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8 Abstract

9 Human exposure to threats from natural hazards is generally estimated using a static approach with 

10 the fixed number of people located in hazard-prone zones; however, in reality this number varies 

11 due to population mobility. This study proposes a human–hazard coupled City Model (HazardCM) 

12 for accurately calculating city spatiotemporal dynamic exposure to different hazards. It includes 

13 four components: an urban environment module, agent-based model, city–hazard coupler, and 

14 dynamic exposure assessment. Rainfall-triggered natural hazards under extreme 

15 hydrometeorological events were modeled in Lishui, China. Scenarios covering different 

16 magnitudes, timings and locations, and return periods of hazards were investigated to derive the 

17 spatial distribution and evolution of human exposure. This model is the first that different natural 

18 hazards have been analyzed within a unified framework using a dynamic method and offers a new 

19 way to investigate exposure’s space–time characteristics while considering the dynamic nature of 

20 both humans and hazards.

21 Keywords: natural hazards; dynamic exposure; flood; landslide; city model

22

23 1. Introduction

24 Natural hazards are growing more intense and frequent in many cities around the world due to the 

25 changing climate and anthropogenic activities (du Plessis, 2019). Rising numbers of people in 

26 urban areas are becoming increasingly vulnerable to threats from natural hazards. Moreover, 

27 natural hazards’ negative effects on human society are usually amplified due to the compounding 

28 interactions from multi-hazards, such as the concurrence of a storm surge and a flood. There is an 
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29 urgent need to understand multi-hazards, vulnerability, and risk so as to design more hazard-

30 resilient urban developments. 

31 Both natural hazards and cities can be understood as the systems of systems, and the integration 

32 between them is highly complicated. The city itself is an integrated and complex system consisting 

33 of heterogeneous and interconnected subsystems pertaining to both physical and social structures, 

34 among them humans, infrastructures, organizations, and economy, which are connected by 

35 nonlinear, multiple interactions (Atun, 2014). When such a complex system is affected by a hazard, 

36 it fails to function as it does in normal conditions due to interrupted interconnections among 

37 subsystems. For example, if one water factory is damaged by a hazard, then, owing to the system’s 

38 interconnectivity, the supply of the electricity (depends on water support) in some urban areas may 

39 break down. The challenge lies in understanding how a disruption in a subsystem could affect the 

40 whole urban system, for which every detail cannot be foreseen prior to the occurrence of a hazard 

41 event (Atun, 2014). In other words, a broad or superficial understanding of the city system as a 

42 series of separate components is not enough to be able to comprehend the interactions among 

43 subsystems in the city environment.

44 Just as within a city system, the multi-hazards within an earth system are also complicated. The 

45 term “multi-hazards” refers to all possible and relevant hazards and their interactions in a given 

46 spatial region and/or temporal period (Gill and Malamud, 2014, 2017; Kappes et al., 2012a). It is 

47 often confused with “hazards chain” (or “cascading hazards”), which refers mainly to the 

48 interactions among different hazards and the idea that one hazard may induce a series of secondary 

49 hazards, also known as the cascading effect, domino effect, knock-on effect, or triggering effect 

50 (Kappes et al., 2012b). As the cause–effect relationship does not always exist in the multi-hazards 

51 framework, the impact of multi-hazards on city systems is more multifarious. Multi-hazards may 

52 be induced by either one kind of driving force or multiple (Gill and Malamud, 2017). Despite 

53 relating to a large number of hazards, the multi-hazard structure is relatively simple for a given 

54 city. Rain is a significant triggering factor in many hazards, such as landslides, floods, 

55 waterlogging, and debris flow. Rainfall-triggered multi-hazards are the most critical issue in many 

56 cities (Cho and Chang, 2017). 

57 The analysis of multi-hazards classified by three levels: single-hazard, multi-layer single-hazard, 

58 and full multi-hazard model. It is hard to fully understand all hazard mechanisms and dynamic 
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59 interactions among different hazards, so the full multi-hazard model is still a challenge. On the 

60 contrary, the multi-layer single-hazard model, which can provide a detailed model of the 

61 mechanisms of each hazard and allow the relationships between different hazards to be examined 

62 using a loose coupling approach is a promising way. There are already a large number of mature 

63 models for modeling the separate processes of each hazard. For example, the SWMM model has 

64 been widely used in many cities to simulate water movement in both urban surface and drainage 

65 systems (Bisht et al., 2016; Gironás et al., 2010; Li et al., 2016; Sun et al., 2014). The SHALSTAB 

66 model is used to simulate and predict the occurrence of rainfall-triggered landslides (Burton and 

67 Bathurst, 1998; Dietrich and Montgomery, 1998; Gorsevski et al., 2006). 

68 The key to assessing the risks of natural hazards is to model the collective consequences of hazards 

69 within the city system and human behavior within the multi-hazards environment. The 

70 development of an integrated multi-hazards risk assessment model that considers all kinds of 

71 hazard interactions together with exposure could offer a way by which city management can reduce 

72 risk and increase resilience regarding hazards. Understanding city exposure to natural hazards is 

73 one of the most important components of risk assessment. The traditional exposure assessment 

74 generally assumes the exposure elements are static and ignores the interactions among these 

75 elements (Shabou et al., 2017). Riddell et. al. (2019) considered the dynamics of natural hazards, 

76 along with society's exposure and vulnerability; and how these components of disaster risk change 

77 over extended periods due to population, economic, climatic drivers, as well as policy and 

78 individual decisions for long-term disaster risk reduction. However, as human exposure to a hazard 

79 is generally calculated through the number of people located in a hazard-prone zone, this number 

80 varies dramatically throughout the day due to population mobility. In an effort to compensate for 

81 this variability, “dynamic exposure” (DYE), which refers to the space–time characteristics of 

82 exposure, has been defined and applied to flood and earthquake hazards (Hsu et al., 2013; Park 

83 and Kwan, 2017; Pittore et al., 2014). Innovations in risk assessment that integrate societal 

84 behaviour and behavioural adaptation dynamics into such quantifications may lead to more 

85 accurate characterization of risks and improved assessment of the effectiveness of risk-

86 management strategies and investments (Aerts et. al., 2018).However, in a multi-hazards 

87 environment, the DYE assessment faces multiple challenges. For example, it is unclear how to 

88 define a unified spatial and temporal unit that can be used to model all hazards. Natural hazards 

89 are influenced by a range of spatial and temporal scales: from one square meter to one million 
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90 square kilometers, from a period of seconds to millennia (Gill and Malamud, 2017). Improving 

91 the modeled details of one hazard may decrease the computational efficiency of another hazard 

92 simulation. Thus, a balance is needed between quality and efficiency for all involved hazards. 

93 Furthermore, how to define the exposure elements to different natural hazards and model the 

94 hazard processes in a unified platform is also a challenge (Budimir et al., 2014; Mignan et al., 

95 2014; Montz et al., 2017). 

96 To date, there has been little work on simulations of the socioeconomic impact from multi-hazard 

97 events and even fewer studies on the dynamic interaction between human behavior and natural 

98 hazards (Gill and Malamud, 2017). If a city is susceptible to more than one hazard, better 

99 management decisions can be made that will benefit all stakeholders if differential hazard risks, as 

100 well as the city’s resilience as a whole, can be determined (Atun, 2014). For this reason, this study 

101 aims to propose a human–hazard coupled platform for calculating accurate spatiotemporal DYE 

102 to different types of natural hazards. Rainfall-triggered natural hazards (including urban floods and 

103 landslides) during extreme hydrometeorological events were used for the model, and their DYE 

104 was investigated in the context of a typical city in China. People’s daily behaviors are characterized 

105 by certain patterns with regard to daily, weekly, monthly, and yearly cycles. This study focuses 

106 upon daily cycles.

107 The rest of the paper is organized as follows. Section 2 illustrates the theoretical background of 

108 the study. Section 3 describes the structure and components of the model. Section 4 explains the 

109 theory of the hazard simulation model. Section 5 presents a case study. Section 6 discusses the 

110 results and provides potential improvements of the model. The final section summarizes the key 

111 findings and discusses future work. 

112 2. Theoretical background

113 2.1 City exposure to hazards

114 Quantitative natural hazard risk is commonly expressed as a function of the probability of a hazard 

115 (P), the exposure to it (E), and the vulnerability of exposed elements (V), which is written as 

116 follows (Grahn and Nyberg, 2017): 

117 Hazard risk = P × E × V                                                                                                                  (1)

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224



5

118 These components can be divided into the hazard event (P) and the actual consequences (E × V) 

119 caused by the hazard. In order to perform reliable quantitative risk assessments, it is essential to 

120 estimate the values of the three risk components using fine spatial and temporal scales and 

121 understand the possible factors that contribute to their change (Grahn and Nyberg, 2017). 

122 Human, building, and infrastructure exposure are crucial inputs for quantitative risk assessment. 

123 There are enormous studies to calculate both single and integrated exposure for floods (de Moel 

124 et al., 2011; Güneralp et al., 2015; Jongman et al., 2014) and landslides (Garcia et al., 2016; Ivy-

125 Ochs et al., 2009; Pellicani et al., 2014; Promper et al., 2015) in the past decade. However, the 

126 dynamic mechanisms relating to hazards and city systems are generally ignored. The impacts of 

127 hazards on city systems depend not only on factors such as the magnitude and frequency of the 

128 hazard and the exposure of those affected but also on how these variables intersect and evolve in 

129 space and time (Terti et al., 2015). For example, the number of people located in hazard-prone 

130 zones varies dramatically throughout the day due to the population mobility. A hazard (e.g., 

131 earthquake) that occurs during the day surely will have different consequences to one during the 

132 night. Moreover, human exposure to hazards depends on how people adapt to changing and 

133 potentially dangerous conditions in a specific hazard environment (Terti et al., 2015). 

134 For this reason, DYE that describe the space-time characteristics of exposure is defined and be 

135 applied to flood and landslide hazards (Shabou et al., 2017). If human exposure (EH), building 

136 exposure (EB), and infrastructure exposure (EI) discretize in terms of space and time, the 

137 conceptual form of integrated DYE can be written as follows:

138 E(t, x, y) = EH(t, x, y) + EB(x, y) + EI(x, y),                                                                                   (2)

139 where x and y represent space, and t refers to time of day. The weight and uniformization among 

140 these exposure elements are not considered in the conceptual model presented in this study, but 

141 they will be considered in the future model versions.

142 To obtain comprehensive exposure, it is necessary to select representative indicators of every 

143 components through expert recommendation or mathematical analysis. The city system was 

144 interpreted as a series of blocks in the shape of an irregular polygon. All exposure indicators should 

145 be transferred to this unit as well. Uniformization is important because the measurement units of 

146 the indicators are not uniform and cannot be directly compared and calculated. Then, according to 

147 the characteristics of the indicator data, the weights are determined by expert scoring, analytic 
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148 hierarchy process and the entropy weight method. Based on the scale table formed by the domain 

149 expert's scoring, the weight of the indicators in each criterion layer is calculated according to the 

150 analytic hierarchy process, and then the weight of each criterion as well as the combination weight 

151 of the indicators are determined.

152 2.2 Human activity and mobility

153 The location of any given individual with different sociodemographic characteristics varies 

154 dramatically over the course of the day (Dawson et al., 2011). As the travel pattern of each 

155 individual is generally consistent, it is possible to anticipate his or her location at any given time. 

156 The activity-based model microsimulates the variation of an individual’s locations by designing 

157 the activity planning and scheduling components in a way that it can replicate the individual’s 

158 actual activity-scheduling behavior (Javanmardi et al., 2016; Rasouli and Timmermans, 2014). It 

159 considers travel demand from a human perspective and performs a sequence of activities 

160 distributed in space and time (Recker, 1995). Recently, there has been an increasing attention on 

161 activity-based models because they can integrate behavioral and psychological factors with the 

162 decision-making process (Shabou et al., 2017). 

163 The activity-based model evolved out of the transdisciplinary perspective of time geography, 

164 which describes the sequential path of individual events that marks the history of a person within 

165 a situational context (Terti et al., 2015). As a complement to this concept, the activity-based model 

166 emerged in the 1970s to introduce spatial and temporal constraints on human mobility behavior 

167 (Gamow, 1970). McNally (1996) indicated that a qualified activity-based model should have four 

168 significant specialties: design travel patterns according to participation demand; simulate by travel 

169 sequences instead of an entire trip; connect individual behavior with its sociodemographic 

170 characteristics; and consider travel-activity constraints using spatial, temporal, and interpersonal 

171 factors (Shabou et al., 2017). Activity-based models attempt to accurately predict how, why, when, 

172 how often, where, and with whom a sequences of activities are carried out by individuals at 

173 different times of the day and across the days of the week (Bhat and Koppelman, 1999). As the 

174 necessity for modeling activity scheduling has become more evident, various operational models 

175 have been developed over recent years, including SCHEDULER (Gärling et al., 1994), 

176 TRANSIMS (Smith et al., 1995), TASHA (Miller and Roorda, 2003), CEMDAP (Bhat et al., 2004), 

177 ALBATROSS (Arentze and Timmermans, 2000), MATSim (Balmer et al., 2006), and ADAPTS 

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336



7

178 (Auld and Mohammadian, 2012). All these models include the abovementioned four specialties 

179 and the same activity-based paradigm. The ADAPTS model was adopted in this study, as it 

180 provides a comprehensive modeling method for activities outside the home.

181 2.3 Human adaptation to hazard evolution

182 Humans’ behavior when facing a life-threatening event (such as a natural hazard) is a complicated 

183 process and can be driven by many factors. Crisis circumstances and individual sociodemographic 

184 characteristics are two basic conditions that determine human adaptation to hazards evolution 

185 (Dawson et al., 2011; Terti et al., 2015). Crisis circumstances include the hazard environment (e.g., 

186 flood depth, spatial extent of an inundation, and sediment volume of a landslide) and hazard-

187 induced disturbances (e.g., traffic jam or the collapse of an old building). Sociodemographic 

188 characteristics, meanwhile, are classified by general (e.g., age, education, and occupation) and 

189 hazard-related features (e.g., previous hazard experience and emergency training). One’s 

190 perception of crisis circumstances and their cues (such as official warning messages) strongly 

191 depend on an individual’s sociodemographic characteristics. Information diffusion and social 

192 interactions that allow people to connect with their relatives and promote a group response are also 

193 considered in the published literature (Lindell and Perry, 2003; Ruin et al., 2014). In addition, as 

194 an individual adaptation to hazards is governed by a set of institutional rules, institutional analysis 

195 has been introduced to model social memory (e.g., social awareness of hazard risk) and impact on 

196 individual status (Abebe et al., 2019; David et al., 2017).

197 The nature and dynamics of an individuals’ adaptation to a hazard will differ according to the 

198 location and activity they were conducting when they perceived the crisis circumstances (Terti et 

199 al., 2015). For example, when a hazard-caused disturbance occurs in the context of an individuals’ 

200 daily route, his or her familiarity with the surrounding environment may help him or her determine 

201 an alternative, safer route, and thus positive actions may be easily adopted. However, an 

202 individual’s activities may not be easily changed in some special situations, such as picking up a 

203 child from school.

204 3. The proposed HazardCM

205 3.1 Model structure
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206 This study proposes a human–hazard coupled city model to describe the impact of rainfall-related 

207 hazard events on socioeconomic factors within an agent-based framework with a specific reference 

208 to the dynamics of the hazards and the human environment. The framework of the proposed city 

209 model is shown in Figure 1. It starts with city elements related to natural hazards by first modeling 

210 blocks and networks. HazardCM regards the city as a combination of a series of spatialized 

211 irregular blocks connected by various networks (such as road and electricity). A large number of 

212 agents are then generated representing different agent types (citizen and government) and 

213 population variability. The behaviors, with special consideration for hazard adaptation, and 

214 decisions of these agents are predefined. The daily activity and location of citizen agents, from 

215 which needs (e.g., water needs), environment impact (e.g., wastewater), and hazard interaction 

216 emerge, are simulated. Based on the agent modeling, the hazard processes are carried out using 

217 open-source, widely-recognized models, and the hazard consequences are simulated through GIS 

218 spatial analysis packages, together with network analysis by Network X (Hagberg et al., 2008) and 

219 graph theory (West, 1996). Finally, the spatially and temporally distributed data of rain events are 

220 used to drive multiple hazard events, and the corresponding hazards exposure is calculated.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448



9

221

Land Use
Hazard-related Urban Environment 

Modeling

Agent-based Modeling of Human ActivityTravel Survey and 

Census Data

Hazard Process 

Modelling

Human–hazard Coupled Method

City Dynamic Exposure Assessment

Population ExposureBuilding Exposure Road Exposure

Agents Initialization

Activity Simulation (Daily)

Activity Simulation (Hazard)

Urban Flood

(LISFLOOD-FP)

Landslide

(SHALSTAB )

Road Network

Agents Generation

222 Figure 1. Model structure. 

223 HazardCM follows the concept of InaSAFE (2014), which combines one exposure data layer (e.g., 

224 location of buildings) with one hazard scenario (e.g., the footprint of a flood) and returns a spatial 

225 impact layer along with a statistical summary and action questions. The socioeconomic process 

226 simulation in HazardCM benefits greatly from the resilience.io model (Triantafyllidis et al., 2018), 

227 which aims to build a more resilient city by assessing infrastructure design and effectiveness in 

228 meeting growing resource demands through integrating a set of models of infrastructure systems 

229 within a socioeconomic context. HazardCM is also inspired by WaterMet2 (Behzadian et al., 2014) 

230 and RepastCity (2012) in modeling the urban water and traffic systems and Repast Simphony 

231 (2016) and Netlogo (2018) in defining the agents and behaviors. 

232 The model components follow a sequentially implemented mechanism, which includes:
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233 (1) hazard-related city elements modeling that provides spatial and feature expressions of the 

234 geographical entities of the city (see Section 3.2);

235 (2) agent-based modeling (ABM) as the simulation module that estimates the population’s spatial 

236 and temporal distribution and its change (see Section 3.3);

237 (3) a human–hazard coupled module that reconstruct the simulated hazard elements to adapt to the 

238 city system framework (see Section 3.4); and

239 (4) a DYE calculation as the simulation module that systematically combines the hazard and 

240 human evolution processes with respect to the usefulness of these processes in order to quantify 

241 the consequences of rainfall-related hazards (see Section 3.5).

242 The model can be driven by different configurations of hazards and city systems to derive the 

243 spatial distribution and evolution of human exposure. The detailed description of the scenario 

244 design is given in Section 5.5.

245 3.2 Hazard-related urban environment modeling

246 Due to the complexity of a city, its geographical entities such as buildings, bridges, and lawns 

247 cannot be modeled individually. Instead, HazardCM divides the city into a series of blocks 

248 according to land use and road networks. If the discretization is carried out on different spatial 

249 scales, the result is multiple resolutions of blocks. With higher spatial resolutions, more details of 

250 the city can be identified but at the cost of computational efficiency. 

251 For each block, the input–output flow (water, energy, and waste) moves through networks that 

252 allow resources to import and export. Four types of input–output flows are considered in 

253 HazardCM: water, wastewater, electricity, and gas. Considering the limited damage of the hazards 

254 used in this study (flood and landslides) on resource flow, the network damage from hazards is 

255 ignored. The key network nodes (such as water plants and electrical substations) are considered to 

256 monitor the input and output flow function for each block.

257 In the HazardCM model, blocks are classified based on land use, and most are recognized as either 

258 Residence, Business, or Recreation, indicating the most important commutes of citizens within a 

259 day. Other city elements are classified into these three types as well, for example, a restaurant is 

260 considered as a Business block if it covers a large area or is merged with a Resident block if it only 

261 occupies some floors of a residential building. As exceptions, chemical-related and public-related 
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262 blocks are classified separately due to their potential risks/impacts. The chemical-related blocks 

263 include printing offices, petroleum, pharmaceutical, and plastics factories. Damage to such blocks 

264 may result in serious environmental impacts. Although a pollutant diffusion model is not included 

265 in HazardCM, the chemical-related blocks will be highlighted and tracked as a hazard event 

266 progresses. Public-related blocks include fire stations, police stations, water plants, power plants, 

267 schools, and hospitals. Damage to these blocks may cause breakdowns of public services and 

268 subsequent damage to the whole city system. In other words, consequences from a given hazard 

269 may transfer from one block to another because of their interconnected nature.

270 Based on the aforementioned facts, it is necessary to consider elements that may be at a greater 

271 risk of failure because of their physical, geographical, cyber, or logical connections in the city 

272 system. To model these connections, HazardCM uses the graph theory to simulate the virtual 

273 connections among different blocks and uses the correlation matrix (CM) to describe the subsistent 

274 network. The virtual connection indicates the unseen interconnections among different elements, 

275 such as hospitals and residents. To fully understand the city system’s exposure to a hazard, it is 

276 necessary not only to represent but also to quantify these interconnections. A graph G = (N,L) 

277 consists of two sets of N (nodes) and L (links): the nodes represent a single block exposed to a 

278 hazard, while the links represent the interaction among the blocks. HazardCM focuses on building 

279 the graph network for public-related blocks. It assumes that all households choose or are assigned 

280 public services in the geographical area nearest to them. Such an assumption is applicable for most 

281 types of public services, such as police and fire stations, but cannot be used for some self-selecting 

282 public-related blocks. For example, theoretically speaking, it is possible for a child to choose any 

283 school rather than the one nearest to him or her within a city. However, the disturbance caused by 

284 such exceptions is acceptable as we are interested in modeling the generalized relationship among 

285 city elements on a large scale instead of accurately simulating it for each individual person. 

286 The subsistent network represents the transit resources (such as water and electricity) among 

287 different blocks. The connectivity between two blocks is expressed as a positive number or zero 

288 in the CM. The stroke model (Li and Dong, 2010; Porta et al., 2006) is used to generalize the 

289 subsistent network. The stroke technique concatenates separate line segments (e.g., conduits) into 

290 longer lines to detect and resolve spatial inconsistencies; this provides a more integrated structure 

291 to further improve the efficiency of subsequent processing (Li and Dong, 2010). As the model 
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292 focuses on the connectivity among different blocks, dynamic flow simulation is not carried out in 

293 the model. 

294 One of the most important factors of each block is the population within it. As people can travel 

295 among different blocks and are affected by the environment, the population changes with time. A 

296 detailed description regarding the simulation of the spatial and temporal distribution of the 

297 population and its relationship to the hazard’s progression is given in the following section.

298 3.3 Agent-based modeling of human activity

299 ABM uses a type of computational model that can simulate the actions and interactions of 

300 autonomous agents in order to assess their effects on the system (House‐Peters and Chang, 2011). 

301 The ABM of human activity established in this study included agents and daily routine maps. The 

302 agent represents a single person or group of people in HazardCM. Some details about agents and 

303 their attributes are shown in Table 1. In the ABM, the first step is to generate a sample of agents. 

304 A master table, which contains approximately 1,000 agents per block using 12 combinations of 

305 characteristics, as per Table 1, is used by the ABM to draw a random sample of agents for the 

306 simulation. The sample number is a balance between efficiency and quality, and the number 1,000 

307 was chosen for the study area by a series of experiments. The final simulation outcome based on 

308 these agents is scaled up according to their proportion of the population to obtain results for the 

309 whole population.

310 Table 1: Agent type.

Variables Values

Gender Male/Female

Age 0-17/18-60/60+

Professional status Employed/Not active or unemployed

Education Level(Highest 

diploma)

University, school-college, bachelor/No 

diploma

Travel mode Walk/Bus/Car

311 The second step involves all agents beginning at their respective home blocks to begin the model 

312 scenario. Each agent either stays in a building or moves through the model domain along the road 

313 network from a start block to a target block. The choice and time of the journey are defined by the 

314 daily routine map as described earlier. The locations of agents are tracked, and the population of 

315 each block is aggregated at each time step.
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316 The third step is to run the agent activity-based model, which simulates the agents’ locations that 

317 vary over the course of the day. As discussed in Section 2.2, the activity-based model represents 

318 the processes related to the daily mobility and sequence of human activities including where agents 

319 are (e.g., inside a building, on the road) and what they are doing (e.g., studying, working) at 

320 different times of the day and across the days of the week (Terti et al., 2015). The daily routine 

321 map is defined in HazardCM to guide the behavior of citizen agents. In the daily routine map, each 

322 agent is described using a probabilistic finite state machine that describes his or her possible states, 

323 the actions he or she can take, and the transitions between states. A similar method was used in 

324 Dawson et al. (2011) and Terti et al. (2015). An example of a synthetic daily routine map for an 

325 agent with demographic properties is shown in Figure 2. 

326

Home

Home

Work

P=0.8

P=1

Idle

P=0.7

SchoolP=0.2

Leave at 08:00 Park for 10 min

P=1

School

P=0.8

Park for 10 min

Work
Stay until 

17:30

P=0.2

Recreation

P=0.3

P=1 Stay until 

21:00

Leave at 19:00

327 Figure 2. Example of daily activity behaviour map for an employed male agent aged 18–60 years.

328 In this example daily routine map, the agent starts the day at 8 am on weekdays. There is a 0.8 

329 probability that he will go straight to work, going home, and so on.  The detailed daily routine map 

330 generated from travel survey and census data is given in Section 5.3.

331 In addition, human behavior during the hazard event is determined by the coincidence of the hazard 

332 event with the individual’s daily scheduled activities (Terti et al., 2015). The agent will take action 

333 under three kinds of situations: perception of environmental cues (e.g., heavy rain), perception of 

334 hazard (e.g., water depth and velocity exceed a certain threshold at the agent’s location) and 

335 receiving of warning messages. The nature and dynamics of the agent’s adaptations will differ 

336 according to the location and activity he or she was performing when he or she felt the need for 

337 action (Ruin et al., 2014; Terti et al., 2015). If the agent perceives a threat, he or she will choose 

338 to take an action with a predetermined probability, otherwise he or she will continue the routine as 

339 normal. The reaction is achieved by defining different daily routine maps for each hazard 
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340 adaptation. For example, the daily routine maps for bad weather and warning scenarios are shown 

341 in Figure 3. The “bad weather” scenario was similar to the “daily activity” pattern. For instance, 

342 the change in travel probability during “bad weather” due to a rainstorm reflected the adaptive 

343 behavior of residents. The “warning” scenario assumed that the government had issued early 

344 warning information at 08:00 LT, that schools had suspended classes on weekdays, and that the 

345 resident responses were stronger than those to the “bad weather” scenario, thereby resulting in a 

346 greater difference in activity patterns.

347   

Home

Home

Work

P=0.8

P=1

Idle

P=0.8

SchoolP=0.2

Leave at 08:00 Park for 10m

P=1

School

P=0.8

Park for 10m

Work
Stay until 

17:30

P=0.2

Recreation

P=0.2

P=1
Home

Home

P=0.8

P=1

Idle

P=1

Leave at 

08:00

Work

Stay until 

17:30

P=0.2

348 (a) Bad weather (weekday)                                                            (b) Warning (weekday)

349   

Home
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RecreationP=0.6Idle

P=1

Stay until 

17:00

Leave at 

09:00
P=0.2

Shop

P=0.2 Park for 2h

P=1

Home

Home

RecreationP=0.2Idle

P=1

Stay until 

17:00

Leave at 

09:00
P=0.7

Shop

P=0.1 Park for 2h

P=1

350 (c) Bad weather (weekend)                                                     (d) Warning (weekend)

351 Figure 3. Daily routine maps for bad weather and warning scenarios.

352 It is worth mentioning that the ABM includes some basic assumptions. For example, human daily 

353 activity follows a fixed and periodic scheme. Daily periodic activity is assumed to be fixed. 

354 However, strictly speaking, the location of most people within the city at a given time is conditional 

355 and random, especially at the dividing point where location changes. In addition, only citizens 

356 within the city are considered in HazardCM while the incoming and outgoing population is ignored. 

357 3.4 Human–hazard coupled method
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358 In HazardCM, the hazard process is coupled with the city system externally or internally depending 

359 on the complexity of the hazard’s evolution. The external coupled method independently simulates 

360 the hazard process and couples it with HazardCM through a dynamic link library, while the internal 

361 coupled method is coded inside HazardCM and directly communicates with other functions. The 

362 internal method is certainly more efficient, but it is difficult to interpret and implement all hazard-

363 related physical processes. Considering HazardCM aims to couple with various kinds of hazards, 

364 the external coupler with a mature hazard simulation model is more practical for our purposes.

365 The city system is interpreted as a series of blocks in the shape of an irregular polygon. The output 

366 of the hazard model should be transferred to this unit as well. Two kinds of transformations are 

367 supported in HazardCM: polygon to polygon and raster to polygon. The GIS spatial analysis 

368 packages were adopted to implement these transformations. A topological relation is first 

369 established to construct the spatial connection between model output units and city blocks. All 

370 output values contained in a city block are then summarized by averaging, counting, maximizing, 

371 and the like. 

372 3.5 City dynamic exposure assessment

373 In traditional exposure assessments, the city elements layer (e.g., buildings and population) is 

374 overlaid with the hazard footprint to obtain a direct exposure layer that represents the direct impact 

375 of a hazard on the city system. Based on the simulated results of the hazard’s evolution and human 

376 activity, HazardCM investigates the city’s dynamic and systematic exposure to the hazard. The 

377 DYE reveals the dynamic characteristics of the city elements while considering people’s mobility 

378 and adaptation actions when faced with hazards. 

379 The exposure and hazard variables have to be predefined in the model. In HazardCM, buildings 

380 (different types), roads, and population are the three major exposure variables. Special attention is 

381 paid to the road network as it links the city elements and transfers hazard consequences from one 

382 block to others and is often disrupted due to natural hazard events. Population exposure indicates 

383 the population affected by the hazard. People on the road are particularly exposed to road hazards 

384 (such as flooding) during their daily mobility (Shabou et al., 2017).

385 In terms of hazard variables, there are different combinations of indicators for different hazards. 

386 Taking flooding as an example, Figueiredo et al. (2018) listed all the hazard variables in current 

387 publications and found that water depth, flow velocity, inundation duration, contamination, and 
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388 return period have been used. For landslides, indicators such as sediment volume and depth can be 

389 used as hazard variables. Considering the hazard simulation model used in this study, both water 

390 depth and velocity were used to determine flood exposure, while the occurrence of landslides was 

391 used as the landslide variable. The selection of variable threshold is discussed in Section 5.3.

392 4. Hazard process modeling

393 4.1 Urban flood modeling

394 The two-dimensional hydrodynamic model LISFLOOD-FP (Bates and De Roo, 2000) can be used 

395 to simulate the evolution of a flooding event. The hazard simulation process is coupled with the 

396 city system using the external coupled method. LISFLOOD-FP, developed at the University of 

397 Bristol, integrates a one-dimensional river hydraulic movement and a two-dimensional floodplain 

398 water movement based on a raster grid. Since the model was published in 2000, it has been widely 

399 used around the world and has been proven to simulate properly flood inundation for fluvial, 

400 coastal, and urban events (Coulthard et al., 2013; Wood et al., 2016; Lant et. Al., 2010; Ozdemir 

401 et. Al., 2013). 

402 LISFLOOD-FP assumes that the flow between two cells is simply a function of the free surface 

403 height difference between those cells (Bates and De Roo, 2000):

404                                                                                                              (3)
𝑑ℎ𝑖,𝑗𝑑𝑡 =

𝑄𝑖 ‒ 1,𝑗𝑥 ‒ 𝑄𝑖,𝑗𝑥 + 𝑄𝑖,𝑗 ‒ 1𝑦 ‒ 𝑄𝑖,𝑗𝑦∆𝑥∆𝑦
405                                                                                                           (4)𝑄𝑖,𝑗𝑥 =

ℎ 5/3𝑓𝑙𝑜𝑤𝑛 (ℎ𝑖 ‒ 1,𝑗 ‒ ℎ𝑖,𝑗∆𝑥 )
1/2∆𝑦

406 where  is the water free surface height at the node (i,j);  and  are the cell dimensions;  is ℎ𝑖,𝑗 ∆𝑥 ∆𝑦 𝑛
407 the effective grid scale Manning’s friction coefficient for the floodplain; and  and  describe 𝑄𝑥 𝑄𝑦
408 the volumetric flow rates between floodplain cells in  and  directions. The flow depth, , 𝑥 𝑦 ℎ𝑓𝑙𝑜𝑤
409 represents the depth through which water can flow between two cells, and  is defined as the  𝑑
410 difference between the highest water-free surface in the two cells and the highest bed elevation. 

411 The detailed description of LISFLOOD-FP can be found in Bates et al. (2013).

412 4.2 Landslide modeling

413 The simple, open-source model SHALSTAB is introduced in HazardCM for landslide modeling 

414 (Montgomery and Dietrich, 1994). SHALSTAB is a physically-based model designed for 
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415 identifying areas susceptible to rainfall-triggered shallow landslides on a hydrological catchment 

416 scale. The model started as a digital terrain model for mapping the pattern of potential shallow 

417 slope instability by building upon the hydrological model TOPOG (O'loughlin, 1986). The slope 

418 stability component uses the relative soil saturation to analyze the stability of each topographic 

419 element for the case of cohesionless soils of spatially constant thickness and saturated conductivity 

420 (Montgomery and Dietrich, 1994). 

421 The model output constitutes landslide susceptibility and critical rainfall. Landslide susceptibility 

422 ranges from 1 to 7, and the specific meaning of each value is shown in Table 2. For example, the 

423 value 2 indicates that the area is prone to landslides under the rainfall of 0 mmday-1 to 30 mmday-1 

424 (critical rainfall).

425 Table 2: The meaning of different landslide susceptibility values.

Landslide 

susceptibility value

Critical rainfall 

(mm/day)

1
Unconditionally 

Unstable

2 0-30

3 31-100

4 101-150

5 151-200

6 201-999

7 Stable

426 There are of course more complicated models that describe the mechanism of the landslide process. 

427 However, SHALSTAB can be used as an approximation of the surficial mechanics controlling 

428 slope stability (Dietrich and Montgomery, 1998). It is implemented as an internal coupled method 

429 in HazardCM.

430 5. Case study

431 5.1 Software implementation

432 The model was implemented in Visual Studio Code and Python programming language using 

433 simulation libraries including Qt, Geopandas, and Matplotlib. A series of different software tools 

434 were used in the making of this model: QGIS (2018) to provide spatial analysis packages; Network 
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435 X (Hagberg et al., 2008) to analyze the traffic routines of citizen agents; and YAML (2017) for 

436 data serialization of model input–output.

437 5.2 Data analysis and pre-processing

438 The city of Lishui in Zhejiang Province, China, was chosen as the area for pilot-testing the model. 

439 The center of Lishui is relatively flat and surrounded by mountains, with the Oujiang River running 

440 across its southern and eastern areas (see Figure 4). During the flooding period in May and June, 

441 the frequency of heavy rainstorms and persistent concentrated rainfall events rise remarkably, 

442 raising the probability of floods and landslides. The study area mainly covers the central district 

443 of Lishui with an area of 43.4 km2 and has a population of about 71,673 (see Figure 4). 

444

445 Figure 4. Map of the study area.

446 Table 3: Description of the data used.

Data Source Date Use

Digital elevation model Local government 2013 Topography

Basic geographic data Local government 2015 Location of river and building

Chemical points Local government 2018 Location

Network data Local government 2015

Location of rainwater, 

wastewater, water supply, 

electricity, gas and road 

networks.

1 km grid population data

National Earth System Science 

Data Sharing Infrastructure, 

National Science & Technology 

Infrastructure of China 

(http://www.geodata.cn)

2010
Number of residents in grid of 

the study area.
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Population profile

Lishui Statistical Yearbook and 

Liandu Yearbook 

(http://tjj.lishui.gov.cn)

2014

Gender profile, age profile, 

education level profile, 

employment profile and travel 

mode profile.

Traffic flow data Local government
June 2017 

-July 2017

Number of vehicles passing 

through traffic intersections 

within one hour.

Historical hazards survey
Local government 

(http://www.zjjs.com.cn)
2014

Location and time of historical 

hazards

447 The environmental data to support both flood and landslide simulation and the socioeconomic data 

448 to drive the ABM were collected for the study area. The descriptions and sources of the major data 

449 used are listed in Table 3. The data were pre-proceed to unify the coordinate system, extent, and 

450 scale. To conduct the model parameterization, census data were obtained from the local survey 

451 department. 

452 The rainwater, wastewater, water supply, electricity, gas, and road networks are shown in Figure 

453 5. Only newly built communities in Lishui have a gas pipeline network.

454

455

456 (a) Rainwater network                                (b) Wastewater network                               (c) Water supply network          
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457

458

459 (d) Electricity network                                (e) Gas network                                           (f) Road network

460 Figure 5. Map of the networks.

461 5.3 Initial conditions and parameter calibration

462 HazardCM organizes the city with a series of blocks connected by a variety of networks. According 

463 to land use data, the study area was divided into 293 blocks (see Figure 6). The blocks were 

464 classified by residence, business, recreation (e.g., shopping center, museum, tourist attraction, and 

465 park), public services (e.g., school, hospital, fire station, police station, power plants, and water 

466 plants) and others (e.g., river). Chemical type was not shown since the data was point type. The 

467 mountains were classified as recreation blocks (for travel), locating on the northern and eastern 

468 sides of the study area. The resident blocks are surrounded by mountains and the river dominate 

469 the study area. 

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120



21

470

471 Figure 6. Map of blocks.

472 The complex and intricate networks were generalized based on their capacity and structure. The 

473 original dense network was represented by a simpler network, where their connection nodes were 

474 set at the center of blocks. In the programming, the network connection was expressed with a two-

475 dimensional matrix. There may be a degree of loss with this generalization. For example, the 

476 original multiple connections between two blocks were simplified into one. However, the model 

477 is most concerned with connections among different blocks.

478 There are two components driving the agent-based model: how the citizen agents behave under 

479 normal situations that determine where they are at different times of the day and how agents 

480 respond to a hazard event, or adaptation measures. Based on the local survey, sample logs of travel 

481 patterns for different agent types were generated (see Figures 2 and 3). The probability of being in 

482 a state was also parameterized using the proportion of journeys in each travel pattern, thus 

483 producing the daily activity behavior parameters. At the start of the HazardCM model, the agent 

484 population was generated and randomly located within residential blocks. The total number of 

485 human agents was set to 71,673 by balancing the computation efficiency and representation. The 

486 time 00 am was chosen as the start time of the model for all events because most people are at 

487 home at this time. The time step iteration was set to 30 minutes, which means the status (including 

488 location) of agents changes every 30 minutes.
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489 For the LISFLOOD-FP and SHALSTAB simulations, the grid size was set to 5 m to be consistent 

490 with the DEM map. All simulations were calibrated to the runoff flow and runout patterns in the 

491 flood and landslide inventory. Calibrations were performed manually by altering related input 

492 parameters. All elements (including humans, buildings, and roads) were exposed to a floodwater 

493 depth of more than 25 cm and a velocity of more than 2.5 m/s, which are considered to be consistent 

494 with flood exposure elements. As the SHALSTAB model can only reveal the occurrence of 

495 landslides, blocks that included landslide exposure elements were set to experience landslides 

496 during the simulation.

497 5.4 Validation 

498 The difficulty of validating the proposed model lies in its complex components and scarce 

499 observations. There is no direct way to assess the final output (city exposure to hazards) of the 

500 model. Instead, we used structural validation to check whether each component of the model and 

501 its theoretical foundations and underlying assumptions were correct and reasonable (Galán et al., 

502 2009). 

503 The simulation of floods and landslides can be validated using available observation data. 

504 HazardCM is designed to support different hazard models, so it does not require the hazard 

505 simulation to be flawless. Both the LISFLOOD-FP and SHALSTAB models have been used for 

506 years and have been proven to be efficient (see Section 4). Thus, a careful calibration of the hazard 

507 simulation using historical data from 2014 was carried out. 

508 In addition, in the ABM, we have followed the basic structure of InaSAFE and the resilience.io 

509 model, both were validated by a board of stakeholders and domain experts. The most important 

510 output from the ABM is the spatial and temporal population distribution. Despite the difficulty of 

511 observing the population distribution for the whole city, the population flow at some vital road 

512 junctions can reflect it to some extent. For this reason, the simulated population flow was compared 

513 to traffic observations at road junctions. 

514 In fact, this whole exercise highlights the importance of conducting scenario analyses rather than 

515 aiming for precise predictions. The aim of our model is to develop a tool to explore critical 

516 consequences from the many interrelated complex social processes involved in hazard–human 

517 interactions in the context of various alternative futures.
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518 5.5 Scenario design

519 To investigate the interactions between multi-hazards and the city system, different combinations 

520 of hazards and city elements were designed as initial conditions of the model. The hazard-related 

521 scenarios included hazard type (landslide or flood), hazard magnitude, and hazard timing, as well 

522 as location. The rainfall process and its characteristics are of great importance to landslide and 

523 flood hazards. Different return periods of rainfall can be used as inputs to produce different hazard 

524 magnitudes. The return period of 50 years was used for most demonstrations.

525 People’s daily behaviors are characterized by certain patterns with regard to daily, weekly, 

526 monthly, and yearly cycles. The hazard occurrence was configured to happen on a weekday and a 

527 weekend. The time of the hazard occurrence was set to 6 am and 6 pm. As disaster response 

528 measures adopted by local government are likely to affect people’s daily behaviors, both warning 

529 and non-warning settings were considered. 

530 Table 4: Parameter variations used in the simulation scenarios.

Scenarios Hazard type Rainstorm occurrence time Human behavior Weekdays or weekends

S1 Urban flood 6 am Daily Weekdays

S2 Urban flood 6 am Daily Weekends

S3 Urban flood 6 am Bad weather Weekdays

S4 Urban flood 6 am Bad weather Weekends

S5 Urban flood 6 am Warning Weekdays

S6 Urban flood 6 am Warning Weekends

S7 Landslide 6 am Daily Weekdays

S8 Landslide 6 am Daily Weekends

S9 Landslide 6 am Bad weather Weekdays

S10 Landslide 6 am Bad weather Weekends

S11 Landslide 6 am Warning Weekdays

S12 Landslide 6 am Warning Weekends

S13 Urban flood 6 pm Daily Weekdays

S14 Urban flood 6 pm Daily Weekends

S15 Urban flood 6 pm Bad weather Weekdays

S16 Urban flood 6 pm Bad weather Weekends

S17 Urban flood 6 pm Warning Weekdays
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S18 Urban flood 6 pm Warning Weekends

S19 Landslide 6 pm Daily Weekdays

S20 Landslide 6 pm Daily Weekends

S21 Landslide 6 pm Bad weather Weekdays

S22 Landslide 6 pm Bad weather Weekends

S23 Landslide 6 pm Warning Weekdays

S24 Landslide 6 pm Warning Weekends

531 Therefore, 24 scenarios covering the above situations were designed in this study (see Table 4). 

532 The simulated results according to different hazard, human, and city scenarios are given in Section 

533 5.6-5.8. It is worth noting that only part of these scenarios are discussed and displayed due to space 

534 limitations, but the model can manage all the mentioned scenarios.

535 5.6 Spatial and temporal distribution simulation of the population

536 The population activities were simulated in a day for three scenarios—daily (no disaster), bad 

537 weather (rainstorm), and warning (rainstorm and warning)—and considered the difference in 

538 population activities between weekdays and weekends. The model output the simulation results 

539 every 30 minutes, organized in blocks. The spatial resolution could be adapted to the study area, 

540 and in this case, the smallest block area was 391 m2.

541 Figures 7 illustrates the population distribution among the six scenarios, respectively. At 9 o’clock, 

542 there were many people in the center (business blocks) on the weekday and in the northeast 

543 (recreational blocks) on the weekend. Seen from the entire area, the population distribution on the 

544 weekday was more uniform than that on the weekend. Moreover, the three scenarios on the 

545 weekend were quite different from each other, while differences among the weekdays were not 

546 obvious. The reason is that people are more likely to cancel recreational activities than work, so 

547 the population during the weekend bad weather and warning scenarios differed significantly from 

548 the population during daily scenarios. The population trends of different blocks and roads are 

549 shown in Figure 8. Figure 8(a) indicates that, among the three weekend scenarios, the population 

550 in the recreational area (Block 77) changed more than the population in the business area (Block 

551 113) among the three weekday scenarios.
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552

553 (a) Daily, weekday (T=09:00)                                       (b) Daily, weekend (T=09:00)

554

555 (c) Bad weather, weekday (T=09:00)                            (d) Bad weather, weekend (T=09:00)

556

557 (e) Warning, weekday (T=09:00)                                  (f) Warning, weekend (T=09:00)

558 Figure 7. Map of population distribution.
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560 (a) Block population                                                                    (b) Road population

561 Figure 8. Changes of population with time. S1-6 mean six flood scenarios as shown in Table 4.

562 The reliability of the simulation of the spatiotemporal population distribution was indirectly 

563 verified by using traffic flow data. The simulated total number of residents passing through the 

564 four intersections (such as the junction of the Liqing and Huayuan roads) and the actual measured 

565 traffic flow (multi-day average results) at the intersections during the morning and evening peak 

566 hours on weekdays and weekends are shown in Fig. 9. Real means measured value. LQ is Liqing 

567 Road, KF is Kaifa Road, HY is Huayuan Road, ZJ is Zijin Road, and LT is Lutang Street. It can 

568 be seen that the simulated and measured values were similar.
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570 (a) Weekday                                                                                 (b) Weekend

571 Figure 9. Traffic flow and population simulation results during peak hours on weekdays and 

572 weekends.

573 5.7 Urban flood and landslide simulation results

574 The Chicago hyetograph method’s (CHM) rainstorm intensity formula was used to design a 

575 rainstorm with a 50-year return period in the study area. The rainfall duration lasted six hours (6 

576 am to 12 pm for S1-6, and 6 pm to 12 am for S13-24), and the cumulative rainfall was about 148.59 
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577 mm. The CHM parameters referenced the rainstorm intensity formula of Lishui City in the 

578 “Zhejiang City Rainstorm Intensity Formula Table” published by the Hangzhou Planning Bureau 

579 of Zhejiang Province, as in Equation (5):

580                                                                                                                   (5)𝑖 =
1265.3(1 + 0.587 × lg50)

167(𝑡 + 5.919)0.611

581 where  is the rainfall intensity (mm/min) and  is the time. Based on the rainfall simulation results, 𝑖 𝑡
582 this study used the LISFLOOD-FP model to simulate the flood process in the city. The model 

583 output the simulation results (using grids with 5 m resolution) every 30 minutes. The water depth 

584 and velocity results of the flooding were extracted according to the block, and the maximum value 

585 was taken considering the block integrity. Figure 8 shows the changes in the accumulated flooded 

586 block area in terms of differences in water depth and velocity, reflecting the dynamic 

587 characteristics of the flood process and its impact on the study area. According to Figure 10 (a), 

588 many blocks were flooded, and the water depth exceeded the exposure threshold. As the rainfall 

589 ended, the flooding in most blocks subsided, while the flooding in a few blocks was more serious. 

590 Additionally, as seen in Figure 10 (b), the water velocity of a few blocks overtook the exposure 

591 threshold at a later stage of the rainfall (2 - 6 hours).

592  

0

0.2

0.4

0.6

0.8

1

1.2

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.513.013.514.014.515.015.516.016.517.017.518.0

0

2

4

6

8

10

12

14

16

18

Rainfall Water depth (0.25 - 0.75 m)

Water depth (0.75 - 1.5 m) Water depth (1.5 - 2.5 m)

Water depth (>2.5 m)

F
lo

o
d
ed

 a
re

a 
(k

m
2
)

R
ai

n
fa

ll
 (

m
m

 m
in

-1
)

Time (h)

593 (a)
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595 (b)

596 Figure 10. Changes of flooded area in different time steps.

597 The r.shalstab model was used to determine the study area’s susceptibility to landslides. Time and 

598 spatial resolutions of landslide susceptibility were the same as those of the flood simulation results. 

599 The rainfall data we used were the same as the simulation data used in the above flood simulation. 

600 The block with a susceptibility value between 1 and 4 would be exposed to landslides. The 

601 landslide susceptibility results according to the block are as shown in Figure 11, which corresponds 

602 to 6 am, when the rain started. Figure 12 shows the block area with different susceptibility at 

603 different times. It can be seen that the area of the unconditionally unstable block remained stable, 

604 while the others slightly rose or declined during the rainfall period because of the water velocity 

605 change. 

606

607 Figure 11. Map of landslide susceptibility.
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609 Figure 12. The area of blocks with different landslide susceptibility in different time steps. 

610 5.8 City dynamic exposure to hazard events

611 The exposure of roads and buildings to flooding and landslides were represented by exposed road 

612 length and building area, respectively. They were determined by coupling the two results described 

613 above, including the simulation results of the hazard and population distribution. Figure 13 

614 indicates the exposure of the road and building to flooding and landslides at 12 pm, when the rain  

615 (6 am to 12 pm) ended. In terms of their distribution, the southern part of the study area was more 

616 exposed to floods, while the northern areas were more susceptible to landslides, which is consistent 

617 with the topography of the study area. 

618

619 (a) Road exposure (Flood, T=12:00)                                          (b) Building exposure (Flood, T=12:00) 
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620

621 (c) Road exposure (Landslide, T=12:00)                                   (d) Building exposure (Landslide, T=12:00)

622 Figure 13. Map of road exposure and building exposure to flood and landslide (rainstorm during 

623 6 am to 12 pm).

624 The changes in road and building exposure in the study area are shown in Figure 14. It can be 

625 found that the exposure to the flood changed greatly, while that of the landslide remained basically 

626 unchanged. And the landslide posed a greater threat to the road than the flood; while for the 

627 building, the maximum exposed building area during flooding was more than twice that of the 

628 landslide.
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630 (a) Road exposure                                                                          (b) Building exposure

631 Figure 14. Changes in road and building exposures (rainstorm during 6 am to 12 pm).

632 Changes regarding total population exposure of all blocks in different scenarios are shown in 

633 Figure 15, which demonstrates that the population exposure was dynamic. Specifically, the 

634 exposed population to floods increased rapidly with the accumulation of water, and then fluctuated 

635 and finally remained stable (Figure 15 (a)). As for the population exposure to landslides (Figure 

636 15 (b)), the number rose to the maximum immediately at the beginning of rainfall. After two hours, 
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637 it decreased with the movement of population and remained stable until 17 pm, and then went up 

638 to the same maximum as before and remained stable. Compared with floods, landslides posed a 

639 greater threat to the population of the study area. In Figure 15 (c), exposed population at night was 

640 similar among different scenarios due to stable population distribution, and changed with flood. 

641 For landslides in Figure 15 (d), exposed population remained stable during night which was the 

642 results of stable susceptibility and population distribution. In addition, it was obvious that 

643 population exposed to flood which happened at night was much larger than that in the day.
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645 (a) Flood (6 am)                                                                            (b) Landslide (6 am)
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647 (c) Flood (6 pm)                                                                            (d) Landslide (6 pm)

648 Figure 15. Changes in the population exposure for the 24 scenarios.

649 6. Discussion

650 HazardCM was based on the assumption that there is no migration into and out of the city. 

651 Therefore the mobility of population spatial and temporal distribution simulation results was 

652 smaller than the actual situation, which caused uncertainty of the results of population exposure. 

653 Although the number of migrants in the urban area during daytime is large owing to its 

654 geographical location, it is difficult to set up daily routine maps for such people. So far, we have 

655 not obtained related data and information about the percentage of this type of population and their 
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656 movements in the study area. We will consider adding this type of people when we have enough 

657 data to set up their daily routine maps in the future.

658 As we considered people’s responses to disasters, we noted that different choices of activities were 

659 available to them in each scenario, resulting in different exposure levels for the population at the 

660 same time. The exposed population to floods and landslides in the warning scenario was the 

661 greatest among daily, bad weather, and warning scenarios. The reason is that this study assumed 

662 that the disaster response behavior adopted by residents corresponds to reduction in travel, that is, 

663 the residents directly choose their residential area as shelters but not based on the exposure level 

664 of the residential area. Therefore, when a residential area was exposed to a landslide, the residents 

665 chose to reduce travel in the disaster scenario, resulting in an increase in the population of the 

666 residential area, and thereby increasing the exposed population. 

667 By coupling the simulation of different disaster scenarios, including different disaster type and 

668 occurrence time, with different scenarios of population activities, we can obtain the spatial 

669 distribution and change process of road, building, and population exposure in the region. High-

670 resolution and quantitative results can support policy makers and minimize casualties and damage 

671 to roads and buildings.

672 Based on HazardCM, we only designed 24 scenarios to investigate dynamic exposure of different 

673 hazard type (urban flood and landslide), hazard occurrence time (day and night), human behavior 

674 (daily, bad weather, and warning), and weekdays or weekends. The intensity of a rainstorm (or 

675 flood / landslide) cause different impacts on a city system. We had made some attempts in this 

676 aspect which not included in this paper. For example, Zhu et. al. (2018) investigated the influence 

677 of urban flooding on traffic congestion, with diverse rainfall return periods and various durations 

678 of flood occurrence.

679 7. Conclusion

680 This study proposed a human–hazard coupled platform for calculating accurate spatiotemporal 

681 DYE in the context of different types of natural hazards. The platform includes the following key 

682 components: 1) an urban environment module that provides an analysis framework and spatial 

683 expression of city elements, including buildings and networks; 2) an ABM module that includes a 

684 human activity model and human adaptation in a hazard environment; 3) a hazard coupled module 

685 that connects hazards to human activity within the urban environment through an external or 
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686 internal coupler; and 4) an assessment module that estimates the DYE of natural hazards. The 

687 rainfall-triggered natural hazards (flood and landslides) during extreme hydrometeorological 

688 events were modeled, and their DYE was investigated in a typical city in China. Compared with a 

689 traditional exposure estimation model such as InaSAFE, which assumes the exposure elements are 

690 static and ignores the interactions among these elements, this model offers a way to investigate the 

691 space–time characteristics of exposure while considering the dynamic nature of both humans and 

692 hazards. 

693 As natural hazards and cities are regarded as systems of systems, modeling them with special 

694 consideration for the integration between them is extremely complicated. The proposed platform 

695 certainly has limitations in reflecting all details within the human–hazard environment. For 

696 example, there are a number of parameters such as hazard exposure threshold that are determined 

697 subjectively, which may introduce uncertainty to the final outcomes. The validation of the hazard 

698 simulation and exposure calculation was not investigated completely in this study, as some 

699 observed data were difficult to obtain. Nevertheless, the proposed model can improve our 

700 understanding of hazard–human interactions in a united platform and support stakeholder decision-

701 making in risk management of natural hazards. More natural hazards will be included in future 

702 research, and integrated modeling of multi-hazards will also be investigated. The model will be 

703 published as open source in the near future. It is expected the proposed model can be applied in 

704 other cities with different hazards and urban environments.
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