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A B S T R A C T   

Rainfall-triggered shallow landslides are widespread natural hazards around the world, causing many damages to 
human lives and property. In this study, we focused on predicting landslides in a large region by coupling a 1 km- 
resolution hydrological model and a 90 m-resolution slope stability model, where a downscaling method for soil 
moisture via topographic wetness index was applied. The modeled hydrological processes show generally good 
agreements with the observed discharges: relative biases and correlation coefficients at three validation stations 
are all <20% and >0.60, respectively. The derived scaling law for soil moisture allows for near-conservative 
downscaling of the original 1-km soil moisture to 90-m resolution for slope stability assessment. For landslide 
prediction, the global accuracy and true positive rate are 97.2% and 66.9%, respectively. This study provides an 
effective and computationally efficient coupling method to predict landslides over large regions in which fine- 
scale topographical information is incorporated.   

1. Introduction 

Rainfall-triggered shallow landslides are worldwide natural hazard 
(Hong et al., 2006; An et al., 2016), causing a large number of fatalities 
and property losses (Liao et al., 2010; He et al., 2016; Godt et al., 2009). 
Globally, landslide hazards cause approximately 1000 deaths and USD 4 
billion losses per year (Pradhan and Youssef, 2010). China is severely 
affected by landslide hazards, which has led to 1100 fatalities and 5–10 
billion US dollars since 2000 (Hong et al., 2017). Due to frequent fa-
talities and extensive property damages that landslide hazard may cause 
(Papathoma-Kohle et al., 2015), it is essential to investigate and predict 
landslide hazards to avoid the damages (Zhang et al., 2019). Methods for 
hazard assessment range from heuristic susceptibility approaches 
(Fookes, 1997; Guzzetti et al., 2000; Griffiths and Edwards, 2001; 
Griffiths, 2002) to lumped regional empirical rainfall thresholds 
(Bogaard and Greco, 2018; Glade et al., 2000; Caine, 1980; Guzzetti 
et al., 2007, 2008) to detailed physical-based coupled 
hydrological-slope stability models (He et al., 2016; Zhang et al., 2016; 
Wilkinson et al., 2002; Alvioli and Baum, 2016; Montrasio and 

Valentino, 2016a, b; Van Asch et al., 2007). However, most of the 
studies focused on a single slope or landslide event in a relatively small 
catchment, usually in the magnitude of 102–103 km2 in a resolution of 3 
arcsec (~90 m). This resolution is also a prerequisite to validate model 
results against observed landslides from inventories (Tian et al., 2008). 
Yet, the corresponding computational burden jeopardizes the applica-
bility of physically-based modeling to larger area (e.g., basins≫ 10,000 
km2) (Bellugi et al., 2011; Camilo et al., 2017) and to derive necessary 
model parameters (Bardossy and Singh, 2008; Yao et al., 2012). In order 
to apply physically-based models in landslide prediction with high res-
olution, some computational expediency is needed in large basins. 

Low-resolution but large scale hydrological models (typically 
applied at 1 km resolution or coarser) are widely available due to 
increasing availability of climate data and land surface datasets (Sun 
et al., 2017; Huang et al., 2019; Yao et al., 2019; van Beek et al., 2011; 
Wada et al., 2011; Luo et al., 2018). These models can be calibrated 
against observed discharge (Beck et al., 2016; Chao et al., 2018) so it 
captures the spatiotemporal variations across the basin. However, this 
coarse resolution does not fit the purpose for validation of landslide 
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prediction because the size of a rainfall-triggered shallow landslide 
event is usually only tens or hundreds m2 (Chen et al., 2017; Zhang et al., 
2018a). In this case, a downscaling method should be used in order to 
couple coarse-resolution hydrological models with fine-resolution slope 
stability models. 

Soil moisture is an important component in water and energy bal-
ance, affecting subsurface flow, soil evapotranspiration, hydrological 
response of a catchment etc., as a linking variable between hydrological 
model and slope stability model (Bogaard and Greco, 2016; Zhang et al., 
2019). For slope stability model, the degree of soil saturation affects 
ground water table response to rainfall and thereby slope stability 
(Talebi et al., 2007; Bogaard and Greco, 2016; Krzeminska et al., 2012). 
Several studies showed that topography could be a good indicator for 
spatial soil moisture distribution (Beaudette et al., 2013; Burt and 

Butcher, 1985; Sveditchnyi et al., 2003). The topographic wetness index 
(TWI), as one of the topographic indexes, shows a high correlation with 
soil moisture during wet conditions (Grayson and Western, 1998; Brocca 
et al., 2010). Therefore, it is reasonable to downscale the soil moisture 
via using TWI to link hydrological model and slope stability model under 
different spatial resolution. 

The main objective of this study is to assess the potential of 
physically-based landslide hazard assessment on the scale of 100,000 
km2. In this study we use topographic information to downscale the 
results of the coarse-scale hydrological model to the finer resolution 
slope stability model in an efficient and expedient manner. The hydro-
logical model we used is the Coupled Routing and Excess STorage 
(CREST) model (Wang et al., 2011), a distributed hydrological model, 
which has been applied at a resolution of 1 km to the Shaanxi Province 

Fig. 1. Location of Shaanxi Province in the mainland of China and the reported landslides during 2009–2012.  

Fig. 2. Spatial maps of: a) slope angle; b) soil type and c) land cover type.  
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in Northwest China for an area of more than 200,000 km2 for the period 
of 2009–2012. We downscaled the soil moisture information via TWI 
and land surface conditions to a finer resolution of 90 m. For the land-
slide assessment, we used a physically-based landslide model, namely, 
the SLope-Infiltration-Distributed Equilibrium (SLIDE) model (Mon-
trasio and Valentino, 2008; He et al., 2016), which used the result of 
downscaled soil moisture as input variable. The results of the landslide 
hazard assessment are compared to classical lumped regional rainfall 
thresholds to quantify the possible improvement. 

This article is organized as follows. It firstly describes the study area 
and datasets in Section 2. Then a brief introduction of hydrological 
model and slope stability model along with the downscaling method are 
described in Section 3. Section 4 presents results of our research and 
hence a comparison between the results and the results of landslide 
prediction using classic rainfall threshold is discussed in section 5. 
Conclusions, limitations of the research and its potential improvements 
are described in the end. 

2. Study area and data 

2.1. Description of the study area 

Our study area is Shaanxi Province, located in the middle land of 
northwest China (Fig. 1). It situates between 105�290 E� 111�150 E and 
31�420 N-39�350 N with a total area of about 205,800 km2. Elevation 
ranges from approximately 150 to 3800 m, which the highest elevation 
is in the south, followed by north and middle. Land cover is distinct from 
south to north: forest, cultivated land and grass land, respectively 
(Fig. 2b). The soil type is mainly loam in this region (Fig. 2c). The study 
area consists of three main climatic zones, humid zone, semi-humid zone 
and semi-arid zone, distributed from south to north. Average annual 
rainfall is 400–600 mm, 500–700 mm and 700–900 mm in northern, 
central and southern areas, respectively, while precipitation decreases 
from south to north and is significantly influenced by the mountains. In 
addition, rainfall has a strong seasonality in this region. Rainfall in the 
summer (June–August) is the greatest, accounting for 40%–60% of 
annual rainfall. Rainfall of the remaining seasons decreases in the order 
of autumn, spring and winter (Zhang et al., 2019). As rainfall is mostly 
concentrated in monsoon season (May–October) and in the south area 
with steep slopes, rainfall-triggered landslides occur frequently during 
these seasons in the south. There were 862 reported rainfall-triggered 
landslides during 2009–2012 that mainly occurred in the southern 
area (Fig. 1), which have resulted in 131 deaths and thousands of in-
juries and more than 600 million CNY directly property loss. 

2.2. Datasets 

The data we used in this study include rainfall, potential evapo-
transpiration, digital elevation model (DEM), land cover type, soil type, 
Normalized Difference Vegetation Index (NDVI) and stable nighttime- 
light data, observed discharge and landslide inventory. The DEM using 
in this study contains two resolutions, the 1-km resolution is 30 arcsec 
and the 90-m resolution is 3 arcsec. The geographic coordinate system in 
this study is World Geodetic System (WGS) 1984. 

The detailed introduction and pre-processing of part of data are in 
Table 1. The rainfall and potential evapotranspiration data are the 
forcing data. The DEM, land cover and soil type, NDVI and stable 
nighttime-light data are used to calculate model parameters, such as 
flow duration, flow accumulation, slope angle, soil water capacity, 
saturated hydraulic conductivity, impervious surface area and soil 
cohesion, porosity, friction angle etc. The daily discharge data were used 
to calibrate the hydrological model and were from the Hydrological Year 
Books of China. We chose four discharge stations (Lueyang, Nanrong-
hua, Shiquan, Taoyuan) that could represent the outlet of each basin to 
do model simulation. The landslide hazard data were from the Geolog-
ical Survey Office of Department of Land and Resources of Shaanxi 
Province, containing landslides locations, occurrence time, and associ-
ated casualties. 

3. Methods 

3.1. Description of the CREST model 

The CREST model (Wang et al., 2011), developed by the University 
of Oklahoma and NASA SERVIR project team, is a physically-based 
distributed hydrological model. The model simulation starts from can-
opy interception. After that, the rainfall, reaching soil surface, is divided 
into surface runoff and infiltration according to the Variable Infiltration 
Capacity curve (VIC), a concept originating from the Xinanjiang Model 
(Zhao, 1992) and later represented in the VIC model (Liang et al., 1994, 
1996). The virtual multi-linear reservoir, represented as surface and 
subsurface water storage, is then used to calculate overland and sub-
surface flows, which are separated by the saturated hydraulic conduc-
tivity. A cell-to-cell routing scheme is used to simulate these flows flow 
to downslope cells at each time step, where it is further divided into 
overland flow and infiltration using VIC model. The interaction between 
the surface and subsurface flow is accounted for through coupling the 
runoff generation process and the routing scheme (Wang et al., 2011; 
Xue et al., 2013). The soil depth is 1.5 m and divided into three layers. A 
detailed description can be found in Wang (Wang et al., 2011; He et al., 
2016; Xue et al., 2013). 

Table 1 
Datasets used in this study and their pre-processing.  

Variables Sources of Datasets Pre-processing 

Rainfall Daily rainfall data from 756 gauge stations were provided by China 
Meteorological Administration (CMA). 

The data were interpolated into 1-km resolution via Kriging method (Krige, 
1951). 

Potential 
evapotranspiration 

Global Land Data Assimilation System (GLDAS, (Rodell et al., 2004)) These data are at a spatial resolution of 0.25� and a time interval of 3 h. We 
interpolated it into 1-km resolution using the bi-linear method and aggregated 
it to daily scale. 

DEM 1-km resolution DEM were from Hydrological data maps based on Shuttle 
Elevation Derivatives at multiple Scales (HydroSHEDS, (Lehner et al., 
2006)). 

The 1 km DEM of study area was extracted from the original data. 

90 m-resolution DEM were from the Geospatial Data Cloud. The 90-m DEM of study area was extracted from the original data. 
Land cover type GlobeLand30-2010 (Chen et al., 2015) The original 30 m dataset was resampled to 1 km and 90 m resolution for 

being applied in the hydrological model and slope stability model, 
respectively. 

Soil type Harmonized World Soil Database (HWSD) v1.2 (Wieder et al., 2014) These data were resampled to 90-m resolution when used in slope stability 
model. 

NDVI Moderate Resolution Imaging Spectroradiometer (MODIS, (Jenkerson 
et al., 2010)) 

These data were resampled to 1 km using the bi-linear method. 

Stable nighttime-light Defense Meteorological Satellite Program’s (DMSP) Operational Line- 
scan System (OLS) (Elvidge et al., 1997, 1999) 

These data are at a resolution of 1 km; the data for this study area were 
extracted from the original data.  

S. Wang et al.                                                                                                                                                                                                                                   
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3.2. Description of the SLIDE model 

The SLIDE model, modified from two previous studies (Fredlund 
et al., 1996; Montrasio and Valentino, 2008), is an infinite slope stability 
model using a mathematical method to illustrate the rainfall-triggered 
landslide process. It accounts for the contribution of apparent cohe-
sion to the shear strength of the soil and the thickness of infiltrated layer 
affected by rainfall-runoff processes (Liao et al., 2010). Some underlying 
assumption of the model are: 1) the permeability of substratum is much 
smaller than that of the top-soil; 2) the slope stability has a direct link to 
apparent cohesion, which is influenced by the degree of soil saturation 
(Montrasio and Valentino, 2008). The original SLIDE model considers 
the entire amount of rain that infiltrates into the soil, neglecting runoff 
and evapotranspiration, which is the disadvantage of this model. Yet, 
this can be fixed by using hydrological models, which takes these into 
account. In SLIDE model, the slope stability is represented by factor of 
safety, a ratio of shear strength to shear stress, expressed as follows: 

Fs¼
cot β⋅tan Φ⋅½Γ þ m⋅ðnw � 1Þ� þ C’⋅Ω

Γ þ m⋅nw
(1)  

where β is slope; Φ is friction angle; Γ is a function of specific gravity, 
porosity and degree of soil saturation; m is dimensionless thickness of 
the infiltrated layer and is a function of hydraulic conductivity, slope, 
water table depth, infiltration and degree of soil saturation, calculated at 
each time step; nw is a function of porosity and degree of soil saturation; 
C’ is total cohesion, including effective cohesion and apparent cohesion; 
Ω is a function of slope and water table depth. Detailed description can 
be found in Liao (Liao et al., 2010). 

3.3. Model parameterization 

Both the hydrological model and the slope stability model have a 
number of key parameters. Some of them are distributed parameters and 
can be derived from readily available spatial information. For the CREST 
model, the distributed parameters used in this study are soil water ca-
pacity, saturated hydrological conductivity and impervious surface area. 
For SLIDE model, most of the parameters are related to soil type (e.g. 
cohesion, porosity, unit weight and friction angle). 

Soil water capacity (WM), representing the amount of available water 
that each grid cell can hold, was calculated based on topography using a 
prior estimation method developed by Yao (Yao et al., 2012) (Fig. 3a). 
WM is defined as the difference between field capacity and wilting point 
and it is assumed that a cell with the maximum or minimum value of 
TWI corresponds to the cell with the minimum or maximum value of 
WM. A detailed description of this method can be found in Yao’s research 
(Yao et al., 2012). 

Saturated hydraulic conductivity (Ksat) reflects the ability of satu-
rated soil transmitting water (Sarki et al., 2014). Recently, a global 
saturated hydraulic conductivity map was developed by Zhang et al. 
(2018b). However, the map does not completely meet the soil type map 
in this study area, particularly where the soil type is sand. Hence, Ksat 
was determined as specific values according to different soil types 
(Table 2) in this study (Fig. 3b) because it mainly relates to soil texture. 

Impervious surface area (ISA) is the fraction of impermeable area in a 
grid cell, affecting rainfall infiltration and runoff generation. Generally, 
a grid cell with higher ISA generates more runoff under the same rainfall 
condition. ISA is influenced by many factors such as vegetation index 
and human activities. The computing procedure of ISA is expressed in 

Fig. 3. Distributed parameters used in the study: a) soil water capacity, b) saturated hydraulic conductivity and c) impervious surface area.  

Table 2 
Specific values of parameters for different soil types used in this study (Zhang et al., 2016; Shen and Hong, 2014).  

USDA Soil 
Type 

Soil Cohesion 
(kPa) 

Saturated Hydraulic 
Conductivity (m/s) 

Porosity Friction Angle 
(degree) 

Soil Dry Unit Weight 
(kN/m3) 

Field Capacity (m3/ 
m3) 

Wilting Point (m3/ 
m3) 

Silty clay 30 1.06 � 10� 6 0.49 18.5 18 0.36 0.21 
Clay 40 1.31 � 10� 6 0.47 16.5 19.5 0.36 0.21 
Silty clay 

loam 
50 1.44 � 10� 6 0.48 16.5 14 0.34 0.19 

Clay loam 35 2.72 � 10� 6 0.46 20 14 0.34 0.21 
Silt 9 2.05 � 10� 6 0.52 26.5 16.5 0.32 0.165 
Silt loam 9 2.50 � 10� 6 0.46 24 14 0.3 0.15 
Sandy clay 24.5 4.31 � 10� 6 0.41 22.5 18.5 0.31 0.23 
Loam 10 4.53 � 10� 6 0.43 22.5 13 0.26 0.12 
Sandy clay 

loam 
29 6.59 � 10� 6 0.39 20 15 0.33 0.175 

Sandy loam 6 1.02 � 10� 5 0.4 32 15 0.23 0.1 
Loamy sand 7.5 1.78 � 10� 5 0.42 28.5 20.5 0.14 0.06 
Sand 5 2.44 � 10� 5 0.43 40 21 0.12 0.04  

S. Wang et al.                                                                                                                                                                                                                                   
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Appendix A. 
Fig. 3c shows the percent of impervious surface area that mainly 

influenced by the vegetation cover and human activities. For most areas, 
especially the south covered by forest (compared with Fig. 2c), the ISA is 
lower while the ISA is higher in cultivated land and grass land where 
there are more human activities. 

3.4. Downscaling method 

To link the low-resolution hydrological model with the high- 

resolution slope stability model, a downscaling method (Sveditchnyi 
et al., 2003; Droesen, 2016) was applied in this study (Eq. (2)). The 
wetness coefficient (Kw) was proposed as a conversion parameter be-
tween TWI and soil moisture. The relation between Kw and TWI at res-
olution of 1 km was detected first. The concave and convex areas are 
distinguished. Then this relation was used to calculate Kw at the 90-m 
resolution via TWI90m. The soil moisture was calculated through 
Kw;90m and was simply fixed. The details of downscaling method can be 
found in Appendix B.  

where SM90m and SM1km are soil moisture at resolution of 90 m and 1 
km, respectively; p and q are two coefficients of line regression of the 
relation between TWI and Kw; A90m is the slope aspect (degree) at 90 
m-resolution; Ka is a function of slope angle and slope aspect (see Ap-
pendix B). 

3.5. Model performance evaluation 

To evaluate the model performance, several statistical metrics were 
applied in this study (Table 3). For CREST model, we computed the 
relative bias, and the Pearson correlation coefficient (Cc) for the 
modeled daily discharge series of four selected gauge stations. The flow 
duration curve, plotting discharge against the percent of time the flow 
was equaled or exceeded (Vogel and Fennessey, 1994), was also used to 
evaluate the model simulation results. In order to reduce the effect of 
extreme high and low flows on the calibration, we chose the discharge 

Table 3 
Statistical metrics and gauge stations that used to evaluate model simulation.  

Statistical 
metrics 

Percent relative bias Correlation coefficient 

Flow duration curve 
(FDC) 

Receiver Operating Characteristic 
(ROC) curve 

Stations Longitude 
(�E) 

Latitude 
(�N) 

Elevation 
(m) 

Upstream 
area (km2) 

River 
name 

Lueyang 106.150 33.333 646 20793.7 Jialing 
River 

Nanronghua 109.866 34.767 342 26302.74 Beiluo 
River 

Shiquan 108.234 33.038 372 23622.9 Han 
River 

Taoyuan 108.974 34.459 364 45885 Jing 
River  

Fig. 4. Modeled and observed daily discharge and average rainfall of four gauge stations: a) Lueyang; b) Nanronghua; c) Shiquan and d) Taoyuan.  

�
SM90m ¼ ðp� TWI90m þ qþ 0:16 cosA90m þ 0:09 sinA90mÞKa;90m � SM1km; if Curvature � 0

SM90m ¼ ðp� TWI90m þ qþ 0:14 cosA90m þ 0:10 sinA90m � 0:02 cos 2A90mÞKa;90m � SM1km; if Curvature > 0 (2)   

S. Wang et al.                                                                                                                                                                                                                                   
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whose exceedance is between 33 and 66% to do the curve fitting. This 
restriction can be justified by the fact that fitting the model with the 
events falling within the intermediate range can achieve a balanced 
performance to avoid both underestimation and overestimation. The 
slopes of the tendency lines for observed and simulated discharge were 
compared with each other by an objective function (Eq. (3)). The model 

simulation is good when Z is close to 0 while an objective function ðZÞ far 
less or greater than 0 means the model is responds too fast or too slow 
compared to the observed discharge, respectively. 

Z¼ 1 �
slopesimu

slopeobs
(3) 

Fig. 5. Curve fitting of logarithm discharge, of which exceedance is between 0.33 and 0.67, at four-gauge stations for the period of 2009–2012.  

S. Wang et al.                                                                                                                                                                                                                                   
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where slopesimu and slopeobs are the slopes of the tendency lines of 
modeled and observed discharge, respectively. 

The Receiver Operating Characteristic (ROC) curve, reflecting 
whether a binary classification model is good or not (Fawcett, 2006), 
was applied to evaluate the predictive capability of SLIDE with down-
scaled soil moisture to predict landslides. The binary classification 
model (the SLIDE model in our study) has four outcomes: true positive 
(TP, a landslide is predicted correctly); false positive (FP, a modeled 
landslide is out of landslide inventory); true negative (TN, an area is 
stable for both model prediction and observation); and false negative 
(FN, a landslide is not captured by the model). Two statistics, true 
positive rate (TPR, also known as sensitivity) and true negative rate 
(TNR, also called specificity), were further defined as follows: 

TPR¼TP = ðTPþFNÞ (4)  

TNR¼TN = ðTNþFPÞ (5)  

TPR reflects the ratio that landslides were correctly predicted while TNR 
is the percentage that negative cases were correctly predicted (Begueria, 
2006). High TPR means more landslides were captured by the model, 
while high TNR means a few modeled landslides are out of landslide 
database. A ROC curve consists of TPR and TNR pairs, which were 
calculated under different cutoff values. Factor of safety (FS) is the cutoff 
variable in our study. The model performs well if the ROC curve is close 
to the upper-right corner. The area under the curve (AUC) reflects the 
global accuracy of the model. The larger the AUC value, the more correct 
the model is in predicting landslides. 

4. Results 

4.1. Simulation of CREST model 

The CREST model was used to simulate the hydrological processes 
for the period of 2009–2012 for the study area. The 2009–2010 period is 
used to calibrate the model, while the 2011–2012 as the validation 
period. In order to reduce the effect of initial conditions, the first three 
months were not considered in model evaluation. The model was cali-
brated manually. The processes of modeled and observed daily 
discharge for the four stations are shown in Fig. 4. The modeled dis-
charges show generally good agreement with the observations. The 
relative biases are 46.60%, � 13.28%, � 13.36% and � 0.42% while Ccs 
are 0.51, 0.57, 0.74 and 0.70 for Lueyang station, Nanronghua station, 
Shiquan station and Taoyuan station, respectively. For the modeled 
discharge of the first 200 days of Lueyang station, they do not meet the 
observations well probably because of the initial conditions, thus the 
bias is larger than 40% and the Cc is less than 0.6. For the other three 
discharge stations, the bias and Cc are all less than 20% and greater than 
0.55, respectively, indicating that the CREST model performs well in 
these areas. 

We further calculated the logarithm discharge and its exceedance of 
the four stations in every year to construct the FDCs between 33% and 
67% exceedance probability (Fig. 5). The red and black lines are fitted 
exceedance curve of simulated and observed discharge, respectively. 
The result shows that the slopes of simulations for all the stations in the 
four years are generally close to those of the observations. Table 4 shows 
the results of the objective function for the four stations from 2009 to 
2012. Most of the absolute values of the Z are less than 0.4, only two of 
them are slightly larger than 1 (for Lueyang station and Nanronghua 
station in 2012). However, the absolute values of average Z for the four 
stations are all less than 0.6. Besides, the average Z values of Nanrong-
hua and Shiquan station are only 0.044 and 0.092, respectively, which 
means the simulation discharge meets the observation quite well. 

Table 4 
Results of objective function (Z) of the four discharge stations for the period of 
2009–2012.  

Station 2009 2010 2011 2012 2009–2012 

Lueyang 0.309 � 0.367 � 0.172 � 1.326 � 0.541 
Nanronghua 0.354 0.323 0.204 � 1.408 � 0.044 
Shiquan 0.191 0.059 0.217 � 0.291 � 0.092 
Taoyuan 0.274 0.285 � 0.036 0.203 0.157  

Fig. 6. Average soil moisture in spatial resolutions of a) 1 km and b) 90 m; (a)–(h) in panel a) are the selected reference grids for demonstrating the down-
scaling results. 
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4.2. Soil moisture downscaling 

The soil moisture, simulated by The CREST model, was downscaled 
from resolution of 1 km to resolution of 90 m before it was used in the 
SLIDE model. The temporal average soil moisture was calculated for 

resolution of 1 km and 90 m (Fig. 6). The spatial distribution of SM in 90 
m is similar to that in 1 km. The SM is higher in the south and lower in 
the north, which is similar to the distribution of rainfall (as mentioned 
before, the study area is humid to arid from south to north). 

We then selected 10 reference grids, which near the rivers or locate 
in mountains or flat plains, to evaluate the downscaling method 
(Fig. 6a). The downscaling results of each reference grids are shown in 
Fig. 7. The numbers in the first row of all the grids are the value of soil 
moisture in the resolution of 1 km. Panels in the second row are the 
downscaled soil moisture values with a resolution of 90 m. The result 
shows that, for all the reference grids, the average values of 90 m spatial 
resolution are all approximately equal to the values of corresponding 
grids in 1 km spatial resolution, which means that the downscaling 
method is reasonable and acceptable. Besides, the SM in 90 m can 
capture more details compared to that in 1 km according to the figure. 
The fine SM, obtained by the downscaling method, can be used in slope 
stability model to improve model performance and solve the problem of 
landslide prediction in large area. 

We further detected the relations of median and mean value of soil 
moisture in every simulation day between the two spatial resolutions 
(Fig. 8). The mean values at the resolutions of 1 km and 90 m agree well 
with each other. These two cumulative lines almost coincide. Besides, 
the median line in resolution of 90 m is above that in resolution of 1 km 
and closer to the mean line, meaning that the soil moisture is more 
detailed and close to the real value after downscaling because although 
the median can reduce the effect from the extreme value, it neglects the 
changes of part of the data and these changes can be considered by the 
mean value. 

Fig. 7. Soil moisture downscaling results of ten reference grids (these grids are shown in Fig. (6)).  

Fig. 8. Cumulative distribution functions of median and mean of soil moisture 
at resolution of 1 km and 90 m. 
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4.3. Landslide prediction 

The SLIDE model was implemented to predict landslides. Fig. 9 
shows the minimum FS of the whole region during the four years in the 
resolution of 90 m. The TPR value of the modeled results is 66.9% while 
the TNR value is 99.7%; these results indicate that the SLIDE model has a 

high accuracy in predicting landslide events and a very high accuracy in 
predicting stable grids. The reported landslides were concentrated in the 
southern area and a few in the central part where the FS is lower than 1 
in most of the grid cells. Although there are no reported landslides in 
some places where the FS is less than 1, the model captures most of the 
reported landslides. Besides, the south area has the concentrated 
mountains and rainfall, which is the cause of landslides that concentrate 
in this area. 

The mean of soil moisture and the percentage of unstable grids are 
shown in Fig. 10. The black line is the mean of soil moisture while the 
blue line is the mean of soil moisture which grids locate the area that the 
DEM is higher than 500 m and the slope angle larger than 10�. Gener-
ally, the percent of unstable grids increases with the increasing soil 
moisture. This suggests that there is a strong relation between soil 
moisture and slope stability. Besides, the statistical analysis shows that 
the Cc of blue line and red line is larger than that of black line and red 
line which means the changes of soil moisture in high elevation and 
steep slope has more significant effects on slope stability. 

We further conducted the ROC analysis, which can reflect the per-
formance of the SLIDE model. The whole area is too large and contains 
more than 28,000,000 grid cells in resolution of 90 m. In order to 
analyze more efficiently, we randomly chose 100,000 grid cells that had 
no reported landslide events and gave each of them a date randomly. To 
make these selected grid cells represent the whole study region well, we 
made sure that any two of the 100,000 grid cells are separated by at least 
7 grid cells. For each of the randomly chosen grid cells (including these 
with reported landslide events), the grid cells that are close to it within 
three grids were selected. The minimum FS of these grids was then ob-
tained during the model day-by-day simulation. The TPR and TNR pairs 
were calculated using the confusion matrix. The ROC curve of the SLIDE 
model is shown in Fig. 12. The curve is the close to the upper-right 
corner. The AUC of the SLIDE model (also known as the global accu-
racy) is 0.972 while the TPR is 0.669, meaning that the model has high 
global accuracy and true positive rate. In addition, the TNR of the model 
is 0.997, indicating that the SLIDE model has skill also to delineate the 
stable area. 

5. Discussion 

In this study, we coupled the low-resolution hydrological model 
CREST with the high-resolution slope stability model SLIDE using a 

Fig. 9. The minimum factor of safety of the study area during the 
modeled period. 

Fig. 10. Time series of mean value of soil moisture and percentage of unstable grids over the whole region.  
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spatial downscaling method for soil moisture, which is a connection 
variable between these two physically-based distributed models. 

High-resolution hydrological modeling has a better representation of 
spatial heterogeneity of land surface attributes (e.g. topography, soil, 
and land cover) (Wood et al., 2011), however, it is difficult and ineffi-
cient, sometimes infeasible to apply these models with a very fine res-
olution in a large area, especially for the CREST model (e.g. 90 m 
resolution in this study). Meanwhile, modeling in a high-resolution re-
quires large, massive computer resources (Wood et al., 2011; Kumar 
et al., 2006), which is very costly and time consuming. Kollet et al. 
(2010) presented a parallel scaling study that couples groundwater and 
land-surface modeling system by using more than 16,000 processors, 
and it takes about 200 min for a 10 days simulation. Besides, high res-
olution is not necessary for hydrological models to have improved per-
formance because of the quality of the data (Li and Wong, 2010). Horritt 
and Bates (2001) found that the hydrological model reaches the best 
performance at a spatial resolution of 100 m, and no improvement with 
increasing resolution. This study was implemented in a 60 km river 
channel, which is substantially smaller than the study area in our 

research. Hence, the hydrological model with a resolution of 1 km is 
suitable and effective in regional scale, e.g. our study area. In addition, it 
is difficult to obtain the parameters of hydrological models in a very high 
spatial resolution. For landslide prediction, it shows that the model has 
high global accuracy and good performance. Due to the computational 
load, it is impossible to model in a finer resolution (i.e. 30 m or 10 m) 
over such a large region, we did not detect whether the model perfor-
mance will be better or not in the resolution of 30 m. In fact, it has been 
pointed that too high resolution may not lead to better results (Tian 
et al., 2008; Arnone et al., 2016). Furthermore, it should be noted that at 
very fine resolutions, errors and incompleteness of the landslide in-
ventory starts to have more significant effects on landslide prediction 
(Arnone et al., 2016). The method proposed in this study can be used in 
other large regions because of the wide applicability and feasibility of 
the CREST model and SLIDE model. This coupling method also makes it 
possible to develop landslide prediction system on a global scale. 

The main objective of this study is landslide assessment. In order to 
evaluate the performance of the SLIDE model for landslide prediction, 
we conducted the classical ID (Intensity-Duration) threshold method 
(Bogaard and Greco, 2018; Peruccacci et al., 2017; Huang et al., 2015; 
Melillo et al., 2018) to compare the results of the two methods. The 
intensity and duration of rainfall events for each random grid cell and 
reported landslides were calculated first. A rainfall event is defined as 
the continuous rainfall or discontinued rains with the non-rain inter-
mittent periods less than or equal to 1 days. Then we chose half of the 
reported landslides and half of the random grid cells as the model cali-
brating dataset. The rest of the dataset is for validating. The intensity 
and duration of calibrating dataset were plotted on a log-log graph 
(Fig. 11). Curve fitting by linear regression of these scatters was 
implemented afterwards. We adjusted the line by changing its intercept 
to make sure that 90% of the total grids are predicted correctly by the ID 
model (Eq. (6)). The ID model was validated lastly. For a reported 
landslide or a no-landslide grid, it is predicted correctly if it locates 
above the line or below the line, respectively. 

log10I¼ 1:291 � 0:198� log10D (6)  

where I is rainfall intensity in mm/d; D is rainfall duration in day (d). 
The three metrics, TPR, TNR and AUC, are 0.669, 0.997 and 0.972 

for the SLIDE model, respectively, while they are 0.907, 0.852 and 0.943 
for the ID model, respectively. The ID model has higher TPR than the 
SLIDE model, which has higher TNR. However, if we adjusted the 
threshold line and changed the TNR of the ID model to 0.997, which 
equals to that of the SLIDE model, the TPR of the ID model will be only 
0.132, which is far less than that of the SLIDE model. Besides, the ROC 
curve of the SLIDE model has higher AUC value and is closer to the 
upper-right corner than that of the ID model (Fig. 12). These results 
suggest that, although it has lower TPR, the SLIDE model is more robust 
than the ID model in landslide prediction which maybe because it is a 
physically-based distributed model that the soil and the topographic 
attributes can be better considered in model simulation. In addition, it 
should be noticed that the reported landslides mainly occurred in the 
southern mountain area, which is mainly covered by forest. Hence, some 
landslide events may not be monitored or reported. 

6. Conclusions 

This study aims to predict landslides in a very large region by 
coupling a low-resolution hydrological model with a high-resolution 
slope stability model. The soil moisture is the coupling variable, which 
should be downscaled to use in the slope stability model. The topo-
graphic wetness index is the downscaling parameter linking the coarser- 
resolution soil moisture with the finer one. 

The CREST model and the SLIDE model were applied in this study. 
Both of the two models performed well: the CREST model simulated the 
hydrological processes good while the SLIDE model predicted landslides 

Fig. 11. Threshold line of the ID model for distinguishing the reported slided 
and non-slided grids. 

Fig. 12. ROC curves of the SLIDE model and the ID model.  
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more robustly compared to the result of a regional threshold approach. 
These results indicate that the model and downscaling methods applied 
in this study are useful for landslide prediction in large regions. Yet, 
these methods can be improved through more data sets and more ac-
curate initial conditions. For parameters, they can be calibrated and 
validated by field experiments; for soil moisture downscaling, the field 
observation data could be useful for validation. It is a massive work 
collecting these data in such large area. However, with technology 
developing, these problems could be solved and there will be more 
efficient and accurate methods for landslide hazard assessment over 
large regions (e.g. continental scale and global scale). 
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Appendix A 

The ISA is affected by vegetation cover and human activities. Human settlement index (HSI) is an index that reflects human activities and was 
developed by Lu et al. (2008). The vegetation index was also considered, as expressed in the following equation: 

HSI¼
ð1 � NDVImaxÞ þ OLSnor

ð1 � OLSnorÞ þ NDVImax þ OLSnor � NDVImax
(A.1)  

where NDVImax is the maximum NDVI value during April and October from 2009 to 2012, this is to reduce the impact of bare soil when using 
vegetation index; OLSnor is the normalized value of the DMSP-OLS DN image, whose original value is between 0 and 63. 

The DMSP-OLS stable nighttime-light reflects the urbanization of an area. The higher value of stable light is, the higher urbanization is. In order to 
match the data range between NDVImax and DMSP-OLS data, the DN value is normalized ranging from 0 to 1, as expressed following: 

OLSnor ¼
OLS � OLSmin

OLSmax � OLSmin
(A.2)  

where OLSmax and OLSmin are the maximum and minimum values in DMSP-OLS dataset. 
In general, a grid cell with a higher vegetation index and a lower stable nighttime-light has a lower impervious area. In order to connect ISA with 

HSI, a simple function was established as follows: 

ISA¼ pþ q� ln HSI (A.3)  

where p and q are two coefficients and determined through model simulation. 

Appendix B 

Generally, the original Kw;1km (Fig. B.1a) can be simply calculated by dividing soil moisture by its spatial mean value (Eq. (B.1)) (Droesen, 2016). In 
fact, the original Kw was calculated through the ratio of soil moisture to the mean value of observed soil moisture in the study implemented by Droesen 
(2016). However, for such a large region investigated in this study, we cannot obtain the gauge values. Therefore, we simply calculated the Kw values 
by dividing soil moisture by its spatial mean value. The coefficient c was then computed according to whether the curvature is less than 0 or not (for 
concave or straight area, the curvature is less than or equal to 0; for convex area, the curvature is greater than 0) (Eq. (B.2)). 

Kw;1km¼ SM1km
�

SM1km (B.1)  

8
>>><

>>>:

c1km ¼
Kw;1km

Ka;1km
� 0:16 cosA1km � 0:09 sinA1km; if Curvature � 0

c1km ¼
Kw;1km

Ka;1km
� 0:14 cosA1km � 0:10 sinA1km þ 0:02 cos 2A1km; if Curvature > 0

(B.2)  

where SM1km is the average value of soil moisture in time series and SM1km is its spatial mean value; A is slope aspect (degrees); Ka is a function of slope 
angle and slope aspect, as expressed below: 

Ka¼ð1 � keαÞ = ð1 � keα0Þ (B.3)  
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where α is slope angle (degrees); α0 is average slope angle; ke is a coefficient dependent on the aspect (for northern aspect ke ¼ � 0:01, for eastern 
aspect ke ¼ 0:002, for southern aspect ke ¼ 0:005, and for western aspect ke ¼ � 0:003 (Romanova, 1971)). 

Then a relation between c1km and TWI1km was built by fitting their scatters where a linear regression method was applied (Eq. (B.4)). This relation 
was used to calculate c90m via TWI90m. After that, Kw;90m (Fig. B.1b) can be calculated through c90m (Eq. (B.5)). 

c1km¼ p� TWI1km þ q (B.4)  
�

Kw;90m ¼ ðp� TWI90m þ qþ 0:16 cosA90m þ 0:09 sinA90mÞKa;90m; if Curvature � 0
Kw;90m ¼ ðp� TWI90m þ qþ 0:14 cosA90m þ 0:10 sinA90m � 0:02 cos 2A90mÞKa;90m; if Curvature > 0 (B.5)  

where p and q are two coefficients of linear regression.

Fig. B.1. Maps of the wetness coefficient at the resolutions of 1 km and 90 m.  

Finally, the SM in 90 m resolution was computed through Eq. (B.6) and was simply calibrated by forcing the average value of SM90m equal to SM1km 
in the corresponding grid cell (Eq. (B.7)) at each time step. 

SMi;m;90m¼Kw;i;m;90m � SMm;1km (B.6)  

1
n

Xn

i
SMi;m;90m¼ SMm;1km (B.7)  

where SMi;m;90m and Kw;i;m;90m are the soil moisture and wetness coefficient in ith finer grid of mth coarser grid; SMm;1km is the soil moisture in the mth 

coarser grid; n is the total number of finer grid cells in mth coarser grid. 
Data availability. Rainfall data were provided by China Meteorological Administration (http://data.cma.cn). The potential evapotranspiration data 

were provided by Global Land Data Assimilation System (GLDAS, https://ldas.gsfc.nasa.gov/gldas/GLDASdownload.php). The DEM data in reso-
lution of 90 m were provided by Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences (http://www. 
gscloud.cn). The DEM data in resolution of 1 km were provided by HydroSHEDS (https://hydrosheds.org/pages/availability). The land cover data 
were derived from GlobeLand30-2010, which is a product of global land cover at a spatial resolution of 30 m derived from remote-sensing images in 
2010 (http://www.globeland30.cn). The soil data are from the Harmonized World Soil Database (HWSD) v1.2 (https://daac.ornl.gov/SOILS/guides/ 
HWSD.html, Soil data, 2017). The landslide hazard data was from geological survey office of Department of Land and Resources of Shaanxi Province. 
The NDVI data were provided by Moderate Resolution Imaging Spectroradiometer (MODIS) and were downloaded from USGS (United State 
Geographic Survey) website (https://earthexplorer.usgs.gov). The Defense Meteorological Satellite Program’s (DMSP) Operational Line-scan System 
(OLS) nighttime-light data with 1 km spatial resolution was downloaded from the National Geophysical Data Center (NGDC, http://www.ngdc.noaa. 
gov/dmsp/global_composites_v2.html). 

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envsoft.2019.104607. 
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