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Abstract

A number of recent emerging applications call for studyiagadstreams, potentially infinite
flows of information updated in real-time. When multiple @lving data streams are observed,
an important task is to determine how these streams deperdamnother, accounting for dy-
namic dependence patterns without imposing any resigiiebabilistic law governing this de-
pendence. In this paper we argue that flexible least squak&) (a penalized version of ordinary
least squares that accommodates for time-varying regressiefficients, can be deployed suc-
cessfully in this context. Our motivating application iatstical arbitrage, an investment strategy
that exploits patterns detected in financial data streanesd&khonstrate that FLS is algebraically
equivalent to the well-known Kalman filter equations, arketadvantage of this equivalence to
gain a better understanding of FLS and suggest a more effaigorithm. Promising experimen-
tal results obtained from a FLS-based algorithmic tradisiesm for the S&P500 Futures Index

are reported.

Keywords Temporal data mining, flexible least squares, time-vayyagression, algorithmic trad-

ing system, statistical arbitrage

1 Introduction

Temporal data mining is a fast-developing area concernttdprocessing and analyzing high-volume,

high-speed data streams. A common example of data streatimis aeries, a collection of univariate
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or multivariate measurements indexed by time. Furtherjre@eh record in a data stream may have a
complex structure involving both continuous and discregasurements collected in sequential order.
There are several application areas in which temporal datagtools are being increasingly used,
including finance, sensor networking, security, disastanagement, e-commerce and many others.
In the financial arena, data streams are being monitored xgidred for many different purposes
such as algorithmic trading, smart order routing, reakticompliance, and fraud detection. At the
core of all such applications lies the common need to make-tmare, instant, intelligent decisions
that exploit, in one way or another, patterns detected imlta.

In the last decade we have seen an increasing trend by inmestranks, hedge funds, and pro-
prietary trading boutiques to systematize the trading areety of financial instruments. These com-
panies resort to sophisticated trading platforms basededligiive models to transact market orders
that serve specific speculative investment strategies.

Algorithmic trading, otherwise known as automated or systic trading, refers to the use of
expert systems that enter trading orders without any userviention; these systems decide on all
aspects of the order such as the timing, price, and its firaitify. They effectively implement pattern
recognition methods in order to detect and exploit markeffitiencies for speculative purposes.
Moreover, automated trading systems can slice a large #&naibenatically into several smaller trades
in order to hide its impact on the market (a technique caibedberging and lower trading costs.
According to the Financial Times, the London Stock Exchaftgesees that abo@0% of all its
orders in the year 2007 will be entered by algorithmic trgdin

Over the years, a plethora of statistical and econometcitnigues have been developed to an-
alyze financial date [De Gooijer and Hyndma, 2006]. Classioee series analysis models, such as
ARIMA and GARCH, as well as many other extensions and vaneti are often used to obtain in-
sights into the mechanisms that generates the observednthtaake predictions [Chatfield, 2004].
However, in some cases, conventional time series and othdicfive models may not be up to the
challenges that we face when developing modern algoritiraiding systems. Firstly, as the re-
sult of developments in data collection and storage tedymes, these applications generate massive
amounts of data streams, thus requiring more efficient ctetipnal solutions. Such streams are
delivered in real time; as new data points become availablerg high frequency, the trading sys-
tem needs to quickly adjust to the new information and takeoat instantaneous buying and selling

decisions. Secondly, these applications are mostly exfaor in nature: they are intended to detect



patterns in the data that may be continuously changing aoldieg over time. Under this scenario,
little prior knowledge should be injected into the modelse algorithms should require minimal as-
sumptions about the data-generating process, as well asnatinser specification and intervention.

In this work we focus on the problem of identifying time-vany dependencies between co-
evolving data streams. This task can be casted into a régmessoblem: at any specified point
in time, the system needs to quantify to what extent a pdaticgiream depends on a possibly large
number of other explanatory streams. In algorithmic trgdipplications, a data stream may comprise
daily or intra-day prices or returns of a stock, an index greather financial instrument. At each time
point, we assume that a target stream of interest deperelynon a number of other streams, but
the coefficients of the regression models are allowed tovevahd change smoothly over time.

The paper is organized as follows. In secfidn 2 we brieflyewva number of common trading
strategies and formulate the problem arisingtatistical arbitrage thus proving some background
material and motivation for the proposed methods. The flexéast squares (FLS) methodology is
introduced in Sectiohl3 as a powerful exploratory methoddarporal data mining; this method fits
our purposes well because it imposes no probabilistic gsgans and relies on minimal parameter
specification. In Sectiohl 4 some assumptions of the FLS rdedine revisited, and we establish a
clear connection between FLS and the well-known Kalmarr fdtations. This connection sheds
light on the interpretation of the model, and naturally g&eh modification of the original FLS that is
computationally more efficient and numerically stable. &kmpental results that have been obtained
using the FLS-based trading system are described in Ségtibmthat section, in order to deal with
the large number of predictors, we complement FLS with aifeagxtraction procedure that performs
on-line dimensionality reduction. We conclude in Secfibwith a discussion on related work and

directions for further research.

2 A concise review of trading strategies

Two popular trading strategies amearket timingandtrend following Market timers and trend fol-
lowers both attempt to profit from price movements, but theytdh different ways. A market timer
forecasts the direction of an asset, going long (i.e. byytagcapture a price increase, and going
short (i.e. selling) to capture a price decrease. A trerldi@r attempts to capture the market trends.

Trends are commonly related to serial correlations in prianges; a trend is a series of asset prices
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Figure 1:Historical prices of Exxon Mobil Corporation and SouthWaatines for the period 1997-2007. The
spread time series, reported in the inset, shows an equitidevel between the two prices until about January

2004.

that move persistently in one direction over a given timerivdl, where price changes exhibit positive
serial correlation. A trend follower attempts to identifgvéloping price patterns with this property
and trade in the direction of the trend if and when this occurs

Although the time-varying regression models discussediswork may be used to implement
such trading strategies, we will not discuss this furthee Nther focus omstatistical arbitrage a
class of strategies widely used by hedge funds or propyi¢taders. The distinctive feature of such
strategies is that profits can be made by exploiting stadilsthispricingof one or more assets, based
on the expected value of these assets.

The simplest special case of these strategies is penpeps trading (seel_Elliott et al. |[2005],
Gatev et al.|[2006]). In this case, two assets are initidligsen by the trader, usually based on an
analysis of historical data or other financial consideratiolf the two stocks appear to be tied to-
gether in the long term by some common stochastic trenddartizan take maximum advantage from
temporary deviations from this assumed equilierlm

A specific example will clarify this simple but effective ategy. Figuré 1l shows the historical

prices of two assets, SouthWest Airlines and Exxon Mobil;deaote the two price time series by

This strategy relies on the idea ob-integration Several applications of cointegration-based tradingtagies are

presented in Alexander and Dimitriu [2002] eand Burgess 800



ye andz, fort = 1,2, ..., respectively. Clearly, from997 till 2004, the two assets exhibited some
dependence: their spread, definedas y; — x; (plotted in the inset figure) fluctuates around a long-
term average of about20. A trading system implementing a pairs trading strategyhese two assets
would exploit temporary divergences from this market eguim. For instance, when the spread
s¢ is greater than some predetermined positive consgtatite system assume that the SouthWest
Airlines is overpriced and would go short on SouthWest Aegt and long on Exxon Mobil, in some
predetermined ratio. A profitis made when the prices re\akbo their long-term average. Although
a stable relationship between two assets may persist ftg gaime time, it may suddenly disappear
or present itself in different patterns, such as perioditremd patterns. In Figuf€ 1, for instance, the
spread shows a downward trend after Janafd, which may be captured by implementing more

refined models.

2.1 A statistical arbitrage strategy

Opportunities for pairs trading in the simple form desatilabove are dependent upon the existence of
similar pairs of assets, and thus are naturally limited. Wather variations and extensions exist that
exploit temporary mispricing among securities. For ins&rinindex arbitrage the investor looks
for temporary discrepancies between the prices of the stooiprising an index and the price of a
futures contra@pn that index. By buying either the stocks or the futuresremttand selling the other,
market inefficiency can be exploited for a profit.

In this paper we adopt a simpler strategy than index artitragmewhat more related to pairs
trading. The trading system we develop tries to exploitréisancies betweentarget assetselected
by the investor, and a pairaattificial assetthat reproduces the target asset. This artificial asset is
represented by a data stream obtained as a linear combiradtén possibly large set axplanatory
streams assumed to be correlated with the target stream.

The rationale behind this approach is the following: if thex a strong association between syn-
thetic and target assets persisting over a long period @, tims association implies that both assets
react to some underlying (and unobserved) systematic coempaf risk that explains their dynam-
ics. Such a systematic component may include all markate®lsources of risk, including financial

and economic factors. The objective of this approach is tdarakze all marker-related sources of

2A futures contract is an obligation to buy or sell a certainlenying instrument at a specific date and price, in the

future.



risks and ultimately obtain a data stream that best repteska target-specific risk, also known as
idiosyncraticrisk.

Suppose thaj; represents the data stream of the target assef;asthe artificial asset estimated
using a set op explanatory and co-evolving data streams. .., z,, over the same time period. In
this context, the artificial asset can also be interpretetha@fair price of the target asset, given all
available information and market conditions. The diffa@gp — ; then represents the risk associated
with the target asset only, amispricing Given that this construction indirectly accounts for allisces
of variations due to various market-related factors, thepm¢ing data stream is more likely to contain
predictable patterns (such as the mean-reverting behse@r in Figuréll) that could potentially be
exploited for speculative purposes. For instance, in atoggawith the pairs trading approach, a
possibly large mispricing (in absolute value) would flag mperary inefficiency that will soon be
corrected by the market. This construction crucially eli@ accurately and dynamically estimating

the artificial asset, and we discuss this problem next.

3 Flexible Least Squares (FLS)

The standard linear regression model involves a respomshiey,; andp predictor variables, . . ., z,,
which usually form a predictor column vectoy = (x4, ..., z,:)". The model postulates thgt can

be approximated well by, 3, whereg is ap-dimensional vector of regression parameters. In ordi-
nary least square (OLS) regression, estimgtefsthe parameter vector are found as those values that

minimize the cost function

T
= (v —21B)° (1)
t=1

When both the response variahleand the predictor vectat; are observations at timeof co-
evolving data streams, it may be possible that the lineaeni#dgnce betweesp andx; changes and
evolves, dynamically, over time. Flexible least squaresewetroduced at the end of the 80’s by
Tesfatsion and Kalaba [1989] as a generalization of thedatahlinear regression model above in
order to allow for time-variant regression coefficientsgdther with the usual regression assumption

that
yr — 2B ~ 0 (2)

the FLS model also postulates that

Biy1 — B =0 3



that is, the regression coefficients are now allowed to evelewly over time.

FLS does not require the specification of probabilistic prtips for the residual error inl(2). This
is a favorable aspect of the method for applications in tealptata mining, where we are usually
unable to precisely specify a model for the errors; moreamy assumed model would not hold true
at all times. We have found that FLS performs well even whenimgtion [(B) is violated, and there
are large and sudden changes frgm; to 5;, for somet. We will illustrate this point by means of an
example in the next section.

With these minimal assumptions in place, given a predigcio@ procedure is called for the es-
timation of a unique path of coefficients; = (5;,...,08,)’, fort = 1,2,.... The FLS approach

consists of minimizing a penalized version of the OLS costfion [1), name

T T-1
Z Yt — iﬂtﬁt Z & 4)
t=1 t=1

where we have defined

& = (Be+1 — Bt) (B — Br) (5)

andy > 0 is a scalar to be determined.

In their original formulation, Kalaba and Tesfatsion [19®8pose an algorithm that minimizes
this cost with respect to evegy in a sequential way. They envisage a situation wiadirdata points
are stored in memory and promptly accessible, in an offf&shion. The core of their approach is
summarized in the sequel for completeness.

The smallest cost of the estimation process at tirt&n be written recursively as
c(Bea1; ) = igtf {(yt — 2, B)% + pé + (B M)} (6)
Furthermore, this cost is assumed to have a quadratic form
(B ) = B1Si—18: — 2Bis-1 + re—1 (7)

whereS;_; ands;_; have dimensiong x p andp x 1, respectively, and;_; is a scalar. Substituting
(@) into (8) and then differentiating the cokt (6) with resip® 3;, conditioning ons;, 1, one obtains

a recursive updating equation for the time-varying regoessoefficient

B = dy + Myfr i1 (8)

3This cost function is called thacompatibility cosin[Tesfatsion and Kalaba [1989]




with

dy = = My(sp—1 + zy)

Mt = /L(St_l + ,UIp + .Z't(L'g)_l

The recursions are started with some iniiglandsy. Now, using[(8), the cost function can be written

as
c(Brg1; 1) = Biy1Si41 — 281 5¢ + 1
where
Sy = u(l, — M) )
st = pudy (10)

re =11 +y; — (si-1 + zey) dy

and wherdl,, is thep x p identity matrix. In order to apply {8), this procedure reegsiall data points
till time 7" to be available, so the coefficient vectir should be computed first. Kalaba and Tesfatsion

[1988] show that the estimate 6f can be obtained sequentially as
Br = (Sr—1 + wraly) " (s7—1 + o1yr)

Subsequently[{8) can be used to estimate all remainindicieet vectorssr_1, ..., 31, going back-
wards in time.

The procedure relies on the specification of the regulaozgtarametey, > 0; this scalar pe-
nalizes the dynamic component of the cost functidn (4), éedfim [3), and acts as a smoothness
parameter that forces the time-varying vector towards ayafrom the fixed-coefficient OLS solu-
tion. We prefer the alternative parameterization baseg@ ea (1 — 0)/J controlled by a scalaf
varying in the unit interval. Then, with set very close t0 (corresponding to very large values;of,
near total weight is given to minimizing the static part of ttost function[(4). This is the smoothest
solution and results in standard OLS estimatesd Asoves away front), greater priority is given to

the dynamic component of the cost, which results in timeingrestimates.

3.1 Off-line and on-line FLS: an illustration

As noted above, the original FLS has been introduced foatttns in which all the data points are

available, in batch, prior to the analysis. In contrast, weeiaterested in situations where each data

8
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Figure 2:Simulated versus estimated time-varying regression cieffis using FLS in both off-line and on-

line mode.

point arrives sequentially. Each component of thdimensional vector:; represents a new point
of a data stream, and the path of regression coefficientssrtedok updated at each time step so as
to incorporate the most recently acquired information.ngghe FLS machinery in this setting, the

estimate ofj, is given recursively by
By = (Si—1 + mew}) " (se-1 + Te) (11)
where, by substituting/; andd; in (@) and [10), we obtain the recursions$fands; as

Sy = w(Sp—1 + ply + 22,) NSy + w4} (12)

s¢ = pu(Si—1 + pdp + z2y) " (s1—1 + Teyr)

These recursions are initially started with some arblratiosen values$, ands.
Figure[2 illustrates how accurately the FLS algorithm recewthe path of the time-varying co-
efficients, in both off-line and on-line settings, for somtfiially created data streams. The target

streamy, for this example has been generated using the model
Yt = zeBr + € (13)
wheree, is uniformly distributed over the intervél-2, 2] and the explanatory stream evolves as

ry = 0.8x-1 + 2



with z; being white noise. The regression coefficients have beeergd using a slightly complex

mechanism for the purpose of illustrating the flexibilityfS. Starting with3; = 7, we then generate

0, as
Bi_1 + aq fort:2,...,99
Br—1+4 for t = 100
B =
Gi_1+ by fort =101,...,200
5sin(0.5t) + ¢ for ¢ = 201, ..., 300

wherea; andb; are Gaussian random variables with standard deviatiodnand0.001, respectively,
andc¢; is uniformly distributed ovef—2, 2]. We remark that this example features non-Gaussian error
terms, as well as linear and non-linear behaviors in themjecgof the regression coefficient, varying
over time.

In this example we sef = 0.98. Although such a high value of encourages the regression
parameters to be very dynamic, the nearly constant coeffeciebserved between= 101 andt =
200, as well as the two sudden jumps at times 100 andt = 201, are estimated well, and especially
so in the on-line setting. The non-linear dynamics obsefk@d timet = 201 onwards is also well

captured.

4 An alternative look at FLS

In sectior_B, we have stressed that FLS relies on a quite glesmsumption concerning the evolution
of the regression coefficients, as it only requifgs; — 3; to be small at all times. Accordingly,
assumption[(3) does not imply or require that each veg@fois a random vector. Indeed, in the
original work of Kalaba and Tesfatsion [1988]3, } is not treated as a sequence of random variables,
but rather taken as a sequence of unknown quantities to inestst.

We ask ourselves whether we can gain a better understantithg BLS method after assuming
that the regression coefficients are indeed random veetitrgut losing the generality and flexibility
of the original FLS method. As it turns out, if we are willing make such an assumption, it is
possible to establish a neat algebraic correspondencesbetihie FLS estimation equations and the
well-known Kalman filter (KF) equations. This corresponcemas a number of advantages. Firstly,
this connection sheds light into the meaning and interpogtadf the smoothing parameterin the

cost function[(#). Secondly, once the connection with KFstaklished, we are able to estimate

10



the covariance matrix of the estimator 8f. Furthermore, we are able to devise a more efficient
version of FLS that does not require any matrix inversionindbe original method, we restrain from
imposing any specific probability distribution. The reménaf this section is dedicated to providing
an alternative perspective of FLS, and deriving a clear ection between this method and the well-

known Kalman filter equations.

4.1 The state-space model

In our formulation, the regression coefficient at timiel is modeled as a noisy version of the previous
coefficient at timet. First, we introduce a random vectof with zero mean and some covariance
matrix V,,, so that

Biy1 =B +w t=0,1,...,T —1. (14)

Then, along the same lines, we introduce a random vartlflaving zero mean and some variance
V., so that
yt:x;ﬁt"i'et tzl,...,T. (15)

Equations[(14) and_(15), jointly considered, result in @dinstate-space model, for which it is as-
sumed that the innovation seri¢s } and{w;} are mutually and individually uncorrelated, i.€.is
uncorrelated of;, w; is uncorrelated ofv;, andey, is uncorrelated ofu,, for any: # j and for any
k,£. Itis also assumed that for &ll ¢, andw; are uncorrelated of the initial stat. It should be
emphasized again that no specific distribution assumpfiang andw; have been made. We only
assume that; andw, attain some distributions, which we do not know. We only neespecify the
first two moments of such distributions. In this sense, tHg difference between the system specified

by (14)-[15%) and FLS is the assumption of randomness, of

4.2 The Kalman filter

The Kalman filter|[Kalman, 1960] is a powerful method for tretimation of 5; in the above linear
state-space model. In order to establish the connectiamelest FLS and KF, we derive an alternative
and self-contained proof of the KF recursions that make saraptions on the distributions ef and
w¢. We have found related proofs of such recursions that doeiptan probabilistic assumptions,
as in.LKalman|[1960] and Eubank [2006]. In comparison witlséhave believe that our derivation is

simpler and does not involve matrix inversions, which sgiwer purposes well.

11



We start with some definitions and notation. At timeve denote bﬁt the estimate of; and by
yr+1 = E(yt41) the one-step forecast ¢f 1, whereE(.) denotes expectation. The varianceypf;
is known as the one-step forecast variance and is denotél} by Var(y,+1). The one-step forecast
error is defined as;, = y; — E(y;). We also define the covariance matrix/&f— Bt as P; and the
covariance matrix ofy; — Bt—l as R; and we write Coy3; — Bt) = P, and Co\f3; — Bt_l) = Ry.

With these definitions, and assuming linearity of the syst@mcan see that, at time— 1

Ry=PFP_1+V,

U = x;Bt—l

Qi = z;Ryxy + V.
whereP;_; and@_l are assumed known. The KF gives recursive updating eqsaftoor; and@
as functions ofP;_; andﬁt_l.

Suppose we wish to obtain an estimatopipthat is linear iny;, that isﬁt = a; + Ky, for some

a; and K; (to be specified later). Then we can write
Bt =a; + Kie; (16)

with e; = 3 — x;@_l. We will show that for somédx,, if Bt is required to minimize the sum of

squares
T
C=> (g —xip)’ (17)
t=1
thena; = ﬁt_l. To prove this, writeY” = (y1,...,yr), X = (2},...,2%), B = (6},....08%),
&= (61,...,€T)/ and
Ky O 0
0 Ko 0
K=
0 0 Kr

Then we can writd (17) as
C=C(B)=(Y-XB)(Y — XB)

andB = A* + K&, whereA* = ((a}), ..., (a%)). We will show thatA* = B*, whereB* =

12



(B(’), .. ,5}_1)/. With the abovel3, the sum of squares can be written as
S(B) = (Y — XA* -~ XKE)(Y — XA* — XKE)
= (Y —XAY)(Y = XA") —2(Y — XA*)YXKE
+&K'X'XKE
which is minimized whert” — X A* is minimized or wherE (Y — X A*) = 0, leading toA* = B*
as required. Thusy; = B,_1 and from [I6) we have
Br = Br—1 + Krey (18)

for some value of<; to be defined. From the definition &f, we have that

B = Cov(B — (Bo1 + Ke(2)B + & — 24 B1)))
= Co(I, — Ku}) (B — Br1) — Kier)
= (I, — Ky Re(I, — 2 K}) + VK K]
= R — KiziRy — Ry K, + Qi K K, (19)
Now, we can choos&; that minimizes
E(8: = B,)' (B — By)

which is the same as minimizing the tracef®f and thusk; is the solution of the matrix equation

otrace F;)
0K,

whereotrace P;) /0K, denotes the partial derivative of the traceRfwith respect toK;. Solving

= —2(z}Ry) +2Q; Ky =0

the above equation we obtaik, = R;z;/Q:. The quantityK;, also known as th&alman gain is
optimal in the sense that among all linear estimatr{I8) minimizesE (3, — Et)’(ﬁt - Bt). With

K; = Ryxy/Qy, from (19) the minimum covariance matri becomes
P, = R, — QK (20)
The KF consists of equations (18) afdl(20), together with

K; = Rtxt/Qt
Ri=P_1+V,
Qi =z, Rz, + V.  and

P
€t = Yt — lﬂtﬁt—l

13



Initial values forﬁo and Py have to be placed; usually we ﬁgt: 0 andPO‘1 =0.

Note that from the recursions & and R; we have

Rip1 = Ry — QK K[+ V,, (21)

4.3 Correspondence between FLS and KF

Traditionally, the KF equations are derived under the aggiom thate; and w; follow the normal
distribution, as in_ Jazwinski [1970]. This stronger distitional assumption allows the derivation of
the likelihood function. When the normal likelihood is dahie, we note that its maximization is
equivalent to minimizing the quantity
T 1 T-1
;(th —ZB)” + v, ; &t
with respect tQ3y, . . ., Br, where&; has been defined ifl(5) (see Jazwinski [1970] for a proof). The
above expression is exactly the cost functidn (4) witteplaced byi /V,,.
This correspondence can now be taken a step further: in ageoeral setting, where no distribu-
tional assumptions are made, it is possible to arrive todhsesresult. This is achieved by rearranging
equation[(1ll) in the form of (18), which is the KF estimatordpf First, note that from{12) we can

write

(Si—1 + xtxi)_l = ,“St_l(st—l + pulp + xtx;)_l

and substituting td(11) we gét = S;'s;. Thus we have

P -1 1
Be —Bi—1 = S; st —5,_15t—1

= (S—1+ ﬂitlﬂg)_l(st—l + T1yr) — St—llst—l
S; e S (se-1 + weyr)
Sy + 1

-1
= St_ll'tyt -

St_—llxt I a—1
= — " (yat STy +
xgst—_llxtJrl(yt LT

rg—1 rq—1
S 186-1 = TS 1 TYe)

= ,7(% - wiﬁt_l) = Kiey

14



with

Ki = Rywy/Qy
R = t_—ll

Qi = iRy + 1
Ve=1

It remains to prove that the recursion 8f as in [12) communicates with the recursion[of] (21), for

Riy1 = S; 1. To end this, starting froni.{12) and using the matrix inemdemma, we obtain

Ry =S = p ' (S + mxy) " (Sie1 + plp + miwp)
= Iy + p(Se—1 + mex)) ™)
= w4 (S + mpa))
St_—llxtwist_—ll
= Ri— QK K[+ V,,

= S - +

which is the KF recursior (21), whe#é, = p~11,,.
Clearly, the FLS estimatog, of (1) is the same as the KF estimateyr of (I8). From this
equivalence, and in particular frobd, = ;rllp, it follows that

Cov(Biy1 — Br) = %Ip

This result further clarifies the role of the smoothing pagtanu in (4). As . — oo, the covari-
ance matrix ofg;+1 — 0, is almost zero, which means thét,.; = 3, for all ¢, reducing the model
to a usual regression model with constant coefficients. drother extreme, whem = 0, the covari-
ance matrix ofj;+.1 — 5, has very high diagonal elements (variances) and therdferedtimated,’s
fluctuate erratically.

An important computational consequence of the establisbe#spondence between the FLS and
the KF is apparent. For each timgFLS requires the inversion of two matrices, nam&ly; + x;x;}
andS;_; + ul, + x,x;. However, these inversions are not necessary, as it is lojetire KF that@t
can be computed by performing only matrix multiplicatiorfshis is particulary useful for temporal
data mining data applications whe&hcan be infinite ang very large.

It is interesting to note how the two procedures arrive togame solution, although they are

based on quite different principles. On one hand, FLS meyelyes an optimization problem, as it
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minimizes the cost functiod’(x) of (). On the other hand, KF performs two steps: first, akén
estimators are restricted to forms 6f{18), for any paramegetor K;; in the second stepk; is
optimized so that it minimize#, the covariance matrix of; — ﬁt. This matrix, known as therror
matrix of 3;, gives a measure of the uncertainty of the estimatiofi. of

The relationship between FLS and KF has important implcegifor both methods. For FLS, it
suggests that the regression coefficients can be learnedtfi® data in a recursive way without the
need of performing matrix inversions; also, the error ma#j is routinely available to us. For KF,
we have proved that the estimat@r minimizes the cost functiod'(¢) = C(1/V,,) when only the
mean and the variance of the innovatiepsindw; are specified, without assuming these errors to be

normally distributed.

5 An FLS-based algorithmic trading system

5.1 Data description

We have developed a statistical arbitrage system that4r&884> 500 stock-index futures contracts.
The underlying instrument in this case is the S&M® Price Index, a world renowned index 560
US equities with minimum capitalization of $4 billion eadhis index is a leading market indicator,
and is often used as a gauge of portfolio performance. Ths&titoents of this index are highly traded
by traditional asset management firms and proprietary desksiwide. The data stream for the S&P
500 Futures Index covers a period of abduyears, from 02/01/1997 to 25/10/2005. The contract
prices were obtained from Bloomberg, and adthlteﬁobtain the target data stream as showed in
Figure[3. Our explanatory data streams are taken to be atsoftelé constituents of the underlying
S&P 500 Price Index. The constituents list was acquired from the@&ied & Poor’s web site as of
1st of March 2007, whereas the constituents data streamsdeeneloaded from Yahoo! Financial.
The constituents of the S&P index are added and deleteddntiguon the basis of the characteristics
of the index. For our experiments, we have selected a tivariamt subset 0432 stocks, namely all
the constituents whose historical data is available owveetitire1997 — 2005 period.

The system thus monitors33 co-evolving data streams comprising one target assettahex-

planatory streams. All raw prices are pre-processed inraevgys: data adjustments are made for

4Futures contracts expire periodically; since the datadchecontract lasts only a few weeks or months, continuows dat

adjustment is needed in order to obtain sequences of priaddan sequences of contract prices.
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Figure 3:S&P 500 Futures Index for the availabfeyears period

discontinuities relating to stock splits, bonus issues, @ther financial events; missing observations
are filled in using the most recent data points; finally, riaee transformed into log-returns. At each

timet¢ > 1, the log-return for assétis defined as
rit = log pit — log pi(s—1) 1=1,...,432

wherep;, is the observed price of asgett timet. Taking returns provides a more convenient repre-
sentation of the assets, as it makes different prices fireatparable and center them around zero.
We collect all explanatory assets available at tinmea column vector;. Analogously, we denote by

a; the log-return of the S&B00 Futures Index at time

5.2 Incremental SVD for dimensionality reduction

When the dimensionality of the regression model is largenasur application, the model might
suffer from multicollinearity. Moreover, in real-worldading applications using high frequency data,
the regression model generating trading signals need tqbated quickly as new information is
acquired. A much smaller set of explanatory streams woultege remarkable computational speed-
ups. In order to address all these issues, we implementherfdiature extraction by reducing the
dimensionality in the space of explanatory streams.

Suppose thak; = E(r;r}) is the the unknown population covariance matrix of the exgiary

streams, with data available up to time- 1,...,T. The algorithm proposed by Weng et al. [2003]
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provides an efficient procedure to incrementally updateetenvectors of thé&; matrix as new data
are made available at time+ 1. In turn, this procedure allows us to extract the first fewgipal
components of the explanatory data streams in real timeeHedively perform incremental dimen-
sionality reduction.

A brief outline of the procedure suggested by Weng et al. @0 provided in the sequel. First,

note that the eigenvectgy of R, satisfies the characteristic equation
he = Aege = Regr (22)

where)\; is the corresponding eigenvalue. Let us ¢althe current estimate df; using all the data

uptotimet (t =1,...,T). We can write the above characteristic equation in matrisfas
h1 Ry -+ 0 91
hT 0 RT ar

and then, noting that

T

hi+---+hr 1 , 1 1

—_ = —(1,...,1)h==(Rq,...,R = — R;g;
(7 7) T( 1, ) T).g T; g

the estimaté; is obtained by:y = (hy + - - - + hy)/T by substitutingR; by rs/. This leads to
1 t
ht - ; 2_1 Tzrigz (23)

which is the incremental averagef-g;, wherer;r, accounts for the contribution to the estimate of
R; at points.

Observing thaty; = h¢/||h:||, an obvious choice is to estimajeash;_1 /||h:—1]|; in this setting,

ﬁo is initialized by equating it ta, the first direction of data spread. After plugging in thitiraator

in (23), we obtain

| =
-

hy =

Z i (24)

T —=
t i=1 Hhi—lu
In a on-line setting, we need a recursive expressiorﬁiorEquation [(Z4) can be rearranged to
obtain an equivalent expression that only L&aa and the most recent data poinf
i—1 ~ ~ ~

~ 1 hi— 1 he— t—1~ 1 he_
ht = - Zmﬁ# + zmﬁ S e+ zmgij !
iz bl A1l A1l
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The weightgt — 1)/t and1/t control the influence of old values in determining the curestimates.
Full details related to the computation of the subsequegneiectors can be found in the contribution
of Weng et al.|[2003].

In our application, we have used data points from 02/01/1#B®1/11/2000 as a training set
to obtain stable estimates of the first few dominant eigaovec Therefore, data points prior to

01/11/2000 will be excluded from the experimental results.

5.3 Trading rule

The trade unit for S&P00 Futures Index is set by the Chicago Mercantile Exchange (CiIE250
multiplied by the current S&B00 Price Index,p;. Accordingly, we denote the trade unit expressed
in monetary terms a€; = 250 p;, which also gives the contract value at tiheFor instance, if
the current stock index price 8100, then an investor is allowed to trade the price of the coftrac
i.e. $35000, and its multiples. In our application, we assume an initi@estment of$100 million,
denoted byw. The numbers of contracts being traded on a daily basis enddy the ratio of this
initial endowmentw to the price of the contract at timeand is denoted by;.

We callr; the set of explanatory streams. In the experimental restilection 6;, will either
be the432-dimensional column vector including the entire set of t¢ituants (thewithout SVDcase),
or the reduce@-dimensional vector of three principal components congpirterementally from the
432 streams (thevith SVDcase) using the method of Sectfon]5.2.

Given target and explanatory streams, respectivendr;, the FLS algorithm updates the current
estimate of the artificial asset at tinne With the most updated estimate of the artificial asset, the

current risk (i.e. the regression residual) data point is/dd as
St = at — Téﬁt (25)

The current position, i.e. the suggested number of comsttadbold at the end of the current day,

is obtained by using
Ue(st) = d(S141)m

where ¢(s:+1) is a function of the predicted risk. In our system, we deplogiraple functional

(commonly known to practitioners as thkis-minus oneule), given by

P(5¢41) = —sign(sy) (26)
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This rule implies that the risk data stream exhibits a meme+ting behavior. The spread stream
of Figure[4, as well as our experimental results, suggesttiim assumption generally holds true.
More formal statistical procedures could be used insteadsiowhether mean-reversion is satisfied
at each timeg. More realistic trading rules would also be able to detecteryeneral patterns in the
spread stream, and should take into consideration the tainttgrassociated with the presence of such
patterns, as well the history of previous trading decisions

Having obtained the number of contracts to hold, the daifieosize is given by

Yt = 79t(3t) - 19t—1(3t)

rounded to the nearest integer. The trading systems buyalsrdsily in order to maintain the sug-

gested number of contracts. The monetary return realizétdeogystem at each tintas given by

Jt =250 (ps — pi—1) Vs—1(s¢)

6 Experimental results

In this section we report on experimental results obtainech fthe simple FLS-based trading system.
We have tested the system using a grid of values for the simgottarameter) described in Section
[3, to understand the effect of its specification. Tdble 1 shawiumber of financial performance
indicators, as well as a measure of goodness of fit, with atitbwi incremental SVD.

The most important financial indicator is tBharpe ratig defined as the ratio between the average
monetary returns and its standard deviation. It gives a ureasf the mean excess return per unit of
risk; values greater thah5 are considered very satisfactory, given that our strategles one single
asset only. Another financial indicator reported here isrtagimum drawdowrthe largest movement
from peak to bottom of the cumulative monetary return, regmbas percentage. The mean square error
(MSE) has been computed both in sample and out of sample.

Figure[ shows gross percentage returns over the initiadvement for the constituent seft,/w,
obtained using three different systems: FLS-based syst#mimeremental SVD (using only the
largest principal component), FLS-based system withouD S&d a buy-hold strategy. Buy-hold
strategies are typical of asset management firms and pefisids; the investor buys a number of
contracts and holds them throughout the investment peni@giéstion. Clearly, the FLS-based sys-

tems outperforms the index and make a steady gross profitiover The assumption of non existence
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Tc

8 % gain % loss MDD % WT % LT Ann.R. Ann.V. Sharpe in-MSE* out-MSE*

0.01 0.786 0.773 —0.802 —0.817 31.809 28.529 47.886 48.732 43.659 42.813 6.559 6.728 16.393 16.393 0.400 0.410 0.159 0.019 2.328 2.311
0.10 0.797 0.788 —0.789 —0.799 31.569 38.770 48.194 46.887 43.351 44.658 10.610 3.118 16.384 16.397 0.648 0.190 0.153 0.003 2.270 2.329
0.20 0.803 0.792 —0.783 —0.795 28.616 34.777 48.501 46.810 43.044 44.735 13.175 3.739 16.377 16.396 0.804 0.228 0.149 0.001 2.243 2.333
0.30 0.801 0.782 —0.785 —0.805 26.645 31.541 48.578 46.964 42.967 44.581 13.080 2.115 16.377 16.398 0.799 0.129 0.147 0.000 2.229 2.335
0.40 0.797 0.789 —0.789 —0.798 30.201 28.432 48.117 46.887 43.428 44.658 10.287 3.365 16.385 16.397 0.628 0.205 0.144 0.000 2.221 2.336
0.50 0.788 0.789 —0.800 —0.798 29.608 29.157 48.424 46.887 43.121 44.658 9.253 3.356 16.388 16.397 0.565 0.205 0.142 0.000 2.214 2.336
0.60 0.789 0.788 —0.799 —0.800 30.457 32.752 48.655 46.656 42.890 44.889 10.381 2.139 16.385 16.398 0.634 0.130 0.140 0.000 2.210 2.337
0.70 0.787 0.781 —0.801 —0.806 30.457 36.569 48.886 46.272 42.660 45.273 10.819 —0.950 16.384 16.398 0.660 —0.058 0.137 0.000 2.206 2.337
0.80 0.789 0.782 —0.798 —0.806 33.208 34.217 48.732 46.580 42.813 44.965 10.794 0.490 16.384 16.398 0.659 0.030 0.134 0.000 2.202 2.338
0.90 0.791 0.786 —0.796 —0.801 36.795 32.828 48.194 46.503 43.351 45.042 9.074 1.144 16.388 16.398 0.554 0.070 0.128 0.000 2.199 2.338
0.99 0.800 0.787 —0.787 —0.800 32.782 33.773 47.809 46.580 43.736 44.965 9.587 1.689 16.387 16.398 0.585 0.103 0.102 0.000 2.205 2.338

Table 1:Experimental results obtained using the statistical eagé system of Sectiéh 5 @ryears of S&00 Future Index. Each column contains a summary

statistics obtainedith (left-hand values) andithout (right-hand values) incremental SVD. The summaries arédy garcentage gain, daily percentage loss,

maximum drawdown in percentage, percentage of winningsagercentage of losing trades, annualized percentaga rahnualized percentage volatility of

returns, Sharpe ratio (defined as the ratio of the two previuantities), in-sample MSE and out-sample MSE. *To beiplidt by 10e5.




x10° Spread Data Stream
T T

U Lk H it i IH.‘M
”l ‘\r “” I ‘l”l W‘ Il M 'l\ H‘ I1|H ,”\

Figure 4:Spread stream; for a subset of the entire period. The FLS model is based olathest principal

componentand = 0.2.

of transactions costs, although simplistic, is not paldidy restrictive, as we expect that this strat-
egy will not be dominated by cost, given that new transastiare made only daily. Moreover, we
assume that the initial endowment remains constant thautghe back-testing period, which has an
economic meaning that the investor/agent consumes antatgain, as soon as is earned.

Finally, Figure[6 shows the estimated time-varying regogssoefficients of the three first prin-
cipal components, and Figure 7 shows coefficients of thrastitoent assets when no SVD has been
applied. The coefficients associated to the first comportenige very little over th@ years period,
whereas the coefficients for the two other components sryodétrease over time, with some quite
abrupt jumps in the initial months @H01. As we can see from Tallé 1, a fairly large value 6f 0.2

gives optimal results and reinforces the merits of timesveay regression in this context.

7 Conclusions

We have argued that the FLS method for regression with tiamgivg coefficients lends itself to a
useful temporal data mining tool. We have derived a cleaneotion between FLS and Kalman filter
eqguations, and have demonstrated how this link enhancepiiatation of the smoothing parameter
featuring in cost function that FLS minimizes, and natyrédlads to a more efficient algorithm. Fi-

nally, we have shown how FLS can be employed as a buildingkldd an algorithmic trading system.

22



Cumuiative Stategy Gross Percentage Retuns

——FLS-SVD
— — -FLS-nSVD)
Buy-hold

Jan00 Jan01 Jan02 Jan03 Jan04 Jan05 Jan0g

Figure 5: Gross profits and losses for three competing systems: FL&las SVD (usingg = 0.2), FLS

based on all explanatory streams (using 0.2) and a buy-and-hold strategy.
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Figure 6: Dynamycs of FLS-estimated regression coefficients assmatia the first three principal compo-

nents, withd = 0.2.
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Dynamics of Regression Coefficients of 3 S&P500 Constituents
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Figure 7: Dynamycs of FLS-estimated regression coefficients assatia three constituents of the index,

with § = 0.2.
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Figure 8:Sharpe ratio as function of
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There are several aspects of the simple system presentedtior$h that can be further improved
upon, and the remainder of this discussion points to a fewmédirections and related work that we
intend to explore in the future.

The problem of feature selection is an important one. IniSe& the system relies on a set432
constituents of the S&B00 Price Index under the assumption that they explain well #ily dnove-
ments in the target asset. These explanatory data streaddoeoselected automatically, perhaps even
dynamically, from a very large basket of streams, on thesbafstheysimilarity to the target asset.
This line of investigation relates to tlerrelation detectiorproblem for data streams, a well-studied
and recurrent issue in temporal data mining. For instanciat al. [2003] propose an algorithm
that aims at detecting linear correlation between multgpteams. At the core of their approach is a
technique for approximating the SVD of a large matrix by gsar{random) matrix of smaller size, at a
given accuracy level; the SVD is then periodically and rantjare-computed over time, as more data
points arrive. The SPIRIT system for streaming patterndiete of Papadimitriou et all [2005] and
Sun et al.|[2006] incrementally finds correlations and hiddariables summarising the key trends in
the entire stream collection.

Of course, deciding on what similarity measure to adopt deoto measure howloseexplana-
tory and target assets are is not an easy task, and is indeedhadabated issue (see, for instance,
Gavrilov et al. [2000]). For instance, Shasha and Zhu [2@@k)pt a sliding window model and the
Euclidean distance as a measure of similarity among stredimsir StatStreansystem can be used
to detect pairs of financial time series with high correlatiamong many available data streams.
Cole et al. [[2005] combine several techniques (random gtiojes, grid structures, and others) in
order to compute Pearson correlation coefficients betwegam streams. Other measures, such as
dynamic time warping, have also been suggested [CapitahCarccia, 2005].

Real-time feature selection can be complemented by feaitraction. In our system, for in-
stance, we incrementally reduce the original spacé3afexplanatory streams to a handful of di-
mensions using an on-line version of SVD. Other dynamic dsr@nality reduction models, such
as incremental independent component analysis [Basahdi®attray, 2004] or non-linear manifold
learning [Law et al., 2004], as well as on-line clusteringimoels, would offer potentially useful alter-
natives.

Our simulation results have shown gross monetary resultsye have assumed that transaction

costs are negligible. Better trading rules that explicitipdel the mean-reverting behavior (or other

25



patterns) of the spread data stream and account for tramsacists, as in Carcano et al. [2005], can
be considered. The trading rule can also be modified so tdédrare placed only when the spread
is, in absolute value, greater than a certain thresholdméted in order to maximize profits, as in
Vidyamurthy [2004]. In a realistic scenario, rather thaading one asset only, the investor would
build a portfolio of models; the resulting system may be mjzted using measures that capture both
the forecasting and financial capabilities of the systenm @swers and Burgess [2001].

Finally, we point out that the FLS method can potentially kediin other settings and applica-
tions, such as predicting co-evolving data streams witlsimisor delayed observations, as in Yi et al.

[2000], and for outlier and fraud detection, as in Adams 2f28106].
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