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ABSTRACT

The study of trajectories is often a core task in several research fields. In environmental modelling,
trajectories are crucial to study fluid pollution, animal migrations, oil slick patterns or land movements.
In this contribution, we address the lack of standardization and integration existing in current
approaches to handle trajectory data. Within this scenario, challenges extend from the extraction of
a trajectory from raw sensor data to the application of mathematical tools for modeling or making
inferences about populations and their environments. This work introduces a generic framework that
addresses the problem as a whole, i.e., a software library to handle trajectory data. It contains a robust
tracking module aiming at making data acquisition handy, artificial generation of trajectories powered
by different stochastic models to aid comparisons among experimental and theoretical data, a statistical
kit for analyzing patterns in groups of trajectories and other resources to speed up pre-processing of
trajectory data. It is worth emphasizing that this library does not make assumptions about the nature of
trajectories (e.g., those from GPS), which facilitates its usage across different disciplines. We validate
the software by reproducing key results when modelling dynamical systems related to environmental

modelling applications. An example script to facilitate reproduction is presented for each case.

Software Availability

Software name: yupi

Developers: A. Reyes, G. Viera-Lépez, J.J. Morgado
First release: 2021

Program language: Python

License: MIT

Available at:
https://github.com/yupidevs/yupi
https://pypi.org/project/yupi/
Documentation:
https://yupi.readthedocs.io/en/latest/
Examples:
https://github.com/yupidevs/yupi_examples

1. Introduction

Environmental modelling, as many other fields of sci-
ence, has been vastly impacted by a huge availability of mo-
bile tracking sensors. The subsequent increase of accessible
trajectory data has lead to an uprising demand of trajec-
tory analysis techniques. For example, in Community Ecol-
ogy and Movement Ecology different trajectory-based re-
search is well developed (De Céceres, Coll, Legendre, Allen,
Wiser, Fortin, Condit and Hubbell, 2019; Demsar, Buchin,
Cagnacci, Safi, Speckmann, Van de Weghe, Weiskopf and
Weibel, 2015). Likewise, Group-Based Trajectory Modeling
(GBTM), a statistical methodology for analyzing develop-
mental trajectories, has been used in the study of restored
wetlands (Matthews, 2015). Moreover, trajectory analysis
has impacted the integration of land use and land cover
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data (Zioti, Ferreira, Queiroz, Neves, Carlos, Souza, San-
tos and Simoes, 2022) as well as oil spill environmental
models for predicting oil slick trajectory patterns (Balogun,
Yekeen, Pradhan and Yusof, 2021) and pollution transients
models (Okamoto and Shiozawa, 1987). Furthermore, in
the context of animal behavior, appropriate handling of
trajectory data has allowed the characterization of behavioral
patterns within a vast sample of organisms, ranging from
microorganisms and cells (Figueroa-Morales, Rivera, Soto,
Lindner, Altshuler and Clément, 2020; Altshuler, Mifo,
Pérez-Penichet, del Rio, Lindner, Rousselet and Clément,
2013) to insects with a large impact in the environment, such
as leaf-cutter ants (Hu, Phonekeo, Altshuler and Brochard-
Wyart, 2016; Tejera, Reyes and Altshuler, 2016). This over-
whelming increase on trajectory-related applications sug-
gests to explore the available frameworks devoted to handle
trajectory data.

Trajectory analysis software have been designed to ad-
dress problems in specific research fields (e.g., molecular
dynamics (Roe and Cheatham III, 2013; Kriiger, Liike and
Szameit, 1991); modelling, transformation and visualization
of urban trajectory data (Shamal, Kamw, Zhao, Ye, Yang
and Jamonnak, 2019); animal trajectory analysis (McLean
and Skowron Volponi, 2018) and human mobility analy-
sis (Pappalardo, Simini, Barlacchi and Pellungrini, 2019)).
For handling geo-positional trajectory data, a variety of
tools has been offered by different Python libraries such
as MovingPandas (Graser, 2019), PyMove (Sanches, 2019;
Oliveira, 2019) and Tracktable (Sandialabs, 2021). More
recently, Traja (Shenk, Byttner, Nambusubramaniyan and
Zoeller, 2021) provided a more abstract tool set for han-
dling generic two-dimensional trajectories, despite being
focused around animal trajectory analysis. In the field of
Astrodynamics high-level software has been provided by
Julia. SatelliteToolbox.jl is perhaps the most comprehensive
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astrodynamics package available in Julia, which is provided
alongside the in-development trajectory design toolkit, As-
trodynamics.jl (McLean, Eichhorn and Cano, 2013). In this
regard, a programming toolkit specialized in the genera-
tion, optimization, and analysis of orbital trajectories has
been published as OrbitalTrajectories.jl (Padilha, Dei Tos,
Baresi and Kawaguchi, 2021). R language has been widely
exploited as well. For an excellent review and descrip-
tion of R packages for movement, broken down into three
stages: pre—processing, post—processing and analysis, see
(Joo, Boone, Clay, Patrick, Clusella-Trullas and Basille,
2020).

As a consequence of the specificity of existing frame-
works, there is a wide diversity of software to address
specific trajectory-related tasks, but a standard library for
handling trajectories in an abstract manner isn’t available
yet. For instance, most of existing software only address
two-dimensional trajectories or trajectories limited to a fixed
number of dimensions. Moreover, they typically rely on
different data structures to represent a trajectory.

In order to tackle these limitations, in this work we offer
yupi, a general purpose software for handling trajectories re-
gardless their nature. Our library aims to provide maximum
abstraction from problem-specific details by representing
data in a compact and scalable manner and automating
typical tasks related to trajectory processing. At the same
time, we want to encourage the synergy among already
available software. For this purpose, we also provide tools
to convert the trajectory objects used in our library into the
data structures used by other available frameworks, and vice-
versa.

The software is the result of the experience gathered by
the research our group has systematically conducted in the
past few years regarding analysis and modelling of complex
systems and visual tracking techniques in laboratory experi-
ments. We believe that the field of environmental modelling
is a strong candidate to showcase our library due to the wide
variety of trajectory-related problems from different natures.

The manuscript is presented as follows: In Section 2, we
describe the structure of the library, review basic concepts
regarding trajectories and present the way yupi handles them.
Section 3 presents applications that use trajectory analysis
in diverse environmental modelling scenarios. Finally, we
summarize the work emphasizing the main contributions of
yupi and highlighting its current limitations.

2. Software

Since yupi aims to become a standard library to handle
a wide spectrum of tasks related to trajectories, all the
components of the library share the usage of a unified repre-
sentation of Trajectory objects as the standard structure to
describe a path. Then, task-specific modules were conceived
to boost the processes of gathering, handling and analyzing
trajectories.

The core module, yupi, hosts the Trajectory class. It
includes required resources for arithmetic operations among
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Figure 1: Visual representation of the internal structure of
yupi. Each possible path in the graph represents a possible
application of yupi. Node colors resemble the internal yupi
module containing the specific tool, with exception of gray,
that represents the complementary software package yupiwrap,
designed to ease the conversion process among yupi and third-
party software.

trajectories and its storage on disk. The library has six basic
modules operating on Trajectory objects (see Figure 1).
Artificial (i.e., simulated) trajectories with custom math-
ematical properties can be created with yupi.generators.
Data can be extracted from videos using the yupi.tracking
module. Regardless the origin of a given trajectory, it can
be altered using the yupi.transformations module. Tools
included in yupi.stats allow the statistical analysis of an
ensemble of trajectories. The module yupi.graphics con-
tains visualization functions for trajectories and its estimated
statistical quantities. In addition to yupi internal modules, we
provide a complementary software package named yupiwrap
designed exclusively to enable data conversion among yupi
and third-party software. Next, we present each module of
yupi providing a brief description of its functionalities.

2.1. Core module

Empirically, a trajectory is the path that a body describes
through space. More formally, it is a function r(¢), where r
denotes position and ¢, time. Here, r extends from the origin
of an arbitrary reference frame, to the moving body. Con-
sequently, the core module contains the class Trajectory to
represent a moving object described by some position vector,
r(t), of an arbitrary number of dimensions.

Since time is a continuous, machines have to deal with a
discretized (i.e., sampled) version of the trajectory, r(z). As
soon as one considers a sampled trajectory, it always requires
an associated time vector, t = (¢y,...,¢,)T, where each ¢,
represents the timestamp of the i-th sample and n is the
total number of samples. For brevity, the sampled trajectory
is often referred to as trajectory as well, so we may use
either term. For instance, in the typical 3-dimensional case,
a trajectory can be defined by the vector r; = (x;,y;,z;)T,
where each component denotes a spatial coordinate.
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The core module defines the way to retrieve specific
quantities from a trajectory such as position components
or velocity time series. It also defines operations among
trajectories such as addition, scaling or rotation. In addition,
storage functionalities are provided for different import-
ing/exporting formats. Resources from this module can be
imported directly from yupi and will be summarized next.

2.1.1. Vector objects

It is very common to refer to position or velocity as a
vector that changes through time. According to this, a Vector
class was created to store all the time-evolving data in a
trajectory. Iterating over each sample of these Vector time
series one can get the vector components at specific time
instants.

This class was implemented by wrapping the numpy
ndarray type. The main reason that motivated this choice,
along with all the benefits from the ndarray class itself, was
to gain verbosity over the usual operations on a vector. For
instance, getting a specific component of a vector, the dif-
ferences between its elements, or even calculating its norm,
can be done with a vector instance by accessing properties
such as: norm or delta. In addition, properties X, y, z allow
acquiring data from one specific axis in multidimensional
vectors.

Although users may not directly instantiate Vector ob-
jects, these are used all along the library to represent every
time-evolving data one could get from a trajectory such as
position, velocity, acceleration and time itself.

2.1.2. Trajectory objects

A Trajectory object is yupi’s essential structure. Its time
evolving data, stored as Vector objects, can be accessed
through the attributes t, r, v and a, standing for time, po-
sition, velocity and acceleration, respectively.

Trajectory data is typically stored in different manners,
e.g., a single sequence of d-dimensional points where each
point represents the position at a time instant or, alterna-
tively, d sequences of position components. Regardless of
the input manner, yupi offers the way to create Trajectory
objects from raw data.

By default, trajectories will be assumed to be uniformly
spaced every 1 unit of time. However, custom time informa-
tion can also be supplied. Then, position and time are used to
automatically estimate velocity and acceleration according
to one of the supported numerical methods: linear finite
differences and the method proposed by (Fornberg, 1988).

Trajectory objects can be shifted or scaled by per-
forming arithmetic operations on either all position com-
ponents of a subset of them. For the specific case of 2-
or 3-dimensional trajectories, rotation methods were con-
veniently implemented to ease visualization tasks, named
rotate_2d and rotate_3d.

Furthermore, operations among trajectories are also de-
fined. Trajectories with the same dimension and time vector

can be added, subtracted or multiplied together. These oper-
ations are defined point-wise and can be used via the conven-
tional operators for addition, subtraction and multiplication:
+, - and *.

2.2. Generators module

The usage of randomly generated data is common in
different research approaches related to trajectory analysis
(Tuckerman, 2010). In this section we tackle three classical
models that usually explain (or serve as a framework to
explain) a wide number of phenomena connected to Bi-
ology, Engineering and Physics: Random Walks (Pearson,
1905), the Langevin model (Langevin, 1908) and Diffusing-
Diffusivity model (Chechkin, Seno, Metzler and Sokolov,
2017).

In yupi, the aforementioned models are implemented by
inheritance of an abstract Generator class. Any Generator
object must be used specifying four parameters that char-
acterize numerical properties of the generated trajectories:
T (total time), dim (trajectories dimension), N (number of
trajectories to be generated) and dt (time step). Additionally,
a seed parameter can be specified to initialize a random
number generator (rng) which is used locally to reproduce
the same results without changing the global seed.

Next, we will briefly describe the foundations of each
model implemented in yupi and explain how to use them to
generate ensembles of trajectories like the ones sketched in
Figure 2a.

2.2.1. Random walk

A Random Walk is a random process that, in a d-
dimensional space (d €NT), describes a path consisting in a
succession of independent random displacements. Since the
extension to more than one dimension is straightforward, we
shall formulate the process in its simplest way:

Let Z4,..., Z;, ..., Z, be independent and identically dis-
tributed random variables (r.v.’s) with P(Z; = —1) = g,
P(Z; =0) = wand P(Z; = 1) = p, and let also X; =
Z;zl Z;. Interpreting Z; as the displacement at the i-th time
instant, the collection of random positions {X;,1 < i < n}
defines the well known random walk in one dimension.

It is possible to extend this definition by allowing the
walker to perform displacements of unequal lengths. Hence,
if we denote by L; the variable that accounts for the length
of the step at the i-th time instant, the position will be given
by:

i
Xi:ZLfZJ" i=1,2,...n (1)
j=1

A process governed by Equation 1 in each axis is a
d-dimensional Random Walk. Note that our definition is
slightly more general than the classical, i.e., it allows the
walker to remain at rest in a node of a network that is not nec-
essarily evenly spaced. These generalized versions are often
known as Lazy Random Walks (Lawler and Limic, 2010)
or Random Walks with multiple step lengths (Boczkowski,
Guinard, Korman, Lotker and Renault, 2018).
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We define a trajectory by having a position vector whose
components are described by Equation 1. For instance, in the
3-dimensional case, r; = (Xi(l), Xl.(z), Xl.(3)).

In yupi, this model is accessible through the Ran-
domWalkGenerator class. To use it, the probabilities g, w
and p need to be defined for each dimension:

prob = [[.5, .1, .41,
[.5, @, .5]1]

# x-axis
# y-axis

Then, trajectories are generated as:

from yupi.generators import RandomWalkGenerator
rw = RandomWalkGenerator(T, dim, N, dt, prob)
trajs = rw.generate()

In this case, the variable trajs contains a list of N gen-
erated Trajectory objects. Note that the first 4 parameters
passed to the RandomWalkGenerator are required by any
kind of generator in yupi as explained in the beginning of
this section.

2.2.2. Langevin model

An Ornstein-Uhlenbeck process (Uhlenbeck and Orn-
stein, 1930), well known by its multiple applications to
describe processes from different fields (Lax, Cai and Xu,
2006), is defined in the absence of drift by the linear stochas-
tic differential equation:

dv=—yvdt+ocdW 2)

where y and o are positive constants and W is a Wiener
process. Equation 2 is also written as a Langevin equation
(Langevin, 1908), which in the multi-dimensional case takes
the form:

%v(r) = V(1) + 6 (1) 3)

where &(¢) is a white noise; o, the scale noise parameter;
and y‘l, a characteristic relaxation time of the process.

In trajectory analysis, v(#) is intended to denote velocity,
so the position vector is given by:

t
r(t) = / v(t')dt' 4
0

Equations 3 and 4 can be solved numerically if the initial
conditions v(0) = v and r(0) = r( are known.

LangevinGenerator is the class offered by yupi to gen-
erate trajectories that follow this model. By conveniently
setting the parameters described above (i.e., ¥, o, vy and
ro) several real-life scenarios can be modeled. In Section
3.2, a Langevin model is used to simulate the motion of a
Lysozyme molecule in an aqueous medium.

2.2.3. Diffusing-Diffusivity model

Slow environmental relaxation has been found in soft
matter for colloidal particles diffusing in an environment
of biopolymer filaments and phospholipid tube assemblies

(Wang, Kuo, Bae and Granick, 2012). Non-Gaussian dis-
tribution of increments was observed even when the dif-
fusive dynamics exhibit linear growth of the mean square
displacement. A model framework of a diffusion process
with fluctuating diffusivity that reproduces this interesting
finding has been presented as Diffusing Diffusivity Model.
Namely:

%m) = V2D £(1) (52)

D) = Y1) (5b)
iY(t) = —lY(l) + on(t) (5¢)
dt T

where &(¢) and n(¢) are Gaussian white noises and D(z),
the diffusion coefficient, is a random function of time ex-
pressed as the square of the auxiliary variable, Y(¢).

In other words, the coupled set of stochastic differential
equations (5) predicts a Brownian but Non-Gaussian dif-
fusion, where the position, r(z), is described by an over-
damped Langevin equation with the diffusion coefficient be-
ing the square of an Ornstein-Uhlenbeck process. The model
has been discussed and solved analytically by (Chechkin
et al., 2017; Thapa, Lomholt, Krog, Cherstvy and Metzler,
2018).

The class devoted to generate trajectories modeled by the
Equations 5 is called DiffDiffGenerator. Implementation
details can be found in the software documentation.

2.3. Stats module

The library provides common techniques based on the
mathematical methods that researchers frequently use when
analyzing trajectories. This section presents an overview on
how to compute observables to describe them. Velocity au-
tocorrelation function, kurtosis or mean square displacement
are some typical examples.

Most of these observables were originally defined using
ensemble averages (i.e., expected values at a given time
instant). However, under the assumption of ergodicity', it
is possible to compute the observables using time averages
(i.e., by averaging the quantities among time intervals in-
stead). In yupi the observables can be computed using both
approaches. In the following subsections, we will denote by
E[-] (i.e., expected value) the ensemble average and (-) the
time average.

2.3.1. Velocity autocorrelation function

The velocity autocorrelation function (VACF) is defined
as the ensemble average of the product of velocity vectors
at any two instants of time. Under stationary conditions, the
definition is typically relaxed to the one of Equation 6a, in
which one of the vectors is the initial velocity. On the other
hand, Equation 6b presents the way VACF is computed by
averaging over time under the assumption that both averages

Ergodicity is the property of a process in which long-time averages of
sample functions of the process are equal to the corresponding statistical or
ensemble averages.
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Figure 2: Statistical analysis of three generated ensembles of N=1000 two-dimensional trajectories. Rows listed from top to
bottom correspond to an ensemble generated using a Random Walk, Langevin and Diffusing Diffusivity models, respectively. (a)
Spacial projection of five trajectories. (b) Estimated Velocity autocorrelation function and (c) Mean Squared Displacement as a
function of the lag time. (d) Kurtosis as a function of time. (e) Power Spectral Density. (f) Speed histograms. (g) Turning angle

probability densities.

are equivalent (i.e., ergodic assumption).

C,(0) = E[v(0) - v(1)]
Cp(7) = (v(®) - v(t + 7))

1 T-r1 (6b)
= V(1) - V(t + T)dt

(6a)

Here, 7 is the lag time, a time window swept along the
velocity samples and T is the elapsed time, where 7 < T'.

It should be noted that in Equation 6b VACF is defined
to be computed on a single trajectory, unlike Equation 6a
that requires an ensemble. This also applies to further statis-
tical observables that can be computed using both kinds of
averaging procedures.

VACF quantifies the way in which the memory in the
velocity decays as a function of time (Balakrishnan, 2008).
Moreover, it can be successfully used to analyze the nature
of an anomalous diffusion process (Metzler, Jeon, Cherstvy
and Barkai, 2014).

From top to bottom, Figure 2b shows VACF plots for
Random Walk, Langevin and Diffusing Diffusivity gener-
ated ensembles. VACF scatter as an almost flat curve around
zero for the top and bottom case, which indicates the mem-
oryless nature of Random Walk and Diffusing Diffusivity
processes. On the other hand, the center row shows an
exponential decay, meaning that a Langevin model predicts
some characteristic time that dominates the relaxation to
equilibrium.

With yupi, one can estimate the VACF of a collection of
trajectories (e.g., the ensemble generated in Section 2.2.1)
as:

from yupi.stats import vacf
trajs_vacf, trajs_vacf_std = vacf(
trajs, time_avg=True, lag=25)

where vacf is the name of the function that computes the
autocorrelation, the parameter trajs represents the array of
trajectories and time_avg indicates the method to compute
the observable, i.e., averaging over time with a lag time
defined by lag.

The computation of the remaining observables can be
coded in a similar way. Next, for the sake of brevity, we
will address only its theoretical foundations. In the software
documentation, more examples can be found that make use
of all the observables.

2.3.2. Mean square displacement

The mean square displacement (MSD) is defined in
Equation 7a by an ensemble average of square displace-
ments. In addition, the time-averaged mean square displace-
ment (TAMSD) is computed by a moving average of the
squared increments along a single trajectory. This is per-
formed by integrating over trajectory points separated by a
lag time 7 that is much smaller than the overall measurement
time T (Equation 7b).

8%(t) = E[(x(t) — r(0))*] (7a)
84(2) = ((x(t + 1) — r(1))*)
1 T-7 (7b)

(r(t + 1) — r(0)’dt

=T—T 0

The MSD of a normal diffusive trajectory arises as a
linear function of time. Therefore, it is a typical indicator
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to classify processes far from normal diffusion. Moreover,
MSD reveals what are the time scales that characterize
different diffusive regimes.

In Figure 2¢ a comparison of MSD plots is made for
the three ensembles previously presented. Regardless of the
model used, the same long time behavior can be perceived,
i.e., the same scaling law arises for sufficiently long time
scales. This can be seen while contrasting the MSD curves
with the dashed line of slope equal to one, meaning that
normal diffusion is achieved.

2.3.3. Kurtosis

Another useful statistical observable is the kurtosis. Dif-
ferent formulations for kurtosis have been proposed in the lit-
erature (Cain, Zhang and Yuan, 2017). The common choice
for the one-dimensional case is presented as the ensemble
average of Equation 8a, where u stands for the mean velocity
and o the standard deviation. In addition, for the multivariate
case we use Mardia’s measure (Mardia, 1970) as in Equa-
tion 8b. The vector u is the d-dimensional mean velocity
(d > 1) and X the covariance matrix. In both cases we have
omitted the explicit dependence with time, but it should be
noted that the expected value is taken at a given instant.

Kk(t) = E [(U;”>4] (8a)

x(t) = E[{(v— pTZ7 (v - p))?] (8b)

The kurtosis measures the disparity of spatial scales of a
dispersal process (Méndez, Campos and Bartumeus, 2016)
and it is also an intuitive means to understand normality
(Cain et al., 2017).

Figure 2d shows how kurtosis converges to a value close
to 8 regardless of the model used. This is a consequence
of convergence to a Gaussian density and the fact that all
three processes are two-dimensional. Moreover, just in the
case of the Diffusing Diffusivity model a leptokurtic regime
is observed, i.e., a regime in which ¥ > 8. This means
that some flat-tailed density (compared with the Gaussian)
aroused first and «(¢) provides a direct way to extract, apart
from the crossover time, the correlation time of the diffusion
coefficient.

2.3.4. Power spectral density

The Power Spectral Density, or Power Spectrum, (PSD)
of a continuous-time random process can be defined by
virtue of the Wiener—Khintchin theorem as the Fourier
transform S (w) of its autocorrelation function C(z):

o0
S(w) = / C()e " dt )
—00
Power spectrum analysis indicates the frequency content
of the process. The inspection of the PSD from a collection
of trajectories enables the characterization of the motion in
terms of the frequency components.

For instance, when analysing the ensembles represented
in Figure 2a, we notice important differences in their spec-
trum (see Figure 2e). In the Langevin and Diffusing Diffu-
sivity cases the PSD shows a decay for larger frequencies
as opposite to the Random Walk model, in which all fre-
quencies contribute equally, i.e., the spectrum is distributed
uniformly.

2.3.5. Histograms

Certain probability density functions can also be es-
timated from input trajectories (e.g., velocity and turning
angle distributions).

Speed probabilty density function is a useful observable
to inspect jump length statistics. For instance, Figure 2f
reveals the discrete nature of the Random Walk and the
rapidly decay of the tails for the Langevin and Diffusing
Diffusivity plots, which is a typical indicator to discard
anomalous diffusion models as candidate theories.

Figure 2f shows turning angle distributions in polar
axes. For the Random Walk model just few discrete orien-
tations are available in contrast with the other two cases:
a bell-shape around zero and a uniform distribution for the
Langevin and Diffusing Diffusivity model, respectively.

2.3.6. Other functionalities

In addition to the computation of statistical estimators,
the stats module of yupi includes the collect function for
querying specific data from a set of trajectories. If one
desires to obtain only position, velocity or speed data from
specific time instants, this function automatically iterates
over the ensemble and returns the requested data. Moreover,
collect also gets samples for a given time scale using sliding
windows.

A more extensive showcase of this module can be seen
in the examples provides as part of the Software Documen-
tation.

2.3.7. Graphics module

A set of pre-configured visualization functions are in-
cluded as part of yupi. Spatial projections can be visualized
for the cases of 2- and 3-dimensional trajectories using
plot_2d and plot_3d functions. For instance, each subplot in
Figure 2a is the outcome of plot_2d for different ensembles.

In addition, specific plots were added to ease the visual-
ization of the observables offered by the module yupi.stats).
This customized plotting functions were designed to high-
light statistical patterns following the commonly used stan-
dards in the literature (e.g., by default, plots of angle dis-
tributions are displayed in polar coordinates and the y- and
x-axis of the Power Spectral Density plots in logarithmic
scale). All the plots in Figure 2b-g were produced using the
aforementioned functions.

All these functions were conceived to allow plots cus-
tomization through case-specific parameters (e.g., PSD can
be plotted as a function of the frequency or angular fre-
quency). Moreover, since all the predefined plots were im-
plemented over matplotlib, the users can fully customize
their plots via keyword arguments (kwargs parameter) that
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will override any default values imposed by the specific yupi
plotting function.

2.4. Transformation module

The yupi.transformations module can be used when the
desired outcome is a “transformed” version of a given trajec-
tory that does not modify the trajectory itself. Since several
methods of this kind can be applied from standard signal
processing libraries (e.g., scipy.signal) we kept this module
simple. Therefore, we included mostly specific resources
that were both useful in the context of trajectory analysis and
uncommon in most popular signal processing libraries.

2.4.1. Trajectory filters

The module scipy.signal offers methods to convolve, to
spline or to apply low-, band- and high-pass filters. However,
we have included a convenient filter especially useful in the
context of animal behavior, where the instant velocity vector
is sometimes approximated to a local weighted average over
past values (Li, Cox and Flyvbjerg, 2011). This is presented
as the convolution:

t
v,(t) = Q / e~ =y("\ay! (10)
0

where Q is a parameter that accounts for the inverse of the
time window over which the average is more significant. A
filter defined by Equation 10 preserves directional persis-
tence and produces a smoothed version of a trajectory whose
velocity as a function of time is given by v(¢). Therefore,
position can be recovered with the help of Equation 4.

This “exponential-convolutional” filter can be used as:

from yupi.transformations import (
exp_convolutional_filter)

smooth_traj = exp_convolutional_filter(
traj, ommega=5)

Future releases of the library may include new filters
required for specific applications in trajectory analysis.

2.4.2. Trajectory re-samplers

There are several applications that require trajectories to
be sampled in specific time arrays. The most obvious case
is when a trajectory has a non-uniform time array and it
is desired to produce an equivalent trajectory sampled pe-
riodically on time. This can be achieved using the resample
function:

from yupi.transformations import resample
t1 = resample(traj, new_dt=0.3, order=2)

Notice that, by default, the library uses a linear interpo-
lation to resample the trajectory. However, the order of the
estimation can be controlled using the order parameter.

Equivalently, a new trajectory can be obtained for a given
time array that is not required to be uniformly sampled
by specifying the time array itself as the new_t parameter
instead of new_dt while calling the resample function.

We also included a simple sub-sampling method de-
signed for uniformly-sampled trajectories. It produces tra-
jectories that keep only a fraction of the original trajectory
points. It can be used as:

from yupi.transformations import subsample
compact_traj = subsample(traj, step=5)

where the step parameter is specifying how many sample
points will be skipped.

2.5. Tracking module

The tracking module contains all the tools related to re-
trieving trajectories from video inputs. Although yupi works
with trajectories of an arbitrary number of dimensions, the
scope of this module is limited to two-dimensional trajec-
tories due to the nature of video sources. However, inspired
by several practical scenarios in which tracking techniques
are required to extract meaningful information, we decided
to include these tools as part of the library.

We will refer to tracking as the process of retrieving
the spatial coordinates of moving objects in a sequence of
images. Notice that this is not always possible for any image
sequence. Some requirements should be met in order to
extract meaningful information.

Along this section, we will assume that any video used
for tracking purposes was taken keeping a constant distance
from the camera to the plane in which the target objects are
moving.

2.5.1. Tracking of objects of interest

When following a given object in a video, the aim of
tracking techniques is to provide its position vector with
respect to the camera, which we will denote by ri(oc) (su-
perscript (oc) stands for object-to-camera reference and sub-
script i stands for the i-th frame the vector is referred to).

If the dimensions of the object being tracked are small
enough (i.e., comparatively smaller than the distance cov-
ered in the whole trajectory) the centroid of the object
determines the only degrees of freedom of the movement
since orientation can be neglected. This point is frequently
taken as the position of the object.

To determine the actual position of an object on every
frame, a tracking algorithm to segment the pixels belonging
to the object from the background is required. Five algo-
rithms are implemented in yupi: ColorMatching, FrameD-
ifferencing, BackgroundSubtraction, TemplateMatching
and OpticalFlow. A detailed explanation of the basics of
the aforementioned algorithms can by found in Frayle-
Pérez, Serrano-Mufioz, Viera-Lopez and Altshuler (2017).
All those algorithms attempt to solve the same problem using
very different strategies. Therefore, it happens often that
under specific conditions one of them may outperform the
others.

To speed up the tracking process, yupi uses a region of
interest (ROI) around the last known position of the tracked
objects. Then, on every frame, the algorithm searches only
inside this region instead of in the whole image. When it
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founds the new position, it updates the center of the region
of interest for the next frame. When the tracking ends, the
time evolution of the central position of the ROI is used to
reconstruct the trajectory of the tracked object.

The library enables the extraction of Trajectory objects
from videos through ObjectTracker instances which are
defined by a tracking algorithm and a ROIL. For a given
video, several objects can be tracked concurrently using an
independent ObjectTracker for each one of them. Finally, a
TrackingScenario is the structure that groups all trackers
and iterates through the video frames while resolving the
desired trajectories for each tracker.

2.5.2. Tracking a camera in motion

Sometimes the camera used to track the object under
study is also in motion and it is able to translate and to
execute rotations around a vertical axis. Therefore, knowl-
edge regarding positions and orientations of the camera
during the whole experiment is required to enable a correct
reconstruction of the trajectory relative to a fixed coordinate
system. One way to tackle this issue is inferring the move-
ment of the camera by means of the displacements of the
background in the image. Preserving the assumption that
the camera only moves in a plane parallel to the plane in
which the objects are moving, the motion of the camera can
be estimated by tracking a number of background points
between two different frames and solve the optimization
problem of finding the affine matrix that best transforms the
set of points”. This means that for a rotation angle 6, a scale
parameter s, and displacements 7, and 7, an arbitrary vector
(x, y) will become

x' scosf —sinf t.|[x
Yy |=| sin6 scosé t,|ly (11)
1 0 0 111

Therefore, the problem reduces to find the vector (6, ¢, ¢ » s)

that minimizes the least square error of the transformation.
Under the assumption that the camera is always at approx-
imately the same distance from the background, the scale
parameter should be close to 1. As long as the mean square
error remains under a given threshold and the condition
s =~ 1 holds, the validity of the estimation is guaranteed.
Hence, the collection {6;,7,;,1,;}, where i stands for the
frame number, contains all the information necessary to
compute the positions and orientations of the camera.

2.5.3. Tracking objects and camera simultaneously

As was mentioned above, the position of the object under
study with respect to the camera in the i-th frame has been
denoted by rl,(oc). If the camera also moves and we can follow
features on the background from one frame to the another, we
are able to calculate the parameters (6;,1,;,7,;) of the affine

matrix that transforms the (i—1)-th into the i-th frame.

2An affine transformation (or affinity) is the one that preserves
collinearity and ratios of distances (not necessarily lengths or angles).

The question we now face is: How to compute the
position r; = ri(OD of the object with respect to the frame
of reference fixed to the lab in the i-th frame?

Let us label as ; the cumulative angular differences of
the affine matrix parameter 6 until the i-th frame (Equa-
tion 12a) and t; = (7;,7,,)" the vector of displacements of
the affine transformation. Let R be the rotation matrix (i.e.,
the upper-left 2X2 block of the matrix in Equation 11 when
s = 1). Then, the position of the camera in the lab coordinate

cl . . . .
( ), can be determined in an iterative manner as

system, r;

follows:

i
o0 =)0 (12a)
j=
r =R (@) (-t) +r) (12b)
r, =R (@) r +r (12¢)

Therefore, the desired position of the object under study,
r;, can be computed by Equation 12c in terms of its position

in the frame of reference fixed to the camera, rl.(oc), the abso-
(ch

lute position of the camera, r, and the camera orientation,

i
This whole process is simplified in yupi by the Camera-
Tracker class. By default, yupi assumes that the position of
the camera remains fixed. However, in order to estimate the
motion of a camera and use it to retrieve the correct position
of the tracked objects, the user only needs to create a Cam-
eraTracker object and pass it to the TrackingScenario.

2.5.4. Removing distortion

When recording video, the output images generally con-
tain some distortion caused by the camera optics. This is
important when spatial measurements are being done us-
ing videos or photographs. To correct these errors some
adjustments must be applied to each frame. Applying an
undistorter function to the videos is possible in yupi using
the ClassicUndistorter or the RemapUndistorted’.

2.6. Integration with other software packages

Along with yupi, we offer a Python library called yupi-
wrap (available in https://github.com/yupidevs/yupiwrap),
designed to ease the integration of yupi with other libraries
for handling trajectories. Two-way conversions between a
given yupi Trajectory and the data structure used by the
third-party library can be made via yupiwrap. This approach
enables users to seamlessly use the resources needed from
either library.

2.6.1. Integration with traja

Traja Python package is a toolkit for numerical charac-
terization and analysis of moving animal trajectories (Shenk
et al., 2021). It provides some machine learning tools that
aren’t yet available in yupi.

3To instantiate one of the given undistorters a camera calibration
file is needed. This file can be created following the steps explained in
the documentation https://yupi.readthedocs.io/en/latest/api_reference/
tracking/undistorters.html.
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To convert from yupi to traja let us first consider an
arbitrary yupi Trajectory:

traj = Trajectory(
x=[0, 1.0, 0.63, -0.37],
y=[0, 0, 0.98, 1.24])

and then the conversion to a traja DataFrame is done by:

from yupiwrap import yupi2traja
traj_traja = yupi2traja(traj)

Notice that only two-dimensional trajectories can be
converted to a traja object due to its own limitations. The
conversion in the opposite direction can be done in a similar
way by using traja2yupi instead.

2.6.2. Integration with tracktable

Tracktable provides a set of tools for handling two-
and 3-dimensional trajectories even in geospatial coordinate
systems (Sandialabs, 2021). The core data structures and
algorithms in this package are implemented in C++ for
speeding up computation and more efficient memory usage.

If we consider the same yupi Trajectory from the pre-
vious example, we can convert it into a Tracktable object
using:

from yupiwrap import yupi2tracktable
traj_track = yupi2tracktable(traj)

In this case, all trajectories with a number of dimensions
within 1 to 3 can be converted into Tracktable objects. The
conversion in the opposite direction can also be done by
importing tracktable2yupi.

3. Examples

In this section, we illustrate the usage of yupi through
different examples that require a complex integration of
different modules. The examples were chosen to showcase
the potential of the library to solve problems that heavily rely
on trajectory analysis and its extraction from video sources.
Most of the examples reproduce core results from published
research. Others include original approaches to verify known
properties of different phenomena. All in all, the collection
of examples is designed to provide a quick starting point
for new research projects involving trajectory data, with a
particular focus in environmental modelling.

For simplicity, we omit some technical details related to
its implementation. However, we provide a detailed version
of these examples in the software documentation® with
required multimedia resources and source code, available in
a repository conceived for yupi examples®.

4Documentation available at https://yupi.readthedocs.io/en/latest/
5Examples available at https://github.com/yupidevs/yupi_examples

3.1. Identifying environmental properties through
tracking and trajectory processing

Visual tracking has proven to be an effective method for
the study of physical and biological processes. Moreover,
indirect measurements from the enviroment can also be
retrieved from the analysis of the directly measured trajec-
tories. For instance, tracking techniques have empowered
researchs on animal behavior, which can improve the effec-
tiveness and success of conservation management programs
(Greggor, Blumstein, Wong and Berger-Tal, 2019) and gives
valuable information about ecosystem changes (Rahman and
Candolin, 2022). More especifically, in (Yuan, Huang, Chen
and Cheng, 2018) the authors infered the water quality
through the analysis of features from fish trajectories. Fur-
thermore, the work of (Panwar, Gupta, Siddiqui, Morales-
Menendez, Bhardwaj, Sharma and Sarker, 2020) shows how
to automate the detection of waste in water bodies using
images from the environment. In addition, the measurements
of river flows have also benefited from the tracking of key
features using satellital images (Gleason, Garambois and
Durand, 2017).

In the work of (Stephenson et al., 1999), it was shown
how the stresses of turning wheels in the grounds can affect
vegetation cover, plant health and diversity, as well as reduc-
ing underground rhizomes (roots) generation. Inspired on
these facts, we decided to reproduce the tracking results from
the work of (Amigd-Vega, Serrano-Mufioz, Viera-Lopez and
Altshuler, 2019) on the study of the motion of vehicles on
granular materials. They reported the analysis of the tra-
jectories performed by a scaled-size wheel while rolling on
sand at two different gravitational accelerations, exploiting
a frugal instrument design (Viera-Lopez, Serrano-Mufioz,
Amigd-Vega, Cruzata and Altshuler, 2017; Altshuler, Tor-
res, Gonzalez-Pita, Sanchez-Colina, Pérez-Penichet, Wait-
ukaitis and Hidalgo, 2014). Figure 3a shows a sketch of the
instrument where a camera on top captures the motion of the
wheel while rolling around a pivot. This example was built
using one of the original videos provided by the authors (see
Figure 3b).

In the video, one observes the wheel forced to move on
sand at a fixed angular velocity. In optimal rolling conditions,
one can expect it to move at a constant linear velocity.
However, due to slippage and compaction-decompaction of
the granular soil, the actual linear velocity differs from the
one expected under ideal conditions. To study the factors
that affect the wheel motion, the first step is quantifying how
different the rolling process is with respect to the expected
one in ideal conditions. This example focuses on the problem
of capturing the trajectory of the wheel and computing the
efficiency of the rolling process.

We start by creating two trackers: one for the central
pivot and one for the green led attached next to the wheel.
Since the central pivot should not move significantly, we can
track it using TemplateMatching algorithm, by comparing
every frame with a template of the object. As the led colors
differs from the rest of the image, we can use ColorMatch-
ing algorithm to track its position.
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Figure 3: Efficiency of the rolling process computed for a wheel
moving across granular material at a constant angular velocity
® = 4rad/s under a gravitational acceleration as the one on
Mars. (a) Experimental setup composed by the wheel electro-
mechanical system to ensure the constant angular velocity and
a camera to record its motion. (b) Sample frames from a
video where the wheel moves around the pivot. (c) Estimated
positions of the wheel and the LED used as a reference to track
it. (d) Estimation of the rolling efficiency for a single realization
of the experiment, showing a strong consistence with the ones
reported in the original paper (Amigé-Vega et al., 2019).

Both trackers are used among the TrackingScenario to
retrieve the trajectories of both objects along the video. It
is worth to mention that, for an accurate estimation, it is
required to know the scale factor (i.e., the number of pixels
required to represent 1 m).

By calling the track method, the tracking process should
produce two trajectories (one for each tracker). Notice that
these trajectories (i.e., fjoq and f,;,) are referred to a frame
of reference placed on the bottom left corner of the image as
shown in Figure 3.

Then, using the arithmetic operations from yupi it is
possible to estimate the trajectory of the LED referred to
the center pivot by simply subtracting them as: o4 centered =

Tled — tpivot :

Since the LED and the center of the wheel are placed at a
constant distance of 0.039 m, we can estimate the trajectory
of the wheel referred to the center pivot:

wheel_centered = led_centered.copy()
wheel_centered.add_polar_offset(0.039, 0)

Finally, the trajectory of the wheel referred to its initial
position, can be obtained by subtracting the initial from the
final position after completing the whole trajectory.

wheel = wheel_centered - wheel_centered.r[0]

Now, assuming no slippage, we can compute the linear
velocity as: vy, = ®R = (4rad/s) x (0.07 m) and measure
the actual linear velocity using the trajectory estimated by
the tracking process:

v_actual = wheel.v.norm

By dividing v,.qyq1 bY Umax> We can estimate the effi-
ciency of the rolling as described in (Amig6-Vega et al.,
2019). The temporal evolution of the efficiency for the single
experiment can be observed in Figure 3d.

We can notice how the linear velocity of the wheel is
not constant despite the constant angular velocity, due to
slippage in the terrain. Even when we are observing only
one realization of the experiment, and assuming the angular
velocity of the wheel being perfectly constant, we notice the
consistency of this result with the one reported in the original
paper.

Despite the specific nature of this example, it is easy
to make a straightforward extension of its usage across
many other problems that may require the identification of
objects from video sources and the application of arithmetic
operations over trajectories to indirectly measure any de-
rived quantities. In that regard, we included in the soft-
ware documentation additional examples related to trajec-
tory tracking that partially reproduce key results from pub-
lished research: The work of (Diaz-Melian, Serrano-Mufioz,
Espinosa, Alonso-Llanes, Viera-Lopez and Altshuler, 2020)
where the authors study the penetration of objects into gran-
ular beds; The work of (Frayle-Pérez et al., 2017), where the
authors studied the capabilities of different image processing
algorithms that can be used for tracking of the motion
of insects under controlled environments and the work of
(Serrano-Mufioz, Frayle-Pérez, Reyes, Almeida, Altshuler
and Viera-Lopez, 2019) that extends on the previous one by
proposing the design of a robot able to track millimetric-size
walkers in much larger distances by tracking both insect and
camera simultaneusly.

3.2. Equation-based simulations: A molecule
immerse in a fluid
Several systems can be explained using stochastic mod-
els as the ones shown in Section 2.2. To accurately describe
them, it is required to adjust the parameters of the model
according to measureable data. Next, we will illustrate how
to use yupi to generate simulated trajectories of a lysozyme
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in water using the Langevin model presented in Section
2.2.2. We corroborate that the model correctly predicts the
order of magnitude of molecule’ speed values.

Proteins contribute greatly in environmental processes
and are fundamental in soil and ecosystem health (Li, Wang,
Zhang, Koopal and Tan, 2020). Since interactions of proteins
with charged surfaces are important in many applications
such as biocompatible medical implants (Subrahmanyam,
Piletsky and Turner, 2002), the dynamics of lysozyme and
its hydration water has been characterized under electric
field effects in different water environments (Favi, Zhang,
O’Neill, Mamontov and Diallo, 2014). Alongside, the ther-
mal velocity for a sizeable particle immerse in water such
as a lysozyme molecule at room temperature has been esti-
mated to be around 10 m/s (Berg, 2018).

The right hand side of the Langevin equation (3) can be
interpreted as the net force acting on a particle. This force
can be written as a sum of a viscous force proportional to
the particle’s velocity (i.e., Stokes’ law with drag parameter,
y = 1/7, with 7 a correlation time), and a noise term, o &(?),
representing the effect of collisions with the molecules of the
fluid. Therefore, (3) can be written in a slightly different way
by noting that there is a relation between the strength of the
fluctuating force, o, and the magnitude, 1/z, of the friction
or dissipation, which is known as the Fluctuation-dissipation
theorem (Kubo, 1966; Srokowski, 2001). Consequently, in
terms of experimental measured quantities and in differential
form, the Langevin equation can be reformulated in the light
of stochastic processes by

dv=—Yvar+./2 <£>dW (13a)
T T m

1:}/:1:6””“ (13b)

T m m

where k is the Boltzmann constant, T' the absolute tempera-
ture, and m the mass of the particle. Equation 13b provides an
operational method to measure the correlation time in terms
of the Stoke’s coefficient, a, which depends on the radius of
the particle, a, and the fluid viscosity, #.

Lysozyme enzymes are molecules with a high molecular
weight (~ 10* g/mol) (Colvin, 1952). So, it is reasonable to
expect a brownian behavior in the limit of large time scales
when the particle is subjected to the molecular collisions of
the surrounding medium (e.g., an aqueous medium). Then,
Equation 13a is a good choice to use as a model.

By setting the total simulation time T, the dimension
dim, the number N and the time step dt of the simulated
trajectories, as well as the coefficients gamma and sigma of
Equation 3, we can instantiate the LangevinGenerator class
and generate an ensemble of trajectories:

from yupi.generators import LangevinGenerator
lg = LangevinGenerator(

T, dim, N, dt, gamma, sigma)
trajs = lg.generate()

Figure 4 shows the velocity probability density function
that the model predicts. Apart from the typical Gaussian

T T T T T
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0005595 ¢ % 50 75

velocity [m/s]

Figure 4: Gaussian velocity distribution predicted by Equa-
tion 13a for trajectories of a lysozyme molecule in water.
Standard deviation, depicted as vertical red lines, coincides
with those values in which (v?)!/2 ~ 10m/s.

shape that arises when massive particles are jiggling, the
standard deviation (vertical red lines) is in agreement with
the previous estimation for the local thermal velocity.

Another equation-based simulation is presented as part
of the complementary examples provided in yupi documen-
tation. It covers the computation of the probability density
function for displacements at different time instants for the
case of a one-dimensional process that follows the equations
of a Diffusing Diffusivity model (see Section 5). The exam-
ple reproduces important results from the paper presented by
(Chechkin et al., 2017).

3.3. Time series analysis: water consumption
examination

This example showcases the usage of yupi beyond “real”
trajectories. We reproduce an example from (Hipel and
McLeod, 1994) in the context of hydrological studies by
simply treating a time series as an abstract trajectory.

Seasonal autoregressive integrated moving average
(SARIMA) models® are useful for modelling seasonal time
series in which the mean and other statistics for a given
season are not stationary across the years. Some types of
hydrological time series which are studied in water resources
engineering could be nonstationary. For example, socio-
economic factors such as an increasing of population growth
in the city of London, Ontario, Canada since the Second
World War to 1991, caused a greater water demand in the
period (Hipel and McLeod, 1994). Figure 5a shows the
average monthly water consumption (in millions of liters per
day) from 1966 to 1988 for this city. The increasing trend
around which the seasonal data fluctuates reveals nonsta-
tionary characteristics. As a consequence, autocorrelation
analysis was used by (Hipel and McLeod, 1994) in the design
and study of a SARIMA model for the water usage time
series.

6SARIMA is a forecasting model that supports seasonal (S: seasonal)
components of a time series that is assumed to depend on its past values
(AR: autoregressive), past noises (MA: moving average) and resulted from
many integrations (I: integrated) of some stationary process.
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London, Ontario, Canada (1966-1988)
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Figure 5: Analysis of water consumption in for the city of
London, Ontario, Canada. (a) Seasonality of the average
monthly water usage (1966-1988). The sinusoidal pattern on
top of the linear trend accounts for nonstationarity. (b) Slow
decreasing of the normalized autocorrelation function as a
function of the lag time. Oscillations are portrayed with a

period of a year. (Original plots can be found in Figures
V1.2/12.4.1 pages 417/440, in (Hipel and McLeod, 1994).)

First, let waterusage be the variable in which the time
series has been stored. Visualization of the data shown in
Figure 5a can be done using:

from yupi import Trajectory
traj = Trajectory(x=np.cumsum(water_usage))
plt.plot(traj.v.x)

Computation and visualization of the autocorrelation
function depicted in Figure 5b (see Section 2.3.1 for theo-
retical details) can be simply coded as:

from yupi.stats import vacf

from yupi.graphics import plot_vacf

acf, _ = vacf([traj], time_avg=True, lag=50)

plot_vacf(acf / acf[@], traj.dt, lag=50,
x_units='months', y_units=None)

4. Conclusions

This contribution presents yupi, a general purpose li-
brary for handling trajectory data. Our library proposes an
integration of tools from different fields conceived as a
complete solution for research applications related to obtain-
ing, processing and analyzing trajectory data. Resources are
organized in modules according to their nature. However,
consistency is guaranteed using standardized trajectory data
structures across every module.

We have shown the effectiveness of the tool by repro-
ducing results reported in a number of research papers.
We believe the examples illustrating the simplicity of yupi
should enable researchers from different fields to become

more proficient in processing and analyzing trajectories even
with minimal programming knowledge.

The current version of yupi does not provide specific
functionalities to process geo-spacial data. Considering the
wealth of available tools to tackle these specific tasks, we
encourage the re-utilization of existing approaches for spe-
cific use cases by providing an extension to simplify two-way
conversions of data among some existing trajectory-related
software libraries.
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