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Abstract

A number of recent emerging applications call for studying data streams, potentially infinite

flows of information updated in real-time. When multiple co-evolving data streams are observed,

an important task is to determine how these streams depend oneach other, accounting for dy-

namic dependence patterns without imposing any restrictive probabilistic law governing this de-

pendence. In this paper we argue that flexible least squares (FLS), a penalized version of ordinary

least squares that accommodates for time-varying regression coefficients, can be deployed suc-

cessfully in this context. Our motivating application is statistical arbitrage, an investment strategy

that exploits patterns detected in financial data streams. We demonstrate that FLS is algebraically

equivalent to the well-known Kalman filter equations, and take advantage of this equivalence to

gain a better understanding of FLS and suggest a more efficient algorithm. Promising experimen-

tal results obtained from a FLS-based algorithmic trading system for the S&P500 Futures Index

are reported.

Keywords: Temporal data mining, flexible least squares, time-varying regression, algorithmic trad-

ing system, statistical arbitrage

1 Introduction

Temporal data mining is a fast-developing area concerned with processing and analyzing high-volume,

high-speed data streams. A common example of data stream is atime series, a collection of univariate
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or multivariate measurements indexed by time. Furthermore, each record in a data stream may have a

complex structure involving both continuous and discrete measurements collected in sequential order.

There are several application areas in which temporal data mining tools are being increasingly used,

including finance, sensor networking, security, disaster management, e-commerce and many others.

In the financial arena, data streams are being monitored and explored for many different purposes

such as algorithmic trading, smart order routing, real-time compliance, and fraud detection. At the

core of all such applications lies the common need to make time-aware, instant, intelligent decisions

that exploit, in one way or another, patterns detected in thedata.

In the last decade we have seen an increasing trend by investment banks, hedge funds, and pro-

prietary trading boutiques to systematize the trading of a variety of financial instruments. These com-

panies resort to sophisticated trading platforms based on predictive models to transact market orders

that serve specific speculative investment strategies.

Algorithmic trading, otherwise known as automated or systematic trading, refers to the use of

expert systems that enter trading orders without any user intervention; these systems decide on all

aspects of the order such as the timing, price, and its final quantity. They effectively implement pattern

recognition methods in order to detect and exploit market inefficiencies for speculative purposes.

Moreover, automated trading systems can slice a large tradeautomatically into several smaller trades

in order to hide its impact on the market (a technique callediceberging) and lower trading costs.

According to the Financial Times, the London Stock Exchangeforesees that about60% of all its

orders in the year 2007 will be entered by algorithmic trading.

Over the years, a plethora of statistical and econometric techniques have been developed to an-

alyze financial data [De Gooijer and Hyndma, 2006]. Classical time series analysis models, such as

ARIMA and GARCH, as well as many other extensions and variations, are often used to obtain in-

sights into the mechanisms that generates the observed dataand make predictions [Chatfield, 2004].

However, in some cases, conventional time series and other predictive models may not be up to the

challenges that we face when developing modern algorithmictrading systems. Firstly, as the re-

sult of developments in data collection and storage technologies, these applications generate massive

amounts of data streams, thus requiring more efficient computational solutions. Such streams are

delivered in real time; as new data points become available at very high frequency, the trading sys-

tem needs to quickly adjust to the new information and take almost instantaneous buying and selling

decisions. Secondly, these applications are mostly exploratory in nature: they are intended to detect
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patterns in the data that may be continuously changing and evolving over time. Under this scenario,

little prior knowledge should be injected into the models; the algorithms should require minimal as-

sumptions about the data-generating process, as well as minimal user specification and intervention.

In this work we focus on the problem of identifying time-varying dependencies between co-

evolving data streams. This task can be casted into a regression problem: at any specified point

in time, the system needs to quantify to what extent a particular stream depends on a possibly large

number of other explanatory streams. In algorithmic trading applications, a data stream may comprise

daily or intra-day prices or returns of a stock, an index or any other financial instrument. At each time

point, we assume that a target stream of interest depends linearly on a number of other streams, but

the coefficients of the regression models are allowed to evolve and change smoothly over time.

The paper is organized as follows. In section 2 we briefly review a number of common trading

strategies and formulate the problem arising instatistical arbitrage, thus proving some background

material and motivation for the proposed methods. The flexible least squares (FLS) methodology is

introduced in Section 3 as a powerful exploratory method fortemporal data mining; this method fits

our purposes well because it imposes no probabilistic assumptions and relies on minimal parameter

specification. In Section 4 some assumptions of the FLS method are revisited, and we establish a

clear connection between FLS and the well-known Kalman filter equations. This connection sheds

light on the interpretation of the model, and naturally yields a modification of the original FLS that is

computationally more efficient and numerically stable. Experimental results that have been obtained

using the FLS-based trading system are described in Section5. In that section, in order to deal with

the large number of predictors, we complement FLS with a feature extraction procedure that performs

on-line dimensionality reduction. We conclude in Section 7with a discussion on related work and

directions for further research.

2 A concise review of trading strategies

Two popular trading strategies aremarket timingand trend following. Market timers and trend fol-

lowers both attempt to profit from price movements, but they do it in different ways. A market timer

forecasts the direction of an asset, going long (i.e. buying) to capture a price increase, and going

short (i.e. selling) to capture a price decrease. A trend follower attempts to capture the market trends.

Trends are commonly related to serial correlations in pricechanges; a trend is a series of asset prices
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Figure 1:Historical prices of Exxon Mobil Corporation and SouthWestAirlines for the period 1997-2007. The

spread time series, reported in the inset, shows an equilibrium level between the two prices until about January

2004.

that move persistently in one direction over a given time interval, where price changes exhibit positive

serial correlation. A trend follower attempts to identify developing price patterns with this property

and trade in the direction of the trend if and when this occurs.

Although the time-varying regression models discussed in this work may be used to implement

such trading strategies, we will not discuss this further. We rather focus onstatistical arbitrage, a

class of strategies widely used by hedge funds or proprietary traders. The distinctive feature of such

strategies is that profits can be made by exploiting statistical mispricingof one or more assets, based

on the expected value of these assets.

The simplest special case of these strategies is perhapspairs trading (see Elliott et al. [2005],

Gatev et al. [2006]). In this case, two assets are initially chosen by the trader, usually based on an

analysis of historical data or other financial considerations. If the two stocks appear to be tied to-

gether in the long term by some common stochastic trend, a trader can take maximum advantage from

temporary deviations from this assumed equilibrium1.

A specific example will clarify this simple but effective strategy. Figure 1 shows the historical

prices of two assets, SouthWest Airlines and Exxon Mobil; wedenote the two price time series by

1This strategy relies on the idea ofco-integration. Several applications of cointegration-based trading strategies are

presented in Alexander and Dimitriu [2002] and Burgess [2003].
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yt andxt for t = 1, 2, . . . , respectively. Clearly, from1997 till 2004, the two assets exhibited some

dependence: their spread, defined asst = yt−xt (plotted in the inset figure) fluctuates around a long-

term average of about−20. A trading system implementing a pairs trading strategy on these two assets

would exploit temporary divergences from this market equilibrium. For instance, when the spread

st is greater than some predetermined positive constantc, the system assume that the SouthWest

Airlines is overpriced and would go short on SouthWest Airlines and long on Exxon Mobil, in some

predetermined ratio. A profit is made when the prices revert back to their long-term average. Although

a stable relationship between two assets may persist for quite some time, it may suddenly disappear

or present itself in different patterns, such as periodic ortrend patterns. In Figure 1, for instance, the

spread shows a downward trend after January2004, which may be captured by implementing more

refined models.

2.1 A statistical arbitrage strategy

Opportunities for pairs trading in the simple form described above are dependent upon the existence of

similar pairs of assets, and thus are naturally limited. Many other variations and extensions exist that

exploit temporary mispricing among securities. For instance, in index arbitrage, the investor looks

for temporary discrepancies between the prices of the stocks comprising an index and the price of a

futures contract2on that index. By buying either the stocks or the futures contract and selling the other,

market inefficiency can be exploited for a profit.

In this paper we adopt a simpler strategy than index arbitrage, somewhat more related to pairs

trading. The trading system we develop tries to exploit discrepancies between atarget asset, selected

by the investor, and a pairedartificial assetthat reproduces the target asset. This artificial asset is

represented by a data stream obtained as a linear combination of a possibly large set ofexplanatory

streams assumed to be correlated with the target stream.

The rationale behind this approach is the following: if there is a strong association between syn-

thetic and target assets persisting over a long period of time, this association implies that both assets

react to some underlying (and unobserved) systematic component of risk that explains their dynam-

ics. Such a systematic component may include all market-related sources of risk, including financial

and economic factors. The objective of this approach is to neutralize all marker-related sources of

2A futures contract is an obligation to buy or sell a certain underlying instrument at a specific date and price, in the

future.
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risks and ultimately obtain a data stream that best represents the target-specific risk, also known as

idiosyncraticrisk.

Suppose thatyt represents the data stream of the target asset, andŷt is the artificial asset estimated

using a set ofp explanatory and co-evolving data streamsx1, . . . , xp, over the same time period. In

this context, the artificial asset can also be interpreted asthe fair price of the target asset, given all

available information and market conditions. The differenceyt− ŷt then represents the risk associated

with the target asset only, ormispricing. Given that this construction indirectly accounts for all sources

of variations due to various market-related factors, the mispricing data stream is more likely to contain

predictable patterns (such as the mean-reverting behaviorseen in Figure 1) that could potentially be

exploited for speculative purposes. For instance, in an analogy with the pairs trading approach, a

possibly large mispricing (in absolute value) would flag a temporary inefficiency that will soon be

corrected by the market. This construction crucially relies on accurately and dynamically estimating

the artificial asset, and we discuss this problem next.

3 Flexible Least Squares (FLS)

The standard linear regression model involves a response variableyt andp predictor variablesx1, . . . , xp,

which usually form a predictor column vectorxt = (x1t, . . . , xpt)
′. The model postulates thatyt can

be approximated well byx′
tβ, whereβ is ap-dimensional vector of regression parameters. In ordi-

nary least square (OLS) regression, estimatesβ̂ of the parameter vector are found as those values that

minimize the cost function

C(β) =

T∑

t=1

(yt − x′
tβ)2 (1)

When both the response variableyt and the predictor vectorxt are observations at timet of co-

evolving data streams, it may be possible that the linear dependence betweenyt andxt changes and

evolves, dynamically, over time. Flexible least squares were introduced at the end of the 80’s by

Tesfatsion and Kalaba [1989] as a generalization of the standard linear regression model above in

order to allow for time-variant regression coefficients. Together with the usual regression assumption

that

yt − x′
tβt ≈ 0 (2)

the FLS model also postulates that

βt+1 − βt ≈ 0 (3)
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that is, the regression coefficients are now allowed to evolve slowly over time.

FLS does not require the specification of probabilistic properties for the residual error in (2). This

is a favorable aspect of the method for applications in temporal data mining, where we are usually

unable to precisely specify a model for the errors; moreover, any assumed model would not hold true

at all times. We have found that FLS performs well even when assumption (3) is violated, and there

are large and sudden changes fromβt−1 to βt, for somet. We will illustrate this point by means of an

example in the next section.

With these minimal assumptions in place, given a predictorxt, a procedure is called for the es-

timation of a unique path of coefficients,βt = (β′
1t, . . . , β

′
pt)

′, for t = 1, 2, . . .. The FLS approach

consists of minimizing a penalized version of the OLS cost function (1), namely3

C(β;µ) =
T∑

t=1

(yt − x′
tβt)

2 + µ
T−1∑

t=1

ξt (4)

where we have defined

ξt = (βt+1 − βt)
′(βt+1 − βt) (5)

andµ ≥ 0 is a scalar to be determined.

In their original formulation, Kalaba and Tesfatsion [1988] propose an algorithm that minimizes

this cost with respect to everyβt in a sequential way. They envisage a situation whereall data points

are stored in memory and promptly accessible, in an off-linefashion. The core of their approach is

summarized in the sequel for completeness.

The smallest cost of the estimation process at timet can be written recursively as

c(βt+1;µ) = inf
βt

{
(yt − x′

tβt)
2 + µξt + c(βt;µ)

}
(6)

Furthermore, this cost is assumed to have a quadratic form

c(βt;µ) = β′
tSt−1βt − 2β′

tst−1 + rt−1 (7)

whereSt−1 andst−1 have dimensionsp× p andp× 1, respectively, andrt−1 is a scalar. Substituting

(7) into (6) and then differentiating the cost (6) with respect to βt, conditioning onβt+1, one obtains

a recursive updating equation for the time-varying regression coefficient

β̂t = dt + Mtβt+1 (8)

3This cost function is called theincompatibility costin Tesfatsion and Kalaba [1989]
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with

dt = µ−1Mt(st−1 + xtyt)

Mt = µ(St−1 + µIp + xtx
′
t)
−1

The recursions are started with some initialS0 ands0. Now, using (8), the cost function can be written

as

c(βt+1;µ) = β′
t+1St+1 − 2β′

t+1st + rt

where

St = µ(Ip − Mt) (9)

st = µdt (10)

rt = rt−1 + y2
t − (st−1 + xtyt)

′dt

and whereIp is thep × p identity matrix. In order to apply (8), this procedure requires all data points

till time T to be available, so the coefficient vectorβT should be computed first. Kalaba and Tesfatsion

[1988] show that the estimate ofβT can be obtained sequentially as

β̂T = (ST−1 + xT x′
T )−1(sT−1 + xT yT )

Subsequently, (8) can be used to estimate all remaining coefficient vectorsβT−1, . . . , β1, going back-

wards in time.

The procedure relies on the specification of the regularization parameterµ ≥ 0; this scalar pe-

nalizes the dynamic component of the cost function (4), defined in (5), and acts as a smoothness

parameter that forces the time-varying vector towards or away from the fixed-coefficient OLS solu-

tion. We prefer the alternative parameterization based onµ = (1 − δ)/δ controlled by a scalarδ

varying in the unit interval. Then, withδ set very close to0 (corresponding to very large values ofµ),

near total weight is given to minimizing the static part of the cost function (4). This is the smoothest

solution and results in standard OLS estimates. Asδ moves away from0, greater priority is given to

the dynamic component of the cost, which results in time-varying estimates.

3.1 Off-line and on-line FLS: an illustration

As noted above, the original FLS has been introduced for situations in which all the data points are

available, in batch, prior to the analysis. In contrast, we are interested in situations where each data
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Figure 2:Simulated versus estimated time-varying regression coefficients using FLS in both off-line and on-

line mode.

point arrives sequentially. Each component of thep dimensional vectorxt represents a new point

of a data stream, and the path of regression coefficients needs to be updated at each time step so as

to incorporate the most recently acquired information. Using the FLS machinery in this setting, the

estimate ofβt is given recursively by

β̂t = (St−1 + xtx
′
t)
−1(st−1 + xtyt) (11)

where, by substitutingMt anddt in (9) and (10), we obtain the recursions ofSt andst as

St = µ(St−1 + µIp + xtx
′
t)
−1(St−1 + xtx

′
t) (12)

st = µ(St−1 + µIp + xtx
′
t)
−1(st−1 + xtyt)

These recursions are initially started with some arbitrarily chosen valuesS0 ands0.

Figure 2 illustrates how accurately the FLS algorithm recovers the path of the time-varying co-

efficients, in both off-line and on-line settings, for some artificially created data streams. The target

streamyt for this example has been generated using the model

yt = xtβt + ǫt (13)

whereǫt is uniformly distributed over the interval[−2, 2] and the explanatory streamxt evolves as

xt = 0.8xt−1 + zt

9



with zt being white noise. The regression coefficients have been generated using a slightly complex

mechanism for the purpose of illustrating the flexibility ofFLS. Starting withβ1 = 7, we then generate

βt as

βt =






βt−1 + at for t = 2, . . . , 99

βt−1 + 4 for t = 100

βt−1 + bt for t = 101, . . . , 200

5 sin(0.5t) + ct for t = 201, . . . , 300

whereat andbt are Gaussian random variables with standard deviations0.1 and0.001, respectively,

andct is uniformly distributed over[−2, 2]. We remark that this example features non-Gaussian error

terms, as well as linear and non-linear behaviors in the dynamics of the regression coefficient, varying

over time.

In this example we setδ = 0.98. Although such a high value ofδ encourages the regression

parameters to be very dynamic, the nearly constant coefficients observed betweent = 101 andt =

200, as well as the two sudden jumps at timest = 100 andt = 201, are estimated well, and especially

so in the on-line setting. The non-linear dynamics observedfrom time t = 201 onwards is also well

captured.

4 An alternative look at FLS

In section 3, we have stressed that FLS relies on a quite general assumption concerning the evolution

of the regression coefficients, as it only requiresβt+1 − βt to be small at all times. Accordingly,

assumption (3) does not imply or require that each vectorβt is a random vector. Indeed, in the

original work of Kalaba and Tesfatsion [1988],{βt} is not treated as a sequence of random variables,

but rather taken as a sequence of unknown quantities to be estimated.

We ask ourselves whether we can gain a better understanding of the FLS method after assuming

that the regression coefficients are indeed random vectors,without losing the generality and flexibility

of the original FLS method. As it turns out, if we are willing to make such an assumption, it is

possible to establish a neat algebraic correspondence between the FLS estimation equations and the

well-known Kalman filter (KF) equations. This correspondence has a number of advantages. Firstly,

this connection sheds light into the meaning and interpretation of the smoothing parameterµ in the

cost function (4). Secondly, once the connection with KF is established, we are able to estimate
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the covariance matrix of the estimator ofβt. Furthermore, we are able to devise a more efficient

version of FLS that does not require any matrix inversion. Asin the original method, we restrain from

imposing any specific probability distribution. The reminder of this section is dedicated to providing

an alternative perspective of FLS, and deriving a clear connection between this method and the well-

known Kalman filter equations.

4.1 The state-space model

In our formulation, the regression coefficient at timet+1 is modeled as a noisy version of the previous

coefficient at timet. First, we introduce a random vectorωt with zero mean and some covariance

matrixVω, so that

βt+1 = βt + ωt t = 0, 1, . . . , T − 1. (14)

Then, along the same lines, we introduce a random variableǫt having zero mean and some variance

Vǫ, so that

yt = x′
tβt + ǫt t = 1, . . . , T. (15)

Equations (14) and (15), jointly considered, result in a linear state-space model, for which it is as-

sumed that the innovation series{ǫt} and{ωt} are mutually and individually uncorrelated, i.e.ǫi is

uncorrelated ofǫj , ωi is uncorrelated ofωj, andǫk is uncorrelated ofωℓ, for any i 6= j and for any

k, ℓ. It is also assumed that for allt, ǫt andωt are uncorrelated of the initial stateβ0. It should be

emphasized again that no specific distribution assumptionsfor ǫt andωt have been made. We only

assume thatǫt andωt attain some distributions, which we do not know. We only needto specify the

first two moments of such distributions. In this sense, the only difference between the system specified

by (14)-(15) and FLS is the assumption of randomness ofβt.

4.2 The Kalman filter

The Kalman filter [Kalman, 1960] is a powerful method for the estimation ofβt in the above linear

state-space model. In order to establish the connection between FLS and KF, we derive an alternative

and self-contained proof of the KF recursions that make no assumptions on the distributions ofǫt and

ωt. We have found related proofs of such recursions that do not rely on probabilistic assumptions,

as in Kalman [1960] and Eubank [2006]. In comparison with these, we believe that our derivation is

simpler and does not involve matrix inversions, which serves our purposes well.
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We start with some definitions and notation. At timet, we denote bŷβt the estimate ofβt and by

ŷt+1 = E(yt+1) the one-step forecast ofyt+1, whereE(.) denotes expectation. The variance ofyt+1

is known as the one-step forecast variance and is denoted byQt = Var(yt+1). The one-step forecast

error is defined aset = yt − E(yt). We also define the covariance matrix ofβt − β̂t asPt and the

covariance matrix ofβt − β̂t−1 asRt and we write Cov(βt − β̂t) = Pt and Cov(βt − β̂t−1) = Rt.

With these definitions, and assuming linearity of the system, we can see that, at timet − 1

Rt = Pt−1 + Vω

ŷt = x′
tβ̂t−1

Qt = x′
tRtxt + Vǫ

wherePt−1 andβ̂t−1 are assumed known. The KF gives recursive updating equations for Pt andβ̂t

as functions ofPt−1 andβ̂t−1.

Suppose we wish to obtain an estimator ofβt that is linear inyt, that isβ̂t = at + Ktyt, for some

at andKt (to be specified later). Then we can write

β̂t = a∗t + Ktet (16)

with et = yt − x′
tβ̂t−1. We will show that for someKt, if β̂t is required to minimize the sum of

squares

C =
T∑

t=1

(yt − x′
tβt)

2 (17)

thena∗t = β̂t−1. To prove this, writeY = (y1, . . . , yT )′, X = (x′
1, . . . , x

′
T )′, B = (β′

1, . . . , β
′
T )′,

E = (e1, . . . , eT )′ and

K =





K1 0 · · · 0

0 K2 · · · 0
...

...
. ..

...

0 0 · · · KT





Then we can write (17) as

C ≡ C(B) = (Y − XB)′(Y − XB)

and B̂ = A∗ + KE , whereA∗ = ((a∗1)
′, . . . , (a∗T )′)′. We will show thatA∗ = B∗, whereB∗ =

12



(β̂′
0, . . . , β̂

′
T−1)

′. With the aboveB̂, the sum of squares can be written as

S(B̂) = (Y − XA∗ − XKE)′(Y − XA∗ − XKE)

= (Y − XA∗)′(Y − XA∗) − 2(Y − XA∗)′XKE

+E ′K ′X ′XKE

which is minimized whenY − XA∗ is minimized or whenE(Y − XA∗) = 0, leading toA∗ = B∗

as required. Thus,a∗t = β̂t−1 and from (16) we have

β̂t = β̂t−1 + Ktet (18)

for some value ofKt to be defined. From the definition ofPt, we have that

Pt = Cov(βt − (β̂t−1 + Kt(x
′
tβt + ǫt − x′

tβ̂t−1)))

= Cov((Ip − Ktx
′
t)(βt − β̂t−1) − Ktǫt)

= (Ip − Ktx
′
t)Rt(Ip − xtK

′
t) + VǫKtK

′
t

= Rt − Ktx
′
tRt − RtxtK

′
t + QtKtK

′
t (19)

Now, we can chooseKt that minimizes

E(βt − β̂t)
′(βt − β̂t)

which is the same as minimizing the trace ofPt, and thusKt is the solution of the matrix equation

∂trace(Pt)

∂Kt

= −2(x′
tRt)

′ + 2QtKt = 0

where∂trace(Pt)/∂Kt denotes the partial derivative of the trace ofPt with respect toKt. Solving

the above equation we obtainKt = Rtxt/Qt. The quantityKt, also known as theKalman gain, is

optimal in the sense that among all linear estimatorsβ̂t, (18) minimizesE(βt − β̂t)
′(βt − β̂t). With

Kt = Rtxt/Qt, from (19) the minimum covariance matrixPt becomes

Pt = Rt − QtKtK
′
t (20)

The KF consists of equations (18) and (20), together with

Kt = Rtxt/Qt

Rt = Pt−1 + Vω

Qt = x′
tRtxt + Vǫ and

et = yt − x′
tβ̂t−1

13



Initial values forβ̂0 andP0 have to be placed; usually we setβ̂0 = 0 andP−1
0 = 0.

Note that from the recursions ofPt andRt we have

Rt+1 = Rt − QtKtK
′
t + Vω (21)

4.3 Correspondence between FLS and KF

Traditionally, the KF equations are derived under the assumption thatǫt andωt follow the normal

distribution, as in Jazwinski [1970]. This stronger distributional assumption allows the derivation of

the likelihood function. When the normal likelihood is available, we note that its maximization is

equivalent to minimizing the quantity

T∑

t=1

(yt − x′
tβt)

2 +
1

Vω

T−1∑

t=1

ξt

with respect toβ1, . . . , βT , whereξt has been defined in (5) (see Jazwinski [1970] for a proof). The

above expression is exactly the cost function (4) withµ replaced by1/Vω.

This correspondence can now be taken a step further: in a moregeneral setting, where no distribu-

tional assumptions are made, it is possible to arrive to the same result. This is achieved by rearranging

equation (11) in the form of (18), which is the KF estimator ofβt. First, note that from (12) we can

write

(St−1 + xtx
′
t)
−1 = µS−1

t (St−1 + µIp + xtx
′
t)
−1

and substituting to (11) we get̂βt = S−1
t st. Thus we have

β̂t − β̂t−1 = S−1
t st − S−1

t−1st−1

= (St−1 + xtx
′
t)
−1(st−1 + xtyt) − S−1

t−1st−1

= S−1
t−1xtyt −

S−1
t−1xtx

′
tS

−1
t−1(st−1 + xtyt)

x′
tS

−1
t−1xt + 1

=
S−1

t−1xt

x′
tS

−1
t−1xt + 1

(ytx
′
tS

−1
t−1xt + yt

−x′
tS

−1
t−1st−1 − x′

tS
−1
t−1xtyt)

=
S−1

t−1xt

x′
tS

−1
t−1xt + 1

(yt − x′
tβ̂t−1) = Ktet
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with

Kt = Rtxt/Qt

Rt = S−1
t−1

Qt = x′
tRtxt + 1

Vǫ = 1

It remains to prove that the recursion ofSt as in (12) communicates with the recursion of (21), for

Rt+1 = S−1
t . To end this, starting from (12) and using the matrix inversion lemma, we obtain

Rt+1 = S−1
t = µ−1(St−1 + xtx

′
t)
−1(St−1 + µIp + xtx

′
t)

= µ−1(Ip + µ(St−1 + xtx
′
t)
−1)

= µ−1Ip + (St−1 + xtx
′
t)
−1

= S−1
t−1 −

S−1
t−1xtx

′
tS

−1
t−1

x′
tS

−1
t−1xt + 1

+ µ−1Ip

= Rt − QtKtK
′
t + Vω,

which is the KF recursion (21), whereVω = µ−1Ip.

Clearly, the FLS estimator̂βt of (11) is the same as the KF estimatorβ̂t of (18). From this

equivalence, and in particular fromVω = µ−1Ip, it follows that

Cov(βt+1 − βt) =
1

µ
Ip

This result further clarifies the role of the smoothing parameterµ in (4). Asµ → ∞, the covari-

ance matrix ofβt+1 − βt is almost zero, which means thatβt+1 = βt, for all t, reducing the model

to a usual regression model with constant coefficients. In the other extreme, whenµ ≈ 0, the covari-

ance matrix ofβt+1 −βt has very high diagonal elements (variances) and therefore the estimatedβt’s

fluctuate erratically.

An important computational consequence of the establishedcorrespondence between the FLS and

the KF is apparent. For each timet, FLS requires the inversion of two matrices, namelySt−1 + xtx
′
t

andSt−1 + µIp + xtx
′
t. However, these inversions are not necessary, as it is clearby the KF thatβ̂t

can be computed by performing only matrix multiplications.This is particulary useful for temporal

data mining data applications whenT can be infinite andp very large.

It is interesting to note how the two procedures arrive to thesame solution, although they are

based on quite different principles. On one hand, FLS merelysolves an optimization problem, as it
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minimizes the cost functionC(µ) of (4). On the other hand, KF performs two steps: first, all linear

estimators are restricted to forms of (18), for any parameter vector Kt; in the second step,Kt is

optimized so that it minimizesPt, the covariance matrix ofβt − β̂t. This matrix, known as theerror

matrix of βt, gives a measure of the uncertainty of the estimation ofβt.

The relationship between FLS and KF has important implications for both methods. For FLS, it

suggests that the regression coefficients can be learned from the data in a recursive way without the

need of performing matrix inversions; also, the error matrix Pt is routinely available to us. For KF,

we have proved that the estimatorβ̂t minimizes the cost functionC(µ) = C(1/Vω) when only the

mean and the variance of the innovationsǫt andωt are specified, without assuming these errors to be

normally distributed.

5 An FLS-based algorithmic trading system

5.1 Data description

We have developed a statistical arbitrage system that trades S&P500 stock-index futures contracts.

The underlying instrument in this case is the S&P500 Price Index, a world renowned index of500

US equities with minimum capitalization of $4 billion each;this index is a leading market indicator,

and is often used as a gauge of portfolio performance. The constituents of this index are highly traded

by traditional asset management firms and proprietary desksworldwide. The data stream for the S&P

500 Futures Index covers a period of about9 years, from 02/01/1997 to 25/10/2005. The contract

prices were obtained from Bloomberg, and adjusted4 to obtain the target data stream as showed in

Figure 3. Our explanatory data streams are taken to be a subset of all constituents of the underlying

S&P 500 Price Index. The constituents list was acquired from the Standard & Poor’s web site as of

1st of March 2007, whereas the constituents data streams weredownloaded from Yahoo! Financial.

The constituents of the S&P index are added and deleted frequently on the basis of the characteristics

of the index. For our experiments, we have selected a time-invariant subset of432 stocks, namely all

the constituents whose historical data is available over the entire1997 − 2005 period.

The system thus monitors433 co-evolving data streams comprising one target asset and432 ex-

planatory streams. All raw prices are pre-processed in several ways: data adjustments are made for

4Futures contracts expire periodically; since the data for each contract lasts only a few weeks or months, continuous data

adjustment is needed in order to obtain sequences of price data from sequences of contract prices.
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Figure 3:S&P500 Futures Index for the available9-years period

discontinuities relating to stock splits, bonus issues, and other financial events; missing observations

are filled in using the most recent data points; finally, prices are transformed into log-returns. At each

time t > 1, the log-return for asseti is defined as

rit = log pit − log pi(t−1) i = 1, . . . , 432

wherepit is the observed price of asseti at timet. Taking returns provides a more convenient repre-

sentation of the assets, as it makes different prices directly comparable and center them around zero.

We collect all explanatory assets available at timet in a column vectorrt. Analogously, we denote by

at the log-return of the S&P500 Futures Index at timet.

5.2 Incremental SVD for dimensionality reduction

When the dimensionality of the regression model is large, asin our application, the model might

suffer from multicollinearity. Moreover, in real-world trading applications using high frequency data,

the regression model generating trading signals need to be updated quickly as new information is

acquired. A much smaller set of explanatory streams would achieve remarkable computational speed-

ups. In order to address all these issues, we implement on-line feature extraction by reducing the

dimensionality in the space of explanatory streams.

Suppose thatRt = E(rtr
′
t) is the the unknown population covariance matrix of the explanatory

streams, with data available up to timet = 1, . . . , T . The algorithm proposed by Weng et al. [2003]
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provides an efficient procedure to incrementally update theeigenvectors of theRt matrix as new data

are made available at timet + 1. In turn, this procedure allows us to extract the first few principal

components of the explanatory data streams in real time, andeffectively perform incremental dimen-

sionality reduction.

A brief outline of the procedure suggested by Weng et al. [2003] is provided in the sequel. First,

note that the eigenvectorgt of Rt satisfies the characteristic equation

ht = λtgt = Rtgt (22)

whereλt is the corresponding eigenvalue. Let us callĥt the current estimate ofht using all the data

up to timet (t = 1, . . . , T ). We can write the above characteristic equation in matrix form as

h =





h1

...

hT



 =





R1 · · · 0
...

. . .
...

0 · · · RT









g1

...

gT



 = Rg

and then, noting that

h1 + · · · + hT

T
=

1

T
(1, . . . , 1)′h =

1

T
(R1, . . . , RT )g =

1

T

T∑

i=1

Rigi

the estimatêhT is obtained bŷhT = (h1 + · · · + hT )/T by substitutingRi by rir
′
i. This leads to

ĥt =
1

t

t∑

i=1

rir
′
igi (23)

which is the incremental average ofrir
′
igi, whererir

′
i accounts for the contribution to the estimate of

Ri at pointi.

Observing thatgt = ht/||ht||, an obvious choice is to estimategt asĥt−1/||ĥt−1||; in this setting,

ĥ0 is initialized by equating it tor1, the first direction of data spread. After plugging in this estimator

in (23), we obtain

ht =
1

t

t∑

i=1

rir
′
i

ĥi−1

||ĥi−1||
(24)

In a on-line setting, we need a recursive expression forĥt. Equation (24) can be rearranged to

obtain an equivalent expression that only usesĥt−1 and the most recent data pointrt,

ĥt =
1

t

t−1∑

i=1

rir
′
i

ĥi−1

||ĥi−1||
+

1

t
rtr

′
t

ĥt−1

||ĥt−1||
=

t − 1

t
ĥt−1 +

1

t
rtr

′
t

ĥt−1

||ĥt−1||
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The weights(t−1)/t and1/t control the influence of old values in determining the current estimates.

Full details related to the computation of the subsequent eigenvectors can be found in the contribution

of Weng et al. [2003].

In our application, we have used data points from 02/01/1997till 01/11/2000 as a training set

to obtain stable estimates of the first few dominant eigenvectors. Therefore, data points prior to

01/11/2000 will be excluded from the experimental results.

5.3 Trading rule

The trade unit for S&P500 Futures Index is set by the Chicago Mercantile Exchange (CME) to $250

multiplied by the current S&P500 Price Index,pt. Accordingly, we denote the trade unit expressed

in monetary terms asCt = 250 pt, which also gives the contract value at timet. For instance, if

the current stock index price is1400, then an investor is allowed to trade the price of the contract,

i.e. $35000, and its multiples. In our application, we assume an initialinvestment of$100 million,

denoted byw. The numbers of contracts being traded on a daily basis is given by the ratio of this

initial endowmentw to the price of the contract at timet, and is denoted byπt.

We callrt the set of explanatory streams. In the experimental resultsof Section 6,rt will either

be the432-dimensional column vector including the entire set of constituents (thewithout SVDcase),

or the reduced3-dimensional vector of three principal components computed incrementally from the

432 streams (thewith SVDcase) using the method of Section 5.2.

Given target and explanatory streams, respectivelyat andrt, the FLS algorithm updates the current

estimate of the artificial asset at timet. With the most updated estimate of the artificial asset, the

current risk (i.e. the regression residual) data point is derived as

st = at − r′tβt (25)

The current position, i.e. the suggested number of contracts to hold at the end of the current day,

is obtained by using

ϑt(st) = φ(ŝt+1)πt

whereφ(ŝt+1) is a function of the predicted risk. In our system, we deploy asimple functional

(commonly known to practitioners as theplus-minus onerule), given by

φ(ŝt+1) = −sign(st) (26)
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This rule implies that the risk data stream exhibits a mean-reverting behavior. The spread stream

of Figure 4, as well as our experimental results, suggest that this assumption generally holds true.

More formal statistical procedures could be used instead totest whether mean-reversion is satisfied

at each timet. More realistic trading rules would also be able to detect more general patterns in the

spread stream, and should take into consideration the uncertainty associated with the presence of such

patterns, as well the history of previous trading decisions.

Having obtained the number of contracts to hold, the daily order size is given by

ϕt = ϑt(st) − ϑt−1(st)

rounded to the nearest integer. The trading systems buys or sells daily in order to maintain the sug-

gested number of contracts. The monetary return realized bythe system at each timet is given by

ft = 250 (pt − pt−1) ϑt−1(st)

6 Experimental results

In this section we report on experimental results obtained from the simple FLS-based trading system.

We have tested the system using a grid of values for the smoothing parameterδ described in Section

3, to understand the effect of its specification. Table 1 shows a number of financial performance

indicators, as well as a measure of goodness of fit, with and without incremental SVD.

The most important financial indicator is theSharpe ratio, defined as the ratio between the average

monetary returns and its standard deviation. It gives a measure of the mean excess return per unit of

risk; values greater than0.5 are considered very satisfactory, given that our strategy trades one single

asset only. Another financial indicator reported here is themaximum drawdown, the largest movement

from peak to bottom of the cumulative monetary return, reported as percentage. The mean square error

(MSE) has been computed both in sample and out of sample.

Figure 5 shows gross percentage returns over the initial endowment for the constituent set,ft/w,

obtained using three different systems: FLS-based system with incremental SVD (using only the

largest principal component), FLS-based system without SVD, and a buy-hold strategy. Buy-hold

strategies are typical of asset management firms and pensionfunds; the investor buys a number of

contracts and holds them throughout the investment period in question. Clearly, the FLS-based sys-

tems outperforms the index and make a steady gross profit overtime. The assumption of non existence
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δ % gain % loss MDD % WT % LT Ann.R. Ann.V. Sharpe in-MSE∗ out-MSE∗

0.01 0.786 0.773 −0.802 −0.817 31.809 28.529 47.886 48.732 43.659 42.813 6.559 6.728 16.393 16.393 0.400 0.410 0.159 0.019 2.328 2.311

0.10 0.797 0.788 −0.789 −0.799 31.569 38.770 48.194 46.887 43.351 44.658 10.610 3.118 16.384 16.397 0.648 0.190 0.153 0.003 2.270 2.329

0.20 0.803 0.792 −0.783 −0.795 28.616 34.777 48.501 46.810 43.044 44.735 13.175 3.739 16.377 16.396 0.804 0.228 0.149 0.001 2.243 2.333

0.30 0.801 0.782 −0.785 −0.805 26.645 31.541 48.578 46.964 42.967 44.581 13.080 2.115 16.377 16.398 0.799 0.129 0.147 0.000 2.229 2.335

0.40 0.797 0.789 −0.789 −0.798 30.201 28.432 48.117 46.887 43.428 44.658 10.287 3.365 16.385 16.397 0.628 0.205 0.144 0.000 2.221 2.336

0.50 0.788 0.789 −0.800 −0.798 29.608 29.157 48.424 46.887 43.121 44.658 9.253 3.356 16.388 16.397 0.565 0.205 0.142 0.000 2.214 2.336

0.60 0.789 0.788 −0.799 −0.800 30.457 32.752 48.655 46.656 42.890 44.889 10.381 2.139 16.385 16.398 0.634 0.130 0.140 0.000 2.210 2.337

0.70 0.787 0.781 −0.801 −0.806 30.457 36.569 48.886 46.272 42.660 45.273 10.819 −0.950 16.384 16.398 0.660 −0.058 0.137 0.000 2.206 2.337

0.80 0.789 0.782 −0.798 −0.806 33.208 34.217 48.732 46.580 42.813 44.965 10.794 0.490 16.384 16.398 0.659 0.030 0.134 0.000 2.202 2.338

0.90 0.791 0.786 −0.796 −0.801 36.795 32.828 48.194 46.503 43.351 45.042 9.074 1.144 16.388 16.398 0.554 0.070 0.128 0.000 2.199 2.338

0.99 0.800 0.787 −0.787 −0.800 32.782 33.773 47.809 46.580 43.736 44.965 9.587 1.689 16.387 16.398 0.585 0.103 0.102 0.000 2.205 2.338

Table 1:Experimental results obtained using the statistical arbitrage system of Section 5 on9-years of S&P500 Future Index. Each column contains a summary

statistics obtainedwith (left-hand values) andwithout (right-hand values) incremental SVD. The summaries are: daily percentage gain, daily percentage loss,

maximum drawdown in percentage, percentage of winning trades, percentage of losing trades, annualized percentage return, annualized percentage volatility of

returns, Sharpe ratio (defined as the ratio of the two previous quantities), in-sample MSE and out-sample MSE. *To be multiplied by10e5.
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Figure 4:Spread streamst for a subset of the entire period. The FLS model is based on thelargest principal

component andδ = 0.2.

of transactions costs, although simplistic, is not particularly restrictive, as we expect that this strat-

egy will not be dominated by cost, given that new transactions are made only daily. Moreover, we

assume that the initial endowment remains constant throughout the back-testing period, which has an

economic meaning that the investor/agent consumes any capital gain, as soon as is earned.

Finally, Figure 6 shows the estimated time-varying regression coefficients of the three first prin-

cipal components, and Figure 7 shows coefficients of three constituent assets when no SVD has been

applied. The coefficients associated to the first component change very little over the9 years period,

whereas the coefficients for the two other components smoothly decrease over time, with some quite

abrupt jumps in the initial months of2001. As we can see from Table 1, a fairly large value ofδ = 0.2

gives optimal results and reinforces the merits of time-varying regression in this context.

7 Conclusions

We have argued that the FLS method for regression with time-varying coefficients lends itself to a

useful temporal data mining tool. We have derived a clear connection between FLS and Kalman filter

equations, and have demonstrated how this link enhances interpretation of the smoothing parameter

featuring in cost function that FLS minimizes, and naturally leads to a more efficient algorithm. Fi-

nally, we have shown how FLS can be employed as a building-block of an algorithmic trading system.
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Figure 5: Gross profits and losses for three competing systems: FLS based on SVD (usingδ = 0.2), FLS

based on all explanatory streams (usingδ = 0.2) and a buy-and-hold strategy.
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There are several aspects of the simple system presented in Section 5 that can be further improved

upon, and the remainder of this discussion points to a few general directions and related work that we

intend to explore in the future.

The problem of feature selection is an important one. In Section 5 the system relies on a set of432

constituents of the S&P500 Price Index under the assumption that they explain well the daily move-

ments in the target asset. These explanatory data streams could be selected automatically, perhaps even

dynamically, from a very large basket of streams, on the basis of theysimilarity to the target asset.

This line of investigation relates to thecorrelation detectionproblem for data streams, a well-studied

and recurrent issue in temporal data mining. For instance, Guha et al. [2003] propose an algorithm

that aims at detecting linear correlation between multiplestreams. At the core of their approach is a

technique for approximating the SVD of a large matrix by using a (random) matrix of smaller size, at a

given accuracy level; the SVD is then periodically and randomly re-computed over time, as more data

points arrive. The SPIRIT system for streaming pattern detection of Papadimitriou et al. [2005] and

Sun et al. [2006] incrementally finds correlations and hidden variables summarising the key trends in

the entire stream collection.

Of course, deciding on what similarity measure to adopt in order to measure howcloseexplana-

tory and target assets are is not an easy task, and is indeed a much debated issue (see, for instance,

Gavrilov et al. [2000]). For instance, Shasha and Zhu [2004]adopt a sliding window model and the

Euclidean distance as a measure of similarity among streams. Their StatStreamsystem can be used

to detect pairs of financial time series with high correlation, among many available data streams.

Cole et al. [2005] combine several techniques (random projections, grid structures, and others) in

order to compute Pearson correlation coefficients between data streams. Other measures, such as

dynamic time warping, have also been suggested [Capitani and Ciaccia, 2005].

Real-time feature selection can be complemented by featureextraction. In our system, for in-

stance, we incrementally reduce the original space of432 explanatory streams to a handful of di-

mensions using an on-line version of SVD. Other dynamic dimensionality reduction models, such

as incremental independent component analysis [Basalyga and Rattray, 2004] or non-linear manifold

learning [Law et al., 2004], as well as on-line clustering methods, would offer potentially useful alter-

natives.

Our simulation results have shown gross monetary results, and we have assumed that transaction

costs are negligible. Better trading rules that explicitlymodel the mean-reverting behavior (or other

25



patterns) of the spread data stream and account for transaction costs, as in Carcano et al. [2005], can

be considered. The trading rule can also be modified so that trades are placed only when the spread

is, in absolute value, greater than a certain threshold determined in order to maximize profits, as in

Vidyamurthy [2004]. In a realistic scenario, rather than trading one asset only, the investor would

build a portfolio of models; the resulting system may be optimized using measures that capture both

the forecasting and financial capabilities of the system, asin Towers and Burgess [2001].

Finally, we point out that the FLS method can potentially be used in other settings and applica-

tions, such as predicting co-evolving data streams with missing or delayed observations, as in Yi et al.

[2000], and for outlier and fraud detection, as in Adams et al. [2006].
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