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A B S T R A C T

Assessment of long-term human exposure to spatiotemporally highly variable air pollution requires accounting
for human space–time activity. Individual exposure and space–time track data are not available over large
populations and for long periods and a modelling approach is required. However, activity-based exposure
models face here challenges in setting up the model and overly-large computations. Aiming for long-term
and large-population simulations, we propose an activity model which integrates statistical and agent-based
modelling by treating mobility-related variables as random variables. Probability distributions for these
variables are estimated or derived from mobility datasets containing observed activities. On top of the activity
model, we implemented an exposure model. A case-study of exposure assessment was developed using hourly
air pollution maps. The activity model can potentially integrate any mobility data and is thus applicable when
limited time activity data is available at the individual level.
1. Introduction

Estimating the effects of ambient air pollution on health (Luo et al.,
2016; Chiusolo et al., 2011) requires assessing the air pollution expo-
sure of the population studied. This is a challenge, particularly for air
pollutants with considerable spatiotemporal variation at street level,
such as NO2, as where people are and their activities could greatly
determine their exposures. For this reason, spatiotemporal mobility of
individuals is important in exposure assessment. Several studies have
compared the differences between exposures assessed neglecting space–
time activities, i.e. using pollutant concentration values at the home
location as a proxy, and exposures assessed accounting for human
space–time activities (Duan and Mage, 1997; Lu et al., 2019; Park
and Kwan, 2017; Mölter et al., 2012; Zenk et al., 2011). However,
if we compare these studies, we could observe that different activity
modelling methods lead to inconsistent conclusions on the effects of
accounting for space–time activity in exposure assessment. Park and
Kwan (2017) and Lu et al. (2019) show lower variations in NO2 when
mobility is modelled while Mölter et al. (2012) show the opposite.
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The inconsistency is mainly caused by using different methods, calling
for further studies in activity-based exposure assessment. Also, air
pollution maps generated from different air pollution models could
contribute to the differences in activity-based exposure assessment,
as shown in Yoo et al. (2015, 2021), who investigate the combined
effects of spatiotemporal mapping and space–time activities on expo-
sure assessment using respectively simulated and measured activity
data.

Activity modelling is needed for exposure assessment as measured
activity data on individuals is mostly unavailable in large-scale epi-
demiological studies. In transportation studies, progress has been made
in the development of ‘‘activity models’’ for simulating transporta-
tion patterns. For example, ALBATROSS (Arentze et al., 2000) is a
transportation-oriented system that simulates activities for the entire
population based on activity diary data and dynamic constraints on
scheduling decisions. MATSim (W Axhausen et al., 2016) focuses on
large-scale, one-day individual activity simulation based on an activity
schedule scoring algorithm and detailed road networks. Activity models
such as MATSim that target simulating individual behaviours and
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the interactions between individuals and the environment fall within
the concept of Agent-Based Modelling (ABM, Crooks and Heppenstall,
2012). As ABM takes a bottom-up approach to understand the emerging
or aggregated behaviours, it allows the integration of individual and
population behaviours. This property of ABM makes it an important
tool not only for transportation studies but also in studies dedicated to
human mobility simulation (Čertickỳ et al., 2015; Rosés et al., 2018).
More examples include Wu et al. (2019), who attempt to integrate
mobile data in ABM for activity simulation and Lu et al. (2019),
who focus on simulating the destination locations and comparing NO2
exposures of homemakers and bicycle commuters. Activity models
contribute to the understanding of human activity patterns (Miller and
Roorda, 2003). Many of the activity models are open-source and highly
customisable, which allows for scenario studies. The activity models
consider a comprehensive set of mobility-related and socioeconomic
variables such as travel modes, work, education, leisure activities, and
traffic (W Axhausen et al., 2016). They are commonly parameterised
by mobility microcensus data or diary surveys consisting of locations
visited and possibly externally estimated schedules. Then, a continuous-
time mobility track for each individual is estimated based on general
rules of human mobility patterns and space–time accessibility (Nguyen
et al., 2011; Gonzalez et al., 2008; Yang et al., 2010; Yu, 2006;
Alessandretti et al., 2017; Miller, 1991). Each route simulated can be
contingent on, for instance, distance, safety, city infrastructure, and
land use (Law et al., 2014). For example, Shekarrizfard et al. (2017)
assign the predictions of a travel demand model to a road network
to predict individual hourly trajectories. For each person, the model
selects a path from all possible paths by comparing the assigned travel
time and the survey travel time.

In recent years, data revealing space–time activity patterns and
land use types are becoming increasingly available. National mobil-
ity microcensus data (W Axhausen et al., 2016), big social media
data (Terroso-Saenz et al., 2022), cellular tower data (Müller et al.,
2021), as well as tracking campaign data (Yoo et al., 2021) and the
derived information, are becoming more prevalent. The question is
how could they contribute to large-scale activity simulations. Statistical
modelling has been intensively studied and applied to take opportuni-
ties brought by big data. The application of statistical modelling also
surged in mobility studies, for descriptive, predictive, and prescriptive
analytics (Torre-Bastida et al., 2018). A prominent example is the
analysis or simulation of mobility patterns using geo-coded Twitter
data (Hawelka et al., 2014; Huang et al., 2020; Jurdak et al., 2015).
Statistical modelling has also been integrated into other mobility sim-
ulation procedures, for example, Kang et al. (2020) design a series of
sample analysis to derive statistical features and combine them with
the urban context for trajectory generation.

Integrating activity-based models with predicted air pollution sur-
faces allows for considering human space–time activities in exposure
assessment. This has been reflected in several exposure studies (Shekar-
rizfard et al., 2017; Deffner et al., 2016; Gulliver and Briggs, 2005; Dons
et al., 2011). Beckx et al. (2009) propose the use of the ALBATROSS
model to simulate hourly activities and then combine the resulting
space–time location of individuals with air pollution dispersion model
estimates to assess exposure. However, these activity-based exposure
assessment models are not designed to assess long-term air pollution
exposures and associated uncertainties for large-scale epidemiological
studies. Specifically, long-term simulation means that the model is ca-
pable of quantifying exposure averaged over a year or multiple years.
Uncertainty needs to be quantified for each simulated activity, including
e.g. time schedules, travel modes, and possible destination locations. A
study has focused on long-term exposure assessment of a large popula-
tion and considering uncertainty in the exposure assessment (Lu et al.,
2019), but the activity schedules generated are less realistic activity
schedules compared to the exposure models integrating a sophisticated
2

activity model (W Axhausen et al., 2016). The need for quantifying
long-term exposures and the uncertainty call for the development of
activity simulation models that are dedicated to exposure assessment.

This study aims to incorporate statistical modelling of mobility data
in a space–time activity simulation model to enable long-term exposure
assessment for large populations, and to illustrate the approach with a
case-study assessing exposure in the area of Utrecht, the Netherlands,
using the Dutch national mobility microcensus dataset. Our model
assumes uncertain mobility-related variables, such as the travel mode
and maximum travel distance, as random variables. Statistical mod-
elling is applied to derive, estimate, or empirically specify probability
distributions of these variables from mobility microcensus datasets or
literature, for each activity and according to the attribute of a person
such as age and occupation. This allows a more accurate simulation of
activities, as people’s activity patterns may share similarities according
to their socioeconomic statuses. These mobility-related variables are
then used as inputs for the simulation of space–time activities. The
Monte Carlo approach is applied to sample from each mobility-related
variable for simulating the activities. Lastly, the exposure is calculated
by aggregating the air pollution over the activity tracks and over time.

The rest of this paper is organised as follows. We first describe
our activity simulation model following the ODD (Overview, Design
concepts, and Details) protocol (Railsback and Grimm, 2019, page 37).
Then, we show how the activity simulation model is used for exposure
assessment and demonstrate the modelling process in a case-study.

2. Design concepts and model structure of the activity simulation
model

2.1. Overview

Purpose and scales:
The activity simulation model is developed for large population-

scale (e.g. the entire population of the Netherlands), long-term, per-
sonal air quality exposure assessment accounting for human space–time
activities. The model focuses on having land transportation (e.g. cars,
public transport, bikes, on foot) as major commuting means. The
activity simulation model is developed with two key features: (1)
it can simulate long-term travel behaviours, and (2) the uncertainty
of human space–time activity is explicitly quantified. The activity
simulation is based on the statistical modelling of mobility-related vari-
ables and attributes of a population. The model facilitates integrating
mobility-related information from different sources.

Entities, state variables, and an overview of the process:
The activity model treats individuals living at each residential lo-

cation as entities. The attributes of entities that are related to the
activity patterns, such as age, gender, education, occupation, income,
working status (e.g. full- or part-time workers), having children or not,
having a car or not, and home locations, are considered as static state
variables. Mobility-related variables are modelled as random or fixed.
The randomness is assigned to variables whose values we are uncertain
about, for example travel mode, start time, and duration. They are
characterised by a probability distribution. The simulation process
includes two steps (Fig. 1), the first is to derive or estimate probability
distributions of the random variables from mobility data based on
static state variables. In the next step, samples are drawn from these
probability distributions to decide sequentially the maximum travel
range, the origin and destination locations, and the travel mode. Based
on the origin and destination locations and the travel mode, a route
is queried from the road network of OpenStreetMap (Boeing, 2017)
for the generation of the activity schedules and space–time tracks. The
routes may be chosen by different criteria, e.g. based on the shortest
distance or the shortest arrival time (for auto-vehicles). The second
step is repeated several times (each repetition is called an iteration)
for activity prediction and uncertainty quantification, i.e., each time,
a different activity schedule and spatial locations are generated. Note
the ensembling effect of averaging assessed exposures over several
iterations: the precision of the exposure is expected to increase as the

variance reduces.
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Table 1
An example of a simulated activity schedule. ‘‘h2w’’ means ‘‘home to work’’, and ‘‘w2h’’
means ‘‘work to home’’. The integer part of the start and end times indicates hours,
and the digits indicate minutes in percentage, e.g. 9.89 is at around 9:54 am (54 =
89*0.6). The free time activity code is 1, indicating the person is staying at home. As
the model assumes the same route and speed going to and back from a destination
location, the duration and travel mode are the same for to and back from work.

start_time end_time activity activity_code travel_mode

0.0 7.06 home 1 –
7.07 7.15 h2w 2 walk
7.16 16.14 work 3 –
16.15 16.23 w2h 2 walk
16.24 17.73 home 1 –
17.74 19.73 free_time 1 –
19.74 23.9 home 1 –

2.2. Design concepts

In exposure assessment, the most important activity variables are
the destination locations, the commuting routes largely determined by
the travel mode, and the activity schedules. The concept is thus to
simulate personal activities based on probability sampling of agents’ de-
parture time, travel mode, maximum travel range, free-time activities,
and possible destinations. The duration of an activity can be pre-defined
or sampled. The probability distributions (i.e. probability density func-
tion for continuous variables and probability mass function for discrete
variables) can be empirically specified or derived from mobility surveys
with different socioeconomic variables or other attributes that relate
to mobility (e.g. age) as covariates. The duration of working time is
specified for different population groups (e.g. 8 h for full-time workers).

2.3. Model details

2.3.1. Input and output of the model
The input of the activity model consists of (1) home locations of

individuals whose exposures are to be assessed, (2) all the possible des-
tination locations for each destination type (e.g. all the work locations,
all the school locations), and (3) the mobility data. Alternatively, the
mobility data can be replaced by probability distribution functions or
probability tables. For example, the probability of each travel mode
for different distance ranges and different attributes of the population
(e.g. age) can be the input of the model.

The output of the activity model consists of activity schedules and
corresponding spatial locations (including geospatial tracks) for each
iteration and each individual. The activity schedule consists for each
trip of a start time, an end time, a travel mode, and the activity name
and a corresponding code (activity_code in Table 1), which separates
different free-time activities and links the schedule to the exposure
assessment. Table 1 shows an example.

2.3.2. Generating activity schedules and spatial locations
The most important task of the activity model is to generate activity

schedules together with the spatial locations (including tracks) for each
residential location (Fig. 2). In each iteration, the model sequentially
samples or calculates the travel distance, the destination location, the
travel mode, the travel duration, a free time activity, and the start and
end time of each activity. More specifically, for each residence location,
the main steps include:

1. Specify the probability density function of the travel distance,
which can be estimated based on the mobility survey data (in
this study) or derived from literature.

2. Sample from the density function of the travel distance and use
this distance to refine the sampling space of the destination
location. Specifically, from the origin location, a buffer is drawn
with the travel distance as radius, and a sample is taken out of all
3

the candidate destination locations that lie in the buffer (Fig. 4a).
Fig. 1. The structure of the proposed exposure assessment model. The output from the
activity simulation model, containing activity schedule and geospatial information, and
the temporal air pollution maps, are the inputs to the exposure calculation module.

All the potential destination locations, for example, all of the
school or sport facility locations, are assumed known and are
input to the model. These locations can come from for instance
governmental statistics or the OpenStreetMap.

3. If there is no destination location within the travel distance, the
nearest destination location is used (Fig. 4b).

4. The probability distribution of the travel mode depends on
the distance travelled and is calculated for different popula-
tion groups (e.g. elderly people, students) and travel purposes
(e.g. going to work), based on the mobility survey data.

5. The Euclidean distance between the destination and the origin
is used to determine the probability of taking a certain travel
mode. Based on this probability, a travel mode is sampled.
The model considers three travel modes: walking, cycling, and
driving or taking an auto-vehicle. The reason that we use Eu-
clidean distance instead of the distance along the road network
is to reduce computational time. This is further discussed in the
discussion section.

6. A route is queried from the road network for the sampled travel
mode. For example, a walking path is queried if the travel mode
is ‘‘on foot’’; a bicycle path is queried if the travel mode is ‘‘by
bicycle’’. By default, the shortest-distance road will be chosen
for on foot or by bicycle, and the fastest route will be chosen for
auto-vehicles, based on OpenStreetMap.

7. Based on the travel distance and the travel mode, the duration
is calculated.

8. Based on the duration, the end time of a trip or the start time of
the next activity is calculated.

9. If the start time of the current trip is unknown (e.g. the first trip
of the day), the start time is generated with a distribution. The
default departure time to work in our model is sampled from
a Gaussian distribution with mean 8 (i.e. 8 am) and standard
deviation 0.2.

10. A free time activity occurs 1–1.5 h (i.e. a random number is
chosen between 1 and 1.5 with equal probability) before a
person goes to work in the morning and after a person arrives
home from work. It is chosen by randomly sampling from a set
of possible free-time activities. Currently, two types of activities
are implemented: staying at home and taking a walk from the
home location. Taking a walk is implemented with a Gaussian
kernel specifying the probability that a person visits a location,
the size and variance of the kernel are user-defined.
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Fig. 2. The procedure of generating activity schedules using the activity model. The activity schedule contains a sequence of activities, one activity (one row) is shown for
illustrative purposes. In the activity schedule, ‘‘h2w’’ means home to work. The activity code of the schedule links the schedule to spatial locations.
2.3.3. Routing
Based on the transportation mode, the travel routes are queried

from road networks constructed using the Python package OSMnx (Boe-
ing, 2017). The OSMnx processes routes from OpenStreetMap (Open-
StreetMap contributors, 2020) into a network and removes the redun-
dant nodes (Boeing, 2017). This reduces the dataset size and accelerates
route querying. There are three types of road networks implemented
in OSMnx: ‘‘auto-vehicles’’, ‘‘bicycle’’, and ‘‘walk’’ (Boeing, 2017). The
road network consists of an attribute travel time. For the travel mode
‘‘auto-vehicles’’, the travel time is calculated in OSMnx, which takes
the information of auto-vehicle speed on different roads from the
OpenStreetMap for the travel mode ‘‘bicycle’’ and ‘‘on foot’’, the speed
is assumed to be constant and can be specified by a user, by default
the speed is set to 14 km/hr and 5 km/hr for cycling and walking,
respectively. This allows selecting routes either based on the shortest
distance or the shortest travel time. By default, we select a route based
on the shortest travel time.

3. Exposure assessment

Based on the spatiotemporal tracks of each individual simulated by
the activity model and the temporal air pollution maps, the personal
exposure is calculated as spatial and temporally-weighted aggregation
of air pollution concentration considering the indoor–outdoor ratio (the
infiltration of pollution). If the activity model is run 𝑁 times to simulate
different schedules and spatial locations for each person, the exposure
is calculated 𝑁 times, i.e. for each iteration. By default, we use the
mean of exposure calculated in the 𝑁 iterations as the final exposure
assessed.

The exposure assessment module queries and aggregates air pollu-
tion concentrations for each individual and over each activity in the
activity schedule. We describe the process using the air pollutant NO2
as an example, in pseudo-code (Algorithm 1) below:
4

Data: temporal NO2 maps, for each agent activity schedule and
spatial locations associated with each activity in the
schedule. The indoor–outdoor ratio.

Result: exposure assessed for each activity and each person.
for each agent do

initialization;
exposure_activity = 0
for each activity do

exposure_activity + = NO2_of_corresponding_time_over
spatial_locations_of_the_agent × activity_duration ×
indoor_outdoor_ratio

end
exposure_agent = exposure_activity /time_of_all_activities

end
Algorithm 1: Exposure calculation, exposure_agent indicates expo-
sure calculated for each agent, exposure_activity indicates exposure
calculated for each activity in the schedule for each agent. 𝑎+ = 𝑏
means "𝑎 = 𝑎 + 𝑏"

The exposure at home and work are calculated as the air pollution
concentration at the front door home and work locations multiplied by
an indoor infiltration ratio. By default, this ratio is set to 0.7 based
on Salonen et al. (2019). Currently implemented free-time activities
include (a) staying at home, (b) in the garden or on the terrace, and
(c) taking a walk. The free-time activity (b) is implemented as walking
randomly within a distance (default 0.002 degree (about 220 m)) close
to the home location. The free-time activity (c) is implemented as using
a Gaussian kernel of distances away from home to the probability of
being a presence at the location (default, mean = 2 degree, about 220
km) and standard deviation = 0.1 degree (about 11 km).

An activity-oriented view of the exposure calculated in a single
iteration for two individuals is shown in Fig. 3, which shows the
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Fig. 3. An illustration of exposure assessed for each activity, plotted at the starting time of the activity, for a single simulation instance. As we are looking at the exposures
averaged over each activity, the lines connecting points are simply for visualising the trends, as opposed to showing the exposures continuously over time. The NO2 exposure is
in μg/m3.
activities, starting and end time and the average exposure during the
time of a certain activity.

4. Case-study: activity modelling using the Dutch national micro-
census data

We demonstrate our model by simulating the exposure for the
people with occupation ‘‘students’’ and age ‘‘18 and older’’ to represent
the population group ‘‘university students’’ in Utrecht. The OViN survey
(2010–2017, followed by OVG and MON)) consists of 33 people in this
group living in Utrecht at that time.

OViN is collected by Statistics Netherlands (in Dutch: Centraal
Bureau voor de Statistiek — CBS) for a one-day trip-based diary. It
consists of 0.3% (ca. 52,000) of the Dutch population (17.4 million).
We processed the text in the original dataset to extract the range of a
certain variable and calculate a mean of it. For example, the variable
travel distance is in the form ‘‘3 km to 5 km’’ and it was processed into
three variables, ‘‘lower limit’’ (3 km), ‘‘upper limit’’ (5 km), and ‘‘mean’’
(4 km) travel distances.

The students are assumed to go to a university or college in the
city during the daytime and do free-time activities (including staying
at home) in the evening, a while after returning home. The departure
time of going to the university or college is sampled from a Gaussian
distribution with a mean of 9 (for 9 am) and a standard deviation of
1 (for 1 h). The Departure time of leaving the university or college is
sampled from a Gaussian distribution with a mean of 17 (for 5 pm)
and a standard deviation of 1. All the university and college locations
queried from OpenStreetMap are used as possible destination locations.

The probability distributions of the travel mode and the travel
distance are derived from OViN. For the travel mode, we regrouped the
transportation means as they are in the OSMnx, with ‘‘auto-vehicles’’
including taking cars or taxis or all the other land vehicles (e.g. bus,
tram). The distance range (less than 1 km, 1–2.5 km, 2.5–3.7 km, . . . ,) is
determined empirically. For each distance range, the incidence of each
travel mode is divided by the total incidence to obtain the probability
(of the travel mode in each travel distance range). For the travel
distance, the histogram and log-normal tests through the QQ (Quantile
vs Quantile) plot and the Shapiro test indicate the distribution is
log-normal.
5

Fig. 4. Illustration of the destination location selection. (a) The origin location
(i.e. home location) is at the centre of the buffer. The triangles indicate all the possible
destination locations (here: sports facilities in Utrecht, the Netherlands). Only the
locations within the maximum travel distances are considered, i.e. the green triangles
within the buffer, which is a circle with the estimated maximum travel distance as a
radius. Among them, one of the locations is randomly sampled, marked as the Ping-
pong racket and ball. (b) If there is no destination location within the buffer, the nearest
location based on Euclidean distance will be considered.

4.1. Air pollution prediction

Temporal air pollution maps are predicted using statistical mod-
elling. The air pollution measurements are aggregated into hour of the
year, e.g. average NO2 at 12 o’clock of the year. At each time step,
the ensemble tree-based algorithm LightGBM (light gradient boosting
machine, Ke et al., 2017) is trained using the annually aggregated
air pollution measurements of that hour. LightGBM uses histogram-
based algorithms to bin the continuous values of each feature. The
hyperparameters of the model are tuned using 5-fold cross-validation.

We combined the official hourly ground station measurements of
Germany (416 stations) and the Netherlands (66 stations) to predict an-
nual hourly NO2 concentrations in Utrecht for 2017. The geospatial pre-
dictors include road densities in different buffers (100, 300, 500, 1000,
3000, 5000 m) and of highways, primary roads, local roads from Open-
StreetMap (OpenStreetMap contributors, 2020), monthly wind speed
and temperature of 2017 from ERA5-Land model re-analysis (Muñoz-
Sabater et al., 2021), elevation of 90 m resolution (Dai et al., 2017), ra-
diation (World bank, 2022), and Sentinel 5p L3 product column density
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Fig. 5. Annually aggregated hourly NO2 (μg/m3) predicted for Utrecht.
of 20181 (10 km resolution, Google Earth Engine, 2019). Population
from the Global Human Settlement Population Grid for 2015 (Schiavina
et al., 2019) is resampled to 1000, 3000, and 5000 m resolutions. For
each pixel of the Earth nightlight satellite data (Elvidge et al., 2017),
the mean is calculated in each 450, 900, and 1350 m radius window.

4.2. Results

Annual hourly NO2 predicted using Light GBM are shown in Fig. 5.
The spatiotemporal dynamics of NO2 are visible. These 24 maps are the
input of the exposure calculation component.

The NO2 exposure is assessed in 11 iterations and the mean of them
is shown in Fig. 6. Exposure assessed using real locations (from the
survey) in an iteration is shown for comparison. It should be noted
that the activity schedules are also simulated in the situation of using
true locations. Among all the individuals, 80% of exposure calculated
using the real location is within the exposures calculated with sim-
ulated locations in multiple iterations. This indicates the uncertainty
quantified with exposure assessed in 11 iterations is satisfying in this
scenario. In practice, more iterations lead to more accurate uncertainty
estimation, as well as exposure prediction (e.g. by taking the mean).
The R-squared between exposure assessed using simulated locations
and an iteration of exposures assessed using the real locations is 0.35.
Besides, different destination locations, departure times, travel modes,
and free-time activities likely cause differences in assessed exposure.

The exposure assessed using the proposed simulation model for the
university students is shown in Fig. 7. It can be observed that high
exposures do not necessarily occur for people with high concentrations
at the front door home locations. The exposure assessed is in general
lower than the home location concentration. The reason is the use of
a relatively low indoor–outdoor ratio (0.7). Note that with university

1 There is an inconsistency in time but we have evaluated the use of
Sentinel-5p of 2018 vs. OMI of 2017, when the NO2 observations are of
2017 (Lu et al., 2020a) and found that despite the mismatch in time, involving
Sentinel-5p L3 product column density of 2018 led to better prediction results.
The reason is that the spatial variation is larger than the temporal variation
for Sentinel-5p data.
6

students, the uncertainty in choosing the destination location is rela-
tively low compared to for example full-time workers, as the number
of university or colleagues in a city is limited.

5. Discussion

We have described an activity simulation method that uses statisti-
cal modelling to parameterise the agent-based model and showed how
it can be used together with temporal air prediction maps for exposure
assessment.2 A case-study using the Dutch microcensus data was de-
veloped for the assessment of NO2 exposure by university students in
Utrecht. We compared between using the home location concentrations
and the exposure assessed using our exposure model with real and
simulated destination locations.

The major novelty of our activity modelling concept lies in that it
is based on sampling from the probability distributions of the mobility-
related variables, and the probabilities could be determined for differ-
ent attributes of a population such as occupation and age. The activity
modelling process is refocused on the statistical modelling of mobility
data. Statistical modelling is an important mean to characterise the
distribution functions of activity model inputs based on the socioeco-
nomic attributes of a population. This makes the activity modelling not
only a simulation problem but also an approach to integrate different
sources of information for optimal estimation of the inputs of the agent-
based model. The prominent role of data integration and ‘‘big data’’ in
gaining us more information and insights about our society is clear. Our
model could potentially integrate mobility data from different sources,
information from literature, as well as social-economic and environ-
mental data to facilitate characterising the mobility-related variables
and reducing the uncertainty. Compared to the proposed model, the
approach proposed in Lu et al. (2019) chooses the destination locations
of trips without considering people’s travel behaviours. Also, there is no
randomness in the activity schedule and mobility-related variables.

In the case-study, we singled out a population group (i.e. univer-
sity students). In practice, we commonly would model for multiple

2 the activity model is open-sourced on Github: https://github.com/
mengluchu/agentmodel/tree/main/activity_modeling/core

https://github.com/mengluchu/agentmodel/tree/main/activity_modeling/core
https://github.com/mengluchu/agentmodel/tree/main/activity_modeling/core
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Fig. 6. NO2 exposure (μg/m3) assessed with simulated and real locations based on the microcensus survey. Left: for each individual (agent ID), the red dots indicate exposure
assessed using real locations from the microcensus data; the purple dots (X0, . . . , X10) indicate exposures calculated using simulated locations in 11 iterations, with the green dots
(‘‘simulated mean’’) showing the mean of them. Right: The relationships between the exposures calculated using simulated locations (mean of the iterations) and real locations.
The black solid line indicates the 1:1 line and the red dashed line the linear regression line. The grey shades indicate 0.95 confidence interval. The R-squared corresponding to
the regression line is 0.35.
Fig. 7. Each circle shows the exposures assessed using the simulation model for the population group of university students, using the mean of the 11 iterations. To compare the
exposure assessed with the annual mean NO2 concentration for 2017 at the home location, the same legend is used for exposure assessed and NO2 concentration estimated and
the annual mean NO2 concentration prediction. The circles are enlarged at each location (marked by the crosses) where exposure is assessed to enhance visualisation. The annual
mean NO2 prediction is calculated by taking the average of all the annual hourly NO2 predictions.
population groups. With our model, two approaches can be conve-
niently implemented. The first approach is to identify the population
groups from the data. More specifically, we could use socioeconomic
7

attributes as independent variables in a statistical model to predict
the distribution of mobility-related variables. The second approach is

to group the population based on between-group variability of the
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activity patterns and then simulate for each group. The first approach
allows fitting flexible models (e.g. an ensemble tree model) as many
population attributes such as age are in practice numerical. The second
approach may include more data in each population group for fitting
the mobility-related variables.

The exposure calculation model iterates over each person and then
aggregates the air pollution concentrations over the route of each
activity of the person, with the indoor–outdoor ratio accounted for. It
is highly parallelisable as the exposure calculation is independent for
each individual. Note the individuals could still interact with each other
and with the environment when simulating the route and the schedules.
Another way of calculating the exposure is to iterate over each time
step, i.e., for each time step, the exposure of the entire population is
calculated. This way can be parallelised for each time step instead of
each individual. For a population larger than the number of time steps,
this approach may provide an efficient alternative.

This study focuses on the new exposure modelling concept and
provides a relatively simple model. Below, we listed the limitations of
the current model and our envisioned extensions:

• We currently only generate two probability distributions from the
mobility data, the distribution of travel mode and the maximum
travel range as a function of the origin distribution locations
and the travel mode. The distributions of the departure times
and free-time activity are empirical. The model also only chooses
one destination location for the entire schedule, i.e. to and back
from work. In the future, more commuting activities could be
implemented. An effective way would be to include sophisti-
cated transportation modelling in the activity model to simulate
secondary and more commuting activities, trips by public trans-
portation, and more detailed road conditions, such as traffic
congestion.

• With our case-study, we represented the annually-averaged diur-
nal variations in exposure, but not variations over a year. This
would be an interesting next step, and it might be feasible. In
countries where the NO2 observations are available for each day,
it is possible to predict the NO2 at finer resolutions (Lu et al.,
2020b). Since our activity model is flexible in simulating at
different temporal resolutions, exposure assessment representing
daily variations is possible and the precision could be improved
by for example taking into account drivers of seasonal changes
in behaviour, conditioned by sufficient computational power and
data storage. A more accurate exposure assessment would likely
give different exposure maps. How the pattern in Fig. 7 would
change with temporally more detailed exposure assessment is
beyond the scope of this study but future studies should confirm
if the conclusions derived from Fig. 7 stay.

• The proposed activity modelling approach can potentially incor-
porate environmental, socio-economic, or any variables influenc-
ing the travel behaviour. For example, the probability distribution
of travel distance could be made dependent on whether the
area is urban or rural. In addition to the shortest distance or
fastest routes, the greenest route or least polluted routes could
be considered.

• The traffic simulated by the activity model could also be used to
update air pollution maps (W Axhausen et al., 2016).

• The indoor–outdoor ratio was set to a fixed value of 0.7. It could
be better estimated as a function of temperature (Müller et al.,
2021). An infiltration ratio may also be applied when taking
vehicles for commuting.

• We used Euclidean distance between the departure and arrival
locations for selecting the travel mode. As the distance is usually
shorter than the actual route, the approach may be more likely
to choose a lower-speed traffic mode (e.g. on foot instead of by
bicycle). The reason for using Euclidean distance instead of the
road distance is to avoid additional route querying, which takes
8

more computation time. Commonly, the Euclidean distance be-
comes closer to the road distance with increased travel distance.
It is, however, possible to calculate the road distance instead of
the Euclidean distance if the computational time is not a concern.

• The uncertainties from statistical modelling and air pollution
mapping should be quantified and discussed together with the
uncertainty from the activity simulation process.

• We used 11 iterations in our case-study as it is shown in Lu et al.
(2019) that this number of iterations is sufficient for quantifying
the uncertainty. In Lu et al. (2019), though the destination lo-
cations are the only random variable, the candidate destination
locations are around 500 times more compared to in our case (as
it included all potential working locations in Utrecht) and there
is no travel distance constraint. For this reason, we believe 11
iterations are also sufficient for the case-study. In practice, the
number of iterations could be determined with the method used
in Lu et al. (2019).

• The modelling concept can potentially be applied to the exposure
assessment of other pollutants such as Ozone and Particulate
Matters.

6. Conclusion

An activity simulation model that integrates statistical and agent-
based modelling is developed for long-term, large-scale exposure as-
sessment. The key concept of the activity model is to estimate the
probability functions of variables that determine the activity patterns
(mobility-related variables) from mobility data to parameterise the
agent-based model. The mobility-related variables are repeatedly sam-
pled from the corresponding probability function. Correspondingly,
personal exposure is repeatedly assessed in multiple iterations to al-
low uncertainty quantification and improve the prediction. The activ-
ity modelling concept could incorporate mobility and environmental
information from different sources and makes this process indepen-
dent of the agent-based simulation component of the approach. The
model is easily extensible and applicable geographically. We used
the Dutch national microcensus survey to demonstrate our activity
simulation model. The simulated activity then combines with hourly
NO2 predicted from the national ground stations of Germany and the
Netherlands to demonstrate the exposure assessment.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The link to the code is provided in the manuscript.

Acknowledgements

This study is supported by the Health Effects Institute (No. 4972-
RFA19-1/20-6). The authors are grateful to the editors for handling this
manuscript and the reviewers for their constructive comments.

References

Alessandretti, Laura, Sapiezynski, Piotr, Lehmann, Sune, Baronchelli, Andrea, 2017.
Multi-scale spatio-temporal analysis of human mobility. PLoS One 12 (2),
e0171686.

Arentze, Theo, Hofman, Frank, van Mourik, Henk, Timmermans, Harry, 2000. ALBA-
TROSS: Multiagent, rule-based model of activity pattern decisions. Transp. Res. Rec.
1706 (1), 136–144.

http://refhub.elsevier.com/S1364-8152(22)00255-9/sb1
http://refhub.elsevier.com/S1364-8152(22)00255-9/sb1
http://refhub.elsevier.com/S1364-8152(22)00255-9/sb1
http://refhub.elsevier.com/S1364-8152(22)00255-9/sb1
http://refhub.elsevier.com/S1364-8152(22)00255-9/sb1
http://refhub.elsevier.com/S1364-8152(22)00255-9/sb2
http://refhub.elsevier.com/S1364-8152(22)00255-9/sb2
http://refhub.elsevier.com/S1364-8152(22)00255-9/sb2
http://refhub.elsevier.com/S1364-8152(22)00255-9/sb2
http://refhub.elsevier.com/S1364-8152(22)00255-9/sb2


Environmental Modelling and Software 158 (2022) 105555M. Lu et al.

C

C

D

D

D

D

E

G

G

G

H

H

J

K

K

L

L

L

L

L

Beckx, Carolien, Panis, Luc Int, Arentze, Theo, Janssens, Davy, Torfs, Rudi,
Broekx, Steven, Wets, Geert, 2009. A dynamic activity-based population modelling
approach to evaluate exposure to air pollution: Methods and application to a Dutch
urban area. Environ. Impact Assess. Rev. 29 (3), 179–185.

Boeing, Geoff, 2017. OSMnx: New methods for acquiring, constructing, analyzing, and
visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139.
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