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Abstract

Gene networks describe functional pathways in a given cell or tissue, representing processes such as metabolism, gene expression regulation,

and protein or RNA transport. Thus, learning gene network is a crucial problem in the post genome era. Most existing works learn gene networks

by assuming one gene provokes the expression of another gene directly leading to an over-simplified model. In this paper, we show that the gene

regulation is a complex problem with many hidden variables. We propose a semi-fixed model to represent the gene network as a Bayesian network

with hidden variables. In addition, an effective algorithm based on semi-fixed structure learning is proposed to learn the model. Experimental

results and comparison with the-state-of-the-art learning algorithms on artificial and real-life datasets confirm the effectiveness of our approach.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The complexity of a living cell is achieved by the

concerted activity of many genes and their products. Such

activity is often coordinated by the organization of the

genome into regulatory modules, or sets of co-regulated genes

that share a common function (Segal et al., 2003). The global

gene expression pattern is therefore the result of the collective

behavior of individual regulatory pathways. The large number

of regulation pathways comprise a complex network which is

called a gene network (Kolpakov, Ananko, Kolesov,

Kolchanov, & Genenet, 1998). Understanding the network

as a whole is essential and learning the gene network is an

important central theme in post genomic research (Cumiskey,

Levine, & Armstrong, 2003; D’haeseleer, Liang, & Somogyi,

2000; Friedman, 2004; Hasty, McMillen, Isaacs, & Collins,

2001). The accurate reconstruction of gene network has many

possible benefits: (1) gene network provides information to

help the annotation of the genome (Brazhnik, Fuente, &

Mendes, 2002); (2) it is an important step to uncover the

biochemical network in a cell (Brazhnik et al., 2002); (3) it

provides valuable clue and lead to new idea to treat some

complex diseases (Friedman, 2004), etc. With the construction
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of the expert system of gene network, it is possible to predict

the regulators of genes, the regulatory relationships among

genes and the regulatory pathways, thus learn the regulatory

patterns of the organisms. Learning gene network is also a

necessary step to build an expert system to predict the

outcome of the perturbation of the genome, such as diseases

(Brazhnik et al., 2002). Yet, it is impractical to construct a

detailed biochemical model of an organism containing

hundreds or even tens of thousands of genes by analyzing

each gene and determining all the binding and reaction

constants one by one manually1. Therefore, the methods for

automatically reconstructing gene network by computing are

needed.

Gene network can be reconstructed by analyzing the gene

expression data, which is extracted from the mi-croarray

(Akutsu, Miyano, & Kuhara, 1999; Chen, He, & Church, 1999;

Chen, Filkov, & Skiena, 1999; Cumiskey et al., 2003;

D’Haeseleer, Wen, Fuhrman, & Somogyi, 1999; Friedman,

Linial, Nachman, & Pe’er, 2000; Imoto, Goto, Miyano, 2002;

Imoto et al., 2003; Murphy & Mian, 1999; Someren, Wessels,

& Reinders, 2000; Tominaga, Okamoto, Watanabe, & Eguchi,

2001; Wagner, 2002; Watanabe, 1998; Wessels, Someren, &

Reinders, 2001; Yaki & Friedman, 2004). Various methods are

used for this purpose. The early computational approaches

were based on learning the relationships among genes either by

studying the mutual information or the correlation among their

expression values. The representatives of such approaches are
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Pair-wise interaction (Arkin, Shen, & Ross, 1997)

and clustering (Wahde & Hertz, 2000), which directly find

the correlations among genes. After that, Boolean networks

(Akutsu et al., 1999; Liang, Fuhrman, & Somogyi, 1998) are

used in several works, which assume the gene expression levels

are represented by Boolean values and the gene regulatory

relationship are represented by a set of Boolean functions.

Linear (Someren et al., 2000) and non-linear (Watanabe, 1998)

models are followed which assume the regulatory relationships

are represented by linear functions and non-linear functions,

respectively. In a famous paper by Friedman et al. (2000), an

algorithm to learn gene network using Bayesian network is

presented: Each gene is a vertex and each regulatory

relationship is an edge in the Bayesian network. Bayesian

network represents probabilistic multivariate statistical depen-

dencies among variables in a compact and easy-to-decipher

way (Barrientos & Vargas, 1998; Gustavo, Sucar, &

Villavicencio, 1998; Kang & Gola, 1999; Oatley & Ewart,

2003; Sucar & Miriam, 1998; Viaene, Dedene, & Derrig, in

press). As it can handle stochastic events, control noise and

handle dataset with only a few replicates (Friedman et al.,

2000; Imoto et al., 2002), it has been shown to have advantages

over other methods in learning gene network (Friedman et al.,

2000; Imoto et al., 2002; Murphy & Mian, 1999). Since then,

many works based on Bayesian network frame work are

proposed and more biological relevant results are obtained.

Hartemink, Gifford, Jaakkola, & Young, (2001) extended

Friedman’s work by adding the annotations to the edges: ‘C’,

‘K’ or ‘G’ which represent the positive, negative or unknown

regulation. Imoto et al., extended Bayesian network by

combining non-parametric regression (Imoto et al., 2002) to

detect the nonlinear relationship among genes and by making

use of relevant biological information (Imoto et al., 2003) to

improve the learning performance. Murphy and Mian (Murphy

& Mian, 1999) used the dynamic Bayesian network, which is

an extension of Bayesian network, to model the time delay in

the gene network. However, when referring to gene regulation,

most works simply model that a gene is directly regulated by

other genes. The regulations of genes in fact occur at various

levels including transcription, translation, splicing, posttransla-

tional protein degradation, and other processes (Kolpakov

et al., 1998). To give a correct description of the gene network,

we cannot just consider the gene expression level (that is, the

level of mRNA transcription).

Based on the biological knowledge, it is known that

protein plays a key role in gene network (Wyrick & Young,

2002). In fact, protein–DNA interaction and Protein-Protein

interaction are the main activities in the regulatory system

(Kolpakov et al., 1998). Therefore, when predicting

microarray gene expression data, proteins should be

included. Although their expression levels are still difficult

to measure in the large scale, it is good if we can treat

them as hidden variables. The following are the advantages

of modeling proteins as hidden variables:

† The model will become more meaningful, more

interpretable and closer to real-life system (Barbara,
Jameson, & Witting, 1999; Elidan, Lotner, Friedman, &

Koller, 2000; Friedman, 1997; Friedman, 1998).

† In the model, the proteins are decision-relevant. The network

without considering hidden variable may omit some

dependencies (Barbara et al., 1999; Elidan et al., 2000).

Introducing hidden variables introduces advantages as well

as increases the complexity of the network learning. Moreover,

microarray gene expression datasets often have missing values.

Considering the above challenging issues, Bayesian network

forms a natural choice with the advantage of supporting several

principled methods for learning the causal relationships with

incomplete data, both hidden variables and missing values

(Friedman, 1998). Successful application of Bayesian network

to learn structure with hidden variables can be found in for

several applications (Barbara et al., 1999; Elidan et al., 2000;

Friedman, 1997, 1998). The most widely used method for

structure learning is EM algorithm (Friedman, 1998). In E step,

the algorithm calculates the score of each possible structure

using the structure and parameters learnt in M step. The

procedure is repeated until the convergence criterion is met. In

our problem, such kind of learning is difficult since the

algorithm needs to learn the relationship among the hidden

variables and the observed variables. In addition it is difficult to

predetermine the correct number of hidden variables. To learn

the optimum number of hidden variables is computationally

complex. Besides, in the presence of hidden variables, the

network is no longer decomposable and this makes the learning

difficult (Friedman, 1998) (as described in Section 3).

We propose a system which models the gene network as a

directed graph with hidden variables. In our model, the number

of hidden variables is predefined using the biological knowl-

edge and in addition, the relationships between hidden

variables and observed variables are partially fixed. We

propose a modified EM algorithm that takes advantages of

the semi-fixed structure to decompose the network, and thus

allow us to learn such network efficiently. Also, an

approximation method to perform inference on the joint

probability of two genes is presented in order to speed up the

learning procedure.
2. Model gene network as a semi-fixed network

with hidden variables

In the gene regulation system, the regulation process can be

divided into two main steps. The first step is gene expression,

which is represented by gi/ri/pi where gi is a gene, ri and pi

are the corresponding mRNA and Protein respectively. gi/ri

is the transcription and ri/pi is the translation process. The

transcription efficiency that is represented by mRNA level can

be measured by microarray. The second step is the gene

regulation, which is represented by pi/gj. In this step, the

generated protein pi, possibly in collaboration with some other

proteins, regulates the target gene gi. These two steps are the

most important steps in the gene regulatory system. All other

steps such as protein degradation just adjust the expression and

the regulation strengths. Let PajZ{g1, ., gk} denote a parent
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set of gene gj such that each gi2Paj regulates gene gj. We

note that all proteins {p1,., pk} in Paj act in a combinative

manner to regulate gj. In other words, the proteins may

combine together to form a complex then bind to the binding

site of the target gene and regulate it, or bind to their own

binding sites then collaboratively regulate the target gene, or a

mixture of the above two ways. An example network is shown

in Fig. 1(a). Considering a single node representing the

proteins’ combined influence as the direct regulator to

regulate the target gene, the model can be further simplified

as shown in Fig. 1(b).

Based on the above discussion, for each gene gj, we

propose a hidden variable hj, which represents the combi-

nation of a set of regulatory proteins expressed from Paj.

Thereupon, Paj regulate hj, then hj regulates gj. Based on the

simplified regulation system, each gene is regulated by at

most one hidden variable and the hidden variables are

regulated by one or more than one genes. Such model

means the interaction exists only between Gene )/ Protein

or among proteins, and there is no edges from gene to gene or

hidden variable to hidden variable. This model is termed as a

semi-fixed network and is formally defined as follows:

† A semi-fixed network NZ! V, EO where vertices VZ
OgH, OZ{g1, ., gn} is a set of observed variables

representing the expression levels of genes, and HZ{hi,

., hn} is a set of hidden variables representing the

expression levels of combined proteins) and E is the edge

set.

† For each ek2E, ekZ(gi, hj) or (hj, gi). Thus, N is a bipartite

graph on two partitions O and H.

† For each gi2O, there is exactly one incoming edge (hi, gi)

while there can be many outgoing edges.

† For each hi2H, it has exactly one outgoing edge (hi, gi)

while there can be many incoming edges {(gi1, hi), (gi2, hi),

., (gik, hi)} where Pa(hi)ZPajZ{gi1, gi2, ., gik}.

Compared to learning general network with several hidden

variables, learning the semi-fixed network is easier since the

number of hidden variables is fixed and the relationships

between hidden variables and observed variables are partially

known.
Fig. 1. Simplified gene regulation system. (a) Gene expression system can be

simplified as the interaction of genes and proteins. (b) The system can be

further simplified since the combined proteins are the direct regulator to the

target genes.
3. Semi-fixed structure EM learning algorithm

When there is no hidden variable in the network and no

missing values in the gene expression data, the probability of

the variables given a network structure can be expressed as

the production of the probabilities of independent sub-

networks:

PðX1.Xn : No;DÞ Z
Y

i

PðXijPaðXiÞÞ (1)

where X1 to Xn are observed variables and No denotes the

network without hidden variables. D is a complete dataset.

The decomposability property reduces the learning

difficulty in the following manner. With score functions

such as minimum description length (MDL) and Bayesian

scoring metric, learning the structure of a network can be

decomposed to learn each independent sub-network separ-

ately (Friedman, 1998; Friedman, Nachman, & Peer, 1999).

Whereas, in the presence of incomplete data, the decom-

posability property is not valid and this makes the learning

difficult (Friedman, 1998). However, if all parameters of all

hidden variables are assigned, hidden variables are observed

and thus in a sense, the incomplete dataset becomes

‘complete’.

A useful property of semi-fixed network is that when all

parameters of hidden variables have been assigned (as the

number of hidden variables and partial relationships of hidden

variables and observed variables are known ensuring that all

hidden variables can be assigned parameters), the network can

be decomposed into independent subnetworks. Each subnet-

work comprises of a gene gj, a hidden variable hj and a parent

set of hj (denoted as Pa(hj)) (as show in Fig. 1(b)). The

probability is decomposed as:

Pðg1.gn; h1.hn : No;h;DÞ Z
Y

i

PðhijPaðhiÞÞ
Y

i

PðgijhiÞ (2)

where g1, g2, ., gn are observed variables (genes), h1, h2, .,

hn are hidden variables and No,h denotes the network with

hidden variables. D is an incomplete dataset.

Based on different decomposition methods, the decompo-

sition of scores is also different. In our work, Bayesian score is

used. For the detail of Bayesian score, please refer to

(Friedman et al., 2000). When the network No has no hidden

variable, the score is decomposed as follows:

ScoreðNoÞ Z
X

i

ScoreðgijPaðgiÞÞ (3)

For a semi-fixed network No,h, hidden variables are

included. We can show that its Score can be decomposed

because the hidden variables hi’s are attached to the

corresponding genes, as follows:

ScoreðNo;hÞ Z
X

i

ScoreðhijPaðhiÞÞCScoreðgijhiÞ (4)

Proof:. Given all hidden variables, No,h is decomposable. By

Formula 4, ScoreðNo;hÞZ
P

i ScoreðvijPaðviÞÞ where vi is the

variables, include both genes and proteins, in No,h: {v1, v2, .,
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v2n}Z{g1, g2, ., gn, h1, h2, ., hn}. Therefore, it is easy to seeP
i ScoreðvijPaðviÞÞZ

P
i ScoreðhijPaðhiÞÞC

P
i ScoreðgijPað

giÞÞ where P a(gi)Zhi in No,h. Thus, Formula (4) is proved.

With the aim of computing a network No,h which

maximizes Score(No,h) using the property in Eq. (4), we

propose a EM algorithm known as Semi-fixed Structure EM

(SSEM) algorithm to learn such network. The principle of the

EM algorithm is as follows: In each iteration, given an initial

network structure NiK1 and a parameter set qiK1 (which

includes both the parameters of observed variables qiK1 and

hidden variables qh
iK1), the step 1 is to calculate the missing

values and hidden variables to build a complete dataset. The

second step is to find a better structure Ni and a better

parameter set qi based on the new complete dataset. A detailed

description of the algorithm is shown at the end of this

chapter.

For step 1, the missing values and hidden variables can be

filled up as follows:

Given N and q, for a missing value of a variable gi,

supposing Pa(gi) is the parent set of gi in N and DZ{d1, ., dk}

is the discrete values of gi, we fill up the missing value of gi by

a vector SZ(s1, ., sk) where sjZP(giZdjjPa(gi)).

This is illustrated in the following example:

Example:. The variable g1 has parents g2 and g3. As shown in

Table 1(a), there is a missing value in an instance: {g1, g2,

g3}Z{(), 1, 1} where () indicate a missing value. Suppose

P(giZ0jg2Z1, g3Z1)Z0.4 and P(giZ1jg2Z1, g3Z1)Z0.6,

we fill up the instance by {g1, g2, g3}Z{(0.4, 0.6), 1, 1}. It

means, the filled value adds 0.4 count to the case g1Z0 and

0.6 count to the case g1Z1. As shown in Table (b), there are

1.4 cases for which g1Z0 and 2.6 cases for which g1Z1. In

other words, P(g1Z0)Z1.4/4Z0.35 and P(g1Z1)Z2.6/4Z
0.65.

The values of hidden variables are treated as missing

values too and are computed in a similar fashion. Given the

filled dataset, NiK1 and qiK1, step 2 can learn Ni and qi using

general structure learning method. The general method to

learn the structure from a complete dataset is to decompose

the network into independent subnetworks. Then, learn the

structure of each subnetwork independently. Since we fix
Table 1

An example of filling missing values

g1 g2 g3

(a)

() 1 1

1 0 1

1 1 1

0 1 1

(b)

(0.4, 0.6) 1 1

1 0 1

1 1 1

0 1 1
partial structure, we can decompose it as the independent

subnetworks, each of which has a target gene, a hidden

variable and a parent set of the hidden variable (similar to

Fig. 1(b)). The main objective is to find the optimal parents

for each hidden variable. Learning parents from a large

number of candidates is difficult task. As gene network is a

sparse network (Someren et al., 2000), a popular technique is

to first measure the dependencies of candidates to target

variable and to choose the best k genes as candidate parents.

Then, the search for the parents from the candidate parent set

can be performed. Friedman et al. (Friedman et al., 1999)

proposed to calculate the dependency by KL-divergence (as

Eq. (5)):

MIðX; YjMÞ Z
X

X;Y

PðX; YÞlogðPðX; YÞ=PMðX; YÞÞ (5)

where MI(X, YjM) is the mutual information of variables X

and Y with respect to the network M, P(X, Y) is the observed

joint probability of X and Y and PM(X, Y) is the estimated joint

probability of X and Y given M.

Though we can compute PM(gi, hi) given the filled dataset,

we cannot compute P(gj, hi) to measure the dependency of gj

and hi, as hi is hidden. We propose an alternate way to measure

the dependency: in each subnetwork, the target gene is the only

descendant of the hidden variable. The probabilities of the

hidden variable are passed to the target gene. Therefore, MI(gj,

hi jM) can be reflected by MI(gj, gijM). Thus, the MI can be

calculated as following:

MIðgj; gijMÞ Z
X

gj;gi

Pðgj; giÞlogðPðgj; giÞ=PMðgj; giÞÞ (6)

Where P(gj, gi) is the observed probability distribution of

genes gj and gi while PM(gj, gi) is the estimated probability

distribution of gene gj and gi in network M. Performing

inference on joint probabilities in a big dataset is quite time

intensive. Thus, we approximate the joint probability of gi and

gj as follows:

† If gj2Pa(gi), then gj/hi/gi. PM(gj, gi)ZPM(gijgj)

PM(gj)zPM(gijhi)PM(hijgj)PM(gj). Note that in this case,

PM(gj, gi)sPM(gi, gj).

† Otherwise, gi and gj are conditionally independent and

PM(gj, gi) can be approximated as PM(gj)PM(gi).

By the above approximation, only the joint probabilities of

the gene pairs with the parent-child relationships need to be

calculated.

The detail of the iterative algorithm is as follows:

† In iteration i, given NiK1, qi-1 and the original incomplete

dataset D0.

In E step, the missing values and the values of hidden

variables of D0 are filled up based on the inference of NiK1

and qiK1. Then, we obtain a complete dataset DiK1. The

structure Ni is learnt based on DiK1 by maximizing

Score(Ni: qi-1, Di-1). Because of the decomposability, we

learn the parents for each gene gi independently:



Fig. 2. Leaning performance comparison in the artificial dataset. (a) Structure

of the artificial network, which contains 4 genes and 4 regulatory edges. (c)

Structure learned by K2, there is no correct edge. (b) Structure learned by SEM.

There is only 1 correct edge. (d) Structure learnt by SSEM. All edges are

uncovered.
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(1) Find k genes with best MI score with respect to gi to

build the candidate parent set CPS.

(2) Find parents PS2CPS which maximum Score(SSi: qiK

1, DiK1), where SSi is a substructure PS/hi/gi.

– repeat the procedure until converging.

† In M step, qi is learnt based on Ni which maximum

Score(Ni: qi, DiK1)

† Repeat the procedure until convergence or till the

predefined number of iteration is reached.

In the above procedure, the network structure and

parameters are refined iteratively. To get the initial network

structure N0 and parameters q0:

† learn the D0 as a complete dataset. Pai for each gi and the

dependent probabilities are gotten.

† for each gene gi, add a hidden variable hi. Set the P a(hi)Z
Pai and P(hijPa(hi))ZP(gijPai).

† A complete dataset D0 by filling D0 based on the network

structure and dependent probabilities is obtained.

† N0 and q0 can be learned from D0.
4. Experimental results and comparison

The model and the algorithm are implemented in MATLAB

and BNT2. Below, we present experimental results on both

artificial and real life gene expression datasets.

4.1. Experiment on artificial datasets

An artificial dataset is generated by simulating the gene

expression with hidden variables. The artificial network

contains 5 genes and 4 edges (as shown in Fig. 2(a)). We

built a network containing 5 genes, 5 proteins and 2 protein

combinations whose topology is similar to Fig. 1(a) and assign

parameters randomly. Then we generated the dataset with 150

replicates and delete the data of the proteins and protein

combinations.

We compare the learning results with traditional learning

algorithms K2 (a Bayesian network learning algorithm (Cooper

& Herskovits, 1992)) and structural EM (SEM) (an algorithm

in learning Bayesian network with hidden variables (Friedman,

1998)). K2 is a learning algorithm to learn the complete

dataset. SEM allows hidden variables. However, it does not

define either the number of hidden variables or any prior

information of the relationships of hidden variables and

observed variables. Our algorithm SSEM allows hidden

variables. Moreover, the hidden variables are semi-fixed as

stated in previous sections.

The comparison for artificial dataset is shown in Fig. 2. K2

and SEM recovered 0 and 1 correct edges, respectively,

together with 2 false edges for each while SSEM recovered all

edges together with 2 false positives. Hence, SSEM results in

more correct edges as compared to K2 and SEM. Moreover,
2 Bayes network toolbox, http://www.ai.mit.edu/wmurphyk
the two false positive parents of the variable 5 are the

ancestors of the variable 5. Each of them is in a pathway

with the variable 5. Not like the false edges in Fig. 2(b) and

(c), they contain some regulatory information though they

are false edges.
4.2. Experiments on real-life data

The microarray gene expression data for S. Cerevisiae

contains 76 gene expression measurements (Spellman, Sherlock,

& Futcher, 1998). To simplify the presentation and implemen-

tation, the expression levels were discretized to discrete values 0

and 1: a value is discretized to 0 if it is smaller than 0 and 1

otherwise. The theoretical support behind the binary discretiza-

tion of gene expression level is that the genes are most of the time

either maximally expressed or virtually not expressed (Louis &

Becskei, 2002) ensuring that the binary gene regulatory network

is biologically meaningful. The real-life gene network in our

work is a Yeast transcriptional cell cycle subnetwork published in

(Futcher, 2002), which includes 13 genes and 18 edges. It is a

good example to demonstrate the learning power since the

subnetwork is the backbone part of Yeast cell cycle gene

regulatory network (Simon et al., 2001), which is robustly

designed (Li, Long, Lu, Ouyang, & Tang, 2004), and the genes

here are the most important transcription factors in Yeast cell

cycle (Li et al., 2004; Simon et al., 2001). The directed pairwise

regulatory relationships for the subnetwork are verified by YPD

(Yeast Proteome Database)3 (Hodges, McKee, Davis, Payne, &

Garrels, 1999) and (Futcher, 2002), as shown in Fig. 3(a), and the

cell cycle regulations are shown in Fig. 3(c). Since some time

delays exist in the regulation system (Liu, Sung, & Mittal, 2004),

a gene in time slice i may regulate another gene in time slice i to

iCk (k indicates the maximum time delay). Thus, we learn the

edges in a k-window, i.e. the consecutive k time slices (Boyen,

Friedman, & Koller, 1999). An approach based on k -DBN

(Boyen et al., 1999) is implemented for the comparison purpose.

Besides the direct regulatory relationship between genes, we

also employed a popular statistic feature, the Markov relation. A
3 http://www.proteome.com/YPDhome.html

http://www.ai.mit.edu/~murphyk
http://www.proteome.com/YPDhome.html


Fig. 3. Leaning performance of SSEM in real-life gene network. (a) The original subnetwork structure, which contain 13 genes and 18 edges. (b) The structure learnt

by SSEM. There are sum 29 edges with confidence no smaller than 0.6. Among them, 11 edges are verified as true positives by (a). Considering (c), there are 9 more

edges are regarded as true positives. (c) The Yeast cell cycle regulatory network. The genes in a box is a transcription factor or a complex. (d) Markov features with

confidence no smaller than 0.6 learned by SSEM. There are 44 Markov features. Among them 38 can be verified by (a) and (c). (e) Learned cell cycle regulatory

network which is simplified from (d).
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Markov relation (Friedman, 2004; Friedman et al., 2000)

describes whether a gene Y is in the Markov blanket of another

gene X (denoted by Y2MB(X)). Y2MB(X) if and only if there is

either an edge between them or both are parents of another

variable. It indicates whether two genes are involved in the same

biological event and it has been regarded as a criterion by several

works to evaluate the performance of gene network reconstruc-

tion (Friedman, 2004; Friedman et al., 2000). Bayesian network

is a model of dependencies among random variables, rather than

causality. A/B and B/A are the alternative ways of

describing that A and B are not independent on each other.

Markov relation is helpful in discovering the dependencies

without caring about the directions of the edges. Moreover, in

gene regulatory system, there are a lot of transcription factors

and transcription complexes consisting of two or more proteins

working collaboratively. Such collaborations cannot be
uncovered by directed regulatory edges but can be discovered

by the Markov feature.

Given the insufficient dataset, Bayesian network may give a

set of models, which explain the data equally well (Pe’er,

Regev, Elidan, & Friedman, 2001). In order to do further

analysis, we used the statistical confidence to measure the

likelihood of a learned edge or a statistic feature (Friedman,

2004; Friedman et al., 2000), which can be calculated by a

bootstrap approach as below:

† For iZ1... m:

– Generate a ‘perturbed’ version of the input transformed

dataset by re-sampling q instances where q is smaller

than the number of instances of the transformed dataset.

– Apply the learning algorithm on the perturbed dataset

and induce a network Ni.
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† For each Markov relation f, the confidence is calculated as

follows:
confðf Þ Z 1=m
X

i

f ðNiÞ (7)

where f(Ni) is 1 if f is a feature in Ni and 0 otherwise.

We initialized q to be 35 and m to be 50 in our experiment. A

high confidence value of a feature for two genes indicates that

the learning algorithm can consistently recover the relationship

between them.

The effectiveness of semi-fixed structure EM learning

algorithm can be seen as compared to k-DBN algorithm as

SSEM takes advantage of its semi-fixed structure and effective

learning algorithm.

In the final results, we only adopt the edges whose

confidence value is not less than 0.6. The comparison is

shown in Table 2 and Fig. 3(b) where only the original

structure and the structure learnt by SSEM are presented. K2,

SEM and K-DBN gave 1, 4 and 5 edges, respectively, while

SSEM gave 11 edges based on the knowledge of YPD

(Fig. 3(a)). K2, SEM, K-DBN and SSEM gave 11, 12, 22 and 18

false positive edges, respectively. Fig. 3(b) shows the 29 edges

learned by SSEM with confidence greater than 0.6. As shown in

following discussion, some of the false positive edges of the 18

edges learnt by SSEM are meaningful in terms of the

regulatory relationships between transcription factors or

complexes instead of between genes.

As shown in Fig. 3(c), CLN3–CDC28 kinase activate

transcription factors, SBF (comprised by SWI4 and SWI6 and

MBF (comprised by SWI6) and MBP 1), to begin the cell cycle.

SBF and MBF then activate about 200 genes in late G1 and S

phase include NDD1 and CLN2. CLN2 is one of the important

factors to activate CLB2–CDC28 kinase. The complex CLB2–

CDC28 inactivates SBF and MBP to shut off G1/S events and

the cell goes to G2 phase. CLB2–CDC28 continue to activate a

transcription factor containing MCM1, FKH1 (or FKH2, in the

experiment, FKH2 is not included as it has too many missing

values in the dataset.) and NDD1. This factor activates a set of

genes include SWI5 and SCE2 which activate SIC1. SIC1 and

some other genes inhibit CLB2-CDC28. It is the yeast cell

cycle transcriptional regulatory network, which is essential to

yeast development and differentiation. For the detail of the

genes and the cell cycle regulatory network, please refer to

(Simon et al., 2001).
Table 2

Comparison of learning performances on real-life dataset

Algorithm Yeast gene subnetwork

TE TP1 TP2

K2 12 1 3

SEM 16 4 7

k-DBN 27 5 9

SSEM 29 11 20

TE (Total learnt edges) indicates the number of edges the algorithm learned

from the dataset, TP1 indicates the number of true positives verified by Fig. 3(a)

and TP2 indicates the number of true positives verified by Fig. 3(a) and (c).
When a gene (or a complex) activates or inhibits a

transcription complex, it is possible that there is no directed

edge from the regulator to any gene of the complex and vice

versa. For example, for CDC28, it activates both SWI4-SWI6

and SWI6-MBP 1 when it forms complex with CLN3 while it

inhibits them when it forms complex with CLB2. Whereas,

there is no direct edge from CDC28 to SWI4, SWI6 and MBP1

in YPD. The use of the hidden variables in our model ensures

that we can find such regulatory relationships. As shown in

Fig. 3(b), with the verification by Fig. 3(c), 10 more edges are

proved biological meaningful in Fig. 3(b), such as CDC28/
SWI4, CDC28/SWI6, CDC28/MBP1, SWI4/CLN2,

SIC3/CLB2, etc. Using this criterion, K2, SEM, k-DBN and

SSEM got 3, 7, 9 and 20 correct edges and 9, 9, 18 and 9 false

positive edges, respectively.

We listed the Markov features with confidence greater than

0.6, as shown in Fig. 3(d). There are total 44 Markov features, in

which 38 can be verified by Fig. 3(a) and Fig. 3(c). It is clear that

there are strong inter-actions among the genes comprising a

complex and between complexes which are connected in Fig. 3(c)

. We then simplify the network by using the transcription factors

or complex, which play roles as a unit in the regulatory system, as

the node and the Markov relations between them as the undirected

edges, as shown in Fig. 3(e). We completely discover the cell

cycle regulatory network, together with 3 false edges between

CLN3–CDC28 & SIC1 (which is weak since between them there

are only one Markov feature between CLN3 and SIC1), CLN2 &

SIC1 and SBF /MBF & SWI5-ACE2.

5. Conclusion

The semi-fixed hidden variable model introduces hidden

variables to model the important components of gene network,

i.e. regulatory proteins. The model makes the network

decomposable and the parts of the gene network are fixed

using biological knowledge. Compared to the current work on

gene network, we integrate the biological knowledge to build

the semi-fixed hidden variable model, which is effective and

reflects the real life system. It increases the learning

performance as well as finds several regulatory relationships,

which are difficult to be discovered by employing traditional

methods. As our model can model protein complex which

plays key role in a lot of biological systems, we foresee our

model can be applied to other applications in computational

biology. In addition to the model, this paper presents an

effective learning algorithm to learn our model. The main

disadvantage of our model is that it needs more computing

resource to model the hidden variables and it requires more

iterations to converge. As the model is based on the Bayesian

network framework which can be used to build an probabilistic

expert system (Castillo, Gutierrez, & Hadi, 1997; EZ, Mira,

Iturralde, & Diaval, 1997), it is easy to develop an probabilistic

expert system by making use of the learned network structure

and parameters to predict the outcome of the perturbation of the

organism, such as diseases. This potential application makes

the consequent works meaningful. In the future, we would like

to further reduce the learning complexity by utilizing more
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biological facts. Those biological facts include: (1) regulatory

proteins are usually much less than the total proteins, and (2) it

is common for several genes to share the same parent set.
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