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ABSTRACT

Acoustic surveys represent the standard methodology to assess the spatial distribution and abundance
of pelagic organisms characterized by aggregative behaviour. The species identification of acousti-
cally observed aggregations is usually performed by taking into account the biological sampling and
according to expert-based knowledge. The precision of survey estimates, such as total abundance and
spatial distribution, strongly depends on the efficiency of acoustic and biological sampling as well
as on the species identification. In this context, the automatic identification of specific groups based
on energetic and morphological features could improve the species identification process, allowing
to improve the precision of survey estimates or to overcome problems related to biases in biologi-
cal sampling. In the present study, we test the use of well-known unsupervised clustering methods
focusing on two important krill species namely Euphausia superba and Euphausia crystallorophias.
In order to obtain a reference classification, the observed echoes were first classified according to
specific criteria based on two parameters accounting for the acoustic response at 38 kHz and 120
kHz. Different clustering methods combined with three distance metrics were then tested working
on a wider set of parameters, accounting for the depth of insonified aggregation as well as for ener-
getic and morphological features. The clustering performances were then evaluated by comparing the
reference classification to the one obtained by clustering. Obtained results showed that the k-means
performs better than the considered hierarchical methods. Our findings also evidenced that working
on a specific set of variables rather than on all available ones highly impact k-means performances.

1. Introduction

In the last decades, marine fishery science widely used
acoustic-based techniques to obtain information about the
spatial distribution and abundance of economically and eco-
logically important pelagic (i.e. inhabiting the water col-
umn) organisms ([2], [7], [8], [6], [25], [38], [52]). Sev-
eral specific characteristics make acoustic methods an effec-
tive tool in monitoring pelagic populations. Some pelagic
organisms are characterized by aggregative behaviour, thus
forming large aggregations of individuals, called schools or
swarms, that are easily identified by means of acoustic meth-
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ods. The use of a scientific echo-sounder allows recording
data on wide areas in a relatively small amount of time, lead-
ing to a synoptic and spatially detailed view of the status
of aquatic resources. Furthermore, using different frequen-
cies (typically 38 kHz, 120 kHz and 200 kHz) may allow
researchers to identify the insonified species and/or classes
of organisms (zooplankton, gelatinous etc.). Briefly, dur-
ing acoustic surveys, an acoustic pulse is transmitted by a
hull-mounted transducer at regular time intervals; when the
acoustic wave, vertically travelling along the water column,
encounter objects characterized by a different density, part
of the energy is backscattered and recorded, thus allowing
to map the encountered objects on the so-called echogram
(Fig. 1).

In the context of acoustic surveys carried out to moni-
tor pelagic organisms, the “objects” of interest are the ag-
gregations of living organisms inhabiting the water column
(Fig. 1). In most cases, it is not possible to uniquely identify
species based only on acoustic information since different
species with similar acoustic responses occur in the surveyed
area. Thus, biological samples are needed to characterize the
observed echoes and perform biological measurements. The
biological sampling effort depends on several factors: the
environmental heterogeneity of the study area, the number of
species characterizing the considered ecosystem, the spatial
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Figure 1: Example of echogram at 120 kHz. The coloured
patches represents aggregations of krill organisms.

overlap among species as well as on the available vessel time
and the operative scenarios that could make biological sam-
pling particularly difficult. It is important to single out that
the precision of survey estimates (e.g. total abundance and
organisms’ spatial distribution) strongly depends on the ef-
ficiency of both acoustic and biological sampling. Nonethe-
less, misclassification of echoes due to a bias in the species
identification procedure may represent an important source
of error. In this context, several authors investigated the
possibility to perform species identification through semi-
automatic classification procedures ([23], [21], [22], [12],
[1]). In the work [22] Fallon et al. used a random forest
approach to discriminate among mackerel icefish, krill and
a mixed-species group in the Southern Ocean, obtaining an
error rate of 5.45%, 3.73% and 8.06% respectively. The au-
thors evidenced that the most important variables permit-
ting to discriminate the three groups were the minimum .S,
value at 120 kHz (Sv},() and to a lesser extent the geograph-
ical position, the school depth and time of day. Working on
small pelagic fish and in a different environment, D’Elia et
al. (2014) [21] adopted a random forest algorithm to classify
schools of small pelagic fish species in the central Mediter-
ranean Sea by considering both energetic and morphologi-
cal variables (i.e. parameters characterizing some aspect of
school shape) as well as the depth of insonified schools. In
particular, the study focused on three distinct pelagic fish
species (anchovy, sardine and horse mackerel) and a fourth
group considering different small pelagic fish species (OPS:
Other Pelagic Species) that were less abundant in the study
area. The authors reported a total successful classification
rate of 76% and highlighted the poor discriminant power of
morphological parameters and the importance of the school
depth in the classification performances. Working on a sim-
ilar dataset, and considering the same groups, Aronica et
al (2019) [1] adopted an artificial neural network approach,
obtaining a successful classification rate for the considered
group of about 95%. In this case, the authors evidenced the
importance of considering environmental variables (along
with morphological and energetic ones) as they introduce in
the classification procedure important information about the
environmental preferences of considered species.

In this work, we tested the use of unsupervised clus-
tering algorithms to identify the echoes recorded during a
multi-purpose survey carried out in the Ross Sea (South-
ern Ocean) during 2016/2017 austral summer under the um-

brella of the Italian National Antarctic Research Program
(Project P-ROSE, "PNRA16 00239"). In particular, the anal-
ysis focused two important krill species inhabiting the Ross
Sea, namely Euphausia crystallorophias and Euphausia su-
perba ([2], [36], [37], [38]). The Ross Sea is characterized
by the presence of different sub-systems following alterna-
tive pathways for primary production ([41], [5]) and for the
transfer of energy toward upper trophic levels trought krill
species. Krill species in the Southern Ocean ecosystem rep-
resent an important prey item for many species such as pen-
guins and whales and play a key role in the energy transfer
between the lower and upper trophic levels, also impacting
the carbon sink [13]. Due to their importance, a number of
studies focused on their spatial distribution and abundance
by means of acoustic methods ([39], [9], [2], [37], [17]). In
order to acoustically identify echoes belonging to different
krill species, several authors analyzed the acoustic proper-
ties of krill species inhabiting the Southern Ocean at dif-
ferent frequencies (mainly 38 kHz and 120 kHz), focusing
on the analysis of volume backscattering strength (Sv dB
re lm_l) values [40], [9], [36], [37], [38]. In this context,
Madureira et al. (1993) [40] evaluated for the first time the
possibility to discriminate among three different krill species
(Eupausia frigida, Euphausia superba and Themisto gau-
dichaudii) by analyzing the response at different frequen-
cies. In particular, by regressing Sv values at 38 kHz and
120kHz (Svsg, Sviyg). specific regression coefficients were
proposed for each species. Brierley et al. (1998) [9], fol-
lowing the work in [40] and analyzing a larger dataset, pro-
posed specific regression coefficients along with their coeffi-
cients intervals for six species namely Eupausia frigida, Eu-
phausia superba, Rhincalanus gigas, Thysanoessa macrura,
Themisto gaudichaudii and Antarctomysis maxima. Any-
way, the authors argued that considering a higher number
of species, none of them was uniquely identified based on
Svsg and Sv|,q values, even if most of the E. superba echoes
could be distinguished from all the others adopting specific
threshold during data analysis. Recently, La et al. [37],
investigated the acoustic properties of E. crystallorophias,
providing the regression equation coefficients and confidence
intervals for this species. From a practical point of view,
it is was observed that for E. superba the differences be-
tween Svj,o and Svsg, was in the range 2 - 12 dB, while
for E. crystallorophias such difference ranged between 12
- 18 dB ([37]). It is important to single out that, Fallon
et al (2016) [22], working on trawl-verified acoustic aggre-
gations, observed that in the case of E. superba the above-
mentioned rule about the difference between Sv;,, and Svsg
was verified only for 61% of the observed aggregations. In
the present work, due to the lack of proper biological sam-
pling, the observed aggregations related to krill organisms
were partitioned between E. crystallorophias and E. superba
by means of the regression equations based on Sv,, and
Svsg values. All the aggregations falling outside the crite-
ria of E. crystallorophias and E. superba were classified as
“unknown” as it was not possible to clearly associate them
to a particular species. Based on the obtained reference clas-
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Figure 2: Study area and acoustic traks.

sification, we tested different unsupervised clustering meth-
ods and distance metrics working on a set of energetic and
morphological parameters related to the insonified aggrega-
tions to evaluate the performance of the different unsuper-
vised clustering methods in resembling the reference classi-
fication.

2. Material and Methods

2.1. Acoustic data: acquisition and processing

An acoustic survey was carried out in the period 05-
11/01/2017 during the XXXII Antarctic expedition on-board
the R/V "Italica" under the Italian National Antarctic Re-
search Program and in the framework of the P-ROSE project
(Plankton biodiversity and functioning of the Ross Sea ecosys-
tems in a changing southern ocean). In particular, acous-
tic data were collected utilizing an EK60 scientific echo-
sounder at three different frequencies (38 kHz, 120 kHz and
200 kHz) and calibrated following standard techniques [24].
The echo-sounder was configured to ping simultaneously at
each frequency with a pulse duration of 1024ms. Acoustic
sampling followed an opportunistic strategy (Fig. 2), record-
ing data during all transfers among the sampling stations for
a total of about 2200 nmi.

Acoustic row data were then processed using Echoview
software [32] in order to extract all the echoes related to ag-
gregations of krill organisms. In the first step, the depth
range for the analysis was defined. In particular, the region
between 0 and 8.5 meters depth was excluded thus avoiding
artefacts due to the beam formation distance and the noise

©

due to cavitation and waves. Similarly, the echogram region
related to a depth higher than 350 meters was excluded from
the analysis due to the strong attenuation of the signals at
120 kHz and 200 kHz. In a second step, a 3x3 convolu-
tion filter was applied [22] and the background noise was re-
moved by using the algorithm proposed by De Robertis and
Higginbottom (2007) [18]. Other echogram regions affected
by instrumental or environmental (i.e. waves and ice) noise
were visually identified and removed manually. Finally, to
extract only echoes related to krill organisms, a -80db thresh-
old was applied on 120 kHz frequency according to Choi et.
al (2018) [15]. Working on the 120kHz frequency (the ref-
erence frequency for krill species; [38]), all the aggregations
were thus identified through the school detection module in
Echoview. At the end of the processing, a total of 1334 ag-
gregations were identified; for each aggregation, several pa-
rameters related to the energetic and geometric characteris-
tics as well as the average depth of each aggregation were
extracted (Table 1).

In addition, two more parameters were computed, namely:
the frequency response at 120 and 200 kHz, respectively
computed as

1QSv-meanyyg

RF120 =10 % 10810(W) v
and
10Sv.metl"200
RF200 =10 % 10810(W) @

2.2. Data preparation and exploratory data analysis

During the survey, the bad weather conditions lead to a
reduction of the time available for biological sampling that
was limited to a low number of sampling stations. Under
these conditions, it was not possible to properly characterize
the observed acoustic aggregations based on the information
obtained by the biological sampling. Consequently, the ob-
served aggregations were classified according to regression
equations developed on the energetic values at two different
frequencies (38 kHz and 120 kHz) and available in the liter-
ature ([9], [37]). In particular E. Superba was identified on
the basis of the following equation [9]:

Sl)lzo =16.8 + 1.13 % SU38 (3)

taking into account for 95% confidence intervals of inter-
cept and slope (13.6 - 20.54 and 1.08 - 1.18 respectively) .
In a similar way, aggregations related to E. crystallorophias
were identified by [37]:

51)120 = 550 + 089 & SU38 (4)

Also in this case 95% confidence intervals of intercept and
slope were considered (3.96 - 7.05 and 0.88 - 0.91 respec-
tively). All the aggregations falling outside the classification
criteria for E. crystallorophias and E. Superba were clas-
sified as unknown . Once the reference classification was
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Table 1

Energetic and geometric parameters extracted for each aggregation identified by means of
school detection module. The % symbol indicate that the variable was extracted for each

of the frequencies.

Parameter Units Description

Height.mean m Average school height

Depth.mean m Average school depth

Length m Length of the identified school

Thickness m Thickness of the identified school

Perimeter m Perimeter of the identified school

Area m? Area of the identified school

Image.compactness Ratio between perimeter and area

Sv.mean dB re 1m™! Average recorded Sv value

Sv.max x* dB re 1m™! Maximum recorded Sv value

Sv.min dB re 1m™! Minimum recorded Sv value

SD Standard deviation of Sv values

Skew dB re Im™! Skewness of Sv values

H.rough dB re 1m?/m? | Horizontal dispersion of acoustic energy within the school
V.rough dB re 1m?*/m® | Vertical dispersion of acoustic energy within the school
RF),, Frequency ratio between 120 kHz and 38 kHz

RF,, Frequency ratio between 200 kHz and 38 kHz

performed, an exploratory analysis was carried out. In a
first step, the presence of significant differences among the
identified groups was assessed for each variable using the

Kruskal-Wallis Anova test followed by Mann-Withney posthoc

test. Finally, since clustering methods could be negatively
affected by extreme values, the frequency distribution and
the skewness index of each variable was inspected in order
to evaluate the possibility to apply specific transformations
thus minimizing the influence of the tails. All the statistical
analyses were carried out using the R statistical environment
[46].

2.3. Clustering methods
The performances of different clustering methods and

distances in resembling the reference classification were tested.

In particular, the 5 hierarchical variants Complete linkage,
Single linkage, Average linkage, Median and Centroid were
tested using three different distance metrics: Euclidean, Man-
hattan and Minkowski (with p=3). The K-means with Eu-
clidean and Manhattan distance was also tested (Minkowski
distance was not available for k-means). In all the consid-
ered cases (i.e. the combination of clustering method and
distances), the data were standardized to avoid scale prob-
lems. The classification based on Svsg - Svy, regression
allowed to classify only observations related to E. crystal-
lorophias and E. superba, while all the others were labelled
as unknown (unk for short). Thus, as the "unk" group was
potentially made by more than one species, internal valida-
tion indices (Table 2) were used to test for the hypothesis of
more than 3 groups.

Internal validation indices are based on the concept of
“good” cluster structure ([14], [31]). In particular, in the
present study, 16 validation indices were used. The majority
of them are based on the homogeneity and separation mea-
sures, i.e. the sum of distances between elements inside the
same clusters and the sum of distances of elements belong-

ing to different clusters. Others such as [29, 28] also on clus-
ter internal variance. Some of them are only usable for the
case of Hierarchical clustering [19]. All of them can suggest
the correct number of clusters k by the argmax or argmin of
the index, computed in the range k = 2, ..., 10.

All the statistical analysis were carried out using NbClust
[14] package in the R statistical environment [46].

3. Results

3.1. Reference classification and exploratory data
analysis

The regression-based (Eq. 3 and Eq. 4) classification
clearly identified 3 distinct groups (Fig. 3); each observa-
tion was thus classified accordingly as E. crystallorophias
(375 observations, identified as C for short), E. superba (703
observations, identified as S for short) and "unk" for all the
remaining observations (256). Kruskal-Wallis ANOVA car-
ried out for each considered variable evidenced the presence
of significant differences among the three identified groups
in 21 out of 31 cases (Table 3).

In particular, no significant differences were found in
terms of Sv.miny,q, Length, T hickness, Area, H .rough,,
8Dy, V.rough,y and Skew,,. Furthermore, only for 11
variables, significant differences were found among all the
three groups, while for the remaining ones significant differ-
ences were found only for one or two out of three compar-
isons. In particular, significant differences among the three
groups were found for Sv.meansg, Sv.mean,yq, Sv.minsg,
Sv.maxsg, H.roughsg, V.roughsg, S Dsg, Skewsg, RFy
and RF,, (Table 3, Fig. 4).

To avoid possible bias in the clustering due to highly
skewed data, the skewness index was computed for each vari-
able (Table 3). In many cases, the skewness index evidenced
the presence of moderate/high right-skewed variables while
only Sv.min;,, showed a moderate left-skewed distribution.
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Table 2

Internal validation indices. The Optimal number of cluster is the argmax or argmin of the
index for k ranging from 2 to 10.

Optimal number of clusters |

argmax
argmax
argmax
argmin
argmin
argmax
argmin
argmin
argmin
argmin
argmax
argmax
argmax
argmax
argmin
argmin

[ Index | Ref. biblio. |
Silhouette | [48]
Dunn [20]
KL [35]
Hartigan [30]
DB [16]
CH [11]
Cindex [34]
SDindex [29]
Sdbw [28]
Duda [19]
Beale [4]
Ratkowsky | [47]
Ball [3]
Ptbiserial [44, 43]
Gap [50]
Meclain [42]
@ E.crist. @ E.sup. W Unknown
”ml’ 4
8 - .
s ) e
¢
E
b o
R
ﬂl i
T T T T T
-110 -100 -90 -80 -70 -60
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Figure 3: Scatterplot of the observations in the Svs; and Sv;,,
space, presenting the obtained classification according to eq. 3
and 4. All observations outside the classification criteria for E.
crystallorophias and E. superba were classified as “Unknown”.

According to Hair et al. [27] and Bryne [10], variables char-
acterized by an absolute value of skewness higher than 2
should not be considered normally distributed; consequently,
all the variables characterized by an absolute value of the
skewness index higher than 2 were log-transformed, while
in the case of Sv.min |y, that was negatively skewed, the
adopted transformation was:

Sv.miny , = log(max(Sv.minjyy+1)—Sv.minj,y) (5)

Once the variables were transformed, the absolute value
of the skewness index was lower than 2 in all the cases (not

shown).

3.2. Clustering

Different hierarchical clustering methods with 3 different
distance measures (Euclidean, Manhattan and Minkowski)
were tested. Along with hierarchical methods, also k-means
was tested but working only on Euclidean and Manhattan
distances (as Minkowski distance was not available for k-
means). All the above-mentioned combinations of methods
and distances were tested on the whole data matrix (con-
sidering all the extracted parameters) and on a reduced data
matrix accounting only for the variables showing significant
differences among all the three groups (reported in bold in
Table 3). In a first step the degree of structure of dendro-
grams obtained by applying hierarchical methods was in-
spected. When applied to the whole data matrix, hierarchi-
cal methods provided a well-structured dendrogram only for
Complete-Linkage (Fig. S 1). A similar situation was evi-
denced when hierarchical methods were applied on the se-
lected variables (reported in bold in Table 3); in this case,
only the dendrogram obtained using Average-Linkage and
Complete-Linkage were well structured (Figs. S 2 and S 3).
In all the other cases obtained dendrograms showed a poor
structure (e.g. Fig. S 4). Consequently, the methods show-
ing poorly structured dendrograms were excluded from fur-
ther analysis. When applied to the whole dataset, valida-
tion indices highlighted that the optimal k (i.e. number of
clusters) was 4 for the Complete-Linkage with Euclidean
and Manhattan distance, while working with Manhattan and
Minkowski distances, the optimal k was 3. The presence
of only 3 groups was also evidenced in the case of the k-
means algorithm with Euclidean and Manhattan distance.
The same was true when working with selected variables us-
ing the Average-Link, Complete-Link and k-means whatever
the distance used. Clustering was then carried out by tak-
ing into account, for each combination of method/distance,
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Skewness values and statistical tests results. Post-hoc tests were carried out only if K-W
p-value was found lower than 0.01. Variables in bold present significant differences among

the three considered groups. The symbol
skewed and log-transformed.

# indicate that the variable was found highly

l Variable \ Skewness \ K-W p.value \ CvsS \ C vs unk \ S vs unk ‘
Sv.mean;g -0.71 p<0.01 p<0.01 p<0.01 p<0.01
Sv.mean,,, 0.947 p<0.01 p<0.01 | p<0.01 p<0.01
Sv.meanyy, -0.138 p<0.01 p<0.01 0.012 p<0.01
Sv.minsg 0.802 p<0.01 p<0.01 p<0.01 p<0.01
Sv.min,y, # -2.757 p<0.01 0.021 0.079 | p<0.01
Sv.mimyy, 0.137 0.081
Sv.max;g -0.488 p<0.01 p<0.01 p<0.01 p<0.01
Sv.maxy, 0.753 p<0.01 0.056 0.006 p<0.01
Sv.maxyy, -0.137 p<0.01 0.001 0.083 p<0.01
Depth.mean 0.795 p<0.01 p<0.01 0.013 p<0.01
Length # 5.937 0.001
Thickness # 2.284 0.02
Perimeter # 6.304 p<0.01 0.248 0.094 0.004
Area # 7.144 0.516
Image.compactness # 6.167 p<0.01 0.261 0.001 p<0.01
Height 1.864 p<0.01 0.523 p<0.01 p<0.01
H.roughy; # 24.317 p<0.01 p<0.01 | p<0.01 p<0.01
H .rough,, # 22.779 0.112
H .roughyy, # 7.363 p<0.01 0.001 0.1 p<0.01
V.roughsg # 17.155 p<0.01 p<0.01 | p<0.01 p<0.01
V.rough,,, # 16.103 0.176
V.roughyy, # 6.56 p<0.01 0.001 0.09 p<0.01
SD;; # 21.968 p<0.01 p<0.01 | p<0.01 p<0.01
SD,y, # 8.788 0.142
SD,, # 6.379 p<0.01 0.001 0.036 p<0.01
Skew,g # 3.423 p<0.01 0.001 p<0.01 p<0.01
Skew,,, # 2.36 p<0.01 0.009 0.885 0.018
Sketvny, # 2.126 0.064
RF,,, 1.284 p<0.01 0.001 p<0.01 p<0.01
RF,,, 0.943 p<0.01 0.001 p<0.01 p<0.01

the k value obtained using validation indices. Clustering re-
sults were then validated by comparing the regression-based
(Eq. 3 and Eq. 4) classification to the clustering one. In
this context, it is important to highlight that clustering out-
put was a vector of numeric values identifying the obtained
clusters but does not provide the link between cluster num-
ber (i.e. 1, 2, 3) and the regression-based labelled groups
("C", "S", "unk"). To link the reference classification and
cluster numbers, the pattern of Sv.meansg values (Fig. 4),
showing good contrast among the predefined groups, was
used. In particular, based on the reference classification, E.
superba (S) was characterized by highest Sv.mean;g median
values, the unknown group ("unk") by the lowest, while E.
crystallorophias (C) showed intermediate Sv.mean;g me-
dian value. Thus, the obtained clusters were labelled accord-
ing to such pattern, assigning the label “Sn” to the cluster
showing the highest Sv.mean;g median value, “unkn” to the
cluster characterized by the lowest while the remaining clus-
ter (E. crystallorophias) was identified as (Cn). Confusion
matrix (Tabs. 4 and 5) were used to evaluate the perfor-
mances of each selected method according to the number

of clusters suggested by validation indices. The boxplots of
S'v.meansg categorized by cluster (labelled according to the
pattern evidenced in Sv.meansg) were also generated to vi-
sually evaluate the obtained results (Figs. 5 and 6). When
working on the whole dataset, the Complete Linkage method
assigned most of the observations in a single cluster (Ta-
ble 4). In particular, using the Euclidean distance, most
of the observations belonging to C and S were allocated in a
single cluster showing intermediate .Sv.meansg median val-
ues. Even if the minimum and maximum Sv.meansg val-
ues of Cn and Sn resembled quite well the reference classi-
fication, the respective median values were lower than the
reference ones (Fig. 5). Working with Manhattan distance,
the obtained results showed similar problems and using the
Minkowski distance, most of the observations were allocated
to 2 clusters only (Table 4). On the contrary, when using the
k-means method on the whole dataset, the final classification
almost equally distributed the observations among the dif-
ferent groups (Table 4). Working on the selected variables
only, hierarchical methods showed the same problems ob-
served in the previous cases (Table 5 and Fig. 6). In the case
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Figure 4: Boxplot by group of the considered variables according to the reference classification.

of Complete-Linkage, a high number of "unk" observations
were correctly classified, while most observations related to
C and S were assigned in the same cluster (Table 5). On the
contrary, working with Average Linkage, the "unk" observa-
tions were largely misclassified. Finally, when working on
the selected variables with the k-means algorithm, the best
results were obtained. In particular, using the euclidean dis-
tance 85.1% of C, 67.6% of S and 65.6% of "unk" were cor-
rectly classified. Similar results were obtained by using the
Manbhattan distance. In such cases, the Sv.meansg pattern
(Fig. 6) was well resembled for C and S, while in the case
of "unk", even if the median value was quite similar to the
original one, the maximum value was strongly lower than the
correct one, evidencing the misclassification in both cases of
about 30% of the unknown as C. It must also be noted that
in both cases only a few of C and S were misclassified as
"unkn".

4. Discussion

Identifying at species level the echoes recorded during
acoustic surveys is one of the most important aspects in the
estimation of the spatial distribution and abundance of pelagic
organisms. Such a task represents a critical step for the inter-
pretation of acoustic data [33] and is usually accomplished
by using expert echogram scrutinizing (knowledge-based ap-
proach) and/or looking at the species composition in the near-
est sampling station [49]. It is important to highlight that

the species identification process could represent an impor-
tant source of error [45], leading to biased estimates of abun-
dance and spatial distribution of targeted organisms. In this
context, the possibility to improve the species identification
step through an automatic procedure is of great interest, es-
pecially if biological sampling was not representative due
to technical problems. To the aim of finding specific rules
to differentiate among different krill species, some authors
analyzed the acoustic characteristics of krill working with
different frequencies and focusing mainly on energetic val-
ues and frequency responce ([39], [9], [37], [38], [2]). In
particular, Madureira et al. (1993) [39] and Brierly et al.
(1998) [9], provided regression parameters, based on Svsg
and Sv, values for different krill species. It is important to
highlight that even if Madureira et al. (1993) [39] were able
to discriminate three species based on Svsg and Svy,( val-
ues, the results obtained by Brierley, working on additional
species, showed that none of them was uniquely identified,
even if most of the E. superba echoes could be distinguished
from all the others adopting specific threshold during data
analysis. As a rule of thumb the differences between Suvsg
and S'vyy values should be in the range 2 - 12 dB for E. su-
perba and 12 - 18 dB for E. crystallorophias. In this context,
Fallon et al. (2016) [22], working on trawl-verified acoustic
aggregations, observed that only 61% of the E. superba were
characterized by a 2 - 12 dB difference between Sv;,, and
S'vsg values. In this work, we tested the use of several well-
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Table 4

Confusion matrix related to clustering results obtained using the whole set of variables.
C: Euphausia crystallorophias, S: Euphausia superba; unk: wunknown. The suffix “n”
in the column names indicate the new classification obtained by each combination of
method/distance. In this context the clusters were labeled according to the Sv.meanyg
pattern observed in the original classification.
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Complete Linkage k-means
Cn Sn unknl | unkn2 Cn Sn unkn
Euclidean C 83.2 | 10.1 5.6 1.1 C 53.9 | 304 | 15.7
S 82.4 | 16.9 0.7 0 S 56.3 | 42.2 1.3
unk 41 5.1 30.9 23 unk | 18.4 | 19.1 62.5
Cn Sn unknl | unkn2 Cn Sn unkn
Manhattan C 67.7 2.9 3.5 25.9 C 61.3 | 23.2 | 155
S 82.1 4.8 0.1 12.9 S 541 | 43.2 2.7
unk | 21.5 3.5 40.2 34.8 unk | 28.9 | 17.6 | 53.5
Cn Sn unkn
. . C 62.4 | 37.6 0
Minkowski S 482 | 518 0
unk | 74.2 | 19.1 6.6
Table 5

Confusion matrix related to clustering results obtained working on selected variables only.
The suffix “n” in column names indicate the new classification obtained by each com-
bination of method/distance. In this context the clusters were labeled according to the
Sv.mean,g pattern observed in the original classification.

l | Complete Linkage I Average Linkage | k-means ‘
Cn Sn unkn Cn Sn | unkn Cn Sn unkn
Euclidean C 909 | 1.3 7.7 C 98.4 | 1.6 0 C 85.1 | 13.1 1.9
S 97.2 | 2.8 0 S 97.3 | 2.7 0 S 32.4 | 67.6 0
unk | 348 | 2.7 62.5 | unk | 70.3 | 2.7 27 unk | 30.1 | 4.3 65.6
Cn Sn unkn Cn Sn | unkn Cn Sn unkn
Manhattan C 63.7 | 0.5 35.7 C 98.9 0 1.1 C 83.7 | 144 1.9
S 95.3 | 3.4 1.3 S 99.1 | 0.9 0 S 31.4 | 68.6 0
unk | 16.8 | 0.8 82.4 | unk 34 0.8 | 65.2 | unk | 30.9 | 4.3 64.8
Cn Sn unkn Cn Sn | unkn
Minkowski C 939 | 1.3 4.8 C 100 0 0
S 86.8 | 13.2 0 ) 100 0 0
unk | 35.9 | 2.3 61.7 | unk | 77.3 | 1.2 | 215

known and easy to implement clustering methods, compar-
ing the obtained classification to the reference one accom-
plished by considering Sv,, and Sv;g values only.

Our results showed that among the considered methods
and distances, the k-means with Manhattan distance was the
one performing better. The use of internal validation indices,
to test for the hypothesis of more than three groups, showed
that was not possible to evidence the presence of sub-groups
within the “unknown” group. In this context, it must be con-
sidered that k-means is sensitive to very unbalanced groups,
that is the case of the “unknown” that accounted for about
19% of the total number of observations.

The variable selection was an important step to obtain an
acceptable classification; all the considered methods were
not able to perform a correct classification when variables
characterized by a lack of contrast among the identified groups
were used. The hierarchical methods, even in presence of a
well-structured dendrogram, lead to misleading results prob-

ably due to the presence of outliers (even if proper trans-
formations were adopted to reduce the effect of outliers and
skewed distributions). On the contrary, the k-means algo-
rithm was more robust to the presence of outliers. Obtained
classification rate for E. crystallorophias was 85.1% while
was lower for E. superba ( 68%) and the “unknown” group
(66%). Considering that Fallon et al. (2016) [22] observed
that E. superba backscatter could be underestimated, our ref-
erence classification is probably biased as it was developed
looking at Svsg and Sv|,, variables only. Thus, taking into
account that the k-means classification was based on a higher
number of variables, it is possible, that some of the observa-
tions that we considered as misclassified effectively belong
to the correct species.

According to D’Elia et al. (2014) [21], highlighting very
poor performances using morphometric variables only, also
in our case such variables were found not useful in the clus-
tering procedure, showing no significant differences among
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Figure 5: Boxplot of Suv.meansy classified according to the
cluster analysis results obtained working on the whole set of
variables. The Sv.mean,g boxplot of the reference classification
is also reported in the bottom-right panel. For complete Eu-
clidean and Complete Manhattan, based on Sv.mean,3 boxplot
of the reference classification (bottom-right panel), the third
and fourth clusters were identified as two sub-group of "unk"
and were labelled as "unkn1" and "unkn2". Coloured dots rep-
resent the median value observed for the reference classifica-
tion, while coloured lines the minimum and maximum observed
values.

the groups identified by the reference classification. It must
be considered that a single-beam echo-sounder can record
only a specific slice of the insonified school, and thus is not
able to properly characterize the difference in the shape of
the different organism’s schools. Differently from our re-
sults, the above-mentioned authors reported a general de-
crease of classification rates when the average school depth
was removed from the dataset (total successful rate lowered
to 59%). Such a decrease in performances highlighted the
importance of a variable accounting for specific behavioural
and ecological aspects of small pelagic populations inhabit-
ing the Mediterranean Sea.

In our case, the average depth of the aggregations was
found not useful in classifying the three groups. In this con-
text, it is important to single out that the acoustic data related
to small pelagics in the Mediterranean Sea are recorded over
the continental shelf only. The behaviour of small pelagics
concerning depth is also modulated by species-specific eco-
logical characteristics ([26], [51], [6]).

Similarly, krill species are characterized by species-specific

depth preferences related to complex biological processes in-
fluenced by environmental factors. In our case during the
survey very different environments, such as coastal ice-free
areas, sectors closed to ice tongues as well as very offshore
areas, were explored along with a great latitudinal range.
The average depth of schools for the same species changes
with changes in the environmental conditions; as an exam-
ple, strong winds could lead to changes in the stratification
of the upper part of the column water, influencing biological
processes and consequently the depth of aggregations. Such

Complete Euclid Complete Manhattan ¢

3 T 8 T 3 T

o ; . o

LR = —— -

is ‘ i3 . i3 =
FIEE — i# % ==

: - ! ! - | - T

+

-110 -100 -90 -
1

110 -100 -90
-+

-110 -100 -90 "
%

Cn Sh unkn Cn Sn unkn ' Cn ) unkn

average Euclidean average Manhattan

T -] -
e I B BT . e

=)
i
H - @

-60
60

70

-70
70

-80

-110 -100 -90

{ﬁ
i

¢
==
Cn Sn unkn ' Cn Sn unkn ' Cn Sn unkn

110 -100 -90
f

110 -100 -90
-+
}

60
-60
60

70 -
70 -

{

|

|
H]w
I

110 100 -90
e

110 -100 -90
fr

110 100 -90
f

Cn Sn unkn ' Cn Sn unkn ' ¢ § unk

Figure 6: Boxplot of Sv.meanyy classified according to the
cluster analysis results obtained working on selected variables
only. The boxplot of the reference classification is also reported
in the lower-right panel. Coloured dots represent the median
value observed for the reference classification, while coloured
lines the minimum and maximum observed values.

variability, if not explicitly taken into account by consider-
ing environmental factors, could make the average depth of
aggregations not informative in distinguishing the different
species, since each species may react differently according
to the considered environment. Aronica et al. (2019) [1],
working on small pelagics in a different environment, along
with energetic, morphometric and bathymetric variables, ac-
counted also for a set of environmental descriptors. Temper-
ature, salinity, fluorescence and oxygen were explicitly taken
into account in the classification procedure. The authors ob-
tained for the considered groups a classification rate of about
95% highlighting the good performance of the method and
the importance of environmental variables for the classifi-
cation. Thus, environmental variables, carrying important
information about the ecological preference of considered
species, are of great importance to improve classification re-
sults and probably, also in our case, considering environmen-
tal factors could lead to better classification performance.

5. Conclusions

Improving the procedures used to identify echoes repre-
sents a fundamental requirement to obtain reliable estimates
of the spatial distribution and abundance of pelagic organ-
isms. Several authors tried to tackle this problem by adopt-
ing different methods and working on different species and
ecosystems. Our results, adopting the k-means algorithm,
showed acceptable classification rates, that could be proba-
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bly improved by explicitly considering, along with energetic
parameters, the environmental factors. It is important to ev-
idence that compared to other methods, the clustering algo-
rithm considered in this work was found to be robust to out-
liers, is easier to implement and does not require specific as-
sumptions. Thus k-means seems promising and could repre-
sent a valid tool to improve species identification procedures
by reducing the post-processing time and obtaining more re-
liable estimates. Nonetheless, to fully validate this method,
further studies are needed; in particular specific tests should
be carried out including environmental variables and testing
the k-means performance on trawl-verified aggregations.
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A. Supplementary materials
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Figure S1: Dendrogram obtained working on the whole set

of variables applying Complete Linkage and using Euclidean,

Manhattan and Minkowski distance. The coloured rectangles
indicate the clusters identified according to the number of clus-

ters suggested by validation indices.
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Automatic classification of acoustically detected krill aggregations: a case study from Southern Ocean

Method: complete; Distance: euclidean K=3

Figure S2: Dendrogram obtained working on the selected vari-
ables only and applying Complete Linkage and using Euclidean,
Manhattan and Minkowski distance. The coloured rectangles
indicate the clusters identified according to the number of clus-
ters suggested by validation indices.
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Figure S3: Dendrogram obtained working on the selected vari-
ables only and applying Average-Linkage and using Euclidean,
Manhattan and Minkowski distance. The coloured rectangles
indicate the clusters identified according to the number of clus-
ters suggested by validation indices.
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Figure S4: Dendrogram obtained working on the whole set of
variables and showing a poor structure.
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