual MapReduce model) where data are loaded once into memory and
numerous operations can be performed on it. Spark is especially pro-
ficient at executing ML algorithms that require iterative learning (Xin
et al., 2013). Given these properties, we leverage the Spark framework
capabilities to implement the LTM-cluster framework with the k-means
clustering and the ANN-based LTM.

2.3. Extending LTM model with Spark

Several supervised ML methods are frequently used in land change
modeling. Common ones are Support Vector Machines (SVM), Random
Forest (RF), and Artificial Neural Networks (ANN). SVM and RF are
computationally expensive and are not well suited for simulations with
large datasets (Tuzel et al., 2007) in contrast to ANNs that are more
efficient (Pijanowski et al., 2014; Basse et al., 2014). ANNs search for
patterns in data iteratively using learning algorithms that mimic the
way that neurons parallel process information in the mammalian brain
(Zhang et al., 1998). LTM uses a form of ANN to simulate land use
change (Pijanowski et al., 2014; Tayyebi et al., 2014b). LTM has been
widely applied and has displayed high accuracy (Pijanowski et al.,
2005, 2006; Tang et al., 2005; Olson et al., 2008; Wiley et al., 2010; Ray
and Pijanowski, 2010; Ray et al., 2010; Pijanowski and Robinson, 2011;
Pijanowski et al., 2011; Moore et al., 2012; Tayyebi et al., 2013;
Tayyebi et al., 2014a, b; Omrani et al., 2017a,b; Shafizadeh-Moghadam
et al., 2017a).

The literature reports that the multi-layer perceptron, a form of an
ANN, outperforms traditional statistical models (e.g., logistic and
multinomial regression, regression and classification trees (Feng et al.,
2016; Omrani, 2015; Charif et al., 2017; Omrani et al., 2017a,b;
Shafizadeh-Moghadam et al., 2017b)), support vector machines, and
random forests (Shafizadeh-Moghadam et al., 2017c). However, with
the increasing availability of data, new model applications are ap-
pearing along with new challenges, especially in the area of model
calibration.

A common practice in land change model calibration with large
datasets is to use only a small portion of input data (e.g., 5% or 10%) for
model building (e.g., Pijanowski et al., 2014; Basse et al., 2014, 2016)
or even lower (e.g., Mustafa et al., 2018). Approaches to select input
data include random sampling (Mustafa et al., 2018), stratified random
sampling (Omrani, 2015Omrani et al., 2017; Basse et al., 2014, 2016;
Liu and Feng, 2016; Shafizadeh-Moghadam et al., 2017b; c; Charif
et al., 2017) etc. However, these sampling strategies introduce a bias as
the performance of ML models depends on the distribution of both the
input (e.g., distance to the nearest road) and the output maps (i.e., a
map of land change developed from calculating the map difference).
Ideally, model building and calibration should include the entire range
of input data but existing sampling methods discard a lot of informa-
tion, leading to lower accuracy in predictions (Pijanowski et al., 2014).
Another shortcoming of data sampling is when fitted models are used to
forecast future land change scenarios. Values beyond the original input
data used for calibration become more prevalent (e.g., development has
to proceed further from roads as most land for development proximate
to roads has already been converted) which can induce forecasting
errors (Basse et al., 2016). In addition, if land change modeling is im-
plemented with increasing spatial extents, longer time frames, and
greater number of spatial inputs, a scalable computing framework (cf.
Tayyebi et al., 2016; Pijanowski et al., 2014) is needed to deal with
these calibration challenges.

2.4. Data and study area

We used land use datasets from three case studies: 1) Muskegon
County, Michigan; 2) Lynnfield, Massachusetts-Boston and; 3) South-
eastern Wisconsin (Table 1) (hereafter as Muskegon, Boston, and
SEWI). The Muskegon case study is located in the west central lower
peninsula of Michigan, United States. The region is currently dominated
by forest in the northeast, agriculture in the center, and urban areas in
the southwest. It covers 1,292 km2 and urban nearly doubled in area
between 1978 and 1998 time. The Boston case study consists of the
town of Lynnfield which is located in the northeastern Massachusetts.
In 1971, Lynnfield was composed of dense and sparse urban develop-
ment (36% of the town), mixed deciduous and coniferous forest (43%),
wetlands (6%), and open land (12%). By 1999, Lynnfield was composed
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of dense and sparse urban development (45%), mixed deciduous and
coniferous forest (36%), wetlands (6%), and open land (10%). The
SEWI case study is situated in the state of Wisconsin in the north-central
part of the United States. SEWI comprises seven counties: Kenosha,
Milwaukee, Ozaukee, Racine, Walworth, Washington, and Waukesha
Counties (Pijanowski et al., 2006; Pijanowski and Robinson, 2011).
SEWI is currently dominated by agriculture, urban, and forest, which
accounted for more than 86% of the landscape in 2011 (47%, 27%, and
12%). Between 2001 and 2011, the percentage of urban areas increased
from 24% to 27%, whereas agriculture and forest decreased by 2% and
0.3%, respectively. More than 60% of lost agriculture contributed to
urban gain during the 10-year period. SEWI has undergone remarkable
urbanization between 2001 and 2011. The urban expansion rate was
10% and densification rate was 1.5% for 2001–2011. We summarized
the characteristic of each case studies in Table 1 and additional in-
formation can be found in the literature (Blanchard et al., 2015;
Tayyebi et al., 2014b ).

For each dataset, we determined the difference between urban-gain
and non-urban persistence between two time periods (Fig. 1). We ex-
cluded the urban class in the initial time because it is impossible for this
urban class to have any urban-gain or non-urban persistence across two
time points. Furthermore, a set of variables was defined for each cell
serving as driving factors (Table 2, Appendix). Two models (i.e., LTM
and LTM-cluster) were developed using six variables in 1978 for

Muskegon, eight variables in 1998 for Boston, and sixteen variables in
1990 for SEWI, as inputs and urban change maps between two time
periods (1978–1998 in Muskegon, 1971–1999 in Boston, 1990–2000 in
SEWI) as outputs. The cells of land use have a spatial resolution of 100,
2, and 30m in Muskegon, Boston, and SEWI, respectively. Our re-
pository provides the three datasets and related R code (Omrani et al.,
2018).

3. Methods

The LTM-cluster modeling framework is composed of three phases:
1) generating clustering using k-means with Spark; 2) LTM modeling
using HPC; and 3) model accuracy assessment. Fig. 2 summarizes the
workflow.

The approach is implemented in the R programming language (R-
3.5.1; Team, 2013) within the Spark environment (Zaharia et al., 2010).
To execute LTM-cluster, we used parallel processing including the fol-
lowing steps (Fig. 3):

- Split the dataset S into learning (L) and testing (T) subsets using
stratified random sampling. The L set is used for model calibration
and the T set is used for assessing its performance (see Section 3.3).
We selected 70% of the data to be used for training and the re-
maining 30% to assess model accuracy (i.e., testing).

- Divide L into k clusters (Lk) based on an advanced version of k-
means algorithm.

- Divide T into k clusters (Tk) by assigning cells from T to the closest
centroid of Lk.

- Divide S into k clusters (Sk) by assigning cells from S to the closest
centroid of Lk.

- Calibrate and validate LTM-cluster based on Lk and Tk clusters, re-
spectively. This is done by running LTM model for each cluster.

- Simulate urban change for each Sk based on LTM-cluster that is
calibrated on Lk.

3.1. Clustering using k-means with Spark

Due to its good performance, the k-means algorithm is chosen (Jain,
2010; Murray et al., 2017) for the clustering prior to the learning
scheme. The number of clusters is determined by maximizing the
average silhouette coefficient (Chiang and Mirkin, 2010) instead of a
trial-and-error learning approach (e.g., Basse et al., 2014). The silhou-
ette coefficient is the average distance between all points in a cluster,
compared with the average distance between a point and its distance
from the nearest cluster. The k-means algorithm randomly selects k
observations as centers of groups and then calculates the Euclidean
distances in the feature space between each observation and the centers
of all clusters. Next, it assigns to each observation a group, k, based on
the nearest (e.g., shortest Euclidean distance) cluster center. Centers are
iteratively updated until a number of groups is reached and all ob-
servations are assigned to a unique cluster.

Because k-means cannot handle large datasets due to an excess of
computation, we employed Spark-based k-means - an advanced version
of the standard k-means algorithm - to address the computational
burden. Spark-based k-means performs parallel calculations of dis-
tances across all data pairs (Gopalani and Arora, 2015; Meng et al.,

Table 1
Size of datasets and cell resolution in three diverse case studies from the USA.

Study area Quantity of urban-gain Time
interval

Quantity of non-urban Total cells Number of inputs Cell size

Muskegon 6,004 (5%) 1978–1998 110,966 117,012 6 100m
Boston 629,764 (16%) 1971–1999 3,149,635 3,779,399 8 2m
SEWI 491,031 (8%) 1990–2000 5,377,707 5,868,738 16 30m

Fig. 1. Urban-gain and non-urban persistence for (A) Muskegon County, (B)
Boston, and SEWI (C) during 1978–1998, 1971–1999, and 1990–2000.
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2016) while requiring one parameter k determined through the average
silhouette coefficient to segments the data into k clusters. Fig. 3 shows
the clustering prior to learning scheme using an advanced k-means
approach that ultimately minimizes the challenges of a large dataset
while improving the LTM's performance. Due to the cutting-edge Spark-
based programming techniques, this approach is suitable for exploring
large datasets that cannot be stored in a computer's main memory.
Studies highlight the fast computation of Spark-based k-means com-
pared to alternatives (e.g., basic k-means algorithm; Singh and Reddy,
2015; Zaharia et al., 2010).

We also computed the average silhouette value for each value of k
and for each region in the k-means clustering routine. A silhouette value
(Rousseeuw, 1987) measures cohesion of each value to its own cluster
compared to another cluster. Silhouette values range from +1 (perfect
match to its own cluster) and −1 (fits better in another cluster); a sil-
houette value of 0 means that the value is located, in multi-dimensional
space and using a standardized Euclidean distance, precisely between
two clusters. Finally, to determine how the best value of k varies spa-
tially, we saved the k for the largest silhouette coefficient average for
each cell and then mapped that for each study simulation area.

3.2. Land Transformation Model

The Land Transformation Model (LTM) uses ANN to derive re-
lationships between land change and multiple explanatory variables
(Pijanowski et al., 2014). LTM uses a multi-layer perceptron with one
hidden layer with a back propagation training method minimizing the
mean square error (MSE). The hidden layer is composed of a set of
hidden units called neurons. Hidden layers in ANN allow for the

modeling of any nonlinear function (Schmidhuber, 2015) and can ap-
proximate the relationship between influential factors (i.e., predictor
variables) and outcomes (e.g., a change/no change categorical vari-
able). Several studies have shown that LTM performs well in forecasting
an outcome variable (Pijanowski et al., 2005; Omrani et al., 2013,
2015). More formally, an outcome variable y contains categorical va-
lues in a specified set (1,2, …,C). The variable y is expressed as a
function of the input x=(x1,x2, …,xq) and described by the following
formula:

= + +
= =

P y x v w x w v( ) ,k
j

p

jk
i

q

ij i j k
1 1

0 0
(1)

where ωij and vjk are weights assigned to the connections between the
input layer and the hidden layer, and between the hidden layer and the
output layer, respectively; ω0j and v0k are biases or threshold values in
the activation of a unit. Φ is an activation function, applied to the
weighted sum of the output of the preceding layer (i.e., the input layer).
Ψ is an activation function applied to each output unit, to the weighted
sum of the activations of the hidden layer.

An ANN generates outputs contained within the [0, 1] interval but
not equal to 0 or 1. A suitable choice for Ψ (e.g., a softmax or a sigmoid
function) maps the real axis (−∞, +∞) to the interval [0, 1]. ANN's
output is a composition that correspond to a set of values summing to
unity. Land use conversion are determined using the maximum prob-
ability strategy, which assigns each observation to a unique class of
land use from the ANN's outputs (Pijanowski et al., 2014; Shafizadeh-
Moghadam et al., 2017c). Detailed descriptions of the LTM are avail-
able in Pijanowski et al. (2014).

3.3. Model calibration metrics

To validate calibration performance from the LTM and LTM-cluster
models, we measure the model's accuracy with four goodness-of-fit
metrics. First, we created confusion matrices (Table 3) between the
observed and predicted land uses and quantified the location errors
(Pontius et al., 2008). We generated error maps that illustrates con-
figuration and location of all errors (i.e., misses, false alarm) and cor-
rectly simulated values (i.e., hits and correct rejections). Second, we
used Percent Correct Match (PCM, Pijanowski et al., 2014), the Total
Operating Characteristic curve (TOC, Pontius and Si., 2014), the area
under the curve (AUC, Pontius and Batchu, 2003), and the error rate
(ER, Bradley et al., 2016) to quantify the mismatch between the ob-
served and simulated values. PCM specifies the percentage of cells for
the land use class correctly classified by a model (true positives*100 /
#urban change cells). TOC overcomes the limitations of the relative
operating characteristic (ROC), given that the ROC fails in cases where
some types of error are more important than others (Dodd and Pepe,
2003). TOC evaluates the performance of non-binary model output by
varying the decision threshold between 0 and 1 (Pontius and Si, 2014).
From the TOC, we extract the AUC for each case study. Finally, we use
the ER metric to measure the incorrect inclusion and incorrect omission
of a class (Table 3, Appendix). Larger values of PCM and AUC, as well as
smaller value for ER, correspond to better model goodness-of-fit.

Fig. 2. Main components of the LTM-cluster model.

Fig. 3. Conceptual framework (S is the entire dataset; L and T are learning
(70%) and testing (30%) subsets generated from S using a random stratified
sampling; Lk are clusters resulting from the Spark based k-means algorithm; the
metrics PCM, TOC, AUC and ER are percent correct match, total operating
characteristic curve, area under the TOC and error rate (details of these metrics
are given in subsection 3.3). Tk and Sk are clustered subsets in which cells are
assigned to the closest centroid of Lk. Sk is used with the corresponding LTM-
cluster to simulate urban change for the sample Sk.).
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4. Results

The silhouette coefficients for each k-means calculation per study
area are shown in Fig. 4. Based on the results, the goodness-of-fit of the
LTM-cluster (k= 3) is superior to that obtained in Tayyebi et al. (2014)
and the traditionally parameterized LTM (k= 1, Table 4). We found
that the difference between applying clustering prior to the learning
scheme versus not applying is significant based on the Wilcoxon signed-
rank test of paired calibration statistics (p < 0.01). For the Muskegon
case study, we also note there is an increase in performance in the PCM
values from 69% for the LTM to 82% for LTM-cluster (Table 4).

Maps of the best value of k based on the largest silhouette coefficient
average are shown in Fig. 5. Note that each region produces a different
spatial pattern of k as it ranges from 1 to 3 (designated as Clusters 1, 2,
and 3). In Muskegon, the entire eastern portion of this county had the
best value of k= 1; the western portion had a k= 2 (interestingly
following the US-31 highway corridor north-south and M-36 highway
east-west) and the more rural areas had a value of k= 3 (gray). For
Boston, the spatial pattern of k across the range of 1 through 3, selected
again based on the largest silhouette coefficient averages, is less distinct
than Muskegon; k values of 1 for example are shown as small patches
arranged at the edges of the 1990 map for urban. Cluster 3 (i.e., k= 3)
locations are all located in the upper left corner of the region. Finally,
for SEWI, the map is dominated by k= 1 and k= 3 locations, with
k= 3 following highway corridors and proximity to large 1971 urban
patches and locations of k= 1 being in the most rural areas in 1971.

The error maps (Figs. 6–8) show the spatial pattern of agreement
and disagreement which we created by overlaying the reference change
maps and the urban simulated maps. The ER rates for the LTM and
LTM-cluster were 37% and 31%; 33% and 32%; and 24% and 22%, for
the Muskegon, Boston, and SEWI simulations. The LTM-cluster dis-
played a performance improvement of 19%, 3%, and 4% compared to

Fig. 4. Average silhouette coefficients across the number of clusters (k) for each region.

Table 4
Calibration goodness-of-fit for traditionally parameterized LTM, the LTM-cluster model and the performance gain using the testing set.

Case study LTM (%) LTM-cluster (%) Improvement (%)

ER PCM AUC ER PCM AUC ER PCM AUC

Muskegon 37.33 69.45 65.90 31.28 82.99 72.50 19.34 19.50 10.01
Boston 33.97 70.57 71.40 32.92 79.08 73.30 03.19 12.06 02.66
SEWI 24.00 79.57 82.80 22.89 82.34 83.80 04.85 03.48 01.20

Note: Improvement = (value from LTM – value from LTM-cluster)/value from LTM.

Fig. 5. Mapping of cells within clusters (k= 3) for Muskegon, Boston, and
SEWI. Cells in white belong to the exclusionary zone (i.e., urban cells at 1978,
1990, and 1971).
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the traditionally parameterized LTM model for the ER calibration sta-
tistic for the Muskegon, Boston, and SEWI simulations. AUC values also
show improvements in accuracy for all three case study locations as
well. Overall, the results indicate that the LTM-cluster framework
provides an improvement in accuracy compared to the LTM model.
Visualization of TOC curves (Figs. 9–11) also confirm that LTM-cluster
outperforms the traditionally configured LTM.

Finally, we compared the computing time across the LTM and LTM-
cluster model. Both models were implemented on a server (Dell
PowerEdge R930, Dual Intel(R) Xeon(R) CPU E7-8891 v4 @2.80 GHz,
and a Memory of 512 GB (16× 32 Gb DDR4)). Table 5 shows that LTM-
cluster model is faster than the LTM model for each dataset. Compu-
tation time decreased by 19%, 2%, and 6% for the Muskegon, Boston,

and SEWI dataset.

5. Discussion

We extended the LTM using prior clustering scheme and the Spark
environment. We used Spark rather than Hadoop or MapReduce, be-
cause Spark has emerged as a popular choice to implement large-scale
ML applications on large datasets due to its ease in accommodating
iterative learning processes (Zaharia et al., 2010, 2012). Our key
findings are, first, that the clustering prior to learning scheme is an easy
and effective instrument to improve the model's performance and
supports the processing of large land use datasets, and, second, the
improvements through LTM-cluster compared to LTM are statistically
significant.

The strengths and disadvantages of the clustering prior to learning
scheme are as follows:

1) Data clustering improves the performance of the model since data in
each cluster are homogenous (i.e., have similar characteristics).
Each cluster from the learning set is used to create a sub-model as
the LTM-cluster, each having its own parameters. In addition, we
demonstrated that LTM-cluster, comprising several sub-models, is
superior to the basic LTM, based on a single model, in terms of
several performance metrics (i.e., PCM, TOC, and AUC).

2) Clustering prior to learning scheme reduces the error rate (Table 4).
3) Dividing data across multiple clusters allows the model to scale up

because data chunks from clusters are more easily maintained or
processed in HPC. Each cluster is manageable in size and can be
analyzed independently on separate processing units.

Although the results show that our approach is promising, there are
still some limitations to our approach.

1) The Spark-based k-means algorithm requires one user-defined
parameter. This is also the case for the majority of clustering ap-
proaches. A drawback is the difficulty in determining an optimal
number of clusters (k). Multiple techniques exist to make that de-
termination, and most of them are based on finding the values of k
which balance the search of minimizing the intra-cluster distance
and maximizing the inter-cluster distances. There is, however, no
consensus on the “best” technique. The choice of k may also often
rely on the researchers’ expert opinion and interpreting the good-
ness-of-fit of a model. In our application, silhouette indices guided
our choice in an objective manner (Rousseeuw, 1987). The three
datasets presented local maxima for k= 3 clusters, and larger values
of k which vary with the studied dataset. We found that allowing a
larger number of clusters generated many clusters with small
numbers of cells. We believe that the LTM-cluster framework can be
extended in several respects. Besides the Spark-based k-means prior
learning clustering process, other clustering approaches can be ex-
plored include DBSCAN (Birant and Kut, 2007; Shen et al., 2016),
ISODATA (Abbas et al., 2016; Kim and Liang, 2017), hierarchical
clustering (Liu et al., 2017), and spherical k-means (Tunali et al.,
2016).

2) We used a different set of inputs across the case studies. Despite the
model improvement compared to the traditional implementation of
the LTM, future studies should consider additional economic and
social factors such as income levels, employment rates, and acces-
sibility (Hagenauer and Helbich, 2018), which could greatly im-
prove the model performance.

6. Conclusions

This study introduced a framework with an innovative model cali-
bration sampling scheme into ML-based land change modeling. Our
approach, called the “LTM-cluster” framework, is based on clustering

Fig. 6. Error map for (A) LTM and (B) LTM-cluster with Muskegon dataset
(H=hit or true positive, CR= correct rejection or true negative, FA= false
alarm or false positive, and M=miss, or false negative).

Fig. 7. Error map for (A) LTM and (B) LTM-cluster with the Boston dataset.

Fig. 8. Error map for (A) LTM and (B) LTM-cluster with the SEWI dataset.

H. Omrani et al. Environmental Modelling and Software 111 (2019) 182–191

187



using a k-means algorithm. Its application before the calibration step
addresses the unmanageable size of the data by splitting it into clusters
(i.e., groups) with similar input values. For that purpose, we im-
plemented this framework in the Spark computing environment for
large-scale data parallel processing.

We compared the performance of LTM-cluster to the traditional
LTM using numerous metrics for three case studies with high varia-
bility. Results provide clear evidence that applying the clustering prior

to learning scheme is significantly superior compared to the basic LTM
independently of the considered performance measure. The percent
correct match, the area under the curve, and the error rate improved,
on average, by 9%, 11%, and 4%, respectively with LTM-cluster over all
three datasets.

More research is needed to address some of the limitations of the
method including the determination of the appropriate number of
clusters. Testing this method in other case studies of varying size and

Fig. 9. TOC performance curves for the (A) LTM and (B) LTM-cluster with Muskegon dataset.

Fig. 10. TOC performance curves for the (A) LTM and (B) LTM-cluster with Boston dataset.

Fig. 11. TOC performance curves for the (A) LTM and (B) LTM-cluster with SEWI dataset.
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complexity together with other ML algorithms may be useful for a more
in-depth model evaluation. Findings from this study suggest that the
LTM-cluster framework successfully improves the prediction accuracy
and that clustering prior to learning scheme may be valuable for other
applications beyond land change modeling.
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Software and data availability

The name of the software tool prototype introduced in this research
is “LTM-Cluster”. The developers are the authors of the study for the
conceptualization. Hichem Omrani generated the implementation of
the tool in R. Please contact the first author for further information.
Year first available: October 2018. Software required: download the R
software from the Internet (www.r-project.org). Availability: the data-
sets and R codes of the developed model are available on the Mendeley
repository (dx.doi.org/10.17632/xnxrhw4fhv.2; Omrani et al., 2018).
Datasets are land use data inputs from three study areas described in
this research. The datasets and the tool can be used to perform a cross-
model comparison or for other purposes. Users are welcome to send
their feedback to the corresponding author (hichem.omrani@liser.lu).
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Appendix

Table 2
Driving factors

Muskegon, 1978 Boston, 1971 SEWI, 1990

1 Distance to road Distance to transport Distance to road
2 Distance to rivers Distance to water Distance to stream
3 Distance to urban Distance to urban Distance to wetland
4 Distance to lake Distance to non-urban Distance to urban
5 Distance to highways Density of transport Distance to forest
6 Distance to water Density of water Distance to park
7 – Density of urban Distance to agriculture
8 – Density of non-urban Distance to shrub
9 – – Density of wetland
10 – – Density of urban
11 – – Density of shrub
12 – – Density of forest
13 – – Density of agriculture
14 – – Elevation
15 – – Slope
16 – – Aspect

Note: Distances refer to Euclidean distances in km, slope is in %, elevation is an angle between 0° and 90, and density is a value between 0 and 1.

Table 3
Confusion matrix from the testing set (T).

Simulated map Observed map

Non-urban persistence Urban-gain

Non-urban persistence CRs FAs
Urban-gain Misses Hits
Total Sum of non-urban persistence = CRs + Misses Sum of urban-gain=

Hits + FAs

Note: Hits or true positive, CRs: correct rejections or true negative, Misses or false positive, FAs: false alarms or false negative. PCM for urban-gain = Hits/(total
of urban-gain). ER: error rate = (FA + Misses)/cardinality(T) for the LTM model. ER for the LTM-cluster= (FAk + Missesk)/sum(cardinality(Tk)) where k is the
index of cluster, FAk and Missesk are computed from the confusion matrix based on Tk subset and sum(cardinality(Tk))= cardinality(T).

Table 5
Computation time (in min) for the LTM and LTM-cluster model.

Case study LTM (in min) LTM-cluster (in min) Improvement (%)

Muskegon 3.57 2.86 19
Boston 3.21 3.14 2
SEWI 7.07 6.59 6

Note: Improvement = (value from LTM – value from LTM-cluster)/value from
LTM.
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