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ABSTRACT 

A detailed delineation of flood-prone areas over large regions represents a challenge that 
cannot be easily solved with today’s resources. The main limitations lie in algorithms and 
hardware, but also costs, scarcity and sparsity of data and our incomplete knowledge of how 
inundation events occur in different river floodplains. We showcase the implementation of a 
data-driven web application for regional analyses and detailed (i.e., tens of meters) mapping 
of floodplains, based on (a) the synthesis of hydrogeomorphic features into a morphological 
descriptor and (b) its classification to delineate flood-prone areas. We analysed the skill of 
the descriptor and the performance of the mapping method for European rivers. The web 
application can be effectively used for delineating flood-prone areas, reproducing the 
reference flood maps with a classification skill of 88.59% for the 270 major river basins 
analysed across Europe and 84.23% for the 64 sub-catchments of the Po River. 
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Software and data availability 

Software name 

Hydrogeomorphic Flood Hazard Mapping 

Hardware required 

Any web-enabled device with a modern web browser 

Software required 

Any web browser. 

Application components 

Geospatial Data Abstraction Library https://www.gdal.org/ 

TauDEM https://hydrology.usu.edu/taudem/ 

scikit-learn https://scikit-learn.org/  

OpenLayers https://openlayers.org/ 

Highcharts https://www.highcharts.com/ 

MapServer https://mapserver.org/ 

Apache HTTP Server https://httpd.apache.org/ 

Datasets included 

EU-DEM https://land.copernicus.eu/imagery-in-situ/eu-dem/ 

Flood hazard maps for Europe https://data.jrc.ec.europa.eu/dataset/ 

CCM River and Catchment Database http://ccm.jrc.ec.europa.eu/ 

Program languages 

HTML5, JavaScript and Python 

Availability 

Users can access the web application via its official website 
http://gecosistema.com/smartflood 

An offline version of the methodological workflow is provided via repository 
http://dx.doi.org/10.17632/pcxmm2hnfw.1  
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1. Introduction 
According to the European Environment Agency (EEA, 2016), a significant part of the 
European population is estimated to be living in, or near to, a flood-prone area. This 
tendency, with historical (e.g., Barredo, 2007) and projected (e.g., Alfieri et al., 2015) 
consequences of flood disasters tied to it, represents a serious challenge to flood risk 
management that is also emphasized by the Flood Directive (EU, 2007). Further investments 
are needed in this field, but authorities and stakeholders also lack prompt and cost-effective 
solutions to assess and manage every type of flood (e.g. Leskens et al., 2014), particularly 
over large scales, in contexts where observations are limited and transboundary 
coordination is required. This is unsatisfactory and to some degree unjustified as today’s 
technological developments provide us with unprecedented quantities of data to develop 
such solutions (e.g., Ma et al., 2015). 
 
For instance, classical approaches to flood hazard estimation, i.e. the combined use of 
hydrological and hydrodynamic models (e.g. Şen and Kahya, 2017), are limited by high 
computational costs when used with massive high-resolution datasets and over large scales 
(e.g. Schumann, Andreadis et al. 2014). Several authors have tackled this issue either by 
limiting the quantity and size of the inputs and simplifying the physics of the hydraulic models 
(e.g. Neal et al., 2012; Alfieri et al., 2014; Dottori et al. 2016) or by resorting to data-driven 
approaches (e.g. Schumann, Andreadis et al. 2014) or to data mining (e.g., Tehrany et al., 
2013, 2014; Rahmati and Pourghasem, 2017). 
 
However, large scale flood hazard mapping using big data, data-mining and artificial 
intelligence is still something that needs to be comprehensively addressed and that will 
directly benefit disaster risk reduction and transfer (e.g., insurance, see  Jongman et al., 
2014; Pappenberger et al., 2015; Ward et al., 2015). At the same time, striving for cost-
effective solutions to large scale flood hazard estimation will be decisive to economies and 
organizations with limited resources and tasked with civil protection and humanitarian aid. 
We have drawn inspiration from these limitations, to focus on an innovative web-based flood 
hazard mapping solution that builds upon recently developed geomorphic methodologies 
(Rennó et al., 2008; Manfreda et al., 2011; Degiorgis et al., 2012; Samela et al., 2017). 
 
Exploiting the potential of such methodologies, a web application named Hydrogeomorphic 
Flood Hazard Mapping (http://gecosistema.com/smartflood, see also Software 1 provided as 
supplementary material) has been designed as a rather innovative tool. It is presented 
herein as a demonstrator of the hydrogeomorphic method for flood mapping that makes use 
of big open-access datasets. The web application was developed to obtain rapid and cost-
effective estimates of flood-prone areas outside their original classification domain, in data-
scarce or resource limited settings and over large scales. Delineated flood-prone areas will 
be automatically downscaled to pixel size and from the main stream to the tributaries. The 
quality of the delineation depends on user choices, from the input layers to the selection of 
areas for classification and extrapolation. 
 
In particular, our web-based hydrogeomorphic flood hazard mapping environment enables 
users to: (1) perform a DEM-based flood-prone area delineation; (2) downscale and 
extrapolate flood studies across Europe; (3) instantly assess mapping performance relative 
to user-selected reference maps; (4) visualize consistent hydrogeomorphic floodplain 
delineation at 25 m spatial resolution; and, (5) fine-tune the resulting floodplain mapping on-
the-fly via a simple slider. The web application may evolve to a more powerful tool that 
attends to users’ needs and expectations in supporting evidence-based decision making. 
Examples of similar tools are the Iowa Flood Information System (Demir and Krajewski, 
2013) that provides access to flood maps and other flood-related information using an 
interactive interface or the FLIRE DSS (Kochilakis et al., 2016) that integrates flood maps 
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with flood warnings, observations and remote sensing data to inform decision makers 
through a web-based system. 
 
The web application we present here represents a step forward in flood hazard assessment 
and management and its scientific worth is considered manifold: 
 

• It provides fast and inexpensive estimates of flood-prone areas for specific return 
periods that complement, but do not replace, results from hydrodynamic simulations. 

• It provides fast and inexpensive extrapolation and downscaling capabilities of existing 
flood studies (e.g., modelling results, remote sensing detection, field surveys), 
particularly in unstudied areas or tributaries, across political borders and data-scarce 
regions. 

• It can be used to test and conduct experiments with the hydrogeomorphic approach, 
the classification method and the datasets. 

• It enables and exploits collaborative and community-based activities (e.g., Citizen 
and hydrology working group of the International Association of Hydrological 
Sciences https://iahs.info/Commissions--W-Groups/Working-Groups/Candhy.do). 

 
In order to showcase the (1) operational and (2) scientific capabilities of our web application, 
we employ it to (1) produce a pan-European flood hazard map for arbitrarily selected return 
periods, and (2) assess the effectiveness and accuracy of a given geomorphic index for 
delineating flood-prone areas by using high-resolution, open-access datasets. In particular, 
our study focuses on two different spatial scales: 270 major river basins in Europe and 64 
sub-catchments of the river Po (Italy). 
 
Results presented in this paper reinforce the idea that data-driven approaches are valuable 
in the handling of big data and for implementation as online tools, while the web technology 
is a powerful way to bring researchers, developers and end users together, in order to 
implement innovative approaches and functionalities in the context of large-scale flood 
assessment and management. 
 
This paper is organized in the following way: 2) review of the progress in hydrogeomorphic 
methods for flood mapping; 3) description of the geomorphic algorithm for flood hazard 
mapping adopted within the web application; 4) description of the web application; 5) use of 
the web application for delineating flood-prone areas across Europe and within the Po river 
basin and quality assessment of the outputs; 6) discussion. 
  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Tavares da Costa et al. / Environmental Modelling & Software (2018) 

 

5

2. Hydrogeomorphic flood hazard mapping: a 
review 
Simplified data-driven methods for delineating flood-prone areas aim at informing users 
rapidly in the absence of detailed studies and in data-scarce (e.g., ungauged basins) or 
resource limited settings, while they enable large-scale analyses without incurring high 
computational time penalties. In some cases, these methods may not depend explicitly on 
hydrological conditions nor relate directly to event frequency, duration or magnitude, nor to 
local settings or antecedent conditions. Instead, they can be based solely on causality 
between historical floods and the floodplain hydraulic geometry (e.g., Bhowmik et al, 1984). 
 
Leopold and Maddock (1953) evidenced how the water-surface width, mean depth and 
mean velocity, at different points of the stream channel in a downstream direction, increase 
on average with discharge as simple power functions. These relationships hold even for very 
different river systems and tributaries up to bankfull stage. Dodov and Foufoula-Georgiou 
(2005) provided evidence of two scaling regimes in maximum annual floods, one below and 
one above the bankfull flow. The authors confirmed that inundation depth was proportional to 
bankfull depth at any given scale and that bankfull depth scaled with the contributing area. 
Based on such findings, Dodov and Foufoula-Georgiou (2006) used a geomorphic  approach 
to delineate the floodplain within regions of similar climatic and geologic conditions. 
Inundation depth was estimated at points along the stream network using scaling relations of 
bankfull depth and a regional proportionality coefficient. Similarly, Nardi et al. (2006) 
presented a flat-water approach to delineate the floodplain (i.e., simple intersection of a 
specified flood depth with the surrounding topography). They used a variable stage at each 
stream pixel from a stream-order averaged, linear scaling relation. The relation was found by 
generalizing an outlet flood magnitude to each stream pixel, matching it to the discharge 
obtained from the Manning uniform flow equation with constant roughness, to estimate the 
stage. 
 
Rennó et al. (2008) and Gharari et al. (2011) found that, similarly to the topographic wetness 
index by Beven and Kirkby (1979), the elevation difference to the nearest stream (or incision, 
as defined by Bhowmik, 1984) previously used to characterize valley-bottom settings 
(Williams et al., 2000) was correlated to soil water content distribution. Manfreda et al. 
(2011) specifically investigated the correlation between the topographic wetness index and 
flood-prone areas and proposed a tailored version of the index by weighing the local upslope 
contributing area. Flood-prone areas were delineated by searching for the optimal 
combination of weight and index threshold that would minimize the sum of false negatives 
and false positives, in relation to a reference flood hazard map. 
 
Degiorgis et al. (2012) proposed the use of a linear binary classification to extrapolate 
hazard information from a training area to the entire river basin, by searching for the optimal 
morphological descriptor threshold, relative to a reference flood hazard map for a given 
return period. Among the tested classifiers, the elevation difference and the distance to the 
nearest stream were found to be the best performing ones. 
 
Manfreda et al. (2014) compared the linear binary classification, using the modified 
topographic index and the indices introduced by Degiorgis et al. (2012) to the 
hydrogeomorphic approach of Nardi et al. (2006). Their study confirmed that the 
classification using the elevation difference to the nearest stream (i.e., HAND) was reliable 
for delineating flood-prone areas, something also suggested in a remote sensing application 
of the HAND model by Westerhoff et al. (2011) and later confirmed by Nobre et al. (2016) 
and by Zheng et al. (2018). Manfreda et al. (2015) and Samela et al. (2016, 2017) further 
tested the ability of single and composite indices to classify flood-prone areas. The 
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Geomorphic Flood Index (GFI, Samela et al., 2017), was found to be the best performing 
and the most consistent index (Manfreda et al., 2015; Samela et al., 2016, 2017). 
 
As alternatives to the classification of flood-prone areas using the GFI, other data mining 
techniques somewhat relating to this work have been reported in literature, with good results 
(Tehrany et al., 2013, 2014; Rahmati and Pourghasem, 2017). 

3. Methodology 
The selected method is based on a morphological descriptor and its use as a linear binary 
classification feature (Degiorgis et al., 2012); a complete workflow is presented in Fig. 1 and 
an offline version of it is provided as supplementary material (Software 1). 
 
The workflow starts with terrain analysis of a DEM, i.e., the computation of local slope, flow 
direction and upslope contributing area using for example TauDEM utilities (Tarboton, 2015), 
and the transformation of the reference flood study – in our case, the six flood hazard maps 
for Europe that correspond to a raster of maximum flood depths per return period – into a 
binary mask. This transformation is achieved by segmentation, using a pre-defined cut-off 
depth, set to 0.01 m in this work. 
 
The morphological characterization step corresponds to the computation of the selected 
morphological descriptor from pre-processed terrain analysis layers and to the definition of a 
classification area (roughly a buffer of about 1 km around the reference), used to avoid some 
classification shortcomings (e.g., Kubat et al, 1998). The classification of the morphological 
descriptor is then performed within the classification area established for each river basin or 
sub-catchment and for each return period, searching for the optimal threshold that better 
represents the reference. The optimal threshold is subsequently used to segment the 
morphological descriptor, by flagging all values above or equal to the threshold as flooded, 
while those below as flood-free, thus obtaining a hydrogeomorphic flood hazard map. 
 
The output map naturally identifies all possible flood-prone areas in a region of interest and 
according to the DEM, which are often not limited to the flood extents associated with the 
main channel and tributaries usually found in numerical models. For this reason, we quantify 
how capable the morphological descriptor is as a classifier within each classification area. In 
the following sections, a more detailed description of the workflow is presented. 
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Fig. 1. General methodological workflow for classifying a 
morphological descriptor and assessing its performance in 
delineating flood-prone areas. (single-column fitting image) 
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3.1. Morphological descriptor 
The GFI corresponds to the morphological descriptor adopted and used as classifier in the 
web application; it is a composite index derived directly from terrain analysis and is defined 
as: 
 
GFIij = ln(hij

ch/Hij)          (1) 
 
The GFI is made of two terms, both computed following the steepest downslope D8 flow 
direction (i.e., the direction towards the eight adjacent neighbours of each pixel). The first 
term (i, j) consists of an empirically derived stage, hij

ch (in meters), estimated by means of a 
power law hydraulic scaling relation of bankfull depth (Nardi et al., 2006; Dodov and 
Foufoula-Georgiou, 2006, Manfreda et al., 2015; Samela et al., 2016, 2017). The stage in 
each cell is computed using the upslope contributing area Akh

ch of each stream channel cell 
hydrologically connected to the cell i,j (see Fig. 2). The expression is the following: 
 
hij

ch = a(Akh
ch)n           (2) 

 
For the sake of simplicity, the power law constant and exponent are assumed transferable 
and kept with values of a = 10-2 and n = 0.3 (Nardi et al., 2006; Manfreda et al., 2015), 
respectively. The second term of the GFI consists of the elevation difference between any 
given cell zij, and zkh

ch, the nearest connected stream channel cell (or HAND, Rennó et al., 
2008; Nobre et al., 2016; Rahmati et al., 2018): 
 
Hij = zij-zkh

ch           (3) 
 
The GFI layer is rescaled before use, with unit value corresponding to the highest hazard 
level (i.e., near the stream channel) and zero corresponding to the lowest hazard level: 
 
GFIij* = (GFIij-GFImin)/(GFImax -GFImin)        (4) 
 
where GFIij* corresponds to the rescaled value and GFIij the original value in any given cell 
of the GFI raster. The GFI can effectively be used as a classifier of flood-prone areas 
(Manfreda et al., 2015; Samela et al., 2016, 2017), fundamentally confining them to the 
floodplain, i.e. between the active stream channel at bankfull and the surrounding marked 
topography, noting that, moving away from the channel, Hij increases while the GFI 
decreases. In Fig. 2, a graphical description of the GFI is presented. To calculate the GFI 
and subsequently delineate flood-prone areas, steady-state and similar hydrogeomorphic 
characteristics across scales are assumed. 
 
Finally, we point out that the GFI calculation strictly depends on the prior definition of a 
stream network. Such network is obtained by imposing a threshold on the area-slope 
product (AijSij

k), using a value of 105 m2 and an exponent of k = 1.7 (Montgomery and 
Dietrich, 1989; Giannoni et al., 2005). 
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Fig. 2. Description of the Geomorphic Flood Index (GFI), adapted from Manfreda et al., 2015. The left-hand side 
corresponds to a generic river basin representation, with A the upslope contributing area; in the centre, the raster 
representation of a zoomed in river basin section; and, on the right-hand side a cross-sectional view of the stream 
channel and floodplain. (2-column fitting image) 
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3.2. Discrete statistical classification 

To delineate flood-prone areas, the dichotomous classification of Degiorgis et al. (2012) is 
implemented in the web application. The classification consists of a mathematical 
optimization problem, where the objective is to find the GFI threshold that produces the best 
possible representation of a reference flood hazard map. Several thresholds are 
subsequently used to convert the GFI layer to binary and delineate the flood-prone areas. 
The segmented GFI layer is compared with the reference map for a given return period in 
order to identify the optimal threshold that matches the maximum of a pre-defined objective 
function. With this approach, like with any supervised classification exercise (e.g., Kubat et 
al, 1998), there is a trend towards increased performance when classes are symmetrically 
distributed. We refer to a classification area, i.e., to a sub-portion of the study domain, 
corresponding to a fixed buffer (c.a. 1 km) of the reference flood extent with the highest 
return period, in order to handle class imbalance, namely when pixels of a binary class are 
greater in number than in the other, within river basins. The classification area allows for 
discarding the number of flood-free pixels, which are generally in excess. 

 
Performance reported in this work and included as a feature of the web application consists 
of threshold-dependent measures, one of which is selected as the objective function in the 
classification stage and another one is selected because of its characteristic of not being 
affected by class imbalance. Additionally, a receiver operating characteristic (ROC) analysis 
(Fawcett, 2006) has been performed. In particular, ROC curves and area under the ROC 
(AUC) were selected as threshold-independent measures. 

3.2.1. Threshold-dependent measures 
The ideal objective function for the optimization problem of finding the GFI threshold that 
better discerns between flood-prone and flood-free areas is one that produces the best 
possible prediction of both true positives and true negatives. The Youden’s statistic (Peirce, 
1884; Youden, 1950; Stephenson, 2000; Baker and Kramer, 2007; Manzato, 2007), J, also 
known as true skill statistic, Peirce or Hanssen-Kuipers skill score, can be seen as the 
probability of making an informed decision with regard to the proportion of correctly predicted 
classes, assuming false positives to be as undesirable as false negatives. In other words, 
misclassifying areas that are flood-prone is as serious as misclassifying flood-free areas. For 
these reasons, and because of its simplicity, smoothness and convergence, the 
maximization of Youden’s J is adopted as a rule in the classification stage of the 
methodological workflow (Baker and Kramer, 2007). The maximum J value has been used to 
quantify the success in forecasting dichotomous weather events (e.g., Stephenson, 2000; 
Manzato, 2007) and in well-known systems, such as the European Flood Alert System 
(EFAS, Bartholmes et al., 2009) and the Global Flood Awareness System (GloFAS, Alfieri et 
al., 2012). In this study, the maximum J value defines the optimal GFI threshold for a 
classification area and return period, i.e., the threshold that best captures the reference flood 
extent. The Youden’s statistic is calculated as: 
 
J = tpr+tnr-1 = tpr - fnr          (6) 
 
where tpr is the true positive rate (also called sensitivity, hit-rate or recall, i.e., the probability 
of a correct hit; Fawcett, 2006), given by: 
 
tpr = 1-fnr = tp/p = tp/tp+fn         (7) 
 
with fnr the false negative rate (or miss rate), tp the number of true positives, i.e., number of 
flood-prone pixels in both the test and the reference, p the total number of positive samples 
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and fn the number of false negatives. The true negative rate (or specificity: the probability of 
a correct miss), tnr, is given by: 
 
tnr = 1-fpr = tn/n = tn/tn+fp         (8) 
 
with fpr being the false positive rate (or fall-out: the probability of an incorrect hit; Fawcett, 
2006), tn the number of true negatives (i.e., number of flood-free pixels in both the test and 
the reference), n the total number of negative samples and fp the number of false positives. 
The Youden’s statistic is determined for all the considered segmentations of the GFI layer 
during classification; values range from J = 0, when a test is useless, to J = 1, when perfect. 
We note that Youden’s J maximizes the success of the method but not its utility, i.e. benefits 
and costs of any particular hydrogeomorphic flood hazard delineation for decision-making 
purposes are not weighed in (Peirce, 1884; Baker and Kramer, 2007). 
 
The Matthews Correlation Coefficient (Matthews, 1975), MCC, also known as the ɸ-
coefficient, was used as a measure of magnitude and direction of the linear relationship 
between flood-prone areas and the flood hazard maps for Europe, and is given by: 
 
MCC = [(tp*tn)-(fp*fn)]/[(tp+fp)*(tp+fn)*(tn+fp)*(tn+fn)]1/2     (9) 
 
It represents a discrete version of the Person’s correlation coefficient (Baldi et al., 2000), 
specific to dichotomous classification problems. It was chosen as a more balanced overall 
evaluation of flood-prone areas, due to the full use of the contingency table (tpr, fpr, tnr and 
fnr) and not sensitive to the class imbalance problem. The MCC is complementary to the 
more classical performance measures such as the ROC analysis. It indicates how better a 
given prediction is compared to a random one, taking values of MCC = -1 corresponding to a 
perfect inverse relationship between prediction and reference, to MCC = 1 corresponding to 
a perfect direct relationship between prediction and reference, with MCC = 0 representing no 
relationship between prediction and reference. Other authors have used it to evaluate soil 
wetness (Ǻgren et al., 2014) or to resolve cloud structures in satellite imagery (Bley and 
Deneke, 2013). 

3.2.2. Threshold-independent measures 
ROC analysis is used to distinguish between decision values in a classifier and their trade-
offs between costs and benefits (Swets, 1973, 1988; Bradley, 1997; Fawcett, 2006; 
Schumann, Vernieuwe et al., 2014). ROC curves are frequently used in flood model 
performance assessment (e.g., Tehrany et al., 2013, 2014; Schumann, Vernieuwe et al., 
2014; Rahmati and Pourghasem, 2017). They provide model performances by plotting 
together the tpr and the fpr, in this case as a function of the adopted threshold. Each point in 
the ROC curve represents the comparison of a segmented GFI layer with a reference flood 
extent. The top left corner of the ROC space represents the perfect classification in terms of 
correct hits, such that tpr = 1 for all values of fpr. Points falling along the diagonal line 
dividing the ROC space represent a random guess and do not give any useful information 
regarding the two binary classes. Points falling on the left-hand side are regarded as 
conservative predictions, while points falling toward the top-right corner classify positives 
correctly but present a high number of false hits. The optimal operating point in the ROC 
curve – that represents the optimal GFI threshold for a classification area and return period 
and that results in the optimal delineation of flood-prone areas – is explicitly determined by 
the objective function Youden’s J described before (Baker and Kramer, 2007). The AUC can 
be regarded as a general measure of predictive power of the classifier and has been used 
by several authors, much like the ROC, to assess performance of flood models (e.g., 
Tehrany et al., 2013, 2014; Schumann, Vernieuwe et al., 2014; Rahmati and Pourghasem, 
2017). It comprises a single value ranging from AUC = 0.5, poor classifier, to AUC = 1, 
perfect classifier. It represents the probability of ranking a randomly chosen positive instance 
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higher than a randomly chosen negative (Bradley, 1997; Fawcett, 2006). The AUC is 
invariant to selected thresholds and prior probabilities (Bradley, 1997; Schumann, Vernieuwe 
et al., 2014). Provided that a reasonable number of thresholds are considered, the AUC can 
be estimated by a trapezoidal rule approximation of the definite integral. In our case, the 
number of thresholds considered can surpass the one million mark, depending on the river 
basin. 

4. Web application and SmartFLOOD platform 
We implemented the methodology described in section 3 as a web application that is 
currently integrated in the SmartFLOOD platform – a cloud-based system that hosts big 
data, data-driven models and tools and is connected to flexible computing power (Amazon 
Web Services, https://aws.amazon.com). The concept of the platform was inspired by other 
existing solutions like the Google Earth Engine (https://earthengine.google.com/; Gorelick et 
al., 2017) that brings massive computational capabilities to planetary-scale geospatial 
analysis as an integrated platform, the Tethys Platform (https://www.tethysplatform.org/; 
Swain et al., 2016) that implements a development and hosting environment for web 
applications, and the SWATShare platform (Rajib et al., 2016) that establishes a 
collaborative environment for hydrology research and education. All these web platforms 
attempt to organize scientific information and operationalize science.  
 
The web application can be used to delineate, downscale and extrapolate flood-prone areas 
over large areas. Downscaling is interpreted in this work both as the enhancement of spatial 
detail and as coverage of flood-prone areas. Extrapolation is interpreted as the delineation of 
flood-prone areas in a river basin, where flood hazard mapping is unavailable, using, for 
instance, a  classification performed in a neighbouring basin, for which detailed outcomes 
from hydrodynamic studies are available. The low-complexity method employed consists of 
(a) a synthesis of hydrogeomorphic features into a morphological descriptor, (b) a linear 
binary classification of the morphological descriptor and (c) the delineation, downscaling, 
and extrapolation of flood-prone areas. 
 
A version of the web application was developed for the identification of flood-prone areas for 
the whole Europe and made available online to the general public. The web application 
enables users to: 
 

• run a supervised classification within a user-selected river sub-catchment, based on 
one of the reference flood hazard maps for the six return periods considered, retrieve 
the optimal threshold and classification performance; 

• visualize the downscaled and extrapolated flood-prone areas obtained by 
segmentation of the GFI layer with the optimal threshold; 

• manually adjust the GFI threshold on-the-fly, testing its influence on the flood-prone 
areas; 

• get a dynamic response of performance measures that varies with zoom level and 
window size. 

 
The web application, deployed on a cloud server, uses the static layers described in the 
following section and employs a number of web-based Geographic Information Systems 
(GIS) and development software (Swain et al., 2015). 
 
Upload of datasets and download of outputs are currently available for any raster file format 
supported by the Geospatial Data Abstraction Library (GDAL), visualization is achieved via 
HTML5 and JavaScript with the help of OpenLayers and Highcharts libraries, while code 
sharing is done via a Git-type online version-control system. 
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4.1. Architecture 
A cloud-based client-server model is adopted as the web application architecture. The 
implementation of the web application is illustrated as a network diagram in Fig. 3. The 
server host functions as a web and file server for restricted uploading and storing of static 
layers and results, as well as for their retrieval. Clients and server communicate over the 
internet via any modern web browser. The web application framework incorporates a Web-
GIS front-end made of a combination of HTML5 (a markup language) and OpenLayers (an 
open source JavaScript library), and a server-side, which combines MapServer (an open 
source geographic data rendering engine) and Apache (an open-source HTTP server). All 
core model functions are written in Python. 
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Fig. 3. Client-server diagram showing the implementation of the web 
application. (1.5-column fitting image) 
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4.2. Back-end  
Web application I/O is done using GDAL and is available in any raster file format supported 
by this library. The core model functions accessible to users consist of: 
 

1. preparing data for supervised classification; 
2. linear binary classification of the morphological descriptor GFI; 
3. computation of classification performance measures. 

 
When the user selects a river sub-catchment and return period in the web user interface, the 
algorithm searches for the corresponding datasets, constricts the layers to the pre-defined 
classification area and vectorises them. 
 
The classification stage is performed with the help of scikit-learn, a Python library for 
machine learning functionalities. A number of thresholds are fixed based on the range of 
values of the bounded GFI layer. For each threshold, statistics are computed and used to 
calculate the objective function. The algorithm then solves the optimization problem by 
maximizing the objective function, through retrieval of the corresponding optimal GFI 
threshold. The final flood-prone areas are delineated within the whole river basin 
(downscaled extrapolation) to which the classification sub-catchment belongs. The 
delineation is achieved by optimal threshold segmentation of the GFI layer, which discerns 
flood-prone from flood-free areas. Finally, within the selected classification area, the flood-
prone areas are compared to the reference flood hazard map. Several performance metrics 
(including, but not limited to the ones used in this paper) are computed and made available 
to the user. We note that the pre-processing and morphological characterization steps, 
executed offline to produce the georeferenced static layers, are currently not part of the web 
application workflow. 

4.3. Front-end  
The responsive Web-GIS single page front-end is designed to allow users to visualize and 
interact with the hydrogeomorphic method at the pan-European scale, using any modern 
web browser. The front-end is built with HTML5, taking advantage of JavaScript, 
OpenLayers and Highcharts to draw graphics. OpenLayers provides the client-side mapping 
utilities to handle geospatial data, while Highcharts provides the additional features that 
complement the interface. The final results are styled and published by the MapServer on 
the server-side. Fig. 4, shows the web user interface as a step-by-step usage example of the 
web application (video walkthroughs are also provided as supplementary material, MMC 1 
and MMC 2). The web application is implemented in the most user-friendly way possible, 
enabling users to test the methodology without being concerned about the details behind the 
system. The user requests the web application core functionality through a simple point-and-
click application programming interface, selecting the river sub-catchment and return period 
of the reference desired to execute the linear binary classification of flood-prone areas. 
Function returns are made visible to the user through the Web-GIS interface as a 
combination of interactive maps, summary tables and plots. 
 
As mentioned in section 3 (see subsection 3.2.), the classification of flood-prone areas 
results in the maximization of the method’s success, i.e. finding the threshold that 
corresponds to the optimal operating point in the ROC curve, although not necessarily its 
utility (Peirce, 1884; Baker and Kramer, 2007). To address this, we have implemented a 
slider that allows the user to adjust on-the-fly the rendered optimal flood-prone areas that 
resulted from the classification stage, so that subjective benefits and costs of a delineation 
can be taken into account (Baker and Kramer, 2007). Furthermore, a dynamic response of 
performance measures that varies with zoom level and window size is implemented based 
on the pixel count of the two critical classes (i.e., flood-prone and flood-free areas), 
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constricted by the map bounding box. Finally, we took advantage of having static layers in 
the file server to render maps faster across scales using pre-built tile caching (MapCache). 
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Fig. 4. Usage exemplification of the web application based on the hydrogeomorphic method for  
delineating flood-prone areas over large scales. a) river sub-catchment selection; b) reference flood map 
selection, with associated return period; c) classification of morphological descriptor; d) visualization of 
classification results and performance measures (top-left corner); and, e) downscaled extrapolation of the 
optimal threshold and delineation of flood-prone areas over the corresponding river basin, with dynamic 
response of performance (top-right corner). (2-column fitting image) 

a 

b

c 

d

e
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4.4. Parallelization strategy 
The same concurrent programming model is used in different phases of the methodological 
workflow, from pre-processing and morphological characterization to classification and 
validation. An exception was made for terrain analysis, which followed a different 
parallelization strategy, used as an out-of-the-box feature of TauDEM utilities (Tarboton, 
2015). The domain is decomposed in logical units (i.e., hydrological unique river basins and 
sub-catchments) used as natural geometric domain partitions for parallel computation (data 
parallelism). Decomposition is achieved using utilities from GDAL (OSGeo, 2017) to process 
the geospatial data. Execution is achieved concurrently and asynchronously, distributing 
queued data across sub-processes spawned from a pool, carrying out exactly the same 
independent computations on each partition, minimizing the total execution time and 
avoiding overload. 

5. Large-scale delineation of flood-prone areas 
In this section, we present a pan-European application of the web-based tool described in 
the previous sections, which will serve as the basis for discussing the methodological 
workflow characterizing the tool and for highlighting its potential capabilities. Additionally, our 
study provides a useful indication on the reliability of the selected hydrogeomorphic method 
in flood delineation. 
 
Furthermore, we summarize the results of the array of analyses that can be performed 
through the platform. In particular, we look at the skill of the GFI as a binary classifier of 
flood-prone areas. Once the optimal GFI thresholds have been selected, we compare the 
platform outputs, i.e. the geomorphologic delineated flood-prone areas, to the reference 
flood hazard maps, looking at the distribution of optimal GFI thresholds, as well as J and 
MCC values across space, scales and return periods. Finally, we analyse the GFI 
classification skill through a ROC analysis that can be performed within the platform. 

5.1. Datasets and study area 
Table 1 lists all the open-access datasets used in our study. The EU-DEM (version 1.0, EEA, 
2015, Fig. 5) at approximately 25 m resolution was selected for computing the morphological 
descriptor. This dataset is freely accessible online through the Copernicus Data and 
Information Access Services, funded by the European Union. At the easternmost region of 
Europe, where data is lacking, the EU-DEM was merged with the Shuttle Radar Topography 
Mission (SRTM – USGS, 2015) 1 arc-second near-global digital elevation data (at 
approximately 30 m pixel size). 
 
The undefended flood hazard maps for Europe (Dottori et al., 2016a-f, Fig. 6) were selected 
to estimate the reference flood extents needed in the methodological workflow (see section 3 
and Fig. 1). These maps are the only well-known open-access datasets available for the 
whole region. According to Alfieri et al. (2014), they were produced by simulating a 
European-wide discharge climatology using the LISFLOOD rainfall-runoff model (van der 
Knijff et al., 2010), by estimating synthetic design hydrographs from the derived climatology 
and by simulating floodplain hydrodynamics using the LISFLOOD model using the 
hydrographs as boundary conditions (Bates et al., 2010; Neal et al., 2011). Hydrodynamic 
simulations were performed by Alfieri et al. (2014) for every 5 km stretch of the river network 
(unspecified delineation method) and only for river basins with an upstream area greater 
than 500 km2. As highlighted by Alfieri et al. (2014), the flood hazard maps for Europe are 
affected by a number of uncertainties and limitations, namely space- and time-resolution 
issues associated with the inputs (e.g., noise in the DEM and its incapability of resolving 
flood defences, coarse resolution of meteorological inputs and a tendency of the method to 
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overestimate runoff). In fact, the flood hazard map for Europe for the 100-year return period 
event presents hit rates between 59% and 78% and critical success between 43% and 65% 
evaluated based on specific national/regional hazard maps. Therefore, we are aware of the 
limitation of such datasets that offer a preliminary description of flood hazard at the 
European scale. In case new maps become available, they can easily be incorporated in the 
proposed web application. 
 
In this paper we refer to a study area composed of a selection of 270 river basins (Fig. 7) 
from the European mainland and continental islands that drain into the Atlantic, the 
Mediterranean, Black, Baltic and North Seas. Europe’s major rivers have a length ranging 
from approximately 324 km to 2860 km (excluding the Volga) and their river basins are 
relatively small in area when compared to their counterparts at the global scale, with just 70 
European river basins exceeding an area of 10000 km2. 
 
Our analyses are summarized at the basin scale, where study catchments have been 
selected by filtering the Catchment Characterisation and Model (CCM) River and Catchment 
Database, version 2.1 (de Jager and Vogt, 2010). In particular, we focused on streams with 
Strahler order (Strahler, 1964) greater or equal to 5, which is consistent with other large-
scale studies of fluvial flood hazard (Muis et al., 2015). River basins corresponding to such 
streams and intersecting a country from the European Economic Area were selected for the 
evaluation of flood-prone areas. 
 
Selected river basins are characterized by fairly diverse sizes (ranging from 500 to 750000 
km2, see also Fig. 7), topography (Western Uplands, North European plain, partially 
underwater, Central Uplands and Alpine Mountains with altitudes surpassing 4500 m), 
climate (e.g., Kottek et al., 2006; arid in the eastern Iberian Peninsula to warm temperate in 
most central and northern Europe, boreal in the Pyrenees, Alps and Carpathians, with the 
last two also presenting a polar climate), and different degrees of anthropization. 
 
In order to explore the impact of basin scale on the proposed methodology, 64 additional 
sub-catchments of the river Po in Italy (Fig. 8) have been included in the study (with sizes 
ranging from 1 to 6300 km2). 
  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Tavares da Costa et al. / Environmental Modelling & Software (2018) 

 

20 

Table 1 
Open-access datasets used in the delineation of flood-prone areas across Europe. (two-column fitting table) 
Name File format Description Reference 

European Digital Elevation Model (EU-
DEM), version 1.0  GeoTIFF raster 

image 
Terrain elevation data for 
Europe EEA (2015) 

Flood hazard maps for Europe 

10-year 
return 
period 

GeoTIFF raster 
image 

Maximum flood depth 
data for Europe 

Dottori et al. 
(2016a) 

20-year 
return 
period 

Dottori et al. 
(2016b) 

50-year 
return 
period 

Dottori et al. 
(2016c) 

100-year 
return 
period 

Dottori et al. 
(2016d) 

200-year 
return 
period 

Dottori et al. 
(2016e) 

500-year 
return 
period 

Dottori et al. 
(2016f) 

Catchment Characterisation and Modelling 
(CCM) River and Catchment Database, 
version 2.1 

 
Shapefile 
geospatial 
vector 

Polygon coverage of 
selected European river 
basins 

de Jager and 
Vogt, (2010); 
EC-JRC 
(2018) 
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Fig. 5. European digital elevation model (EU-DEM; EEA, 2015)for 
computing the morphological descriptor. (single-column fitting image) 

Fig. 6. Flood hazard maps for Europe (e.g., Dottori et al., 2016d) used 
as reference in the classification of flood-prone areas. (single-column 
fitting image) 
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Fig. 7. Study area consisting of 270 major European river basins obtained 
from the Catchment Characterisation and Model layer, River and 
Catchment Database (CCM, de Jager and Vogt, 2010). (1.5-column fitting 
image) 

Fig. 8. Study area consisting of 64 sub-catchments of the Po river, Italy, 
obtained from the Catchment Characterization and Model layer, River and 
Catchment Database (CCM, de Jager and Vogt, 2010). (1.5-column fitting 
image) 
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5.2. Results 

5.2.1. Web application generated flood hazard maps 
The delineation, downscaling and extrapolation of hydrogeomorphic flood-prone areas can 
be performed online using the web application. In Fig. 9, we show an output of the web 
application relative to a specific classification. The figure provides a comparison between the 
hydrogeomorphic flood-prone areas delineated using the web application (merger of cyan 
and dark blue pixels) and the reference flood extents derived from the 100-year flood hazard 
map for Europe (merger of cyan and magenta pixels) from Dottori et al. (2016d). The 
example refers to a calibrated threshold value of the GFI (Fig. 9a) and a slider operation to 
control the GFI threshold (Fig. 9b), where the user changes the calibrated threshold and gets 
an immediate feedback on overestimated (dark blue pixels) and underestimated (magenta 
pixels) flood-prone areas and how they change visually in the study region or catchment. 
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Fig. 9. Sample overlay of the 100-year return period flood hazard map for Europe (Dottori et al., 2016d) on 
the delineated hydrogeomorphic flood-prone areas using the a) calibrated GFI threshold and b) GFI 
threshold controlled through slider operation (marked with a yellow circle). (2-column fitting image) 

b) 
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5.2.2. Optimal classifier thresholds and Youden’s statistic 
The classification of the morphological descriptor GFI within the pre-defined classification 
area resulted in an optimal GFI threshold for each European river basin, each Po river sub-
catchment, and each return period considered. In this section, we compare the delineated 
and downscaled hydrogeomorphic flood-prone areas with the reference flood hazard maps 
for Europe, to understand how well the former replicates the latter. We must acknowledge 
that the aim of such comparison is more to test the potential of the geomorphic procedures 
rather than to reproduce a perfect match with a reference flood map that contains several 
approximations. 
 
The resulting spatial distribution of optimal GFI thresholds obtained after the classification 
step (see Fig. 1), maximizing Youden’s J for all major river basins in Europe (Fig. 10 and Fig. 
21 in supplementary material) shows low variability. This implies that, at this scale, the 
optimal threshold is fairly similar across major river basins in Europe. Fig. 11 (and Fig. 22 in 
supplementary material) shows much higher heterogeneity in terms of the optimal GFI 
thresholds within the sub-catchments of the river Po: a pattern of higher GFI thresholds can 
be seen in flatter regions and of lower GFI values in headwater catchments. 
 
The spatial distribution of the maximum Youden’s J accounts for the correct identification of 
the two critical classes, namely flood-prone and flood-free areas, and characterizes the 
success of the classification. In general, a greater discerning capability of the morphological 
descriptor GFI will result in high J values. Fig. 12 shows that the spatial distribution of J 
values within major river basins in Europe is fairly homogeneous, with low variability across 
return periods (on this point see also Fig. 23 in supplementary material). The variability in the 
sub-catchments of the river Po is more pronounced (Fig. 13 and Fig. 24 in supplementary 
material) and shows higher J values for headwater catchments and lower J values in sub-
catchments in the lower part of the basin. 
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Fig. 10. Spatial distribution of the optimal Geomorphic Flood Index 
(GFI) threshold for the 100-year return period, within the classification 
area set for each major river basin in Europe. (single-column fitting 
image) 

Fig. 11. Spatial distribution of the optimal Geomorphic Flood 
Index (GFI) threshold for the 100-year return period, within the 
classification area set for each sub-catchment of the river Po, in 
Italy.  (single-column fitting image) 
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Fig. 12. Spatial distribution of the Youden’s statistic (J) for the 100-
year return period, within the classification area set for each major river 
basin in Europe. (single-column fitting image) 

Fig. 13. Spatial distribution of the Youden’s statistic (J) for the 
100-year return period, within the classification area set for 
each sub-catchment of the river Po, in Italy. (single-column 
fitting image) 
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5.2.3. Analysis of classifier skill 
The skill of the GFI-based method is assessed by means of the ROC and AUC obtained 
within the pre-defined classification areas and is examined for each major river basin in 
Europe and return period considered (10, 20, 50, 100, 200 and 500-year), as well as for the 
sub-catchments of the river Po in Italy. In Fig. 14, a sample of ROC curves and respective 
AUC values are presented, providing an overview of different performances obtained. 
 
Among the 270 river basins analysed herein, some show high discerning capability (i.e., the 
ROC curve approaches the top left corner and the AUC tends towards unity), while a few 
underperform, even though they still perform better than random guessing (i.e., curve above 
the bisecting line of the ROC space and AUC value greater than 0.5). The spatial distribution 
of AUC values is rather homogeneous with relatively high values in most of the major river 
basins in Europe (Fig. 15 and Fig. 25 in supplementary material). Also, AUC values show a 
low variability between different return periods. 
 
Analogously to Youden’s J and GFI optimal thresholds, differences between AUC values 
become more pronounced within the sub-catchments of the river Po and their spatial 
distribution seems to highlight a greater discerning capability of the morphological descriptor 
GFI where mountainous areas are prevalent (Fig. 16 and Fig. 26 in supplementary material). 
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Fig. 14. Discerning capability of the Geomorphic Flood Index (GFI) for the 100-year return period; sample 
receiver operating characteristic (ROC) curve and respective area under the ROC curve (AUC) values for a good 
(O) and poor performing river basin (∆). On the left, two major river basins in Europe and, on the right, two sub-
catchments of the River Po, Italy.  (2-column fitting image) 
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Fig. 15. Spatial distribution of the area under the receiver operating 
characteristic (AUC) for the 100-year return period, within the 
classification area set for each major river basin in Europe. (single-
column fitting image) 

Fig. 16. Spatial distribution of the area under the receiver 
operating characteristic (AUC) for the 100-year return period, 
within the classification area set for each sub-catchment of the 
river Po, in Italy. (single-column fitting image) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Tavares da Costa et al. / Environmental Modelling & Software (2018) 

 

31 

5.2.4. Map correlation 
The MCC is reported here to complement the analysis with a more balanced measure (see 
subsection 3.2.1. for details) of magnitude and direction of the linear relationship between 
the hydrogeomorphic delineated flood-prone areas and the flood hazard maps for Europe 
that can be retrieved from Dottori et al. (2016a-f). 
 
Figures 17 and 18 (see also Figures 26 and 27 in supplementary material) highlight the 
overall correlation of the maps at the river basin and sub-catchment scales. Results show a 
positive linear correlation between the hydrogeomorphic flood-prone areas and the reference 
flood hazard maps. The major European river basins analysed present MCC values around 
0.6, with very few basins with values above or below. There is higher heterogeneity at the 
sub-catchment scale, with most sub-catchments presenting MCC values ranging from 0.4 to 
0.6 and very few with values outside this range. 
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Fig. 17. Spatial distribution of the Mathews Correlation Coefficient 
(MCC) for the 100-year return period, within the classification area set 
for each major river basin in Europe. (single-column fitting image) 

Fig. 18. Spatial distribution of the Mathews Correlation 
Coefficient (MCC) for the 100-year return period, within the 
classification area set for each sub-catchment of the river Po, in 
Italy. (single-column fitting image) 
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5.2.5. Synthesis of descriptive statistics 
To complement the spatial distribution of optimal GFI thresholds and performance measures 
presented in the previous subsections, and to have a more complete overview of the results, 
we summarize the data distribution in a set of box plots (Figures 19 and 20). Additional 
information about the data distribution can be found in supplementary material (tables 2 and 
3). Fig. 19 refers to the optimal GFI thresholds obtained by performing the linear binary 
classification of flood-prone areas within the 270 major river basins of Europe and the 64 
sub-catchments of the river Po. 
 
The optimal thresholds of the morphological descriptor GFI present low variability (higher at 
the sub-catchment scale), with different behaviour in terms of the mean, minima and 
maxima. The mean GFI thresholds, which tend to fall between 0.20 and 0.23, decrease 
slightly with return period (see also tables 2 and 3 in supplementary material). This is 
expected, since the higher the return period, the larger the flood-prone areas and the further 
the discerning edge moves away from the stream network. Few outliers can be observed 
outside the upper bound in any of the given scales. 
 
The Youden’s J presents low variability at the river basin scale, while at the sub-catchment 
scale its variability increases significantly. The minima of Youden’s J are also significantly 
lower at the sub-catchment scale. In particular, the mean J value is above 0.64 for all 
considered return periods at the river basin scale, and above 0.55 at the sub-catchment 
scale. 
 
Lower variability of the AUC (standard deviation equal to c.a. 0.05) in river basins is 
observed and remains fairly unchanged across return periods. The AUC at the river basin 
scale (pan-European level) presents a number of outliers outside the lower bound but higher 
minima than in sub-catchments of the river Po in Italy. At the sub-catchment scale, there is 
an increase in variability of the AUC and a slight loss of skill. In general, the AUC mean and 
median tend to increase with return period at any of the given scales, with average values 
always above 0.8. 
 
The MCC shows low variability at the river basin scale, taking always positive values with 
mean above 0.48 at the river basin scale and above 0.46 at the sub-catchment scale. 
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Fig.19. Data distribution of the optimal Geomorphic Flood Index (GFI) 
threshold for six return periods. (single-column fitting image) 

Fig. 20. Data distribution for the Youden’s Statistic (J), the area under the receiver operating characteristic 
(AUC) and the Mathews Correlation Coefficient (MCC) for six return periods. (2-column fitting image) 
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5.6. Discussion 
In this work, we have developed a flood hazard mapping web application based on a data-
mining method where the morphological descriptor GFI is used as a classifier of flood-prone 
areas. Our web application enables users to delineate, downscale and extrapolate flood-
prone areas over large scales and we have showcased here its wide spectrum of possible 
utilizations through an extended analysis at both the European and sub-catchment scale (Po 
River). The study has been extremely instructive in quantifying the potential of the 
methodology, its limitations and the critical influence played by input datasets and spatial 
scales. 
  
The geomorphic classifier threshold was calibrated in terms of the maximum possible 
Youden’s J, obtained by comparing the GFI-derived hydrogeomorphic flood-prone areas with 
the reference flood hazard maps. This resulted in a homogeneous spatial distribution of the 
optimal GFI thresholds that decreased with return period, which demonstrates that there is 
little inter-basin variation and that flood-prone areas actually grow with increasing return 
periods, as expected. In fact, performances indicate a strong capacity of the GFI to delineate 
flood-prone areas across return periods, generally achieving high AUC values. We also 
observed that high AUC values did not always correspond to high MCC values, as the 
correlation coefficient takes into account the tpr, tnr, fpr and the fnr, because of the 
additional areas mapped by the hydrogeomorphic web application. Correlation values are 
nevertheless always positive and relatively high, with few exceptions. 
 
Analyses were carried out on two different datasets: 1) on relatively large river basins of 
Europe and 2) on a subsample of small catchments of the Po river. Using the first dataset, 
small changes in performances and calibration parameters were observed; however, moving 
on to the sub-catchment scale, higher heterogeneity was found. This may have been due to 
the fact that over larger river basins different morphological features are smoothed out by the 
classification and the overall outcomes result similar, while within-basin morphological 
differences may impact the overall performances of the method, which highlights its 
limitation in specific contexts. Moreover, the method becomes more sensitive to the change 
of return period of the reference map at the sub-catchment scale. Results suggest that the 
method should be applied at the basin scale, setting different thresholds within each specific 
sub-catchment. 
 
The present state of the web application is affected by several approximations that may have 
an impact on the results. Among others, we should mention: 
 

• pixel size and vertical accuracy of the DEM; 
• processing decisions (e.g., de-noising, smoothing and hydrological conditioning); 
• channel initiation and stream network definition using a convergent flow model; 
• fixed coefficients in the hydraulic scaling relation. 

 
Other factors include differences in the DEMs used to compute the GFI and the reference 
flood hazard maps. In fact, it would have been more reasonable to compute the GFI layer 
using the same DEM of the reference, but it was not available. Furthermore, there is a strong 
possibility that the size of flat areas influences negatively the classification of 
hydrogeomorphic flood-prone areas. A GFI computed with inadequate horizontal resolution 
and vertical accuracy will likely underperform in flat areas because of its strong dependency 
on the elevation difference, but also on the stream network definition, which is known to be 
problematic in these areas, e.g., Pan et al. (2012). One could also argue that sub-grid scale 
features, for example embankments, affect performance, particularly in highly anthropized 
river basins (e.g., river Po, Italy), but we note that such obstacles are not explicitly taken into 
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consideration neither in the reference flood hazard maps for Europe (see subsection 5.1) nor 
in the GFI computation. 
 
In spite of the limitations, to be seen as opportunities for further improving the web 
application, results are very encouraging. We show that European flooded areas for any of 
the return periods are well approximated by the outputs of the web application. On the one 
hand, factors affecting performances may be hard to pinpoint and confirm over such large 
domains, with some issues requiring localized hydraulic studies. However, the clear need for 
such web technologies and the numerous possibilities that additional datasets and data-
driven methods may bring, should motivate a more community-based approach, where such 
efforts can perhaps be undertaken more coherently and supported consistently. In particular, 
the development of a web-based system that allows for community interaction may facilitate 
the current knowledge about flood exposure, while an ensemble of flood hazard maps and 
studies carried out by a community of users may support hydrogeomorphic flood mapping of 
higher detail and accuracy. 
 
Finally, we would like to highlight that the hydrogeomorphic flood hazard mapping web 
application presented in this study could also be used for: 
 

• screening hotspots and elements at risk (e.g., critical infrastructures); 
• confirming flood-prone locations with point information (e.g., flood depth) from 

social media or eye witnessing; 
• enhancing remote sensing flood detection (e.g., Westerhoff et al., 2011); 
• land use planning. 

 
Users of the web application may well include primary insurers and, to some extent, re-
insurers, specialized agencies, civil protection authorities, humanitarian organizations, and 
asset managers. Further functionality development could include, for example: 
 

• flood depth estimation (Zheng et al., 2018) and risk assessment; 
• establishing of statistical relations among the morphological descriptor, climatic 

and catchment factors (e.g., Jafarzadegan and Merwade, 2017); 
• seasonal variability, spatial dependence and spatial heterogeneity of extreme 

flood events (e.g., Castellarin et al., 2007; Neal et al., 2013); 
• estimation of channel and floodplain hydraulic geometries (e.g., Nardi et al., 

2006; Andreadis et al., 2013; Zheng et al., 2018) and hydrogeomorphology (Yan 
et al, 2018); 

• the use of other data-mining approaches (Tehrany et al., 2013, 2014; Rahmati 
and Pourghasem, 2017) to improve the estimation of flood-prone areas. 

6. Conclusion 
Integrating big open data with data-driven methods and emerging information and 
communication technologies in flood risk management may well represent a forward step in 
supporting robust, evidence-based decision-making. Driven by this idea, we have reviewed 
the progress in simplified hydrogeomorphic methods for the mapping of flood-prone areas, 
and have adopted and tested – using big open datasets for Europe – a methodology for the 
classification of flood-prone areas based on a particular morphological descriptor, the GFI. 
Additionally, we have implemented and described in detail a user-friendly web application, 
well suited for regional hydrogeomorphic delineation of flood-prone areas, and we have used 
it to classify and delineate six pan-European hydrogeomorphic flood hazard maps at 25-m 
pixel resolution (one for each return period: 10, 20, 50 ,100, 200 and 500 years) and to 
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evaluate their quality within major European basins, relative to the flood hazard maps for 
Europe (Alfieri et al., 2014; Dottori et al., 2016a-f). 
 
We obtained an average efficiency, measured in terms of ROC analysis and AUC of 
88.59%. In the analysis focusing on sub-catchments of the river Po in Italy, we obtained an 
average AUC of 84.23%, in line with results presented in other studies (e.g., Manfreda et al., 
2015; Samela et al., 2017). The selected hydrogeomorphic method was found to be valid in 
replicating, downscaling and extrapolating the flood hazard maps for Europe (Alfieri et al., 
2014; Dottori et al., 2016a-f) with different return periods. The hydrogeomorphic flood hazard 
mapping web application presented in this study provides fast, high-resolution delineations 
of flood-prone areas over large scales. The web application is currently limited by its I/O 
capabilities but has the potential to be used as a viable and cost-effective tool for flood risk 
management. 
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Table 2 
Summary statistics for the area under the receiver operating characteristic (AUC), the optimal geomorphic flood 
index (GFI) threshold, the Youden’s Statistic (J) and the Mathews Correlation Coefficient (MCC) across major 
river basins in Europe and return periods. (two-column fitting table) 
  Return Period [years] 
  10 20 50 100 200 500 

J 
mean 0.6499 0.6514 0.6520 0.6529 0.6531 0.6533 
median 0.6615 0.6619 0.6604 0.6615 0.6628 0.6614 
standard deviation 0.1127 0.1104 0.1086 0.1074 0.1067 0.1063 

GFI Thresholds 
mean 0.2208 0.2199 0.2192 0.2186 0.2181 0.2175 
median 0.2227 0.2209 0.2202 0.2195 0.2192 0.2192 
standard deviation 0.0143 0.0143 0.0144 0.0143 0.0144 0.0145 

AUC 
mean 0.8829 0.8845 0.8858 0.8867 0.8873 0.8879 
median 0.8971 0.8982 0.8997 0.8992 0.8986 0.8985 
standard deviation 0.0536 0.0518 0.0504 0.0496 0.0491 0.0487 

MCC 
mean 0.4868 0.5017 0.5145 0.5223 0.5282 0.5339 
median 0.4861 0.4999 0.5147 0.5213 0.5281 0.5350 
standard deviation 0.0813 0.0798 0.0798 0.0786 0.0795 0.0803 

 
Table 3 
Summary statistics for the area under the receiver operating characteristic (AUC), the optimal Geomorphic Flood 
Index (GFI) threshold, the Youden’s Statistic (J) and the Mathews Correlation Coefficient (MCC) across the sub-
catchments of the river Po, in Italy, and return periods. (two-column fitting table) 
  Return Period [years] 
  10 20 50 100 200 500 

J 
mean 0.5599 0.5648 0.5715 0.5744 0.5768 0.5785 
median 0.5978 0.5962 0.5942 0.5977 0.6006 0.5982 
standard deviation 0.1983 0.1957 0.1904 0.1868 0.1845 0.1832 

GFI Thresholds 
mean 0.2139 0.2117 0.2104 0.2095 0.2093 0.2089 
median 0.2066 0.2058 0.2052 0.2044 0.2043 0.2037 
standard deviation 0.0259 0.0241 0.0230 0.0227 0.0225 0.0223 

AUC 
mean 0.8373 0.8397 0.8426 0.8437 0.8447 0.8457 
median 0.8527 0.8610 0.8616 0.8641 0.8649 0.8652 
standard deviation 0.0799 0.0788 0.0770 0.0768 0.0764 0.0762 

MCC 
mean 0.4740 0.4820 0.4910 0.4947 0.4996 0.5032 
median 0.4654 0.4777 0.4885 0.4950 0.4945 0.5013 
standard deviation 0.1286 0.1290 0.1299 0.1291 0.1290 0.1294 

 
video_01.mp4 

 
video_02.mp4 

 
floodhazard_gfi-baf789bb693a.tar.gz (http://dx.doi.org/10.17632/pcxmm2hnfw.1) 

MMC 1. Video walkthrough of the web application hydrogeomorphic flood analyzer integrated in the 
SmartFLOOD platform. 

MMC 2. Video walkthrough of the Geographic Information System (GIS) interface of web application 
hydrogeomorphic flood analyzer integrated in the SmartFLOOD platform. 

Software 1. Implementation of the Geomorphic Flood Index (GFI) classification workflow in Python 
programming language. Desktop version with instructions for compiling and test cases included. 
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Highlights 

• Progress in hydrogeomorphic flood hazard mapping is presented.  

• A cloud-based web application for data-driven hydrogeomorphic flood hazard mapping is 

implemented. 

• The GFI classifier displayed strong discerning capabilities for mapping flood-prone areas 

with an average area under the receiver operating characteristic curve of approximately 

88% within major river basins in Europe. 

• Flood-prone areas for the whole Europe are computed and evaluated for different return 

periods using the proposed web application. 

 


