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Abstract 

This study presents a novel application of machine learning to deliver optimised, multi-model 

combinations (MMCs) of Global Hydrological Model (GHM) simulations. We exemplify the approach 

using runoff simulations from five GHMs across 40 large global catchments. The benchmarked, median 

performance gain of the MMC solutions is 45% compared to the best performing GHM and exceeds 

100% when compared to the EM. The performance gain offered by MMC suggests that future multi-

model applications consider reporting MMCs, alongside the EM and intermodal range, to provide end-

users of GHM ensembles with a better contextualised estimate of runoff. Importantly, the study 

highlights the difficulty of interpreting complex, non-linear MMC solutions in physical terms. This 

indicates that a pragmatic approach to future MMC studies based on machine learning methods is 

required, in which the allowable solution complexity is carefully constrained.  
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• We present the first use of machine learning-based multi-model combination (MMC) applied to a 

global hydrological model ensemble. 

• MMC performs better than any individual input model and the ensemble mean. 

• MMC is not always able to out-perform model combination based on multiple linear regression. 

• The physical interpretation of the MMC solutions is limited by the complexity of their non-linear 

weighting schemes.  
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1. Introduction  

Global Hydrological Models (GHMs) is a category of hydrological model that has been 

developed to facilitate simulations of runoff and river discharge at continental and global 

scales. They are designed to support assessments of the impact of climate variability and 

water management on freshwater resources across the global domain (Bierkens, 2015). GHMs 

can be instantiated as stand-alone hydrological models (Gosling and Arnell, 2011; Hanasaki et 

al., 2008b), but are also integral components of land surface models, LSMs (Guimberteau et 

al., 2018; Koirala et al., 2014) and dynamic global vegetation models, DGVMs (Jägermeyr et 

al., 2015; Thiery et al., 2017). 

A GHM is a pragmatic trade-off between a faithful representation of the diversity of 

hydrological contexts and processes found across the world’s catchments, and a generalised 

and simplified representation of hydrological processes that can support multi-decadal, 

generalised hydrological simulations at global scales. Compared to hydrological models 

designed for catchment-scale simulations (Arnold et al., 1993; Krysanova et al., 1998; 

Lindstrom et al., 2010), GHMs employ a coarser spatial discretisation (most commonly a 0.5 x 

0.5 degree grid) and model the global land surface in a single instantiation. This means that 

they must use large numbers of spatially generalised parameters and employ a variety of 

simplifications to their representations of fundamental hydrological processes (Gosling and 

Arnell, 2011; Müller Schmied et al., 2014). For example, GHMs use conceptually-based soil 

moisture schemes that include probability distributed models (Moore, 2007) as well as ‘leaky 

bucket’ (Huang et al., 1996) methods (Hanasaki et al., 2008a, b) rather than the physically-

based equations that underpin many catchment-scale models (Arnold et al., 1993; Graham 

and Butts, 2005). Similarly, GHMs may use a variety of simplified methods to estimate 

evapotranspiration (Wartenburger et al., 2018). Simplification is also evident in the snowmelt 

schemes used by GHMs, which can include degree-day methods (Gosling and Arnell, 2011) as 

well as more advanced energy balance approaches (Van Beek et al., 2008). 

The global scope of GHMs, limited availability and quality of observed discharge data across 

the global domain and their use of spatially generalised parameters make them more difficult 

to calibrate than catchment hydrological models. Whilst examples of calibrated GHMs do exist 

(Müller Schmied et al., 2016), the majority of GHMs are uncalibrated (Gosling et al., 2016; 

Hattermann et al., 2017). This lack of calibration, coupled with the diversity of simplifications 
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employed in the hydrological process representations, means that there can be large 

inconsistency in the skill, bias and uncertainty of an individual GHM at different locations, as 

well as large inconsistencies between different GHMs at any given location (van Huijgevoort 

et al., 2013; Zaherpour et al., 2018b). This spatial inconsistency means that GHMs risk 

becoming a “jungle of models” (Kundzewicz, 1986) in which it can be difficult to determine 

where a particular GHM output is likely to be capable of delivering optimal hydrological 

simulations. It also makes it dangerous to assume that any individual GHM will be an adequate 

basis for making projections at any given location, even if the model’s ability to replicate 

observed data in particular catchments is enhanced through the acquisition of higher quality 

input data or efforts to improve process representations (Liu et al., 2007). To an extent, these 

arguments are also applicable to catchment hydrological models because whilst they have 

been shown to generally perform better than GHMs in model evaluation studies, ensembles 

of such models still result in an uncertainty range when the models are run with identical 

inputs (Hattermann et al., 2017; Hattermann et al., 2018). 

The question of how to address the challenges of spatial inconsistency in hydrological models 

has been a feature of catchment-scale model research for several decades. In answering it, 

catchment modellers have recognised that reliance on a single, inconsistent model is 

inherently risky and should be avoided (Marshall et al., 2006; Shamseldin et al., 1997). Instead, 

they have developed ways to take advantage of the diversity of outputs (Clemen, 1989) 

generated by different models by using optimised mathematical combination methods to 

deliver a combined output that performs better than the individual models from which it was 

created (Hagedorn et al., 2005). This general approach—known as multi-model combination 

(MMC)—has been an important focus of catchment hydrological modelling studies over the 

last two decades (Abrahart and See, 2002; Ajami et al., 2006; Arsenault et al., 2015; Azmi et 

al., 2010; de Menezes et al., 2000; Fernando et al., 2012; Jeong and Kim, 2009; Marshall et al., 

2007; Marshall et al., 2006; Moges et al., 2016; Nasseri et al., 2014; Sanderson and Knutti, 

2012; Shamseldin et al., 1997). Given its demonstrable potential in catchment studies, it is 

perhaps surprising that the potential of applying MMC to GHMs has yet to be explored. 

A wide range of techniques can be used to generate an MMC solution. The simplest example 

is the calculation of the arithmetic mean of the input models (commonly referred to as an 

Ensemble Mean (EM)). More sophisticated techniques employ weighted schemes (Arsenault 

et al., 2015), with the differential weightings applied to each input model reflecting their 
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relative strengths or weaknesses. The mathematical approach taken to determining the 

weights depends on the objective of the MMC. Where the primary objective is to minimise 

the difference between the MMC solution and observed data (i.e. maximise the predictive 

performance), without explicitly accounting for model or parameter uncertainty, the use of 

multiple linear regression (Doblas-Reyes et al., 2005) or machine learning algorithms (Lima et 

al., 2015; Worland et al., 2018) to ‘learn’ the optimal set weights to apply to each MMC input 

model is a popular approach (Marshall et al., 2007). The use of algorithms such as artificial 

neural networks (ANNs) (Shamseldin et al., 1997; Xiong et al., 2001) or gene expression 

programming (GEP) (Barbulescu and Bautu, 2010; Bărbulescu and Băutu, 2009; Fernando et 

al., 2012) to define non-linear weighting schemes have proven to be particularly effective. This 

is down to their ability to generate optimised, non-linear schemes rapidly, without the need 

for any prior knowledge of the model parameters.  

Where there is a desire to account for and minimise model and parameter uncertainty in the 

weighting scheme, Bayesian averaging methods are required (Ajami et al., 2007; Hoeting et 

al., 1999). These optimise the weights according to the posterior performance of the MMC 

solution under the prior probabilities of model parameter values (Duan et al., 2007; Vrugt and 

Robinson, 2007; Ye et al., 2004). However, these methods require knowledge of the 

probability density functions (PDFs) for each of the MMC’s input model parameters (or at least 

their maximum likelihood estimates (Ye et al., 2004)). This makes their use in the MMC of 

GHMs problematic because the number of parameters used in GHMs is particularly high, the 

parameters vary considerably between models, and the PDFs of the parameters in a GHM can 

be extremely difficult to specify over a global domain. Consequently, the PDFs for GHM 

parameters are seldom specified and, in many cases, remain unknown.   

An alternative approach is to use model combination methods that combine spatially co-

incident variables in a dynamic manner. Such methods have included mechanistic approaches 

(Marshall et al., 2006) that adjust the weights as a conditional response to changes in one or 

more dynamic state variables (e.g. antecedent moisture) and statistical methods that 

maximise the temporal correlation of individual models through best linear unbiased 

estimation (Kim et al., 2015). However, dynamic approaches assume that is it possible to 

isolate, quantify and model the temporal relations contained within the suite of model 

outputs to be combined. It is unclear whether this will be possible for GHMs operating at the 
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global-scale over multi-decadal periods because these relations, and the processes 

responsible for them are likely to be highly variable in space and time. 

In this study we explore the potential of MMC for addressing the challenge of spatial 

inconsistency in simulations by GHMs, by combining outputs from a diverse set of five GHMs 

using GEP (Ferreira, 2001; Ferreira, 2006). 40 optimised MMC solutions of monthly mean 

runoff are generated for the period 1971 – 2010, one for each of 40 large catchments that are 

distributed throughout the world’s eight hydrobelts (Meybeck et al., 2013) (Figure 1). In each 

catchment, the MMC’s ability to replicate the observed monthly runoff is compared against 

that of the EM and each of the five GHMs from which the MMC is derived, as well as, the best-

performing individual GHM from the ensemble. We also compare the MMC results against 

ordinary least squares multiple linear regression methods (Arsenault et al., 2015; Granger and 

Ramanathan, 1984) in order to assess the additional benefit gained by applying complex, 

machine learning methods rather than their simpler, linear counterparts (Arsenault et al., 

2015; Mount and Abrahart, 2011). 

The objectives of the paper are, therefore, twofold: 1) to assess the levels of performance gain 

that GEP-based MMC solutions can deliver to GHMs in different hydro-climatic settings and; 

2) to critique the extent to which interpretation of GEP expressions can provide useful insights 

about the relative strengths and weaknesses of the different input models. Our experiments 

provide a clear demonstration that optimised MMCs of GHMs can deliver substantial 

performance gains in all hydrobelts when compared to the EM or individual GHMs, but that 

they do not always deliver benefits when compared to simpler, multiple linear regression 

approaches. They also highlight the challenges associated with delivering GEP-based MMCs 

that can be usefully and meaningfully interpreted. 
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Figure 1. Locations of the 40 catchments (details in Table 1 and Table S1 in Supplementary 

Information) across the hydrobelt system defined in Meybeck et al. (2013). The hydrobelts are BOR= 
boreal, NML= northern mid-latitude, NDR= northern dry, NST = northern subtropical, EQT = 
equatorial, SML=southern mid-latitude, SDR=southern dry and SST=southern subtropical. 

 
 
 

2. MMC model inputs and study catchments 

2.1. The GHMs 

The study capitalises on the recent release of historical GHM simulations through the second 

phase of the Inter Sectoral Impacts Model Intercomparison Project (ISIMIP2a) 

(http://www.isimip.org; (Gosling et al., 2017)). ISIMIP2a provides a consistent modelling 

framework that ensures any inconsistencies between model outputs are a result of 

differences in the GHMs’ structures or parameters. However, the GHMs providing ISIMIP2a 

simulation products are not generally calibrated and are not accompanied by detailed 

information about the aleatory or epistemic uncertainties associated with each simulation, or 

the PDFs of model parameters from which it was generated. Consequently, this study is 

focused on the use of MMC to maximise predictive performance gain and not to minimise 

model or parameter uncertainty. 

ISIMIP2a modelling groups used a standard protocol (available at: 

https://www.isimip.org/protocol/#isimip2a) to maximise consistency in the temporal and 

spatial resolutions of their simulations, the input climate forcings to the models, and the 

process representations (e.g. the simulation of human impacts such as dams, reservoirs and 

http://www.isimip.org/
https://www.isimip.org/protocol/#isimip2a
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water abstractions (Masaki et al., 2017; Veldkamp et al., 2018)). The MMC solutions in the 

present study combine the simulation outputs from an ensemble of five input models: DBH, 

H08, LPJmL, PCR-GLOBWB (hereafter called PCRGLOBWB in the main text in order to avoid 

confusion by ‘-‘ in MMC expressions) and WaterGAP2 (Table S2). 

All five input models to the MMC use the 2015 ISI-MIP2a data release and provide discharge 

simulations for the period 1971 – 2010 with input climate data provided by the Global Soil 

Wetness Project 3, GSWP3 (Kim, 2017). In all cases, the simulations are available at a daily 

time resolution and for a global land surface domain at 0.5o x 0.5o grid resolution. Conversion 

of gridded discharge data to catchment-mean monthly runoff was achieved by applying an 

area correction factor to the catchment area following the method detailed in Haddeland et 

al. (2011). It is important to note that, of the five models, only WaterGAP2 was calibrated 

against long-term mean annual runoff for a selection of catchments (Müller Schmied et al., 

2016). The inclusion of calibrated WaterGAP2 may highlight the benefits (or otherwise) of 

calibrating global scale models.  

 

2.2. Study catchments and observed data 

For consistency and quality control we only selected catchments for which observed data is 

held by the Global Runoff Data Centre (GRDC; available from http://grdc.bafg.de). We identified 

study catchments based upon four selection criteria: 

1- Catchments had to be larger than 100,000 km2 to conform with the World 

Meteorological Organisation’s definition of ‘major’ catchments (WMO, 2006). This 

ensured that the catchments were of sufficient size to accommodate the output 

resolution of the models (0.5° x 0.5°). 

2- The selected catchments had to cover all eight hydrobelts defined by Meybeck et al. 

(2013) (see Table S3). 

3- Observed monthly discharge for the catchment had to be available for 25 years or 

longer, within 1971-2010 (the period over which the models were run) and without 

missing data. Other studies have allowed missing data (Beck et al., 2015; Beck et al., 

2016; Milly et al., 2005), enabling them to include more catchments. We, however, 

preferred higher data quality, at the expense of number of catchments, because the 

use of longer, complete time-series facilitates more robust analyses.   

http://grdc.bafg.de/
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4- Multiple gauges in individual catchments were excluded so that observed data from 

only one gauge, located at the most downstream location was used for each 

catchment.  

 

The criteria resulted in the selection of 40 catchments. For each catchment, mean monthly 

river discharge was obtained for the most downstream gauge (Table 1), with mean monthly 

runoff subsequently derived by dividing the mean monthly discharge values by the area 

upstream of the gauge. Even though the selected catchments provided a good geographic 

coverage, the availability and quality of observed data resulted in a bias towards catchments 

in boreal and northern mid-latitude hydrobelts (Table 1). The least number of catchments in 

each hydrobelt is one (Niger basin in northern subtropical region), although this catchment 

does cover 20% of its hydrobelt. Two catchments were identified in NDR, SST, SDR, and SML 

hydrobelts. The low(er) number of catchments, or more precisely the area represented, 

particularly for NDR, SST, SDR, and SML hydrobelts, limits the extent to which our analyses 

and conclusions can be generalised across entire hydrobelts and the global domain.  

 

3. Developing MMC solutions via Gene Expression Programming 

3.1. GEP 

GEP, which is detailed fully in Ferreira (2001, 2006), is an automated, machine learning 

algorithm that searches for optimal symbolic regression expressions to relate one or more 

series of input data to an independent, observed series. Unlike standard linear regression, 

where the expression structure is limited to the input and output variables, numerical 

constants (the regression coefficients) and addition and multiplication operators; GEP 

expressions can incorporate the full range of arithmetic operators, as well as, mathematical 

functions (which are selected by the modeller). This makes it possible for GEP to relate input 

and observed data series via non-linear expressions. GEP expressions are modular; they are 

comprised of component trees (hereafter simply termed components) which are themselves 

made up of bases - the individual inputs, functions, constants and operators that comprise the 

component. Components are aggregated together using mathematical operators (usually 

addition) to form more complex expressions that can be readily translated into standard 

algebraic equations (Figure 2). 
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Table 1. The 40 study catchments and their gauging sites. 

No 
GRDC 

Reference 
River Gauging Station 

Total data  
length (years) 

Catchment 
Area (km2) 

Hydro-
belt 

1 2903430 LENA STOLB 32 2,460,000 BOR 
2 2906900 AMUR KOMSOMOLSK 26 1,730,000 BOR 
3 2909150 YENISEI IGARKA 32 2,440,000 BOR 
4 2912600 OB SALEKHARD 39 2,949,998 BOR 
5 2998510 KOLYMA KOLYMSKAYA 28 526,000 BOR 

6 2999910 OLENEK 
7.5KM DOWNSTREAM OF 

MOUTH OF RIVER PUR 
39 198,000 BOR 

7 4208150 MACKENZIE RIVER NORMAN WELLS 30 1,570,000 BOR 
8 4213550 SASKATCHEWAN THE PAS 40 347,000 BOR 
9 4213650 ASSINIBOINE HEADINGLEY 40 153,000 BOR 

10 4213680 RED RIVER EMERSON 40 104,000 BOR 
11 4213800 WINNIPEG RIVER SLAVE FALLS 38 126,000 BOR 
12 4214260 CHURCHILL RIVER ABOVE GRANVILLE FALLS 36 228,000 BOR 
13 4214520 ALBANY RIVER NEAR HAT ISLAND 31 118,000 BOR 
14 6970250 NORTHERN DVINA UST-PINEGA 31 348,000 BOR 
15 2180800 YELLOW HUAYUANKOU 40 730,036 NML 
16 4115200 COLUMBIA THE DALLES, OREG. 40 613,830 NML 
17 4127800 MISSISSIPPI VICKSBURG, MISS. 37 2,964,252 NML 

18 4143550 ST.LAWRENCE 
CORNWALL(ONTARIO), 
NEAR MASSENA, N.Y. 

40 773,892 NML 

19 4207900 FRASER RIVER HOPE 40 217,000 NML 
20 6340110 LABE NEU-DARCHAU 40 131,950 NML 
21 6435060 RHINE RIVER LOBITH 40 160,800 NML 
22 6442600 DANUBE MOHACS 29 209,064 NML 
23 6972430 NEVA NOVOSARATOVKA 40 281,000 NML 

24 6977100 VOLGA 
VOLGOGRAD POWER 

PLANT 
39 1,360,000 NML 

25 6978250 DON RAZDORSKAYA 38 378,000 NML 
26* 7222222 YANGTZE CUNTAN 31 804,859 NML 
27 4152450 COLORADO LEES FERRY, ARIZ. 40 289,562 NDR 
28 4356100 SANTIAGO EL CAPOMAL 31 128,943 NDR 
29 1834101 NIGER LOKOJA 25 2,074,171 NST 
30 1147010 ZAIRE KINSHASA 40 3,475,000 EQT 
31 3629000 AMAZONAS OBIDOS 27 4,640,300 EQT 
32 3630050 XINGU ALTAMIRA 35 446,570 EQT 
33 3650481 RIO PARNAIBA LUZILANDIA 26 322,823 SST 
34 3651805 SAO FRANCISCO MANGA 37 200,789 SST 

35 3667060 PARAGUAI 
PORTO MURTINHO 

(FB/DNOS) 
37 474,500 SST 

36 5101200 BURDEKIN CLARE 40 129,660 SST 
37 1159100 ORANJE VIOOLSDRIF 38 850,530 SDR 
38 5410100 COOPER CREEK CALLAMURRA 33 230,000 SDR 
39 5101301 FITZROY THE GAP 40 135,860 SML 
40 5204250 DARLING RIVER LOUTH 26 489,300 SML 

 *not included in GRDC database, obtained from local authorities. 
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Figure 2. A GEP-based MMC solution (MMC) expressed as two components. The first component is 

made up of six bases and the second is made up of three. The MMC solution combines the four input 
models (M1 to M4) into an expression that includes a constant (0.5), operators (+ and *) and a non-

linear function (SQRT). The equivalent algebraic expression for the solution is: 

𝑀𝑀𝐶 =  √(𝑀1 + 𝑀2) × 𝑀3 + 0.5 × 𝑀4 

 
 
The GEP algorithm is an example of an iterative evolutionary algorithm that evolves a set of 

expressions to relate the input data series to the observed series (Figure 3). The algorithm 

begins by creating a random set of expressions which are then evolved in subsequent 

iterations. The set of expressions that GEP develops in each iteration are analogous to the 

genetic codes of biological ‘organisms’. Each organism’s likelihood of survival to the next 

iteration of the algorithm is dependent upon the extent to which its genetic code (i.e. the GEP 

expression) optimises the fit between the input data series and the observed data according 

to a pre-determined metric (a process known as ‘training’). In this study we use the ideal point 

error metric (Dawson et al., 2012) to determine fitness, (see Section 3.4), due to its 

incorporation of multiple error metrics into a single fitness measure. Each expression is then 

applied to an independent set of model inputs and the fit is validated to ensure that the 

expression can be generalised beyond the specific data from which it was learnt. If, at the end 

of an iteration, the best fitting expression is new, it is added to the candidate solution set 

which is output at the end of the GEP run. It is also preserved in the expression set (known as 

replication) whilst the remaining expressions are modified through adjustments to the bases 

in each component. These modifications can include mutation (where bases are randomly 

replaced with an alternative function, operator, input or constant) or transposition (where the 

arrangement of bases in the component is changed). In addition, entire components can be 

recombined by pairing them and exchanging their locations in the overall expression. The 

degree of modification allowed by each in any iteration is controlled by a rate set by the user. 

The number of iterations of the algorithm is also determined by a stopping point that is 
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controlled by the user. This is usually a fixed number of iterations that is a large multiple of 

the number of data points in the observed series (i.e. to ensure adequate sampling of input 

data during training). Similarly, the user controls the complexity (equation size) of the 

expression by setting how many components it should include and the set of operators, 

functions and number of constants that can be included in the GEP expressions. The user 

settings applied in this study are provided in Table 2 and more detailed in Table S4. 

 

 
Figure 3. The GEP algorithm. 

 
 

Table 2.  User settings for the GEP. 

Control Setting used 

Number of components 3 
Allowable operators +, -, *, / 
Allowable functions Sqrt, Exp, x2, x3, Natural Log, Sine, Cosine 

Number of constants 
allowed per component 

2 

Mutation rate 0.044 
Transposition rate 0.1 
Recombination rate 0.7 
Stopping condition 100,000 iterations 
Fit measure IPE (see Section 3.4 below) 
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It is important to recognise that GEP expressions can provide MMC solutions that are more 

sophisticated than differential weighting schemes. The inclusion of non-linear functions and 

the relative lack of constraint on the form of the expression compared to multiple linear 

regression, for example, means that individual input models can be adjusted and combined in 

complex ways to exploit characteristic differences between model inputs. For example, Figure 

4 shows an example of a GEP expression in which the difference between two input models 

(M1 and M2) is non-linearly weighted before being added back to M2 in order to correct a 

substantial underestimation of peak discharge magnitude by both of the two input models. 

However, the extent to which the adjustments are purely mechanistic or informative about 

the advantages and limitations of different hydrological process representations in the models 

involved, will depend on the nature and complexity of the MMC solution.  

Insights into the extent to which complex non-linear MMC methods offer benefits over 

simpler, linear MMC counterparts are gained by comparing the performance gains of GEP-

MMC to that of a simpler, multiple linear regression (MLR) method. We use the bias corrected, 

ordinary least square (OLS) algorithm of Granger and Ramanathan (1984) which is 

unconstrained (the sum of the weights can exceed unity) as tests indicate improved 

performance when compared to non-bias-corrected and/or constrained alternatives 

(Arsenault et al., 2015).  

 
 

 
Figure 4. An example of a non-linear, GEP-based MMC solution in which the difference between two 
poorly performing models (M1 and M2) is used to correct the underestimation of peak discharge. C1 

in the second MMC component is a constant equal to 1,300,000. 
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3.2. Data splitting for GEP expression development 

GEP’s requirement for independent fit assessments during training and validation (see Section 

3.1 above) means that the model input and observed data series from which the expressions 

will be evolved must be split into subsets. This is standard practice in machine learning 

methods (Phukoetphim et al., 2016; Wu et al., 2012; Wu et al., 2014). The way that the data 

are split is important. The GEP expressions that are developed will inevitably reflect the 

statistical characteristics of the in-sample, training data subsets. Conversely, their validity will 

depend on the statistical characteristics of the out-of-sample validation data subsets. It is, 

therefore, important to ensure that training and validation subsets are representative of the 

observed data and of each other. 

Arbitrary data splitting approaches (e.g. taking the first 50% of a dataset for training and 

second for validation) cannot be guaranteed to achieve this. Therefore, a range of splitting 

methods have been developed (May et al., 2010; Snee, 1977; Wu et al., 2012) that are based 

on variations of cluster-based sampling or data proximity considerations. Tests of the 

effectiveness of alternative splitting techniques (Wu et al., 2012) have shown the DUPLEX 

method (Snee, 1977) to be particularly well suited to delivering representative data splits for 

use in model development by machine learning algorithms. It is, therefore, used throughout 

this study as the method for generating the data subsets required by GEP.  

DUPLEX partitions data based on data proximity by sequential assignment of most distal data 

pairs to alternate sets so that consistency in the statistical characteristics of the subsets (e.g. 

equal representation of high and low flows) is maintained and bias during model development 

is minimised (Wu et al., 2012). We were consistent across all 40 catchments in the size of the 

training data subset which comprised 20 years in total for each catchment. The size of the 

validation data subset varied from catchment-to-catchment according to the length of the 

observed data series that was available (Table 1). However, it was never less than 60 months 

(5 years) and extended up to 240 months (20 years) in some catchments (Table S5). The same 

training and validation datasets are used to conduct the MLR counterparts and report their 

performance.  

 

3.3. Selecting a final MMC solution from the GEP candidate solution set 

The end point of GEP is a set of “candidate” MMC solutions that contains the best-fitting 

expressions developed during iteration (Figure 3). These will vary in terms of their fit to the 
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training and validation data, as well as, in their complexity. As a general rule, best-fitted 

expressions added to the candidate solution set from later iterations will be more complex 

than those added from earlier iterations. Similarly, the more complex solutions will tend to 

have higher levels of fit. However, more complex MMC solutions are harder to interpret and 

high levels of fit may indicate overfitting, which will limit the extent to which it can be 

generalised. Therefore, it is necessary to employ a procedure to select a final MMC solution 

from the candidate set that ensures it has both a good degree of fit and is parsimonious with 

respect to its complexity. 

In the absence of a generally accepted method for doing this (Sudheer et al., 2002; Wagener 

et al., 2001), we devised a simple trade-off between candidate solution size (computed 

according to the number of inputs, constants, operators and functions in the expression) and 

fitness (Figure 5). Firstly, the fitness and equation size of each candidate solution was 

normalised to an error range between 0 and 1 by applying a linear maximum/minimum stretch. 

This enabled a normalised fitness/equation size coordinate to be defined for each solution. 

The Euclidean distance between this coordinate and the coordinate space origin (0, 0) was 

then computed, and the solution with the smallest Euclidean distance was selected as the final 

solution from the candidate set. 

 

Figure 5. Selecting the GEP solution from a normalised fitness-equation space.  
Solution 4 is selected because it has the smallest Euclidean distance from the origin.  

 
 
3.4. Fit metrics 
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In this study, the fitness of each GEP expression during iteration, as well as the performance 

of the final MMC solutions, MLR, GHMs and the EM is assessed using an integrated metric, 

called the ideal point error (IPE) (Dawson et al., 2012). IPE combines multiple error measures 

into a single metric so that multiple characteristics of fit are evaluated and summarised into a 

single value. The use of an integrated metric is particularly helpful during GEP’s development 

of MMC solutions because it prevents the preferential development of expressions that 

minimise a specific characteristic of fit (Dawson et al., 2012; Pushpalatha et al., 2012). In order 

to improve the meaningfulness of comparisons of MMC performance across multiple 

catchments of varying sizes and located in different hydro-climatic zones, our instantiation of 

IPE also incorporates a consistent and transferrable benchmark. In this study, we follow 

Seibert (2001) and Zaherpour et al. (2018) and use the naïve t-1 model. 

IPE delivers a single value that expresses the ratio of performance gain / loss of a MMC 

solution compared to the benchmark. In other words, it details how much better (or worse) 

the MMC solution has performed compared to the naïve model. The benchmarked IPE 

equation is presented in (1), IPEn, and is adapted from the original formula in Dawson et al. 

(2012). The negative reciprocal of the IPE score is used (3), where the performance of an MMC 

solution exceeds that of the benchmark. This maintains proportionality in comparisons 

between IPE scores of MMC solutions that fail to perform as well as the benchmark and those 

whose performance exceeds it. In this study, Root Mean Square Error (RMSE), Mean Absolute 

Relative Error (MARE) and the Nash-Sutcliffe Coefficient of Efficiency (CE) were selected due 

to their different emphases on the overall pattern of fit (CE), low flows (MARE) and high flows 

(RMSE). Although IPE supports the use of differential weights to emphasise / de-emphasise 

individual metrics in the overall score, we here use equal weightings for all three metrics. 

The IPE scores can range between -1 and -∞ (performance improvement over the benchmark 

model) and 1 and +∞ (performance loss over benchmark model). The IPE score is ratiometric 

– for example, an MMC solution that performs twice as well as the benchmark model will have 

an IPE score of -2 and a solution that performs twice as badly will have a score of 2. IPE would 

be 1 if MMC performs the same as the benchmark, whilst a model infinitely better than the 

benchmark would have an IPE of −∞. 

IPEn = {[1/3 ∗ ((RMSE RMSEb⁄ )2 +  (MARE MAREb⁄ )2 + ((CE − 1) (CEb − 1⁄ ))2)]
1
2} (1) 



 17 

IPE = IPEn            IF IPEn > 1                                                                       (2) 

 IPE =  −1/IPEn         IF IPEn < 1                                                                 (3) 

       

Where:  
IPEn = benchmarked IPE 
RMSE = root mean squared error  
MARE = mean absolute relative error  
CE = Coefficient of Efficiency  
b = benchmark data from the naïve (t-1) model 

 
The IPE performance gain (PG) of an MMC solution (A) relative to either an individual GHM 

output or the GHM EM (B) can be expressed in percentage terms. The way that this is 

computed depends on the respective signs of the IPE scores for the solutions being compared 

(4-6). PG values are 0% where there is no difference in the performance gain / loss relative to 

the benchmark delivered by A over B. PG values are negative where performance gain is 

evident and positive where there is a loss of performance. For example, a PG value of -50% 

will indicate a gain in performance over the benchmark that is 50% larger for the MMC than 

its counterpart EM or best-performing GHM. Similarly, a PG value of 120% indicates that there 

is a 1.2 times reduction in performance of the MMC solution relative to its counterpart. 

 
Where both A and B are either positive, or both negative: 
 
MMCPG  = 0 − (IPEA − IPEB) × 100                                                                (4) 
 
Where A is negative and B is positive: 
 

MMCPG = 0 − ((IPEA − 1) − (IPEB + 1)) × 100                                          (5) 

 
Where A is positive and B is negative: 
 

MMCPG = 0 − ((IPEA + 1) − (IPEB − 1)) × 100                                               (6)  

 
 
 

4. GHM, EM, MMC and MLR Performance 

In the following section, we summarise the performance of individual GHMs and the EM, and 

present the performance gain/loss delivered by the MMC solutions. We pay particular 

attention to differences in performance gain across different hydrobelts to explore the spatial 

variability of MMC. All results pertain to validation data unless otherwise stated. Catchment-
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by-catchment results are detailed in the Supplementary Information. This includes 

performance metrics for all models for both training and validation data subsets (Table S8). In 

addition, observed versus simulated plots for mean annual runoff, the exceedance probability 

curves for each GHM, the EM and the MMC solution, and plots for each GEP expression 

component, are all provided in the Supplementary Information, Section S2. 

 

4.1. GHM performance 

To assess the performance of the different GHMs, the fit of the monthly simulated and 

observed runoff time series was computed against the validation data for each model as well 

as the EM and the MMC solution in each of the 40 catchments. The IPE metrics for each 

catchment are reported in Table 3 and the spatial distribution of the best individual GHM and 

the best overall model is mapped in Figure 6. This reveals that WaterGAP2 is the GHM most 

able to improve upon the naïve model benchmark. It outperforms the other GHMs in 32 

catchments, and also performs better than the EM for the majority of catchments (34). This 

finding is perhaps unsurprising given that this is the only calibrated model in the ensemble. 

However, it is noteworthy that the dominant performance of WaterGAP2 is considerably less 

evident in the boreal hydrobelt compared to the other hydrobelts. Here both PCRGLOBWB 

and DBH are the best performing individual models in 5 of the 14 catchments. Across the 

remaining hydrobelts, calibrated WaterGAP2 is out-performed by its uncalibrated 

counterparts in only 3 out of 26 catchments and these are spread across south sub-tropical, 

north dry belt and north mid-latitude without any apparent spatial pattern. 

In several catchments (Assiniboine, Churchill, Yellow, St Lawrence, Neva, Don, Colorado, Rio 

Parnaiba, Paraguai, Oranje, Cooper Creek, Fitzroy and Darling) the IPE scores of one or more 

GHMs exceeds 10, indicating a failure to deliver a performance anywhere close to that of the 

naïve model benchmark. In the ephemeral catchments of Cooper Creek and Fitzroy the IPE 

scores for all GHMs are extremely high. This reflects the metric’s sensitivity to proportionally 

large errors in runoff estimation which are particularly likely when runoff depths are close to 

zero. This is because a high ratio between the MARE of the individual GHMs and those of the 

naïve model benchmark translates directly into high overall IPE scores. Consequently, it is 

important to recognise that the exceptionally large IPE scores for the ephemeral Cooper Creek 

and the Fitzroy River are a result of periods of zero runoff having a disproportionate influence 

on their IPE scores.  
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Table 3. IPE scores for individual GHMs, EM, MLR and MMC for the validation period in each 

catchment. Models that outperformed the naïve model benchmark are shaded in grey. The best 

performing model in each catchment is indicated in bold. 
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1 LENA BOR 1.58 2.04 1.42 1.51 -1.22 1.15 -1.56 -2.00 
2 AMUR BOR 3.06 1.91 1.33 1.34 1.17 1.07 -1.34 -1.49 
3 YENISEI BOR 1.18 -1.54 1.25 -1.54 -1.72 -1.69 -2.03 -2.33 
4 OB BOR 8.42 4.75 13.92 2.61 2.50 3.53 -1.30 -1.32 
5 KOLYMA BOR -1.23 1.10 1.18 1.27 2.30 -1.19 -1.21 -2.38 
6 OLENEK BOR -1.47 6.32 12.45 17.70 3.94 8.12 4.05 -1.15 
7 MACKENZIE RIVER BOR 4.50 1.85 3.37 -1.30 1.07 -1.39 -2.19 -1.33 
8 SASKATCHEWAN BOR 61.42 5.75 27.03 8.16 1.43 8.97 -1.22 1.03 
9 ASSINIBOINE BOR 384.84 44.46 512.25 28.94 1.57 85.79 -1.01 1.06 

10 RED RIVER BOR 6.56 1.62 4.83 2.12 1.52 2.77 -1.20 -1.25 
11 WINNIPEG RIVER BOR 24.16 4.85 5.05 1.55 1.67 2.29 1.71 1.63 
12 CHURCHILL RIVER BOR 297.53 50.12 32.22 25.65 3.60 17.08 3.94 3.10 
13 ALBANY RIVER BOR 2.82 -1.03 2.76 -1.33 1.73 -1.22 -2.50 -1.67 
14 NORTHERN DVINA BOR 1.48 -1.04 2.14 -1.15 -1.52 -1.54 -2.25 -2.27 

15 YELLOW NML 23.41 5.50 7.42 44.87 1.49 9.75 2.04 1.16 
16 COLUMBIA NML 4.25 2.12 3.11 1.75 -1.11 -1.28 -1.58 -1.20 
17 MISSISSIPPI NML 4.98 -1.56 1.07 1.70 -1.89 1.16 -2.50 -2.04 
18 ST.LAWRENCE NML 375.18 75.36 56.89 13.97 7.09 31.61 2.74 2.47 
19 FRASER RIVER NML 1.18 2.53 4.06 1.15 1.16 1.30 -1.78 -1.61 
20 LABE NML 6.70 4.11 2.98 7.67 -1.47 3.10 -1.58 -1.45 
21 RHINE RIVER NML 2.63 3.29 1.50 1.39 -1.96 1.15 -3.20 -2.50 
22 DANUBE NML 4.02 2.72 1.25 2.07 -1.89 -1.08 -3.12 -2.22 
23 NEVA NML 83.42 25.58 12.19 8.94 2.42 4.74 1.40 1.09 
24 VOLGA NML 6.80 2.79 1.89 -1.35 -1.75 1.52 -2.17 -2.00 
25 DON NML 83.47 39.91 58.79 100.12 1.54 37.14 1.28 1.23 
26 YANGTZE NML -2.44 -1.10 -1.05 2.81 -3.03 -1.15 -3.71 -4.17 

27 COLORADO NDR 52.90 2.50 12.10 8.50 4.59 6.44 2.51 2.22 
28 SANTIAGO NDR 15.13 8.26 3.84 14.97 1.35 7.33 1.60 1.16 

29 NIGER NST 9.67 10.65 10.04 3.61 -1.37 4.86 -1.99 -1.79 

30 ZAIRE EQT 8.28 5.92 3.89 2.47 1.78 2.40 -1.05 1.42 
31 AMAZONAS EQT 2.05 1.46 2.60 3.44 -1.09 1.27 -1.75 -1.85 
32 XINGU EQT 5.89 4.65 4.89 1.12 1.16 2.65 -1.16 1.04 

33 RIO PARNAIBA SST 48.77 70.84 63.41 8.39 1.46 25.41 -2.52 -2.27 
34 SAO FRANCISCO SST 4.81 3.48 1.89 2.25 -1.64 1.94 -1.65 -1.92 
35 PARAGUAI SST 136.88 153.69 108.09 98.44 8.00 78.53 8.78 8.51 
36 BURDEKIN SST 6.87 1.44 3.13 2.03 1.65 2.92 -1.19 -1.35 

37 ORANJE SDR 83.15 7.09 81.10 46.42 2.26 31.15 3.58 2.04 
38 COOPER CREEK SDR 6993.0 149.00 2578.0 625.00 107.00 2089.0 124.58 20.05 

39 FITZROY SML 641.17 52.61 447.46 270.32 38.47 290.00 86.85 30.64 
40 DARLING RIVER SML 200.58 6.95 92.30 35.20 -1.54 41.93 591.22 -1.64 
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Figure 6. The best performing individual GHM (A); four catchments (2, 7, 14 and 16) where the EM 
outperforms the individual models have borders in bold black lines (in these cases the catchment is 

still shaded according to the best performing individual GHM). The best performing overall 
model/MMC (B); the two catchments where the EM is the best are shaded in yellow. Numbers in 

parentheses denote number of catchments where each model performs best. 

 
 

4.2. EM Performance 

Table 3 reveals that the ability of the EM to improve upon the naïve model benchmark exceeds 

that of any individual GHM in only 4 catchments. The failure of the EM to deliver significant 

performance gains in the majority of the study catchments implies that the specific 

sequencing of beneficial cancelling of relative over- and under-estimation of runoff (e.g. 

Figure 4) by individual GHMs necessary to facilitate the gains is not present in the ensemble 

of GHM outputs. Indeed, the tendency of the four uncalibrated GHMs to over-estimate runoff, 

both for mean runoff and hydrological extremes, is evident in observed versus simulated plots 

of mean annual, and Q5 (high flow) and Q95 (low flow) runoff (Figure 7). 
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Figure 7. Plots of observed versus simulated runoff for each GHM, the EM and the MMC for mean 
annual runoff, Q5 and Q95.  
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The positive biases amongst the GHMs from which the EM is calculated also precludes a better 

performance by the EM relative to the best performing GHM for each catchment. Even in the 

four catchments where the EM outperforms the best GHM (Amur, Mackenzie, Northern Dvina 

and Columbia), the differences in IPE between the EM (IPEEM) and the best performing GHM 

(IPEGHM) are marginal (see Table 3): Amur 1.07 (IPEEM) and 1.17 (IPEWaterGAP2); Mackenzie -1.39 

(IPEEM) and -1.30 (IPEPCRGLOBWB); Northern Dvina -1.54 (IPEEM) and -1.52 (IPEWaterGAP2); Columbia 

-1.28 (IPEEM) and -1.11 (IPEWaterGAP2). This highlights the importance of recognising that the 

potential performance gains that can be realised through the use of the EM is limited to the 

specific configuration of relative directional biases within the outputs from the individual 

models from which it is computed. Indeed, we would argue that the EM, where computed, 

should always be contextualised with respect to such biases.  

4.3. MMC and MLR Performance 

IPE scores for the validation data subset for individual GHMs, the EM, the MLR and MMC 

solutions are presented for each catchment in Table 3. The MMC solutions, and their GEP 

expressions for each catchment are detailed in Table 4 along with the performance gain of the 

MMC solutions (MMCPG).  

The tables demonstrate the substantial improvements in IPE that are achieved by MMC 

relative to individual GHMs and the EM. Indeed, MMC solutions attain the best IPE scores in 

34 of the 40 catchments. Observed versus simulated plots (Figure 7) highlight the consistency 

of the better MMC performance across mean and extreme hydrological indicators. Significant 

outliers amongst the MMC data are few and the magnitude is generally small. There is also 

little evidence of systematic over or underestimation bias in the mean annual runoff and Q95 

data, although the tendency of the MMC data to plot just beneath the 1:1 line in the Q5 plot 

does indicate that the MMC solutions produce a general underestimation of the largest 

hydrological events across the study catchments. i.e. flood hazard events.  

MMC performance gain (MMCPG) scores reveal that MMC solutions deliver performance gains 

of > 50% in half (20) of the catchments and a median performance gain of 46% across all 40 

catchments. If the outliers of Cooper Creek, Darling and Fitzroy River are omitted, the median 

MMCPG is 40% and performance gains of > 50% are recorded in 17 of 37 catchments.  

MMC performance gains are, however, not ubiquitous. In four catchments (Olenek, Winnipeg, 

Labe and Paraguai) the performance gain for the best performing GHM is 15% greater than 



 23 

for the MMC on average. Similarly, in 2 catchments (Mackenzie and Columbia) the EM delivers 

performance gains over the MMC equal to 5% and 7% respectively. These results highlight the 

fact that GEP-based MMC performance gain is dependent on the availability of a range of 

model inputs with relative inconsistencies that can be exploited by the optimisation algorithm. 

It also indicates that the success (or otherwise) of GEP-based MMC is dependent on the 

selection of appropriate constraints on expression size and structure, as well as the range of 

functions that are allowed. It is also noteworthy that there is a discrepancy in the magnitude 

of the MMC performance gains for the northern and southern hemisphere catchments. The 

median and mean MMCPG relative to the best performing GHM for the southern hemisphere 

catchments (Fitzroy and Cooper Creek omitted) are -29% and -217% respectively. This is 

considerably smaller than their northern hemisphere equivalents; -41% and -119%. 

When summarised by hydrobelt (Table 5), it is evident from the median MMCPG score that 

MMC solutions generally deliver substantial improvements over their EM and GHM 

counterparts in all hydrobelts. The MMC performance gain is largest against the EM than the 

best-performing GHM in all hydrobelts. It is always several orders of magnitude greater and 

reflects the limiting impact that positive biases in GHM outputs have on the performance of 

the EM. When compared against the best-performing GHM, the median MMC performance 

gain is lowest in the northern dry hydrobelt (-24%) and highest in southern sub-tropical (-

254%) and the boreal (-55%) hydrobelts. Northern mid-latitude catchments see performance 

gains of -32%. However, it is important to acknowledge that whilst IPE facilitates comparison 

of MMCs across hydrobelts, the robustness of the comparison is limited by the lower 

proportion of the total hydrobelt area represented by catchments in NDR, SST, SDR and SML 

hydrobelts. Addressing this will require data from a greater number of study catchments to 

be made available, with the temporally-extensive runoff records needed to support robust 

application of the machine learning algorithms that underpin MMC development. This 

highlights the importance of improving data collection systems in these hydrobelts in 

particular. 

When the hydrobelt performance is examined with respect to the performance rankings of 

the catchments that comprise them, it is evident that MMC solutions achieve a 

disproportionately high performance gain in boreal catchments compared to other hydrobelts. 

Here, 65% of the catchments are positioned in the top 50% of the MMC performance gain 

rankings (Table 4). This suggests there may be particular opportunities for achieving 
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performance gain through MMC in boreal catchments. In northern mid latitude (NML) 

catchments no discernible trends in the performance rankings are evident – catchments are 

split approximately evenly between the top and bottom halves of the rankings. Catchments 

in both of the northern dry (NDR) hydrobelt catchments, as well as SDR’s, are noteworthy 

because none of the GHMs, the EM nor the MMC solution was able to improve upon the naïve 

benchmark model (all their IPE scores are positive) in either of the catchments (see Table 3). 

This indicates that the process representations employed in our suite of GHMs may be 

deficient for modelling runoff in this hydrobelt, although as a caveat we note that there are 

only two NDR catchments in the data set.  

Perhaps surprisingly, MLR outperforms GEP-based MMC in approximately one third (n = 15) 

of the catchments and, whilst the magnitude of the additional performance achieved by MLR 

is generally small, occasionally MLR does outperform GEP-based MMC by a substantial margin 

(e.g. the Mackenzie River). The number of catchments in which MLR achieves a large 

performance gain (MLRPG >50%) over the best GHM or the EM (Table 4) is almost the same as 

that of GEP-based MMC (21 catchments and 20 respectively). However, MLR fails to perform 

as well as either in 12 catchments – double the number of catchments in which this occurs 

with GEP-based MMC. Moreover, where performance loss occurs, its average magnitude is 

greater for MLR than GEP-based MMC (median loss of 77% compared to 7%). It is noteworthy 

the three catchments in which GEP-based MMC delivers the greatest performance gain 

(Cooper Creek, Darling River and Fitzroy river) are the three in which MLR performs worst. 

This indicates that linear MMC methods may be poorly suited to the non-linear challenge of 

MMC in arid and semi-arid hydrobelts, although the small number of catchments in these 

hydrobelts requires caution in drawing general conclusions (Table 5).  

Aggregated across hydrobelts, inconsistency in the relative performance gain of GEP-based 

MMC versus MLR remains. The Boreal (BOR, n=14) and Northern Mid Latitude (NML, n=12) 

hydrobelts are the only ones with a sufficiently large number of catchments to support general 

interpretations but it is nonetheless difficult to generalise (Figure 8). Whilst in both of these 

hydrobelts MLR has a small, mean performance gain over GEP-based MMC, the number of 

catchments in which either method outperforms the other is similar and the magnitude of the 

relative performance gain varies substantially from catchment to catchment – with each 

method achieving order-of-magnitude relative performance gains over the other in certain 

catchments.
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Table 4. MMC solution and equations ranked by MMC performance gain (MMCPG) and MLR IPE score and performance gain (MLRPG) in the 

validation data set. MMCPG and MLRPG are measured against either the best performing GHM or the EM, whichever of the two performs better.  

No River 
Hydro-

belt 

MMC 
IPE 

score 

Best 
performing 

model (GHM 
or EM) and 
IPE score 

MMCPG 
(%) 

Rank 
MMC solution separated into its GEP-expression components. MMC = C1 + C2 + C3.  

Components are ordered according to their explanatory power as assessed by their IPE.  
Eqn. 
size1 

MLR IPE 
score 

MLRPG 
(%) 

38 COOPER CREEK SDR 20.05 
WaterGAP2 
IPE = 107.00 

 
-8674 

 
1 

C1: 0  
18 

 
124.58 438 C2: + (-0.143) * H08 * (WaterGAP2 +1) * cos(cos(WaterGAP2)) 

C3: + 0.436*H08*sqrt WaterGAP2 

40 DARLING RIVER SML -1.64 
WaterGAP2 
IPE = -1.54 

-1350 2 

C1: 0.174*H08^2/DBH  
11 

 
591.22 46041 C2: + (-0.06/DBH) 

C3: + H08/DBH 

39 FITZROY SML 30.64 
WaterGAP2 
IPE = 38.47 

-784 
3 
 

C1: sin(H08/-4.91)  
20 

 
86.58 4837 C2: + WaterGAP2 

C3: + sin((LPJmL - sqrt DBH-8.45)*(WaterGAP2+H08)/( DBH *PCRGLOBWB)) 

4 OB BOR -1.32 
WaterGAP2 
IPE = 2.50 

-581 
4 
 

C1: 2*DBH/(log(sin H08)+6247.9)  
15 

 
-1.30 -580 C2: +  sqrt H08 

C3: + WaterGAP2/H08^2 

33 
 

RIO PARNAIBA 
SST 

 
-2.27 

WaterGAP2 
IPE = 1.46 

-574 
5 
 

C1: 3.695  
20 

 
-2.52 -597 C2: + 0.625*((cos(0.227/H08))^6*(log(WaterGAP2))^4) 

C3: + 1.472 / (log(1/PCRGLOBWB) – 1.08396) 

36 
 

BURDEKIN 
SST 

 
-1.35 

 

H08 
IPE = 1.44 

 
-479 

6 
 

C1: 0 

10 -1.19 -462 C2: + sqrt H08 

C3: + H08 * sin(log(log(PCRGLOBWB/2))) 

10 
 

RED RIVER 
BOR 

 
-1.25 

 

WaterGAP2 
IPE = 1.52 

 
-478 

7 
 

C1: H08*WaterGAP2/10.045  
23 

 
-1.20 -472 C2: + sin PCRGLOBWB^3/(DBH^3*H08+H08-LPJmL-5.44) 

C3: + sin(cos(WaterGAP2))^3 

19 
 

FRASER RIVER 
NML 

 
-1.61 

 
PCRGLOBWB 

IPE = 1.15 
-477 

8 
 

C1: 0.33*DBH*sqrt(log(PCRGLOBWB))  
17 

 
-1.78 -493 C2: + cos((H08+1.63)/LPJmL)+8.12 

C3: + cos H08 

18 
 

ST. LAWRENCE 
NML 

 
2.47 

 

WaterGAP2 
IPE = 7.09 

 

-462 
 

9 
 

C1: 23.04  
19 

 
2.74 -435 C2: + 0.67*sqrt WaterGAP2 * cos(sqrt WaterGAP2+ 1.42/H08)  

C3: + 1.1*sqrt(DBH/PCRGLOBWB) 

2 
 

AMUR 
BOR 

 
-1.49 

 

EM 
IPE = 1.07 

 
-356 10 

C1: 2.534*(DBH-H08-LPJmL-LPJmL/H08)/PCRGLOBWB  
18 

 
-1.34 -450 C2: + WaterGAP2-4.33 

C3: + sin DBH 
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23 
 

NEVA 
 

NML 
 

1.09 
 

WaterGAP2 
IPE =2.42 

 

-133 
 

11 
 

C1: PCRGLOBWB  
13 

 
1.40 -102 C2: + log(DBH^3) 

C3: + WaterGAP2/PCRGLOBWB + 0.5*log(log(WaterGAP2)) 

5 
 

KOLYMA 
 

BOR 
 

-2.38 
 

DBH 
IPE = -1.23 

 

- 
-114 

 

12 
 

C1: DBH  
14 

 
-1.21 2 C2: + sqrt LPJmL 

C3: + DBH*(-2.74*DBH+LPJmL-3.133)/WaterGAP2 

26 
 

YANGTZE 
 

NML 
 

-4.17 
 

WaterGAP2 
IPE = -3.03 

 

-108 
 

13 
 

C1: WaterGAP2  
13 

 
-3.71 -63 C2: + sqrt LPJmL 

C3: + cos(PCRGLOBWB +0.039*H08*PCRGLOBWB/DBH) 

1 
 

LENA 
 

BOR 
 

-2.00 
 

WaterGAP2 
IPE = -1.22 

 

-78 
 

14 
 

C1: WaterGAP2-sqrt DBH  
15 

 
-1.56 -34 C2: + LPJmL/(2*LPJmL/WaterGAP2^2+5.575) 

C3: + (-0.626) 

31 
 

AMAZONAS 
 

EQT 
 

-1.85 
 

WaterGAP2 
IPE = -1.09 

 

-75 
 

15 
 

C1: WaterGAP2  
19 

 
-1.75 -66 C2: + (H08-DBH+LPJmL+0.77)* (WaterGAP2-LPJmL- 0.77)/(PCRGLOBWB+24.9) 

C3: + (-2.98) 

14 
 

NORTHERN 
DVINA 

BOR 
 

-2.27 
 

EM 
IPE= -1.54 

-70 
16 

 

C1: WaterGAP2  
3 
 

-2.25 -73 C2: + PCRGLOBWB 

C3: + (-9.29) 

3 
 

YENISEI 
 

BOR 
 

-2.32 
 

WaterGAP2 
IPE = -1.72 

-58 
 
 

17 
 

C1: WaterGAP2  
7 
 

-2.3 -31 C2: + (-0.742) 

C3: + 7.0*sin(sqrt H08) 

9 
 

ASSINIBOINE 
 

BOR 
 

1.06 
 

WaterGAP2 
IPE = 1.57 

-51 
 

18 
 

C1: WaterGAP2^2  
17 

 
-1.01 -458 C2: + sin(0.5*log(0.268*H08+cosWaterGAP2/WaterGAP2+0.003)) 

C3: + 0.064 

21 
 

RHINE RIVER 
 

NML 
 

-2.50 
 

WaterGAP2 
IPE = -1.96 

-51 
 

19 
 

C1: WaterGAP2  
5 
 

-3.20 -123 C2: + 5.813 

C3: + (-0.153)*H08 

12 
 

CHURCHILL 
RIVER 

BOR 
 

3.10 
 

WaterGAP2 
IPE = 3.60 

-50 
 

20 
 

C1: WaterGAP2  
6 
 

3.94 -66 C2: + sin PCRGLOBWB 

C3: + cos(sqrt H08) 

29 
 

NIGER 
 

NST 
 

-1.79 
 

WaterGAP2 
IPE = -1.37 

-41 
 

21 
 

C1: 0.062* log(DBH)^4*(cos(4.647/PCRGLOBWB))^6 

17 -1.99 -62 C2: + cos(sin LPJmL/WaterGAP2) 

C3: + 0.556 

8 
 

SASKATCHEWAN 
 

BOR 
 

1.03 
 

WaterGAP2 
IPE = 1.43 

-40 
 

22 

C1: WaterGAP2  
29 

 
-1.22 -464 C2: + (cos(cos(DBH + log WaterGAP2 + 0.31))-sin(sqrt PCRGLOBWB^3))^3 

C3: + -sin((log LPJmL^3)/8-sin(cos(0.401*LPJmL)+1.723) 
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30 ZAIRE EQT 1.42 
WaterGAP2 
IPE = 1.78 

-36 23 

C1: WaterGAP2 
 

7 
-1.05 -483 C2: + cos(sqrt DBH) 

C3: + cos(sqrt DBH) 

15 YELLOW NML 1.16 
WaterGAP2 
IPE = 1.49 

 
-33 24 

C1: sqrt(DBH)  
26 2.04 55 C2: + DBH*WaterGAP2^5/4/(DBH^2*WaterGAP2-0.043*PCRGLOBWB) 

C3: + (sin WaterGAP2)^2*sin(sqrt(PCRGLOBWB+DBH)) 

13 ALBANY RIVER BOR -1.66 
PCRGLOBWB 

IPE = -1.33 
 

-33 25 

C1: PCRGLOBWB  
9 -2.50 -116 C2: + log(0.106*DBH) 

C3: + log(0.041*DBH) 

22 DANUBE NML -2.22 
WaterGAP2 
IPE = -1.89 

-32 
 

26 

C1: WaterGAP2  
13 -3.12 -122 C2: + DBH/H08- H08/(PCRGLOBWB-1) 

C3: + 7.93/H08 

25 DON NML 1.23 
WaterGAP2 
IPE = 1.54 

 
-32 27 

C1: WaterGAP2  
5 1.28 -26 C2: + 1 

C3: + (-0.325)*WaterGAP2 

34 SAO FRANCISCO SST -1.92 
WaterGAP2 
IPE = -1.64 

 

-29 
 

28 

C1: sqrt(WaterGAP2)  
16 -1.65 -2 C2: + 1.46*(PCRGLOBWB+WaterGAP2-5.75)/log(PCRGLOBWB) 

C3: + cos(H08/LPJmL) 

27 COLORADO NDR 2.22 
H08 

IPE = 2.50 
 

-29 
 

29 

C1: log(DBH)  
7 2.51 1 C2: + log(PCRGLOBWB) 

C3: + WaterGAP2/PCRGLOBWB 

24 VOLGA NML -2.00 
WaterGAP2 
IPE = -1.75 

 

-23 
 

30 

C1: WaterGAP2-0.978  
9 -2.17 -41 C2: + 3.35/DBH 

C3: + 0.999/LPJmL 

37 ORANJE SDR 2.04 
WaterGAP2 
IPE = 2.26 

 

-22 
 

31 

C1: WaterGAP2  
3 3.58 131 C2: + 0.808 

C3: + (-0.672) 

28 SANTIAGO NDR 1.16 
WaterGAP2 
IPE = 1.35 

 
-19 32 

C1: sin(LPJmL^2*(0.319-LPJmL/DBH))/DBH  
 

24 
1.60 25 C2: + WaterGAP2 

C3: + sin((sin(((sin((LPJmL))-(((LPJmL)/(WaterGAP2))^3))^2))-(WaterGAP2))) 

17 MISSISSIPPI NML -2.04 
WaterGAP2 
IPE = -1.89 

 

-14 
 

33 

C1: WaterGAP2  
13 -2.50 -62 C2: + (log(WaterGAP2^3)-WaterGAP2)/PCRGLOBWB 

C3: + (-1.70-DBH)/PCRGLOBWB 

32 XINGU EQT 1.04 
WaterGAP2 
IPE = 1.16 

-9 34 

C1: WaterGAP2  
8 -1.16 -428 C2: + (-0.494) 

C3: + (-0.204)*LPJmL/sqrt WaterGAP2 
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20 LABE NML -1.45 
WaterGAP2 
IPE = -1.47 

 
2 35 

C1: WaterGAP2 

17 -1.58 -11 C2: + 4.32/DBH 

C3: + 0.962*sin((DBH-H08)/PCRGLOBWB+ cos(0.15*WaterGAP2)) 

7 
MACKENZIE 
RIVER 

BOR -1.33 
EM 

IPE = -1.39 
 

5 
 

36 

C1: PCRGLOBWB 
 

5 
-2.19 -88 C2: + 0.107*DBH 

C3: + (-0.978) 

16 COLUMBIA NML -1.20 
EM 

IPE = -1.28 
7 37 

C1: WaterGAP2 
 

28 
-1.58 -47 C2: + sin(cos(LPJmL)^3)^2*sin(PCRGLOBWB*cos(3.78*PCRGLOBWB)) 

C3:+ exp(cos(cos(LPJmL)*sin(WaterGAP2)))* sin(0.479+0.166*WaterGAP2) 

11 
WINNIPEG 
RIVER 

BOR 1.63 
PCRGLOBWB 

IPE = 1.55 
8 

38 
 

C1: WaterGAP2 
 

8 
1.71 16 C2: + H08/DBH 

C3: + (-4.91+log(PCRGLOBWB)) 

35 
 

PARAGUAI 
 

SST 
 

8.51 
 

WaterGAP2 
IPE = 8.00 

 

19 
 

39 
 

C1: WaterGAP2 

16 8.78 77 C2: log(9.84/LPJmL) 

C3: 0.99- (LPJmL/(PCRGLOBWB-((LPJmL+WaterGAP2)/945.48))) 

6 
 

OLENEK 
 

BOR 
 

-1.15 
 

DBH 
IPE = -1.47 

 

33 
 

40 

C1: -sin(0.004* LPJmL^2*PCRGLOBWB-LPJmL+9.04) 
 

22 
4.05 752 C2: + PCRGLOBWB/(-0.31*DBH^2*cosec(PCRGLOBWB) -7.71) 

C3: + WaterGAP2 

1-As defined in Section 3.1, equation size is calculated according to the number of inputs (GHMs), constants, operators and functions in an equation. 
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Table 5. Median MMC performance gain (MMCPG) for each hydrobelt,  

for the validation data set. Figures in bold highlight where each of the methods performs best.  

Hydrobelt 
 No. of  

catchments 
Median PG over  

best-performing GHM (%) 
Median PG over EM (%) 

  MMC MLR MMC MLR 

BOR 14 -55 -80 -415 -355 
NML 12 -32 -62 -434 -467 
NDR 2 -24 13 -520 -483 
NST 1 -41 -62 -764 -785 
EQT 3 -36 -428 -161 -445 
SST 4 -254 -232 -1698 -1701 
SDR 2 -4348* 955 -104900* -99596 
SML 2 -1067* 25439 -703068* -676561 

* Denotes a median MMCPG score significantly influenced by the individual result for Cooper Creek, 
Darling or Fitzroy River. 

 

 

 
Figure 8. Relative performance gain of GEP-based MMC versus MLR for BOR and NML catchments. A 

negative % value indicates the MLR is out-performed by GEP-based MMC and a positive value 

indicates the opposite. 

 
 

5. Discussion 

5.1. Interpretability of MMC solutions 

Our rationale for developing weighted MMC solutions from an ensemble of GHMs was in part 

a response to a question frequently asked by modellers, decision-makers, and the public: why 

not weight / adjust the models according to their performance? We acknowledge that in other 

disciplines (Gillett, 2015; Giorgi and Mearns, 2002; Qi et al., 2017), including climate modelling 

(Christensen et al., 2010; Fowler and Ekström, 2009) and catchment hydrological modelling 

(Abrahart and See, 2002; Ajami et al., 2006; Arsenault et al., 2015; Shamseldin et al., 1997), 
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weighting strategies have been highly effective in improving the performance of a model 

ensemble. However, the question cannot be answered adequately unless the best approach 

to determining the weighting strategies is known. In past examples, the strategy has been to 

apply simple constants (Arsenault et al., 2015; Christensen et al., 2010; Shamseldin et al., 

1997) which may be optimised using linear constraints (e.g. the multiple linear regression 

approach of Doblas-Reyes et al. (2005)). As our above comparison between GEP and MLR-

based MMC shows, the performance of such linear methods can be highly variable from 

catchment-to-catchment and may be poorly suited to arid environments. By contrast, in this 

paper, we have examined what happens when the constraints are relaxed and more complex 

optimisation of non-linear weighting schemes is allowed (Table 4). Superficially, relaxing the 

constraints imposed on the weighting scheme is appealing because it should increase the 

likelihood of improving the performance of the MMC solution. However, our comparisons 

with MLR demonstrate this this is not always the case and that non-linear MMC approaches 

can introduce several critical shortcomings.  

Firstly, the interpretation of the weights (and therefore MMC equations; Table 4) in physical 

terms becomes increasingly difficult as the constraints on the form and complexity of the 

weighting scheme are relaxed. Where there is little or no attempt to constrain it, GEP-based 

MMC can become nothing more than a curve fitting exercise whose solution complexity 

makes it difficult to quantify the relative power of each model in the overall solution and 

precludes meaningful physical interpretation of the expressions that are generated. There is, 

therefore, a strong argument for a more pragmatic approach that applies careful constraint 

to the allowable complexity of GEP-based MMCs. This can be achieved by limiting the number 

of components and/or bases by reducing the set of mathematical operators and non-linear 

functions available to the GEP algorithm. Indeed, there are several catchments in which low-

complexity GEP-based MMC solutions significantly outperform their more complex MLR 

counterparts (e.g. Don, Kolyma, Lena, Oranje and Yenisei).  In this study, we have used the 

GEP parameters to constrain the solution to three components and a relatively small set of 

seven non-linear functions (Table 2). Constraint has also been achieved by the selection of 

the final MMC solution from the candidate set based on a trade-off between complexity and 

performance (Figure 5). Despite this, several of the MMC solutions remain very complex and 

preclude meaningful interpretation (see Table 4).  However, knowing how much to constrain 
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the GEP expressions is vital because the benefits of increased interpretability of highly 

constrained solutions can be offset by reductions in overall MMC performance. Identifying 

the ‘sweet spot’ where both performance gain and interpretability is maximised will be an 

area fruitful for future research. To this end, Bayesian optimisation methods such as those 

underpinning model mixing studies (Marshall et al., 2006; Moges et al., 2016) are of interest 

because they indicate how it might be possible to optimise the values of the GEP parameter 

set (which constrain the solution) through Bayesian updating procedures. However, to this 

end the non-numerical nature of certain GEP parameters (e.g. the allowable operators and 

functions) are likely to be highly problematic because they will prevent the quantification of 

the PDFs required by Bayesian approaches. Therefore, more realistic approaches could 

include the dynamic configuration of the GEP algorithm parameters during training.  

Secondly, with greater complexity comes a tendency towards overfitting of the MMC 

solutions. Whilst we sought to minimise the risk of selecting over-fitted MMC solutions by 

applying an error-complexity trade-off selection method (Figure 5), the high degree of 

complexity in some of the weighting schemes presented in Table 4 suggests that the MMCs 

may still be over-fitted.  

Thirdly, we acknowledge that any attempt to weight models may be viewed by some as futile 

so long as the current generation of GHMs (or any model) are far from being empirically 

adequate for purpose (Stainforth et al., 2007). Other work has shown that the GHMs applied 

here are imperfect (Zaherpour et al., 2018b) and in this sense it can be argued that applying 

weights to any type of model that is known to contain errors is counter-intuitive because the 

errors in even well performing models will be weighted inherently in the approach. Where 

weights are applied in a simple manner (e.g. each GHM output is multiplied by a single 

coefficient), this is certainly the case. However, a key advantage of GEP is that it develops 

more complex schemes in which the products of more than one model can be weighted (e.g. 

the difference in performance between two or more models at different hydrological 

response ranges - see Figure 4). Intuitively, this gives it an advantage over MMC methods that 

have a fixed structure, such as MLR, because it offers the potential to exploit the characteristic 

differences in the capabilities and/or failings of the models that are combined: allowing GEP-

based MMC solutions to deliver performance gains based on non-linear adjustments made to 

the characteristic differences between each model input. Where GEP is concerned, it can be 
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argued that it is its counter-intuitive ability to exploit model failings in the MMC solutions that 

provides a strong argument for using it rather than simple weighting – especially where the 

objective is to combine models known to be lacking with respect to their empirical fitness-

for-purpose. 

Current model combination approaches in hydrological modelling include simple model 

averaging (Arsenault et al., 2015; Cloke and Pappenberger, 2009) and complex weighting 

approaches (Ajami et al., 2006; Arsenault et al., 2015; Shamseldin et al., 2007) comprising 

machine learning algorithms, as described here. The data we present, and the above critique, 

indicate that on a global scale MMC based on machine learning algorithms may offer little in 

the way of average performance gain over simpler, linear methods such as MLR. However, at 

the catchment level, and in certain hydrobelts, there can be significant differences in their 

relative performance. This suggests that the adoption of a stepwise approach to multi-model 

combination is prudent in which simple, linear methods are attempted first and, where they 

fail to deliver adequate performance gain, non-linear machine learning approaches are 

subsequently employed.  

The evidence we present also indicates that the application of complex weighting schemes 

via machine learning algorithms can make it difficult to understand the reasons behind the 

relative performance of individual models. For example, it is difficult to understand the 

relative weightings of individual models (i.e. which models are weighted more/less than 

others, e.g. see the solution for the Columbia river in Table 4), let alone why those weights 

have been applied (e.g. are the weights applied due to a model’s ability to simulate high flows 

well?) and why some models are excluded altogether. Therefore, whilst we have 

demonstrated that generally a complex MMC solution can perform better than the EM, the 

interpretability of the MMC can become limited. This suggests that a more interpretable, but 

still intelligent, approach to model combination is needed. An alternative approach would be 

to follow the framework described by Krysanova et al. (2018) for global- and catchment 

models. They recommend first evaluating model performance for several hydrological 

variables over various time periods, as in a classical model evaluation (Zaherpour et al., 

2018b), and if performance is considered to be acceptable then the models can be weighted, 

otherwise they are excluded from the ensemble. Although there is value in the approach, no 

specific recommendations are provided on how to weight the models, other than weighting 
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based upon model performance. In addition, identification of a threshold for “good 

performance” is not straightforward, and the approach rejects, a priori, poorly performing 

models. One of the arguable advantages of GEP is that it can exploit the characteristic error 

patterns of poorly performing models by using them as mechanisms to adjust other models 

through the MMC development, as we have demonstrated. Merging a more interpretable 

MMC approach with that of Krysanova et al. (2018) may be a pragmatic way forwards for 

future model combination and weighting studies. 

 

5.2. MMC does not always deliver optimal solutions  

It is important to note that machine learning-based MMC methods may not always deliver 

solutions that outperform the EM/best individual model despite their inherent optimisation 

capabilities. In six of our study catchments, we found that GEP failed, even though mostly 

marginally, to optimise its MMC solutions sufficiently to outperform either the EM 

(Mackenzie and Columbia catchments) or the best performing GHM (Olenek, Winnipeg, Labe 

and Paraguai catchments) (Table 3). Two potential causes are likely. 

Firstly, the GEP algorithm’s ability to learn an optimised MMC solution depends on it being 

able to learn expressions that capitalise on characteristic differences between the error 

structures and magnitudes of the different input models. If all model inputs have the same 

characteristic errors, or if their errors are all random, there will be insufficient ‘raw material’ 

for the GEP algorithm to learn from. Cross-correlation of the model residuals for these six 

catchments (Table S6) indicates that this may be a reason for the failure of the MMC solution 

in the Olenek and Paraguai catchments. Here high cross-correlation between the residuals of 

the majority of model inputs exists – limiting opportunities for the GEP algorithm to use the 

characteristic differences between input models in the weighting scheme optimisation. 

Secondly, deficiencies in our error-complexity trade-off method to select the final MMC 

solution from the candidate set (Figure 5) could be a factor. Whilst the trade-off is necessary 

to limit the complexity of the final GEP-based MMC solution, it does mean that the best 

performing MMC solution in the candidate set can be overlooked in favour of a simpler, 

lower-performing counterpart. This means that although the GEP algorithm may have 

developed a candidate MMC solution that outperforms either the EM or best-performing 

GHM, if its complexity is high relative to other solutions, it will not be selected as the final 



 34 

MMC solution. To check whether this is a factor behind MMC’s poor performance in the six 

catchments, the best performing solutions from GEP’s candidate solution set, irrespective of 

their complexity, are compared to the EM and best performing GHM in each catchment (Table 

S7). In the Mackenzie and Labe catchments, the best-performing MMC solution from the 

candidate set does outperform both the EM and the best-performing GHM. In the Paraguai 

catchment it equals it. However, in the Columbia, Olenek and Winnipeg even the best-

performing candidate MMC solution fails to outperform the best individual GHM and the 

reasons for MMC failure remain unclear – particularly in the Columbia and Winnipeg 

catchments. 

Thirdly, GEP’s user settings (Table 2) are fundamental controls of the complexity of the MMC 

solutions that will be produced. The number of components included sets a ‘baseline’ for the 

solution complexity, whilst the number of constants and allowable function set will strongly 

influence the nature and complexity of its inherent non-linearity. Where these user settings 

encourage solutions whose complexity is excessive for the nature of the combination problem 

at hand, ‘redundancy’ in the MMC solutions is likely. This may be achieved simply (i.e. the 

assignment of a constant of value zero to component 1 in the solution for Burdekin, Table 4), 

or through complex equations that deliver insignificant outputs. Applying different user 

settings for the algorithm may to some extent solve this problem – but it is impossible to 

know, a priori what the most suitable settings might be. As an alternative, allowing the 

algorithm more iterations (we applied 100,000 in this study) might provide the algorithm with 

the opportunity to find improved solutions based on the development of lower-complexity 

MMC equations. Ongoing research by the authors is exploring the impact of applying different 

settings (specifically a lower number of MMC components) on the performance of the MMC 

approach (Zaherpour et al., 2018a). 

 

5.3. Accounting for and presenting uncertainty in MMC development  

Compared to the model mixing approaches being used in catchment-scale modelling 

(Marshall et al., 2006; Moges et al., 2016), the MMC approach applied here is inferior because 

the lack of knowledge of the PDFs (and maximum likelihoods) of the model parameters 

prevents the minimisation of MMC uncertainty. In fact, the lack of knowledge about the PDFs 

associated with the highly generalised parameters of the individual GHMs, and the sheer 
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number of parameters that they use means that it is going to be difficult to get beyond the 

performance optimisation approach taken in this study in the short to medium term. However, 

compared to other performance optimisation approaches that use machine learning 

(especially ANNs (Shamseldin et al., 2007)), GEP has the advantage that it is at least explicit. 

It also has the advantage that the user can easily control the form of the MMC solutions 

through the allowable expression complexity and allowable non-linear functions. Therefore, 

it is a step forward towards improved MMC development and interpretability. Nonetheless, 

the big challenge remains the application of more advanced, maximum likelihood model 

mixture approaches to GHMs. 

In addition, even though our study highlights how MMC outputs generally out-perform 

individual GHMs and the EM, we caution against presenting MMC results in isolation. Instead, 

we recommend that MMC results are presented alongside the range of model outputs from 

the whole ensemble and the EM (e.g. Figures 6 and 7, and Table 3). Even though MMC 

techniques employed in other disciplines have been claimed to result in a “reduction of the 

uncertainty range” (Giorgi and Mearns, 2002; Marshall et al., 2006), we argue that the original 

uncertainty range should still be presented because it has been computed from a set of 

physically-based models specifically designed to simulate relevant environmental processes 

and feedbacks. Indeed, we would go further and argue that MMC does not reduce the 

inherent uncertainty. It does, however, provide a more robust and informative estimate from 

the ensemble that takes into account the performance of its members. To not explicitly 

present the uncertainty in the models that contribute to an MMC solution risks masking an 

important dimension of the data that underpin it. 

 

6. Conclusions 

This study has, for the first time, applied a set of ‘intelligently defined’ weights to a state-of-

the-art ensemble of global-scale hydrological models. The GEP-based MMC applied, is shown 

to employ a diverse array of linear and non-linear adjustments to exploit information in runoff 

estimates from the individual GHMs. The result is that in 34 catchments (85%) the MMC 

performs better than the best performing GHM and EM with the median performance gain 

over a naïve benchmark model being 45% across all 40 catchments. The EM performs better 
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than individual GHMs in only 10% (4) of our catchments. However, is cannot be assumed that 

complex, machine-learning MMC methods will deliver performance gains over simpler 

approaches, such as MLR. Indeed, it this study we find the relative performance of GEP-based 

MMC versus simpler MLR varies hugely from catchment-to-catchment and hydrobelt-to-

hydrobelt and that MLR out-performs GEP-based MMC in around a third of the study 

catchments. 

Despite the good performance of MMC across the majority of catchments, it should not be 

seen as a “silver bullet” for counteracting biases and fit residuals of individual GHMs. In six 

(15%) of the catchments either the EM or an individual GHM performed marginally better 

than the GEP-based MMC solution, with GHMs’ lack of insufficient ‘raw material’ for the GEP 

algorithm to exploit, or deficiency in our error-complexity trade-off method for selecting final 

MMC being potentially responsible for this.  

More importantly, the GEP approach applied here includes weighting schemes whose 

complexity prevents meaningful physical interpretation of the MMCs solutions and realisation 

of the absolute and relative power and contribution of individual GHMs. More research is, 

therefore, needed to explore the effect of application of different levels of constraints on 

GEP-based algorithm performance in providing more interpretable MMC solutions.  

In addition, the MMC approach applied here does not account for uncertainty within input 

models or their parameters due to the lack of information on their PDFs. Hence, the approach 

does not go beyond optimising their predictive performance. However, there could be 

potential in applying more realistic approaches that include dynamic configurations of the 

GEP algorithm parameters during training. 

Despite shortcomings of the GEP-based MMC in the current level of functionality, its explicit 

outputs and controllability is a step forward towards unravelling the black box nature of 

approaches such as ANNs and increasing MMC interpretability. In addition, in light of the 

significantly improved performance offered by MMC, relative to individual GHMs and also the 

EM, we recommend that future multi-model applications consider using a combination of 

MLR and MMC alongside the EM and intermodal range, to provide end-users of the ensemble 

with a better informed estimate of what it shows. 
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Table S1. 40 selected catchments from the GRDC reference database 

No GRDC_NR RIVER STATION 

Years of 
data 

availability  
 (btw. 1971-

2010) 

Area 
(KM2) 

(GRDC) 

Area 
(KM2) 

(ISIMIP) 

Long_GRDC 
(degree) 

Lat_GRDC 
(degree) 

Hydr
o-belt 

1 2903430 LENA STOLB 32 2460000 2443190 126.8 72.37 BOR 

2 2906900 AMUR KOMSOMOLSK 26 1730000 1742103 137.12 50.63 BOR 

3 2909150 YENISEI IGARKA 32 2440000 2443587 86.5 67.48 BOR 

4 2912600 OB SALEKHARD 39 2949998 2438012 66.53 66.57 BOR 

5 2998510 KOLYMA KOLYMSKAYA 28 526000 539526 158.72 68.73 BOR 

6 2999910 OLENEK 
7.5KM DOWNSTREAM 
OF MOUTH OF RIVER 

PUR 
39 198000 197649 123.22 72.12 BOR 

7 4208150 MACKENZIE RIVER NORMAN WELLS 30 1570000 1580100 -126.85 65.28 BOR 

8 4213550 SASKATCHEWAN THE PAS 40 347000 349670 -101.18 53.83 BOR 

9 4213650 ASSINIBOINE HEADINGLEY 40 153000 154323 -97.4 49.87 BOR 

10 4213680 RED RIVER EMERSON 40 104000 99974 -97.22 49 BOR 

11 4213800 WINNIPEG RIVER SLAVE FALLS 38 126000 124681 -95.57 50.22 BOR 

12 4214260 CHURCHILL RIVER 
ABOVE GRANVILLE 

FALLS 
36 228000 233423 -100.45 56.15 BOR 

13 4214520 ALBANY RIVER NEAR HAT ISLAND 31 118000 121442 -83.87 51.33 BOR 

14 6970250 
NORTHERN 

DVINA(SEVERNAYA 
DVINA) 

UST-PINEGA 31 348000 350844 42.17 64.1 BOR 

15 2180800 YELLOW Huayuankou 40 730036 723657 113.65 34.92 NML 

16 4115200 COLUMBIA THE DALLES, OREG. 40 613830 616452 -121.17 45.61 NML 

17 4127800 MISSISSIPPI VICKSBURG, MISS. 37 2964252 2947486 -90.9 32.32 NML 

18 4143550 ST.LAWRENCE 
CORNWALL(ONTARIO), 
NEAR MASSENA, N.Y. 

40 773892 771449 -74.78 45.01 NML 

19 4207900 FRASER RIVER HOPE 40 217000 218162 -121.45 49.38 NML 

20 6340110 LABE NEU-DARCHAU 40 131950 132028 10.88 53.23 NML 

21 6435060 RHINE RIVER LOBITH 40 160800 161606 6.11 51.84 NML 

22 6442600 DANUBE MOHACS 29 209064 212558 18.67 46 NML 

23 6972430 NEVA NOVOSARATOVKA 40 281000 284945 30.72 59.8 NML 

24 6977100 VOLGA 
VOLGOGRAD POWER 

PLANT 
39 1360000 1356910 44.72 48.77 NML 

25 6978250 DON RAZDORSKAYA 38 378000 364497 40.67 47.5 NML 

26* 7222222 YANGTZE Cuntan 31 804859 117543 100.15 35.5 NML 

27 4152450 COLORADO LEES FERRY, ARIZ. 40 289562 358663 -111.58 36.87 NDR 

28 4356100 SANTIAGO EL CAPOMAL 31 128943 129623 -105.12 21.83 NDR 

29 1834101 NIGER LOKOJA 25 2074171 1761002 6.77 7.8 NST 

30 1147010 ZAIRE KINSHASA 40 3475000 3637502 15.3 -4.3 EQT 

31 3629000 AMAZONAS OBIDOS 27 4640300 4678378 -55.5 -1.9 EQT 

32 3630050 XINGU ALTAMIRA 35 446570 442067 -52.22 -3.2 EQT 

33 3650481 RIO PARNAIBA LUZILANDIA 26 322823 309374 -42.37 -3.45 SST 

34 3651805 SAO FRANCISCO MANGA 37 200789 205950 -43.93 -14.76 SST 

35 3667060 PARAGUAI 
PORTO MURTINHO 

(FB/DNOS) 
37 474500 487030 -57.89 -21.7 SST 

36 5101200 BURDEKIN CLARE 40 129660 129785 147.24 -19.76 SST 

37 1159100 ORANJE VIOOLSDRIF 38 850530 851280 17.73 -28.76 SDR 

38 5410100 COOPER CREEK CALLAMURRA 33 230000 230043 140.87 -27.7 SDR 

39 5101301 FITZROY THE GAP 40 135860 132642 150.1 -23.1 SML 

40 5204250 DARLING RIVER LOUTH 26 489300 472878 145.11 -30.54 SML 

*not included in GRDC database, obtained from local authority 

 



Table S2. The 5 GHMs and their major parameters and modelling methods. tas = surface air temperatures, pr = precipitation, rhs= near-surface relative humidity, 
rsds/rlds = surface radiation (shortwave/longwave downwelling), wind = near-surface wind speed, pet = potential evapotranspiration, ps = surface air pressure. 

Model 
Class of 

Model 

Input 

climate 

parameters 

Resolution  

(space and time) 

Representation of 

soils 

Representation of 

vegetation 

Method: potential 

evapotranspiration 

Method:  

snow melt 

Human 

water use/ 

Reservoirs 

Carbon 

cycling 

Calibration 

status 

DBH (Tang 

et al., 2007) 
GHM 

Pr, tas, 

wind,rhs, 

rlds, rsds, ps 

Grid cells with sub-

grid heterogeneity 

accounting method 

Three soil layers and 

one underlying 

groundwater layer at 

the bottom 

Prescribed spatial 

distribution of natural 

vegetation and agricultural 

land cover 

Energy balance 
Energy 

balance 
Yes/No No No 

H08 

(Hanasaki et 

al., 2008)  

GHM 

tas, Pr, 

Snowfall, 

wind, rhs, 

rsds, rlds, ps 

0.5o; daily 

 

1-layer leaky bucket 

soil. Its runoff 

properties vary with 

climate zones. 

Natural use: Globally 

uniform. No-specific land 

type is assigned, as known 

as Manabe's bucket. 

 

Bulk formula 
Energy 

balance 
Yes/Yes No No 

LPJmL 

(Bondeau et 

al., 2007) 

GHM Pr, tas, rsds 0.5o; daily 

Five hydrologically 

active soil layers, 

coupled to carbon and 

thermal balance 

Dynamic simulation of 

growth and productivity 

(with prescribed spatial 

distribution of crops and 

pasture); daily 

Priestley-Taylor 

(modified for 

transpiration) 

Degree-day 

method 

with 

precipitatio

n factor 

Irrigation 

only/Yes 
Yes No 

PCRGLOBWB 

(Wada et al., 

2014) 

GHM tas, Pr, pet 0.5o; daily 

Two soil layers and 

one underlying 

groundwater layer at 

the bottom 

Prescribed vegetation, 

agriculture, and land use 

cover 

Hamon 
Degree-day 

method 
Yes/Yes No No 

WaterGAP2 

(Müller 

Schmied et 

al., 2016) 

GHM 
tas, Pr, rsds, 

rlds 
0.5o; daily 

One soil layer with 

varying rooting depth, 

dependent on land 

cover 

IGBP land cover classes 

based on MODIS, 

temperature and 

precipitation based LAI-

model, fixed rooting depth 

Priestley-Taylor 

with two alpha 

factors depending 

on the aridity of the 

grid cell 

Degree-day 

method 
Yes/Yes No Yes 

 



 6 

Table S3. Characteristics of hydrobelts and number of catchments within each hydrobelt (BOR= boreal, NML= 

northern mid-latitude, NDR= northern dry, NST = northern subtropical, EQT = equatorial, SML=southern mid-

latitude, SDR=southern dry and SST=southern subtropical). 

  

Hydrobelt 

Area of hydrobelt 

 (103 km2) 

(Meybeck et al., 2013) 

Hydrobelt runoff  

(mm/yr) 

(Meybeck et al., 2013) 

 No. of selected 

catchments in 

each hydrobelt  

 Catchments 

area in each 

hydrobelt  

(103 km2) 

 Catchments 

area to 

hydrobelt area 

(%) 

BOR 25995 223 14 13298 51.2 

NML 24199 343 12 7940.8 32.8 

NDR 30234 36 2 418.5 1.4 

NST 10579 386 1 2074.2 19.6 

EQT 16826 960 3 8561.9 50.9 

SST 10599 233 4 1127.8 10.6 

SDR 8677 31 2 1080.5 12.5 

SML 4008 292 2 625.2 15.6 

Sum/Ave. 131119* 277* 40 4390.9 24.3 

        *Total of non-glaciated land 

 

Table S4. The GEP function set, constants and gene configuration. For detail explanations about control 
parameters see (Ferreira, 2001). 

Settings Control parameter Value/Symbol 

General 

settings 

Number of chromosome 25 

Number of genes (equation components) 3 

Gene head size 10 

Linking function addition 

Functions, 

Fitness and 

model 

generation  

Maximum generations 100,000 

Fitness function Customised IPE 

Max fitness 1000 

Functions +, -, *, /  (2)*; 

Sqrt, Exp, x2, x3, 

Natural Log, Sine, 

Cosine (1)*; 

Genetic 

operators 

Mutation rate 0.044 

Inversion 0.1 

Insertion sequence (IS) transposition 0.1 

Root insertion sequence (RIS) transposition 0.1 

One-point recombination rate 0.3 

Two-point recombination rate 0.3 

Gene recombination 0.1 

Gene transposition 0.1 

Numerical 

constants  

Constants per gene 2 

Lower/upper bound -10/+10 

Random numerical constants (RNC) mutation 0.01 

DC mutation 0.044 

DC inversion 0.1 

DC IS transposition 0.1 

                      *Weight of the functions for calculating the “equation size” 
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Table S5. The training and validation subsets used to inform MMC development in each of the study catchments. 

No River 
Total data 

length 
(months) 

Period of Training 
Data 

Period of Validation  
Data 

1 LENA 384 1/1971-12/1990 1/1991-12/2002 
2 AMUR 312 1/1971-12/2000 1/2001-12/2006 
3 YENISEI 384 1/1975-12/1998 1/1999-12/2010 
4 OB 468 1/1971-12/1990 1/1991-12/2010 
5 KOLYMA 336 1/1978-12/1997 1/1998-12/2008 
6 OLENEK 468 1/1971-12/1990 1/1992-12/2010 
7 MACKENZIE RIVER 360 1/1971-12/1992 1/1993-12/2010 
8 SASKATCHEWAN 480 1/1971-12/1990 1/1991-12/2010 
9 ASSINIBOINE 480 1/1971-12/1990 1/1991-12/2010 

10 RED RIVER 480 1/1971-12/1990 1/1991-12/2010 
11 WINNIPEG RIVER 456 1/1971-12/1990 1/1991-12/2010 
12 CHURCHILL RIVER 432 1/1971-12/1994 1/1995-12/2010 
13 ALBANY RIVER 372 1/1973-12/1992 1/1993-12/2010 
14 NORTHERN DVINA 372 1/1971-12/1992 1/1993-12/2005 
15 YELLOW 480 1/1971-12/1990 1/1991-12/2010 
16 COLUMBIA 480 1/1971-12/1990 1/1991-12/2010 
17 MISSISSIPPI 444 1/1971-12/1990 1/1991-12/2010 
18 ST.LAWRENCE 480 1/1971-12/1990 1/1991-12/2010 
19 FRASER RIVER 480 1/1971-12/1990 1/1991-12/2010 
20 LABE 480 1/1971-12/1990 1/1991-12/2010 
21 RHINE RIVER 480 1/1971-12/1990 1/1991-12/2010 
22 DANUBE 348 1/1971-12/1990 1/1991-12/1999 
23 NEVA 480 1/1971-12/1990 1/1991-12/2010 
24 VOLGA 468 1/1971-12/1990 1/1992-12/2010 
25 DON 456 1/1971-12/1990 1/1993-12/2010 
26 YANGTZE 372 1/1971-12/1990 1/1991-12/2001 
27 COLORADO 480 1/1971-12/1990 1/1991-12/2010 
28 SANTIAGO 372 1/1971-12/1990 1/1991-12/2003 
29 NIGER 300 1/1971-12/1990 1/1991-12/2005 
30 ZAIRE 480 1/1971-12/1990 1/1991-12/2010 
31 AMAZONAS 324 1/1971-12/1990 1/1991-12/1997 
32 XINGU 420 1/1971-12/1991 1/1992-12/2008 
33 RIO PARNAIBA 300 1/1982-12/2001 1/2001-12/2006 
34 SAO FRANCISCO 444 1/1971-12/1990 1/1991-12/2008 
35 PARAGUAI 444 1/1971-12/1990 1/1991-12/2007 
36 BURDEKIN 480 1/1971-12/1990 1/1991-12/2010 
37 ORANJE 456 1/1971-12/1992 1/1993-12/2010 
38 COOPER CREEK 396 1/1971-12/1993 1/1991-12/2006 
39 FITZROY 480 1/1971-12/1990 1/1991-12/2010 
40 DARLING RIVER 312 1/1971-12/2001 1/2002-12/2007 
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Table S6. Cross-correlation of the model residuals for the six catchments where their trade-off-based MMC 
solutions fail. 

OLENEK       

 DBH H08 LPJmL PCRGLOBWB WaterGAP2 
DBH 1     
HO8 0.953627 1    
LPJmL 0.398167 0.461829 1   
PCRGLOBWB 0.946451 0.965436 0.519173 1  
WaterGAP2 0.81903 0.872276 0.375587 0.817426 1 

MACKENZIE      

 DBH H08 LPJmL PCRGLOBWB WaterGAP2 
DBH 1     
HO8 0.491979 1    
LPJmL -0.62203 -0.55728 1   
PCRGLOBWB 0.133255 0.455914 0.135442 1  
WaterGAP2 -0.42352 0.191301 0.397815 0.780964 1 

WINNIPEG     

 DBH H08 LPJmL PCRGLOBWB WaterGAP2 
DBH 1     
HO8 -0.00723 1    
LPJmL -0.24339 0.676216 1   
PCRGLOBWB 0.739637 0.183786 0.057652 1  
WaterGAP2 -0.19368 0.240907 0.343589 0.32813 1 

COLUMBIA      

 DBH H08 LPJmL PCRGLOBWB WaterGAP2 
DBH 1     
HO8 -0.52298 1    
LPJmL -0.77634 0.695721 1   
PCRGLOBWB 0.000928 0.183148 0.283918 1  
WaterGAP2 -0.10828 0.565067 0.58462 0.509789 1 

LABE       

 DBH H08 LPJmL PCRGLOBWB WaterGAP2 
DBH 1     
HO8 -0.05791 1    
LPJmL -0.08669 0.744627 1   
PCRGLOBWB 0.555102 0.097086 0.350186 1  
WaterGAP2 0.095586 0.548779 0.510525 0.128655 1 

PARAGUAI      

 DBH H08 LPJmL PCRGLOBWB WaterGAP2 
DBH 1     
HO8 0.817754 1    
LPJmL 0.96891 0.819339 1   
PCRGLOBWB 0.938688 0.925835 0.956784 1  
WaterGAP2 0.702871 0.657761 0.70128 0.724402 1 

 
 

Table S7. Changes in IPE score and performance gain of the best performing MMC solutions for the six 
catchments where their trade-off-based MMC solutions fail. 

 IPE PG relative to best GHM (%) PG relative to EM (%) 

 Best 
GHM 

EM 
original 
MMC 

Best 
MMC 

original 
MMC 

Best 
MMC 

original 
MMC 

Best 
MMC 

Mackenzie -1.30 -1.39 -1.33 -1.88 -3 -58 5 -49 

Columbia -1.11 -1.28 -1.21 -1.22 -10 -12 7 5 

Olenek -1.47 8.12 -1.15 -1.36 33 11 -1027 -1048 

Paraguai 8.00 78.53 8.19 8.00 19 -0.4 -7034 -7053 

Winnipeg 1.55 2.29 1.62 1.60 7 5 -67 -69 

Labe -1.47 3.10 -1.44 -1.65 2 -19 -554 -575 
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Section 2 
 
 

Table S8. IPE and its components values for mean annual runoff for GHMs, EM and MMC 

  Calibration Validation 
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RMSE 26.6 21.7 20.7 15.0 14.1 16.0 11.1 24.4 20.2 18.9 15.0 11.9 14.9 9.4 

MARE 1.8 2.0 1.8 1.7 1.0 1.4 0.6 1.4 2.1 1.4 1.6 0.8 1.2 0.5 

CE -0.7 -0.1 0.0 0.5 0.5 0.4 0.7 -0.4 0.0 0.2 0.5 0.7 0.5 0.8 

IPE 1.1 -1.3 -1.3 -1.7 -2.0 -1.7 -3.3 1.6 2.0 1.4 1.5 -1.3 1.1 -2.0 

2 

RMSE 16.5 11.4 9.8 7.5 6.9 6.2 6.1 14.6 8.8 8.0 6.1 5.8 5.6 4.8 

MARE 0.7 1.1 0.7 0.9 0.7 0.6 0.3 0.8 1.2 0.7 0.9 0.8 0.7 0.4 

CE -1.0 0.0 0.3 0.6 0.6 0.7 0.7 -1.5 0.1 0.3 0.6 0.6 0.6 0.7 

IPE 1.2 -1.3 -1.7 -1.7 -2.0 -2.5 -3.3 3.1 1.9 1.3 1.3 1.2 1.1 -1.4 

3 

RMSE 23.4 14.1 25.8 19.0 14.6 16.6 13.4 20.1 12.3 23.4 16.1 12.2 14.0 11.4 

MARE 0.8 0.5 0.8 0.4 0.4 0.4 0.2 0.7 0.4 0.7 0.3 0.3 0.3 0.2 

CE 0.0 0.6 -0.3 0.3 0.6 0.5 0.7 0.0 0.6 -0.4 0.3 0.6 0.5 0.7 

IPE -1.4 -2.5 -1.3 -2.0 -2.5 -2.5 -3.3 1.2 -1.7 1.2 -1.4 -1.7 -1.7 -2.5 

4 

RMSE 21.3 12.8 32.1 10.2 6.0 11.0 4.4 20.9 14.0 27.0 8.9 6.7 10.7 3.9 

MARE 1.6 1.3 3.6 1.5 1.1 1.6 0.3 1.6 1.7 2.8 1.2 1.3 1.5 0.3 

CE -5.2 -1.2 -13.0 -0.4 0.5 -0.7 0.7 -6.8 -2.5 -12.0 -0.4 0.2 -1.1 0.7 

IPE 2.4 1.2 5.2 1.0 -1.7 1.1 -3.3 8.4 4.7 13.9 2.6 2.5 3.5 -1.3 

5 

RMSE 21.1 17.7 20.3 14.8 18.7 13.4 6.3 17.6 14.1 20.2 13.7 15.8 10.8 7.4 

MARE 0.7 1.9 1.2 2.1 3.5 1.5 0.4 0.7 1.1 1.1 1.4 2.5 0.9 0.4 

CE 0.3 0.5 0.3 0.6 0.4 0.7 0.9 0.4 0.6 0.2 0.6 0.5 0.8 0.9 

IPE -1.4 -1.4 -1.4 -1.7 1.0 -2.0 -5.0 -1.3 1.1 1.2 1.3 2.3 -1.3 -2.5 

6 

RMSE 26.1 20.9 24.1 25.2 7.5 16.7 7.3 30.5 26.5 23.9 30.1 13.2 21.4 13.2 

MARE 1.9 15.8 33.6 40.0 9.7 20.0 3.8 1.4 19.7 38.9 55.3 12.3 25.3 2.7 

CE 0.2 0.5 0.3 0.2 0.9 0.7 0.9 0.2 0.4 0.5 0.2 0.8 0.6 0.8 

IPE -1.4 -1.4 1.1 1.3 -3.3 -1.4 -5.0 -1.4 6.3 12.5 17.7 3.9 8.1 -1.1 

7 

RMSE 18.5 8.3 17.6 5.6 6.2 4.1 4.5 17.0 8.7 14.3 5.4 5.0 4.0 4.9 

MARE 1.0 0.6 0.9 0.3 0.5 0.3 0.2 1.0 0.7 0.8 0.2 0.4 0.3 0.3 

CE -2.5 0.3 -2.2 0.7 0.6 0.8 0.8 -2.7 0.0 -1.6 0.6 0.7 0.8 0.7 

IPE 1.5 -1.7 1.4 -3.3 -2.5 -3.3 -3.3 4.5 1.9 3.4 -1.3 1.1 -1.4 -1.4 

8 

RMSE 16.2 4.8 15.0 5.9 2.1 6.5 1.8 16.3 4.6 10.8 5.8 2.0 6.0 1.6 

MARE 3.0 1.2 2.2 1.1 0.4 1.4 0.3 2.7 1.1 1.8 0.9 0.3 1.2 0.3 

CE -51.2 -3.7 -43.6 -6.0 0.1 -7.4 0.4 -51.8 -3.1 -21.9 -5.6 0.2 -6.1 0.5 

IPE 19.7 2.4 16.8 3.1 -1.4 3.7 -2.0 61.4 5.7 27.0 8.2 1.4 9.0 1.0 

9 

RMSE 14.3 6.9 28.6 4.1 1.0 8.9 0.8 18.1 6.0 20.9 4.8 0.8 8.5 0.7 

MARE 22.6 9.6 24.5 6.1 0.9 12.7 0.5 17.8 7.0 17.9 5.1 0.8 9.7 0.5 

CE -134.0 -30.5 -537.0 -10.3 0.3 -51.3 0.6 -387.0 -42.4 -516.0 -26.9 0.3 -84.3 0.5 

IPE 68.1 16.4 267.8 6.4 -1.4 26.8 -2.5 384.8 44.5 512.3 28.9 1.6 85.8 1.1 

10 

RMSE 17.7 6.7 16.0 6.0 4.1 7.9 2.8 19.9 5.9 16.4 7.4 6.7 8.3 5.3 

MARE 11.3 4.2 9.8 3.7 2.0 6.2 0.9 5.7 1.8 4.4 2.3 1.6 3.1 0.7 

CE -14.5 -1.2 -11.7 -0.8 0.2 -2.1 0.6 -6.9 0.3 -4.3 -0.1 0.1 -0.4 0.4 

IPE 8.1 1.5 6.7 1.3 -1.4 2.1 -2.5 6.6 1.6 4.8 2.1 1.5 2.8 -1.3 
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Table S8 (Cont.). IPE and its components values for mean annual runoff for GHMs, EM and MMC 
  Calibration Validation 
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11 

RMSE 37.2 15.9 17.9 8.4 7.0 11.5 7.0 37.1 16.0 16.3 7.5 8.0 9.5 7.6 

MARE 2.4 0.7 0.7 0.4 0.4 0.7 0.3 1.8 0.5 0.6 0.3 0.3 0.5 0.4 

CE -16.9 -2.3 -3.2 0.1 0.4 -0.7 0.4 -15.8 -2.1 -2.2 0.3 0.2 -0.1 0.3 

IPE 6.1 1.4 1.6 -1.7 -2.0 1.0 -2.0 24.2 4.8 5.0 1.6 1.7 2.3 1.6 

12 

RMSE 35.8 12.9 9.7 9.5 2.4 7.8 2.2 33.4 13.6 10.9 9.6 3.3 7.8 3.0 

MARE 3.0 1.2 0.7 1.0 0.2 0.7 0.2 2.8 1.3 0.6 1.0 0.3 0.7 0.3 

CE -187.8 -23.6 -12.8 -12.4 0.2 -7.8 0.3 -89.9 -14.1 -8.7 -6.5 0.1 -4.0 0.3 

IPE 52.0 7.3 4.2 4.2 -2.0 2.9 -2.0 297.5 50.1 32.2 25.6 3.6 17.1 3.1 

13 

RMSE 47.4 22.6 50.9 10.6 22.0 13.6 9.6 40.8 15.6 39.6 14.5 21.2 11.1 13.4 

MARE 1.5 1.2 2.4 0.5 1.6 1.1 0.4 1.2 0.8 1.4 0.6 1.6 0.8 0.4 

CE -4.0 -0.1 -4.7 0.8 -0.1 0.6 0.8 -3.0 0.4 -2.8 0.5 -0.1 0.7 0.6 

IPE 2.0 -1.4 2.3 -3.3 -1.4 -2.5 -5.0 2.8 1.0 2.8 -1.4 1.7 -1.3 -1.7 

14 

RMSE 34.9 17.4 51.1 29.1 17.7 18.4 13.4 36.7 14.1 48.6 30.4 18.3 18.7 13.7 

MARE 1.1 1.1 2.3 0.6 0.6 0.7 0.4 1.2 0.9 1.7 0.6 0.6 0.5 0.4 

CE -0.5 0.6 -2.1 0.0 0.6 0.6 0.8 -0.4 0.8 -1.4 0.1 0.7 0.6 0.8 

IPE 1.0 -1.7 1.9 -1.4 -2.5 -2.0 -3.3 1.5 1.0 2.1 -1.1 -1.4 -1.7 -2.5 

15 

RMSE 11.6 5.5 5.9 15.5 3.7 6.9 2.7 10.7 4.8 5.8 14.9 2.1 6.7 1.6 

MARE 2.4 1.4 1.0 3.6 0.8 1.6 0.3 4.0 2.1 1.8 6.0 0.7 2.7 0.7 

CE -11.3 -1.7 -2.2 -21.2 -0.2 -3.3 0.4 -43.2 -7.8 -12.2 -85.0 -0.7 -16.3 0.0 

IPE 5.4 1.7 1.7 9.3 -1.1 2.3 -2.0 23.4 5.5 7.4 44.9 1.5 9.7 1.2 

16 

RMSE 18.7 11.4 14.0 10.2 5.1 5.3 4.9 15.2 9.8 12.5 8.4 5.2 4.6 5.1 

MARE 0.6 0.4 0.5 0.4 0.2 0.2 0.1 0.5 0.4 0.5 0.4 0.2 0.2 0.2 

CE -3.1 -0.5 -1.3 -0.2 0.7 0.7 0.7 -2.1 -0.3 -1.1 0.0 0.6 0.7 0.7 

IPE 2.1 1.0 1.4 -1.1 -2.5 -2.5 -2.5 4.3 2.1 3.1 1.7 -1.1 -1.3 -1.3 

17 

RMSE 15.6 4.5 5.6 7.8 3.1 5.7 3.3 16.6 4.4 5.6 8.6 3.4 6.0 3.7 

MARE 1.1 0.2 0.4 0.5 0.2 0.4 0.1 1.2 0.2 0.4 0.5 0.2 0.4 0.1 

CE -2.5 0.7 0.5 0.1 0.9 0.5 0.8 -3.6 0.7 0.5 -0.3 0.8 0.4 0.8 

IPE 1.9 -2.5 -2.0 -1.4 -3.3 -2.0 -5.0 5.0 -1.7 1.1 1.7 -2.0 1.2 -2.0 

18 

RMSE 47.6 22.7 17.8 8.8 4.6 13.6 2.2 42.6 19.0 16.5 8.0 5.6 12.3 3.0 

MARE 1.3 0.6 0.5 0.3 0.1 0.4 0.1 1.3 0.6 0.6 0.3 0.2 0.3 0.1 

CE -276.0 -61.9 -37.7 -8.5 -1.5 -21.7 0.4 -221.0 -43.4 -32.4 -6.9 -2.9 -17.4 -0.1 

IPE 86.3 20.0 12.6 3.5 1.2 7.5 -2.0 375.2 75.4 56.9 14.0 7.1 31.6 2.5 

19 

RMSE 20.4 30.4 43.8 20.4 13.8 18.4 11.3 19.8 29.1 41.0 19.6 15.2 18.3 11.8 

MARE 0.4 0.9 1.4 0.4 0.4 0.5 0.2 0.4 1.1 1.3 0.4 0.6 0.6 0.3 

CE 0.3 -0.6 -2.3 0.3 0.7 0.4 0.8 0.3 -0.5 -1.9 0.3 0.6 0.4 0.8 

IPE -2.0 -1.1 1.5 -2.0 -2.5 -2.0 -5.0 1.2 2.5 4.1 1.1 1.2 1.3 -1.7 

20 

RMSE 19.4 18.4 12.6 22.3 3.8 12.1 3.6 21.4 17.3 13.7 23.0 4.4 13.4 4.2 

MARE 1.3 0.7 0.6 1.5 0.2 0.7 0.2 1.8 0.7 0.8 2.0 0.3 1.0 0.3 

CE -6.2 -5.5 -2.0 -8.5 0.7 -1.8 0.8 -6.2 -3.7 -2.0 -7.4 0.7 -1.8 0.7 

IPE 3.5 3.0 1.6 4.5 -2.5 1.6 -3.3 6.7 4.1 3.0 7.7 -1.4 3.1 -1.4 
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Table S8 (Cont.). IPE and its components values for mean annual runoff for GHMs, EM and MMC 

  Calibration Validation 
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21 

RMSE 24.3 31.2 20.3 17.4 7.5 15.6 6.7 23.8 28.2 17.1 15.2 6.8 14.4 5.7 

MARE 0.6 0.6 0.4 0.4 0.2 0.3 0.1 0.6 0.5 0.3 0.4 0.2 0.3 0.1 

CE -1.4 -2.9 -0.6 -0.2 0.8 0.0 0.8 -1.7 -2.8 -0.4 -0.1 0.8 0.0 0.8 

IPE 1.5 2.0 1.1 -1.1 -3.3 -1.4 -3.3 2.6 3.3 1.5 1.4 -2.0 1.2 -2.5 

22 

RMSE 23.4 18.7 13.2 16.8 6.3 9.1 5.4 23.1 18.5 11.0 15.3 5.8 8.8 4.9 

MARE 0.6 0.5 0.4 0.5 0.2 0.3 0.1 0.7 0.5 0.3 0.5 0.1 0.2 0.1 

CE -5.1 -2.9 -0.9 -2.1 0.6 0.1 0.7 -4.7 -2.7 -0.3 -1.5 0.6 0.2 0.7 

IPE 2.5 1.7 1.0 1.5 -2.5 -1.7 -3.3 4.0 2.7 1.3 2.1 -2.0 -1.1 -2.0 

23 

RMSE 39.0 24.2 15.9 13.1 6.4 8.7 3.6 41.4 22.7 15.4 13.1 6.1 9.3 3.6 

MARE 1.1 0.9 0.6 0.5 0.3 0.3 0.1 1.1 0.8 0.6 0.5 0.3 0.3 0.1 

CE -34.1 -12.5 -4.8 -3.0 0.0 -0.7 0.7 -48.9 -14.0 -5.9 -4.0 -0.1 -1.5 0.6 

IPE 10.8 4.5 2.2 1.6 -1.4 -1.1 -3.3 83.4 25.6 12.2 8.9 2.4 4.7 1.1 

24 

RMSE 28.7 16.7 17.0 7.2 4.2 10.4 4.1 28.4 16.5 12.9 5.8 4.6 9.9 4.5 

MARE 1.8 0.9 0.7 0.4 0.2 0.7 0.2 1.6 0.8 0.6 0.3 0.2 0.6 0.2 

CE -10.8 -3.0 -3.2 0.2 0.7 -0.5 0.8 -9.4 -2.5 -1.2 0.6 0.7 -0.3 0.7 

IPE 5.3 2.2 2.1 -1.4 -2.5 1.2 -2.5 6.8 2.8 1.9 -1.4 -1.7 1.5 -2.0 

25 

RMSE 20.6 13.4 18.9 23.7 2.4 13.9 2.3 19.4 13.3 16.2 21.2 2.1 12.8 1.8 

MARE 4.2 3.0 4.1 5.0 0.5 3.3 0.4 3.5 2.3 3.3 3.7 0.3 2.6 0.2 

CE -49.6 -20.4 -41.8 -66.3 0.3 -21.9 0.4 -94.4 -43.9 -65.4 -113.7 -0.1 -40.3 0.1 

IPE 20.2 9.1 17.2 26.6 -1.4 9.7 -1.7 83.5 39.9 58.8 100.1 1.5 37.1 1.2 

26 

RMSE 8.7 21.7 18.0 43.5 9.3 18.7 7.3 8.8 19.7 17.4 41.3 8.6 18.1 6.5 

MARE 0.2 0.4 0.4 0.8 0.1 0.3 0.1 0.2 0.4 0.5 0.9 0.1 0.4 0.1 

CE 0.9 0.4 0.6 -1.4 0.9 0.6 0.9 0.9 0.5 0.6 -1.0 0.9 0.6 1.0 

IPE -5.0 -1.7 -2.0 1.5 -5.0 -2.0 -5.0 -2.5 -1.1 1.0 2.8 -3.3 -1.1 -5.0 

27 

RMSE 7.1 3.0 4.2 3.2 3.3 3.0 2.6 7.1 1.4 3.3 2.8 2.0 2.4 1.3 

MARE 1.4 0.4 0.9 0.6 0.5 0.6 0.4 1.4 0.3 0.8 0.5 0.4 0.5 0.3 

CE -5.3 -0.1 -1.2 -0.2 -0.3 -0.1 0.1 -43.0 -0.7 -8.6 -5.7 -2.4 -3.9 -0.4 

IPE 3.0 -1.3 1.4 -1.1 -1.1 -1.1 -1.4 52.9 2.5 12.1 8.5 4.6 6.4 2.2 

28 

RMSE 21.3 17.4 10.9 18.4 2.9 12.9 2.9 21.1 15.3 8.9 19.2 2.8 12.1 2.9 

MARE 7.4 1.8 1.4 9.3 0.6 3.9 0.4 10.5 5.8 3.2 12.0 1.3 6.4 1.1 

CE -11.2 -7.1 -2.2 -8.1 0.8 -3.5 0.8 -24.0 -12.2 -3.5 -19.8 0.5 -7.3 0.5 

IPE 7.9 5.2 2.2 6.2 -3.3 3.1 -3.3 15.1 8.3 3.8 15.0 1.4 7.3 1.2 

29 

RMSE 17.6 18.9 19.5 11.2 4.7 13.5 1.3 14.5 15.1 14.9 7.7 2.7 9.9 2.1 

MARE 2.9 3.5 2.3 2.9 0.7 2.4 0.2 1.8 2.3 1.3 1.6 0.4 1.3 0.3 

CE -12.0 -13.9 -14.9 -4.3 0.1 -6.6 0.9 -7.5 -8.3 -8.0 -1.4 0.7 -2.9 0.8 

IPE 8.7 10.0 10.5 4.2 1.0 5.4 -5.0 9.7 10.7 10.0 3.6 -1.4 4.9 -1.7 

30 

RMSE 22.1 17.5 14.6 9.9 5.0 11.4 4.4 18.3 15.3 12.1 9.2 7.6 9.1 6.5 

MARE 0.7 0.5 0.4 0.3 0.1 0.3 0.1 0.5 0.4 0.3 0.3 0.2 0.2 0.2 

CE -9.2 -5.4 -3.5 -1.1 0.5 -1.7 0.6 -4.9 -3.1 -1.6 -0.5 0.0 -0.5 0.2 

IPE 3.3 2.2 1.7 1.0 -2.5 1.2 -2.5 8.3 5.9 3.9 2.5 1.8 2.4 1.4 
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Table S8 (Cont.). IPE and its components values for mean annual runoff for GHMs, EM and MMC 
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31 

RMSE 24.7 21.1 29.6 32.2 16.5 19.4 10.2 23.2 18.8 27.6 32.5 13.9 17.6 9.3 

MARE 0.2 0.2 0.3 0.2 0.1 0.2 0.1 0.3 0.2 0.2 0.3 0.1 0.1 0.1 

CE 0.1 0.3 -0.4 -0.6 0.6 0.4 0.8 0.3 0.5 0.0 -0.4 0.8 0.6 0.9 

IPE -1.3 -1.7 -1.1 1.0 -2.5 -2.0 -3.3 2.0 1.5 2.6 3.4 -1.1 1.3 -2.0 

32 

RMSE 69.2 63.6 67.0 27.6 22.4 42.3 21.9 61.9 67.1 64.5 22.2 22.1 40.2 21.2 

MARE 2.7 1.0 1.5 0.6 0.4 1.1 0.4 5.0 1.9 3.1 1.0 1.1 2.2 0.9 

CE -1.4 -1.1 -1.3 0.6 0.7 0.1 0.8 -1.3 -1.6 -1.4 0.7 0.7 0.1 0.7 

IPE 1.8 1.3 1.5 -2.5 -3.3 -1.3 -3.3 5.9 4.7 4.9 1.1 1.2 2.6 1.0 

33 

RMSE 32.7 32.7 33.2 10.8 4.6 21.0 1.7 32.7 39.7 37.5 13.3 4.2 23.6 1.7 

MARE 3.8 2.2 3.1 0.9 0.6 1.9 0.2 4.2 2.2 3.1 1.0 0.6 2.0 0.2 

CE -52.5 -52.6 -54.2 -4.9 0.0 -21.1 0.9 -64.9 -95.9 -85.5 -9.9 -0.1 -33.2 0.8 

IPE 35.6 35.3 36.5 4.3 1.3 14.9 -3.3 48.8 70.8 63.4 8.4 1.5 25.4 -2.5 

34 

RMSE 41.0 35.9 28.6 31.7 12.4 26.5 9.7 38.4 32.5 21.8 24.5 8.4 22.5 6.7 

MARE 0.9 0.5 0.5 0.6 0.3 0.4 0.2 1.0 0.6 0.6 0.7 0.3 0.5 0.3 

CE -3.2 -2.2 -1.0 -1.5 0.6 -0.7 0.8 -3.6 -2.3 -0.5 -0.9 0.8 -0.6 0.9 

IPE 2.9 2.2 1.6 1.9 -2.0 1.4 -2.5 4.8 3.5 1.9 2.2 -1.7 1.9 -2.0 

35 

RMSE 42.5 44.5 35.9 37.0 6.7 31.7 5.8 35.0 37.2 31.1 29.6 6.1 26.4 5.4 

MARE 2.7 2.2 2.1 2.2 0.4 1.8 0.3 5.8 4.4 4.6 5.1 2.3 4.4 2.6 

CE -34.7 -38.2 -24.4 -26.1 0.1 -18.9 0.3 -39.2 -44.3 -30.7 -27.7 -0.2 -21.9 0.1 

IPE 12.1 13.1 8.8 9.3 -1.7 7.0 -1.7 136.9 153.0 108.1 98.4 8.0 78.5 8.2 

36 

RMSE 21.9 18.0 17.0 9.8 7.3 9.2 10.1 19.7 11.9 14.6 13.2 11.5 9.8 10.2 

MARE 63.2 2.1 38.8 17.0 8.4 25.7 1.8 17.9 3.7 8.1 5.2 4.2 7.6 1.8 

CE -0.5 0.0 0.1 0.7 0.8 0.7 0.7 0.2 0.7 0.5 0.6 0.7 0.8 0.8 

IPE 1.2 -1.1 -1.3 -2.5 -3.3 -2.5 -2.5 6.9 1.4 3.1 2.0 1.6 2.9 -1.4 

37 

RMSE 11.5 1.7 11.1 5.8 1.0 5.8 0.8 7.7 1.6 8.0 5.0 0.8 4.1 1.0 

MARE 25.2 1.8 15.0 17.0 1.0 11.9 0.7 68.1 9.9 47.6 55.1 3.1 36.7 2.3 

CE -154.9 -2.4 -144.0 -39.5 -0.2 -38.4 0.3 -102.8 -3.3 -109.3 -42.9 -0.2 -28.6 -0.7 

IPE 89.6 2.3 83.1 24.1 1.0 23.1 -1.4 83.1 7.1 81.1 46.4 2.3 31.2 2.0 

38 

RMSE 23.1 6.9 16.8 3.4 2.7 9.4 2.4 18.5 2.9 12.0 2.8 1.0 7.0 0.9 

MARE 64901 9658 307693 71119 7966 209090 557 1030724 21936 379899 92248 15753 308112 2954 

CE -57.8 -4.3 -29.8 -0.3 0.2 -8.6 0.4 -521.6 -11.6 -221.3 -11.5 -0.4 -73.2 -0.3 

IPE 63.6 2.4 30.6 6.6 -1.1 19.5 -2.0 6992 149 2578 625 106 2088 20.1 

39 

RMSE 25.1 6.0 19.4 7.3 5.2 10.2 5.1 19.2 7.4 16.0 7.3 5.5 8.5 5.3 

MARE 2194 150 1839 856 71 1022 46 57166 4690 39895 24101 3430 25856 2731 

CE -5.0 0.7 -2.6 0.5 0.7 0.0 0.7 -2.1 0.5 -1.1 0.6 0.7 0.4 0.8 

IPE 6.3 -2.0 4.9 2.1 -2.5 2.6 -3.3 641.2 52.6 447.5 270.3 38.5 290.0 30.6 

40 

RMSE 25.1 4.7 17.1 9.6 1.0 10.8 1.1 15.9 2.0 10.4 5.6 0.1 6.5 0.4 

MARE 69399 1132 27319 23162 457 24293 76 657576 19041 305242 193641 2223 235545 1992 

CE -494.5 -16.2 -229.9 -72.1 0.2 -91.4 0.0 -21005 -325 -9036 -2597 0 -3552 -10.1 

IPE 200.6 7.0 92.3 35.2 -1.4 41.9 -1.7 39448 1126 18262 11432 131 13919 117 
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1. Lena catchment at Stob station. 

 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM.  

 
.  IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training -1.1 1.0 -1.4 -1.3 -2.4 -1.7 -3.6 -183.0 -613.2 -121.7 -152.4 

Calibration 1.1 -1.2 -1.3 -1.7 -2.2 -1.8 -3.0 -128.9 -705.5 -88.9 -105.9 

Validation 1.6 2.0 1.4 1.5 -1.2 1.1 -2.0 -415.2 -41341.1 -78.4 -386.6 
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2. Amur catchment at Komsomolsk station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  
 
 

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training -1.2 -1.1 -1.7 -1.4 -1.7 -2.1 -3.4 -134.7 -613.2 -165.8 -152.4 

Calibration 1.2 -1.2 -1.6 -1.8 -2.1 -2.4 -3.0 -66.1 -705.5 -91.1 -105.9 

Validation 3.1 1.9 1.3 1.3 1.2 1.1 -1.5 -356.3 -41341.1 -466.4 -386.6 
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3. Yenisei catchment at Igarka station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training -1.2 -2.0 -1.1 -1.9 -2.1 -2.2 -3.0 -81.4 -613.2 -89.3 -152.4 

Calibration -1.4 -2.5 -1.3 -2.1 -2.6 -2.4 -3.2 -79.1 -705.5 -63.1 -105.9 

Validation 1.2 -1.5 1.2 -1.5 -1.7 -1.7 -2.3 -60.8 -41341.1 -57.7 -386.6 
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4. OB catchment at Salekhard station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  
 

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 2.5 1.8 4.9 1.1 1.1 1.3 -2.6 -488.4 -613.2 -566.6 -152.4 

Calibration 2.4 1.2 5.2 1.0 -1.6 1.1 -3.4 -551.6 -705.5 -178.1 -105.9 

Validation 8.4 4.7 13.9 2.6 2.5 3.5 -1.3 -583.5 -41341.1 -581.0 -386.6 
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5. Kolyma catchment at Kolymskaya station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  
 

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training -1.7 -1.4 -1.7 -1.1 1.8 -1.5 -5.2 -369.7 -613.2 -350.4 -152.4 

Calibration -1.5 -1.5 -1.5 -1.6 -1.0 -2.0 -5.6 -357.6 -705.5 -400.1 -105.9 

Validation -1.2 1.1 1.2 1.3 2.3 -1.2 -2.4 -119.4 -41341.1 -113.9 -386.6 



 18 

 

6. Olenek catchment at 7.5KM Downstream of Mouth of River Pur station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  
 

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training -1.5 -1.7 -1.6 1.2 -3.2 -2.0 -6.1 -410.0 -613.2 -290.9 -152.4 

Calibration -1.4 -1.5 1.1 1.3 -3.3 -1.5 -6.0 -448.6 -705.5 -269.7 -105.9 

Validation -1.5 6.3 12.5 17.7 3.9 8.1 -1.2 -1026.9 -41341.1 32.7 -386.6 
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7. Mackenzie River catchment at Norman Wells station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  
 

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 1.9 -1.1 1.7 -2.7 -1.4 -2.8 -3.3 -48.8 -613.2 -62.4 -152.4 

Calibration 1.5 -1.7 1.4 -3.2 -2.3 -3.7 -3.9 -23.7 -705.5 -74.3 -105.9 

Validation 4.5 1.9 3.4 -1.3 1.1 -1.4 -1.3 5.4 -41341.1 -3.5 -386.6 
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8. Saskatchewan catchment at The Pas station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  
 

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 15.9 2.6 7.4 2.4 -1.5 2.9 -2.5 -642.6 -613.2 -101.4 -152.4 

Calibration 19.7 2.4 16.8 3.1 -1.5 3.7 -1.9 -661.4 -705.5 -46.2 -105.9 

Validation 61.4 5.7 27.0 8.2 1.4 9.0 1.0 -793.3 -41341.1 -39.9 -386.6 
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9. Assiniboine catchment at Headingley station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 113.9 31.2 195.1 9.7 -1.4 31.3 -2.0 -3435.5 -613.2 -61.7 -152.4 

Calibration 68.1 16.4 267.8 6.4 -1.5 26.8 -2.2 -3005.5 -705.5 -75.5 -105.9 

Validation 384.8 44.5 512.3 28.9 1.6 85.8 1.1 -8473.8 -41341.1 -51.4 -386.6 
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10. Red River catchment at Emerson station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  
 

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 6.3 1.5 7.1 1.3 -1.0 2.4 -2.8 -618.9 -613.2 -178.6 -152.4 

Calibration 8.1 1.5 6.7 1.3 -1.4 2.1 -2.4 -550.1 -705.5 -105.7 -105.9 

Validation 6.6 1.6 4.8 2.1 1.5 2.8 -1.3 -502.2 -41341.1 -477.7 -386.6 
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11. Winnipeg River catchment at Slave Falls station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  
 

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 6.2 1.1 1.3 -1.6 -2.0 -1.1 -3.1 -197.3 -613.2 -112.3 -152.4 

Calibration 6.1 1.4 1.6 -1.7 -2.1 -1.0 -2.6 -152.8 -705.5 -48.9 -105.9 

Validation 24.2 4.8 5.0 1.6 1.7 2.3 1.6 -67.1 -41341.1 6.7 -386.6 
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12. Churchill River catchment at Above Granville Falls station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  
 

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 36.8 6.7 4.0 4.0 -2.2 2.4 -2.4 -583.8 -613.2 -26.0 -152.4 

Calibration 52.0 7.3 4.2 4.2 -1.8 2.9 -2.1 -598.8 -705.5 -22.5 -105.9 

Validation 297.5 50.1 32.2 25.6 3.6 17.1 3.1 -1397.9 -41341.1 -50.3 -386.6 
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13. Albany River catchment at Near Hat Island station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  
 

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 2.1 -1.1 2.4 -2.3 1.3 -1.6 -2.9 -131.9 -613.2 -56.6 -152.4 

Calibration 2.0 -1.5 2.3 -3.7 -1.4 -2.4 -4.3 -183.4 -705.5 -51.8 -105.9 

Validation 2.8 -1.0 2.8 -1.3 1.7 -1.2 -1.7 -44.1 -41341.1 -32.9 -386.6 
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14. Northern Dvina (Severnaya Dvina) catchment at Ust-Pinega station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 1.3 -1.6 1.5 -1.4 -2.1 -2.1 -3.3 -120.8 -613.2 -120.4 -152.4 

Calibration -1.0 -1.7 1.9 -1.4 -2.3 -2.0 -3.2 -118.0 -705.5 -87.5 -105.9 

Validation 1.5 -1.0 2.1 -1.2 -1.5 -1.5 -2.2 -70.1 -41341.1 -73.6 -386.6 
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15. Yellow catchment at Huayuankou station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 3.8 1.6 1.2 8.0 -1.3 1.7 -1.9 -460.5 -613.2 -63.6 -152.4 

Calibration 5.4 1.7 1.7 9.3 -1.1 2.3 -1.9 -522.4 -705.5 -85.9 -105.9 

Validation 23.4 5.5 7.4 44.9 1.5 9.7 1.2 -859.2 -41341.1 -33.0 -386.6 
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16. Columbia catchment at The Dalles, OREG. Station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 1.7 -1.0 1.4 -1.1 -2.6 -2.1 -3.1 -97.5 -613.2 -47.5 -152.4 

Calibration 2.1 1.0 1.4 -1.1 -2.5 -2.4 -2.8 -39.1 -705.5 -28.1 -105.9 

Validation 4.3 2.1 3.1 1.7 -1.1 -1.3 -1.2 6.5 -41341.1 -10.3 -386.6 
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17. Mississippi catchment at Vicksburg, MISS. Station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 2.5 -2.8 -1.6 -1.2 -3.7 -1.5 -4.2 -262.4 -613.2 -50.9 -152.4 

Calibration 1.9 -2.8 -2.0 -1.4 -3.9 -1.9 -4.2 -227.3 -705.5 -24.6 -105.9 

Validation 5.0 -1.6 1.1 1.7 -1.9 1.2 -2.0 -418.0 -41341.1 -14.2 -386.6 
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18. St. Lawrence catchment at Cornwall (Ontario), Near Massena, N.Y. station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 61.8 15.9 13.6 3.6 1.4 5.7 -2.0 -871.4 -613.2 -547.8 -152.4 

Calibration 86.3 20.0 12.6 3.5 1.2 7.5 -2.1 -1061.4 -705.5 -533.7 -105.9 

Validation 375.2 75.4 56.9 14.0 7.1 31.6 2.5 -2914.3 -41341.1 -461.9 -386.6 
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19. Fraser River catchment at Hope station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training -2.4 -1.2 1.5 -2.1 -2.4 -2.0 -4.1 -211.9 -613.2 -167.4 -152.4 

Calibration -2.1 -1.1 1.5 -2.1 -2.7 -2.1 -4.2 -208.5 -705.5 -140.4 -105.9 

Validation 1.2 2.5 4.1 1.1 1.2 1.3 -1.6 -392.4 -41341.1 -477.3 -386.6 
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20. Labe catchment at Neu-Darchau station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  
 

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 4.6 3.2 2.1 5.3 -2.2 1.9 -3.3 -622.3 -613.2 -118.5 -152.4 

Calibration 3.5 3.0 1.6 4.5 -2.7 1.6 -3.0 -557.7 -705.5 -27.8 -105.9 

Validation 6.7 4.1 3.0 7.7 -1.5 3.1 -1.4 -554.0 -41341.1 2.0 -386.6 
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21. Rhine River catchment at Lobith station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 1.9 2.4 1.2 1.1 -2.3 -1.2 -3.2 -201.5 -613.2 -85.0 -152.4 

Calibration 1.5 2.0 1.1 -1.1 -2.9 -1.3 -3.5 -214.3 -705.5 -56.3 -105.9 

Validation 2.6 3.3 1.5 1.4 -2.0 1.2 -2.5 -462.8 -41341.1 -50.7 -386.6 
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22. Danube catchment at Mohacs station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 2.8 2.0 1.0 1.4 -2.6 -1.6 -3.3 -171.7 -613.2 -75.6 -152.4 

Calibration 2.5 1.7 1.0 1.5 -2.5 -1.6 -2.9 -138.8 -705.5 -45.6 -105.9 

Validation 4.0 2.7 1.3 2.1 -1.9 -1.1 -2.2 -114.9 -41341.1 -31.9 -386.6 
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23. Neva catchment at Novosaratovka station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 10.9 3.8 2.4 2.0 -1.5 -1.2 -3.0 -175.4 -613.2 -144.4 -152.4 

Calibration 10.8 4.5 2.2 1.6 -1.5 -1.1 -3.1 -200.1 -705.5 -162.4 -105.9 

Validation 83.4 25.6 12.2 8.9 2.4 4.7 1.1 -364.7 -41341.1 -132.7 -386.6 
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24. Volga catchment at Volgograd Power Plant station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 5.8 2.4 2.0 -1.2 -2.4 1.3 -2.6 -489.3 -613.2 -23.6 -152.4 

Calibration 5.3 2.2 2.1 -1.4 -2.4 1.2 -2.7 -487.0 -705.5 -24.2 -105.9 

Validation 6.8 2.8 1.9 -1.3 -1.8 1.5 -2.0 -450.0 -41341.1 -23.1 -386.6 
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25. Don catchment at Razdorskaya station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 36.2 18.2 27.0 41.7 -1.3 15.9 -1.6 -1850.7 -613.2 -24.8 -152.4 

Calibration 20.2 9.1 17.2 26.6 -1.3 9.7 -1.5 -1227.9 -705.5 -19.9 -105.9 

Validation 83.5 39.9 58.8 100.1 1.5 37.1 1.2 -3591.7 -41341.1 -31.3 -386.6 
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26. Yangtze catchment at Cuntan station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training -3.4 -1.7 -1.6 1.5 -4.7 -1.9 -5.9 -404.7 -613.2 -127.3 -152.4 

Calibration -4.7 -1.8 -2.0 1.5 -4.9 -2.1 -5.9 -384.9 -705.5 -102.0 -105.9 

Validation -2.4 -1.1 -1.1 2.8 -3.1 -1.1 -4.2 -301.0 -41341.1 -107.7 -386.6 
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27. Colorado catchment at Lees Ferry Ariz station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 3.2 -1.4 2.1 1.1 -1.0 -1.0 -1.7 -64.4 -613.2 -26.5 -152.4 

Calibration 3.0 -1.3 1.4 -1.1 -1.1 -1.2 -1.5 -35.1 -705.5 -24.3 -105.9 

Validation 52.9 2.5 12.1 8.5 4.6 6.4 2.2 -422.1 -41341.1 -28.6 -386.6 
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28. Santiago catchment at El Capomal station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 5.7 4.0 1.6 5.2 -3.5 2.4 -3.6 -691.7 -613.2 -5.1 -152.4 

Calibration 7.9 5.2 2.2 6.2 -2.9 3.1 -3.0 -717.2 -705.5 -12.0 -105.9 

Validation 15.1 8.3 3.8 15.0 1.4 7.3 1.2 -617.4 -41341.1 -19.3 -386.6 
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29. Niger catchment at Lokoja station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 7.1 8.2 7.0 3.7 -1.4 4.0 -5.3 -1031.4 -613.2 -393.7 -152.4 

Calibration 8.7 10.0 10.5 4.2 -1.0 5.4 -4.4 -1071.1 -705.5 -333.4 -105.9 

Validation 9.7 10.7 10.0 3.6 -1.4 4.9 -1.8 -763.7 -41341.1 -41.3 -386.6 



 42 

 

30. Zaire  catchment at Kinshasa station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 3.6 2.2 1.8 1.3 -2.3 1.4 -2.5 -486.7 -613.2 -24.6 -152.4 

Calibration 3.3 2.2 1.7 -1.0 -2.4 1.2 -2.7 -485.0 -705.5 -30.2 -105.9 

Validation 8.3 5.9 3.9 2.5 1.8 2.4 1.4 -98.4 -41341.1 -36.3 -386.6 
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31. Amazonas catchment at Obidos station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training -1.4 -1.6 -1.2 -1.0 -2.7 -2.1 -4.7 -267.0 -613.2 -206.1 -152.4 

Calibration -1.3 -1.7 -1.1 -1.0 -2.3 -1.8 -3.8 -196.1 -705.5 -153.0 -105.9 

Validation 2.0 1.5 2.6 3.4 -1.1 1.3 -1.8 -410.2 -41341.1 -75.0 -386.6 
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32. Xingu catchment at Altamira station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 1.6 1.4 1.3 -2.0 -3.0 -1.4 -3.3 -189.3 -613.2 -24.8 -152.4 

Calibration 1.8 1.3 1.5 -2.3 -3.0 -1.2 -3.2 -191.9 -705.5 -15.9 -105.9 

Validation 5.9 4.7 4.9 1.1 1.2 2.6 1.0 -161.0 -41341.1 -8.6 -386.6 
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33. Rio Parnaiba catchment at Luzilandia station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 26.3 28.1 26.2 3.2 1.2 11.5 -3.2 -1569.6 -613.2 -637.5 -152.4 

Calibration 35.6 35.3 36.5 4.3 1.3 14.9 -2.9 -1880.7 -705.5 -614.4 -105.9 

Validation 48.8 70.8 63.4 8.4 1.5 25.4 -2.3 -2868.6 -41341.1 -574.0 -386.6 
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34. SAO Francisco catchment at MANGA station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 2.6 2.2 1.5 1.3 -1.7 1.2 -2.8 -503.5 -613.2 -109.7 -152.4 

Calibration 2.9 2.2 1.6 1.9 -1.8 1.4 -2.5 -487.5 -705.5 -63.7 -105.9 

Validation 4.8 3.5 1.9 2.2 -1.6 1.9 -1.9 -485.5 -41341.1 -29.2 -386.6 
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35. Paraguai catchment at Porto Murtinho (FB/DNOS) station. 
 

a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 9.5 9.8 7.4 7.6 -1.7 5.5 -2.5 -905.0 -613.2 -88.0 -152.4 

Calibration 12.1 13.1 8.8 9.3 -1.6 7.0 -2.2 -1016.5 -705.5 -59.3 -105.9 

Validation 136.9 153.7 108.1 98.4 8.0 78.5 8.2 -7033.6 -41341.1 18.6 -386.6 
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36. Burdekin catchment at Clare station. 
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b 
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f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training -1.3 -3.0 -2.2 -3.3 -2.7 -3.0 -4.5 -142.7 -613.2 -120.3 -152.4 

Calibration 1.2 -1.1 -1.2 -2.6 -3.7 -2.7 -2.5 19.8 -705.5 120.4 -105.9 

Validation 6.9 1.4 3.1 2.0 1.6 2.9 -1.4 -527.9 -41341.1 -479.2 -386.6 
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37. Oranje catchment at Vioolsdrif station. 
 

a 

 

b 
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d 

 

e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 16.4 2.1 13.8 9.3 -2.0 6.2 -3.3 -1056.3 -613.2 -131.6 -152.4 

Calibration 89.6 2.3 83.1 24.1 -1.0 23.1 -1.5 -2567.6 -705.5 -50.0 -105.9 

Validation 83.1 7.1 81.1 46.4 2.3 31.2 2.0 -2911.3 -41341.1 -22.3 -386.6 



 50 

 

38. Cooper Creek catchment at Callamurra station. 
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b 
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e 

 

f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 16.9 1.2 10.8 -1.4 -1.8 3.2 -6.4 -1063.8 -613.2 -463.9 -152.4 

Calibration 63.6 2.4 30.6 6.6 -1.1 19.5 -2.2 -2276.7 -705.5 -109.8 -105.9 

Validation 6992.9 148.9 2578.2 625.3 106.8 2088.9 20.1 -206888.9 -41341.1 -8673.7 -386.6 
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39. Fitzroy catchment at The Gap station. 
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f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 2.9 -1.3 2.0 -2.1 -3.5 -1.2 -3.8 -256.2 -613.2 -32.6 -152.4 

Calibration 6.3 -1.9 4.9 2.1 -2.8 2.6 -3.1 -663.2 -705.5 -25.6 -105.9 

Validation 641.2 52.6 447.5 270.3 38.5 290.0 30.6 -25936.7 -41341.1 -783.5 -386.6 



 52 

 

40. Darling River catchment at Louth station. 
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f 

 

Calibration                                                                                                Validation 

2. Partial solution spaces plot of the optimal MMC (a,b) for split data, time series of the EM, MMC and Robs (c,d) for split data, and flow duration curve (e,f), 

(Robs = obsereved runoff). 
 

a 

 

b 

 
3. Scatter plots of mean monthly a) and Q5, Q95 and mean annual runoff (MAR) b) on validation set, (Obs. runoff and Robs = obsereved runoff). 

 

4. IPE values for the GHMs (best GHM underlined), EM and optimal MMC and improvement in IPE achieved by MMC relative to the best GHM and the EM 

 
 
 
 

 
.  
 

 IPE  MMCPG relative to EM  MMCPG relative to best GHM 

 DBH H08 LPJmL 
PCR_ 

GLOBWB 
Water- 
GAP2 

EM MMC Catchment 
All catchments 

(Average) 
Catchment 

All catchments 
(Average) 

Training 141.5 8.0 63.5 20.6 -1.5 27.3 -2.0 -3032.4 -613.2 -49.2 -152.4 

Calibration 200.6 7.0 92.3 35.2 -1.5 41.9 -1.6 -4456.9 -705.5 -10.8 -105.9 

Validation 39448.4 1126.7 18262.3 11432.5 130.8 13919.3 117.3 -1380198.3 -41341.1 -1350.2 -386.6 
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