

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1016/j.eswa.2008.08.003

http://hdl.handle.net/10251/54607

Elsevier

Heras Barberá, SM.; Garcia Pardo Gimenez De Los Galanes, JA.; Ramos-Garijo Font De
Mora, R.; Palomares Chust, A.; Botti Navarro, VJ.; Rebollo Pedruelo, M.; Julian Inglada, VJ.
(2009). Multi-domain case-based module for customer support. Expert Systems with
Applications. 36(3):6866-6873. doi:10.1016/j.eswa.2008.08.003.

Multi-Domain Case-Based Module for

Customer Support ⋆

Stella Heras a,∗ Juan Ángel Garćıa-Pardo a

Rafael Ramos-Garijo a Alberto Palomares b Vicente Botti a

Miguel Rebollo a Vicente Julián a

aInformation Systems and Computing Department

Universidad Politécnica de Valencia

Camino de Vera s/n. 46022 Valencia, Spain. (+34) 96 387 73 50 Ext: 83528

bTISSAT S.A., Parque Tecnológico

Av. Leonardo Da Vinci, 5, 46980 Paterna - Valencia, Spain. (+34) 96 393 99 00

Abstract

Technology Management Centres provide technological and customer support ser-

vices for private or public organisations. Commonly, these centres offer support

using a helpdesk software that facilitates the work of their operators. In this paper,

a CBR module that acts as a solution recommender for customer support environ-

ments is presented. The CBR module is flexible and multi-domain, in order to be

easily integrable with any existing helpdesk software in the company.

Key words: Helpdesk Systems, Customer Support, Decision Support Systems,

Case-Based Reasoning

Preprint submitted to Elsevier 7 February 2008

1 Introduction

Technology Management Centres (TMCs) are entities which control every pro-

cess implicated in the provision of technological and customer support services

to private or public organisations. Usually, TMCs are managed by a private

company that communicates with its customers via a call centre. This kind of

centres allow customers to obtain general information, purchase products or

lodge a complaint. They can also efficiently communicate public administra-

tions with citizens. In a call centre, there are a number of operators attending

to a big amount of calls with different objectives –sales, marketing, customer

service, technical support and any business or administration activity–. The

call centre operators have computers provided with a helpdesk software and

phone terminals connected to a telephone switchboard that manages and bal-

ances the calls among operators.

Nowadays to differentiate a company over other companies competing in the

same market is very difficult. Products, prices and quality are very similar

and companies try to obtain an advantage over their competitors by offering

a careful attention to their customers. Most commercial activity is done via

phone and it is necessary to avoid non-answered calls, busy lines, to ask the

customer for repeating the query several times or to give incoherent answers.

Moreover, a good customer support depends, in many cases, on the experience

⋆ This work was partially supported by CONSOLIDER-INGENIO 2010 under grant

CSD2007-00022 and by the Spanish government and FEDER funds under CICYT

TIN2005-03395 and TIN2006-14630-C0301 projects.
∗ Corresponding author

Email address: sheras@dsic.upv.es (Stella Heras).

URL: www.dsic.upv.es/users/ia/ia.html (Stella Heras).

2

and skills of its operators. A quick and accurate response to the customers

problems ensures their satisfaction and a good reputation for the company

and, therefore, it can increase its profits.

To store, and reuse later, the solution applied to each problem and the infor-

mation about the problem-solving process could be a suitable way to improve

the customer support offered by a company. Case-Based Reasoning (CBR)

systems have been widely applied to perform this task. A CBR system tries to

solve a problem (i.e. case) by means of reusing the solution of an old similar

case [10]. This solution is previously stored in a memory of cases (i.e. case-base)

and it can either be retrieved and applied directly to the current problem, or

revised and adapted to fit the new problem. The suitability of CBR systems

in helpdesk applications to manage call centres has been guaranteed for the

success of some of these systems from the 90s to nowadays.

The Compaq SMART System [2], developed in collaboration with Inference

Corporation, provided automated technical support directly to the users of

its products. The system significantly increased the amount of satisfactorily

solved calls and, therefore, the customer satisfaction. The software company

Broderbund, also collaborating with Inference Corporation, incorporated the

CBR methodology into its web-based customer support system GizmoTapper

[20]. This system gave an on-line customer support, consistent with the in-

formation of databases employed by the operators of the company. This fact

ensured the immediate availability of new information for problem solving.

Union Camp Corporation developed SmartUSA [12], a self-improving helpdesk

system intended for reduce or avoid, if possible, the amount of calls received

by its operators. More recently, in the course of the INRECA-II [7] project,

the internal CAD/CAM helpdesk system Homer [6][14] was developed. The

3

system helped the operators of the Information Technologies department at

the Daimler Chrysler company to solve the problems that arise from soft-

ware and hardware updates. In addition to these examples, there are a lot

of CBR systems successfully applied in helpdesk and customer support do-

mains [16][11][15][9][13]. Many companies also sell products that apply CBR

to helpdesks –e.g. eGain Service 7 Suite from eGain [4] (formerly Inference

Corporation), Kaidara Advisor from Kaidara [8] (formerly AcknoSoft) and

empolis Orenge from Empolis [5] (formerly tec:inno GmbH)–.

However, most of the applications reported are complete case-based systems

that were developed for research purposes or designed by any vendor for cov-

ering the needs of a private company with the help of a CBR tool [3][20]. In

most cases, these systems are very adjusted to work well in a specific domain

and to change this domain will involve modifying the entire system. Therefore,

they are not suitable for multi-domain environments, where the work domains

are very dynamic and undergo many changes.

The Spanish company TISSAT S.A. [18] is a TMC that develops and integrates

Information Technology and communication products, services and solutions

for advanced Internet environments. TISSAT runs a call centre where its op-

erators answer the queries of its customers. The company has developed a new

helpdesk application to manage the call centre and to improve the weaknesses

of the former system. With the deployment of this application TISSAT tries

to avoid the problems that arise from using a system copyrighted by a pri-

vate vendor, which cannot be modified and updated without the authorisation

of the vendor, and to improve some weaknesses. One of the most important

functionalities that the company wants the new helpdesk to incorporate is

the possibility to store in an appropriate format the information about past

4

problems and the solution that was applied. This information will provide the

operators with useful hints to solve new problems and, thus, to shorten their

solving time. To implement this feature, a new CBR module has been devel-

oped. The CBR module had to be easily integrated in the existing helpdesk.

Moreover, TISSAT works with very dynamic domains and a complete case-

based system adapted to a specific domain and, thus, difficult to be updated to

new domains is not suitable. To some extent, the aim of this research was also

to check the suitability of CBR methodology and its easiness of integration

for multi-domain environments.

The rest of the paper is structured as follows. Section 2 shows the environment

where the CBR module has been integrated and better explains the motivation

to develop this module. Section 3 describes the module and its operation.

Finally, the CBR module is evaluated in section 4 and the conclusions of this

research are summarised in section 5.

2 Background and Motivation

In a TMC, there are a number of technicians whose role is to provide the

customers with technical assistance –microcomputing, security and network

management among other services–. This help is commonly offered via a call

centre. The staff of the TISSAT’s call centre is divided into three levels:

• First level operators, who receive customer queries and answer those ones

from which they have background training or their solution is registered in

the company manuals of action protocols.

• Second level operators, who are the technicians in charge of solving the

5

problems that the first level operators could not solve.

• Chief technicians and administrators, who are in charge of organising work-

ing groups, of assigning problems to specic technicians and of creating

generic solutions, which will be registered and used later by the operators

of lower levels.

To guarantee a high-quality service, the company subscribes to a Service Level

Agreements (SLAs) with the customer, where the different characteristics of

the services to provide are specified –service descriptive labels that identify

each request as belonging to a certain type (category trees), service priority,

attention and assistance maximum times and certain parameters that measure

the fulfilment degree of these services–. In case of breach of the agreements,

the company is economically penalised.

Once the SLAs have been established, the customer can request the supply of

the services that have been agreed by means of several entry channels –phone

call, website, e-mail, post and fax–. When the centre receives the request, the

so-called incidence register or ticket is generated with the customer data and

a description of the incidence. From the customer point of view, the tickets

are fundamentally characterised by their state –assigned, in progress, solved,

closed, pending, require external provider or require software development–

and by the problem-solving time, which allows the customer to know the

degree of the agreements fulfilment. For the centre, the tickets are also char-

acterised by other parameters, such as the type of the incidence (category),

to which operator or group the ticket has been assigned, work-notes about

the incidence, provider data or affected equipment (inventory). The problem-

solving process generates more information that helps to explain the solution

that has been applied–solving-method, operator level, keywords, URL’s, at-

6

tached documents or observations–.

To date of the beginning of this project, TISSAT had used a helpdesk appli-

cation to manage the big amount of information that processes its call centre.

The basic functions of this application were the following:

• To register the incidences information: customer data, entry channel and

project (identifying the customer and the specific service that is being used).

• To track each ticket and to scale it from one operator level to a more spe-

cialised one.

• To warn when the maximum time to solve an incidence is about to expire.

• To search for past registered solutions given a set of words. It returns the

solutions containing those words or any of them.

However, the former helpdesk had several weaknesses that posed important

problems and hindered the improvement of the platform:

• The software was copyrighted by other company. Therefore, TISSAT had

to pay licenses and could not make any change in the application.

• There were many integration and access difficulties with other software

products and mobile devices.

• The information about past problems was not stored in a suitable format

(using manuals or hand-written notes, most of them out-of-date). Therefore,

the information transfer between operators was not fluent.

• There was not a centralised database of successfully applied solutions. The

operators lost time in solving problems that had been previously solved by

other operator. The company lost time and money in training new opera-

tors or re-training operators for solving new problems when a new service

was offered. In addition, the knowledge of experienced operators should be

7

registered in some way to avoid missing it when the operators leave the

company.

In order to cope with these problems, TISSAT has developed the new helpdesk

tool I2TM (Intelligent and Integrated Ticketing Manager). This application

improves the operation of the former helpdesk and, thus, the quality of the

customer support. In addition, some research has been done with the aim of

predicting the number of forthcoming service requests as well as the time when

they will occur in order to optimise the resources used to solve these events [17].

Simultaneously, a system able to propose suitable solutions to help the oper-

ators has been developed. This system will shorten the problem-solving time.

The CBR-TM system (Case-Based Reasoning for Ticketing Management)

implemented with this aim stores and reuses in an efficient and intelligent

way the information about past problems and their solutions. Therefore, it is

mainly addressed to solve the last two weaknesses of the above list. CBR-TM

was developed as flexible as possible in order to ease its adaption to work with

the data of any new project that the company may manage in the future.

3 The CBR-TM module, Case-Based Reasoning for Ticketing Man-

agement

CBR-TM acts as a separate module of I2TM for solution-advising. Both sys-

tems communicate and synchronise their data by means of webservice calls.

In this way, their architectures are independent and it is possible to make

changes in one of them without affecting the other.

Moreover, CBR-TM implements each phase of the common CBR reasoning

8

cycle –Retrieve, Reuse, Revise and Retain [1]– using an independent plugin-

algorithm. Therefore, the system is flexible and portable and it is possible to

modify or even add an algorithm whenever it will be necessary. The specific

algorithm that has to be used in each phase is configured in a XML configura-

tion file. CBR-TM also includes a plugin to store algorithm variables among

different executions of the system. In this way, some algorithm specific fea-

tures, such as weights and constants, can be saved when the system changes

the algorithm that implements a reasoning phase in the configuration file.

3.1 Data format

The first step to design the CBR-TM module was to decide the system data

format. For it, the old call centre tickets database was analysed. Each register

of the database contained information of an old problem. As a result of this

process some weaknesses were encountered. On one hand, the database was

very imbalanced and most registers represented actually the same problem

and, on the other hand, in most cases there were not any information about

the problem solution. In view of the above, to structure the cases of CBR-

TM as the prototyped representation of a set of tickets was adopted as design

decision. The module was developed using an object-oriented approach where

the cases are serialisable objects. Figure 1 shows an overview of the data

structure in I2TM and CBR-TM.

The I2TM application maintains a Typification Tree that organises hierarchi-

cally the taxonomy of problem types (i.e. categories) from less to more generic

problems. These categories identify each ticket as belonging to a certain type

of incidence, depending on the project to which the ticket is associated. There-

9

fore, the first level nodes of the tree represent the projects that the company

manages, and the nodes below them represent the possible problems that

the customers of each project can request for solving to the operators. When

a change in the tree is done or a new project is supported by the company,

CBR-TM is able to read again the tree and re-synchronise itself with the I2TM

system data. In this way, CBR-TM is able to work in the multiple domains of

the company projects.

A case in CBR-TM, thus, is an object that has an identifier pointing to the

category that represets the type of problem to which the case belongs. The

case also has a set of attributes depending on its category. These attributes are

the answers of some questions that the operator asks to the customer when he

performs a new request. The questions are created and maintained by domain

experts and give more information about the customer request.

Finally, a case has associated one or more solution identifiers pointing to the

solution database of TISSAT. A solution can also be associated to more than

one case. The solution types are very diverse, from attached documents ex-

plaining the steps followed to solve the problem, to websites or manuals. Each

solution of a case also has a suitability degree to solve that specific problem.

3.2 CBR-TM Reasoning Cycle

When a customer asks an operator for solving a request, the operator can ei-

ther try to solve the problem by his own or to use CBR-TM for giving a piece of

advice about the solution to apply. In that case, once the operator has created

the new ticket using I2TM, the application transfers the ticket information to

10

CBR-TM. From that moment, the CBR-TM module starts its reasoning cy-

cle and tries to give a solution to the operator. Figure 2 shows an overview of

the dataflow between I2TM and CBR-TM during the problem-solving process.

Retrieval Phase. The first step when CBR-TM is asked for searching a

solution for the current ticket is to retrieve a set of similar cases from its

case-base. Three plugin-algorithms implement this retrieval stage. The Indexer

algorithm starts the process organising hierarchically the case-base to ease

the case retrieval. In the current implementation, the operators carry out this

function by categorising by hand the ticket. In this way, the module profits

by the operators expert knowledge to speed up the problem-solving process.

After that, the Mapper algorithm (see algorithm 1) searches the Typification

Tree for retrieving the upper categories that are in the same branch as the

ticket category. Those categories represent more generic problems, but they

may also be related with the current problem and thus, their solutions may

also be suitable to solve it. Once this set of categories is selected, the Mapper

algorithm retrieves from the case-base the cases that are categorised by them.

Finally, the Similarity algorithm sorts the set of retrieved cases by their degree

of similarity with the ticket.

The similarity computation in CBR-TM is hindered by the heterogeneity of

its cases. Note that cases with different categorisations can share some at-

tributes and also have different ones. In addition, there are several possible

attribute types (numeric, string, enumerated and boolean) and the attributes

can also have missing values. In order to work with heterogeneous cases some

known similarity metrics an measures have been adapted and implemented.

The similarity metrics, which are shown in equation (1), calculate local dis-

11

Algorithm 1 MapperAlgorithm

Require: Typification Tree, Ticket

1: CategorySet = Ticket.Category

2: Cases = ∅

3: node = Ticket.Category

4: while node.parent 6= ∅ do

5: CategorySet ← CategorySet ∪ node.parent

6: node ← node.parent

7: Cases = Retrieve(CategorySet) //Retrieve Cases from case-base where

case.category ∈ CategorySet

tances between a pair of attributes i and j.

distance(i, j) =















































































if i, j ∈ ℜ, |i − j|

if i, j ∈ string, Levenshtein(i, j)

if i, j ∈ enumerated, dist(i, j)

otherwise, 1

(1)

Specifically, the absolute difference is used for computing the distance between

numeric values and the Levenshtein distance for strings. The distance between

enumerated values can be configurable to different values depending on the

application domain (dist(i, j)). Since all distances are normalised in a 0 to

1 range, the local distance is set to 1 when there is a missing value in an

attribute. Note that, therefore, the distance between two different boolean

values are also set to 1.

Next, the similarity measures combine the local distances to calculate the

12

global distance between cases. Finally, the set of retrieved cases is sorted using

a k-nearest neighbour algorithm. Several similarity measures based on the

Euclidean distance (varying the importance assigned to the cases attributes)

and one similarity measure based on the ratio model proposed by Tversky

[19] have been adapted in the current implementation of CBR-TM as shown

in equations (2) and (3)):

EuclideanSimilarity(a, b) =
1

1 +
√

∑

N

i=1
w2

i distance(ai, bi)2

(2)

where a and b are two cases of the CBR-TM case-base and wi ∈ [0, 1] is

a weight assigned to each attribute i of the cases in order to indicate its

importance.

TverskySimilarity(a, b) =
α(#commonAt)

α(#commonAt) + β(#differentAt)
(3)

where #commonAt and #differentAt represent the number of similar and

different attributes of a pair of cases and α and β are the corresponding weights

assigned to each group.

Reusage Phase. Once the set of cases that are similar to the current ticket

is selected, the SolutionSelection plugin algorithm proposes a list of possible

alternatives to solve the current problem. The algorithm proposes first the

solutions of the most similar case to the ticket, sorted by their degree of suit-

ability to solve the specific problem that represents that case. If desirable, the

algorithm can also propose the solutions of the second most similar case and

so on. The number of solutions to propose is configurable.

13

Revision and Retention Phases. The revision and retention stages in CBR-

TM are very related. In fact, the retention stage can be viewed as a conse-

quence of the revision stage. The Rewarder plugin algorithm implements both

phases (see algorithm 2). Each time a problem that was requested to I2TM is

solved, the customer must report to the system his degree of satisfaction with

the solution proposed. Then, the solution and the ticket that was created to

represent the incidence are appraised. The category that was initially assigned

to the ticket is revised by domain experts and changed if necessary before end-

ing the service and closing the ticket. The final category is sent to CBR-TM

together with the ticket. The system always reports to the CBR-TM module

the tickets that have been solved, even when the operator solved the prob-

lem directly and without asking to the module for a solution proposal. With

this process CBR-TM improves its performance and corrects its mistakes and,

thus, increments quickly its knowledge about the domain.

The revision stage starts again the reasoning cycle in CBR-TM, in order to

discover if the module has a case in its case-base that coincides with the

problem that the ticket represents. CBR-TM repeats the case retrieval stage

for each ticket that is closed, instead of keeping in memory the case that

was retrieved as the most similar case when the ticket was transferred to

the module. Note that, on one hand, it may occur that the ticket had never

been reported to CBR-TM, but solved directly by the operator. On the other

hand, CBR-TM may have proposed an invalid solution without making any

mistake, since this error may come from an erroneous manual categorisation. In

addition, the CBR-TM module is a recommender system, but the operator can

choose any different solution to apply to the problem based on his experience.

14

Algorithm 2 RewarderAlgorithm

Require: Solved Ticket T

1: C = mapper(T) //Retrieve the set of cases from the case-base that could

be related with similar problems

2: similarity(C, T) //Calculate the similarity between each case c ∈ C and

T

3: if ∃ c ∈ C / similarity(c, T) > threshold then

4: if ∃ s ∈ c.solutionList / s = T.solution then

5: s.suitability + +

6: else

7: c.solutionList ← c.solutionList ∪ s

8: else

9: CaseBase ← CaseBase ∪ newCase(T)

With this revision phase, the module is able to learn from the operator expert

knowledge.

If CBR-TM does not find a similar enough case in its case-base for a ticket

that has been solved, it creates a new case. The similarity threshold to decide

when a new case must be created is configurable. If there is a similar case in

the case-base and the solution applied to the ticket is already associated with

that case, the suitability degree of the solution is increased. Otherwise, that

solution is added to the list of solutions of the case. To modify the suitability

degree of the solutions decreases the possibility of proposing obsolete solutions.

To date, there is not any adaptation of solutions to fit the current problem,

but the solutions are proposed to solve the problem without changes.

15

3.3 System Integration

The CBR-TM module has been designed to be able to work with multiple

domains, to support multiple requests and to be easily integrable with any

existing helpdesk software of the company. Each call to the module opens a

new execution thread. Moreover, the communication between I2TM and CBR-

TM is synchronous and the system always waits for an answer of the module.

When CBR-TM has not a similar case in its case-base, it replies a void answer.

A timeout to interrupt the communication when the maximum time to give

an answer is exceeded must also be specified. Some important design decisions

are detailed as follows.

Webservice. Following the scalability and flexibility guidelines, the commu-

nication between CBR-TM and I2TM is done through webservice calls. The

main webservice calls are the following.

• The request for a solution given a ticket (getSolutions webservice call): It is

the call that starts the reasoning cycle of CBR-TM when an operator asks

the module for possible solutions to the problem that has been requested.

The call is used to transfer the information about the current ticket (features

and category) from the I2TM helpdesk system to the CBR-TM module.

• The feedback produced when a ticket is solved (closeQuestion webservice

call): This call is used by I2TM to notify the final solution of each ticket to

the CBR-TM module. The parameters of the call are the ticket features, the

category and the solution adopted (note that the ticket could have not been

requested to CBR-TM before). With this information the CBR-TM module

16

is able to correct its wrong proposals and increment quickly its knowledge

about the domain. In any case, the solutions that the module proposed for

a ticket are not reviewed until the feedback call is completed.

• The case-base maintenance: The maintenance calls allow the I2TM system

to stop CBR-TM for maintenance, pause it and restore the CBR-TM status.

They are also used to notify to the CBR-TM module modifications of the

I2TM databases –move a category to a different location inside the category

tree, add a category or even activate or deactivate a whole project, which

would change an entire branch in the category tree.

Synchronisation and Cache policies. Accessing the case-base of CBR-

TM can be very expensive in terms of time. A cache system was developed

to facilitate this task, loading in a quick access memory those cases that have

been recently used or with a higher probability to be used. The cache system

was designed as a plugin, and can be changed on-line. The system operates as

following.

When a ticket is requested to the CBR-TM module, the Mapper algorithm

searches in the Typification Tree the category node of the ticket and the set

of upper categories that are in the same branch. Then, the algorithm tries to

retrieve first the cases that belong to these categories from the cache memory.

If such cases are not there, the cache system loads them from the CBR-TM

case-base. Note that the system loads all cases that belong to a category

and, each time a new case is created the module adds first the case to the

cache memory. The cases are finally stored in the case-base depending on each

cache policy. By default, all policies update the case-base when the CBR-TM

operation is interrupted. A maximum time to load the cases in the case-base

can also be specified.

17

In the current implementation of CBR-TM, the cache policy is based on the

frequency of data access. When the cache memory exceeds a specified amount

of memory used, CBR-TM starts to unload the memory by storing in the case-

base those cases that belong to the categories with a lower rate of utilisation.

Again, the plugin architecture of CBR-TM allows to implement and use any

policy specifically helpful in a particular customer support scenario.

4 CBR-TM Evaluation

Two test software tools have been developed to check the performance of the

CBR-TM module. Both tools use webservice calls to communicate with the

CBR system.

The Load Tool tests the system strongness when dealing with the simultaneous

requests of different number of customers. The tool use a thread to represent

each customer. Therefore it is possible to simulate the simultaneous access of

several customers to the CBR-TM module. The number of customers access-

ing to the system, the number of requests per customer and the statistical

distribution –Random Normal distribution or Uniform Random distribution–

which determines the time that the customer waits in between two requests

are configurable. The client also shows, if desirable, the specific solutions pro-

posed by CBR-TM, the average answer time to solve a request or to notify a

new ticket that has been solved and their standard deviations.

Several executions of this tool varying its parameters have to be done in order

to test the robustness of CBR-TM. The results of those executions are revised

after to elaborate evaluation graphs.

18

The Test Tool checks the system correctness and assesses its performance.

This tool can do several types of tests based on cross-partition and leaving-

one-out techniques to appraise some aspects of the system, such as reliability,

consistency and duplicity, among others.

Using these tools some verification tests have been performed. For this pur-

pose, a synthetic database (extracted from the tickets database) with a total

amount of 360 tickets in the domain of computer errors has been used. Each

one of them represents a computer error problem which can be requested to

be solved by the system and its features. Note than an entry in this database

is not equivalent to a case, since, as it is pointed out before, a case is the

prototyped representation of a set of tickets with the same features and the

same solution applied satisfactorily to solve the problem that those tickets

represent.

Several scripts to modify and evaluate the database are also implemented. By

means of them, a specified percentage of noise or loss in the data of the original

database has been introduced. In this way, the operation of the system when

there are void attributes (not answered) or printing errors has been checked.

4.1 Test Results

CBR-TM has been checked from the following points of view [20]:

(1) Verification: the accuracy of the solutions offered by the system has to

be tested. To do it it is necessary to verify the non-existence of:

• Duplicate cases.

• Inconsistencies: cases that lead to contradictory conclusions.

19

• Omissions: queries that do not match any case in the case-base.

• Isolations: cases that are never retrieved.

(2) Validation: the suitability of the system to solve the specified problem

has also to be tested.

TISSAT was interested in checking the behaviour of some of the similarity

measures implemented in a particular computer error domain, which is related

with a project that is currently managed by the company. Therefore, the tests

were repeated setting the system to work with a different similarity measure

each time.

First, the precision of the system in retrieving the cases stored in the case-

base when a new problem is presented was checked using the Test Tool. Since

the k-nearest neighbour algorithm is used to select the most similar stored

case, a case must fit exactly with itself (100% rate of similarity). To perform

this test all the tickets of the database were requested to CBR-TM in order

to create the corresponding cases and, once they were loaded in the case-base,

each ticket was used again to carry out a new request to the system. As all

the tickets have been processed already by the CBR system, the requests must

retrieve exactly the case that was created the first time that each ticket was

requested with a 100% rate of similarity.

Another characteristic that must be checked if the k-nearest neighbour algo-

rithm is used is the consistency of the case-base. Therefore, two equal re-

quests must retrieve the same cases from the case-base with the same similarity

rates. The same process described above was followed to load the case-base of

CBR-TM. In order to test this condition, each ticket of the database was used

to perform two identical requests.

20

Finally, the existence of duplicities in the case-base that the system creates

has to be ruled out. This fact does not harm the system operation, but it could

cause some problems, such as to slow down the response time of the system.

For this purpose, the Test Tool was used again to load the case-base with

the tickets database in the same way as it was done in the other tests. After

that, each ticket was used again as a new request to the CBR-TM module. If

the same database has been used to create the case-base and to perform the

requests and the system does not produce duplicated cases, it can not retrieve

more than one case from the case-base with a similarity rate of 100%.

In all these tests, the system behaved as expected with all the similarity mea-

sures tested.

Once it was verified that the system implemented performs well and gives

correct answers, its behaviour when some errors or omissions in the data are

introduced was tested by using the Test Tool. In order to check the system

ability managing noisy or lost data in the requests, the case-base was

loaded with the original tickets database and, after that, it was disturbed for

a rate of 10%, 20%, 40% and 60% of the total number of features stored.

Therefore, the corresponding amount of features were changed by introducing

a random value from the range of the possible values for each feature (noise) or

deleting the value (loss). Finally, this disturbed database was used to perform

the requests to the CBR system and to compute the classification errors. Note

that it is considered an error when a disturbed request does not retrieve the

same case than the original request. The results obtained setting the system to

work with the different similarity measures implemented are shown in figures

3 and 4. As it can be appreciated, CBR-TM manages well corrupt data and

the mean error in the answers that the module provides continues being low.

21

The behaviour of our CBR system when the case-base itself is disturbed

with noisy or lost data was also tested. Thus, the tickets database was

disturbed for a rate of 10%, 20%, 40% and 60% of the total number of features

stored changing or deleting their values as it is explained above. In this case,

the Test Tool was used to load the disturbed database and to test the module

with requests coming from the original tickets database. The results obtained

are shown in figures 5 and 6.

The figures show that CBR-TM performs well with noisy or lost data in the

case-base, although, as it was expected, the corrupt data reduces its efficiency.

Finally, the Load Tool was used to test the system performance. This per-

formance could be influenced by the number of tickets reported to CBR-TM

or the number of customers performing requests simultaneously. As it can be

appreciated in figure 7, as the amount of tickets that have been requested to

CBR-TM increases, the mean error in the answers that the system provides

decreases. This fact shows that the system knowledge goes up quickly as the

amount of processed data increases.

Figure 8 analyses the CBR-TM response time when the load of customers

making simultaneous requests increases. CBR-TM is able to give a quick an-

swer even when the number of simultaneous requests is large.

Regarding to the behaviour of the similarity measures tested, the results of

the figures show that they behave in a very similar way in the computer error

domain, with a little advantage of the Tversky-based similarity measure when

the data is disturbed.

22

5 Conclusions

We have developed a modular and flexible CBR system called CBR-TM. The

system helps the problem solving process done by the operators of a helpdesk

application in a customer support environment. CBR-TM has been imple-

mented as a module for an existing helpdesk application. It has been devel-

oped as generic as possible. This fact allows quickly updating the CBR module

to any software or technology change in the helpdesk system. The CBR-TM

module has been integrated successfully into the core of the I2TM helpdesk

application of the Spanish company TISSAT S.A.

The CBR-TM module behaves well when it attends to the requests of simul-

taneous customers. The accuracy of CBR-TM in offering solutions improves

as the size of its case-base increases. Therefore the system learns properly the

new solutions created by the helpdesk operators. The tests performed show

also the robustness of the system in presence of corrupt data.

Although in this paper the CBR-TM module has been tested in a specific

helpdesk working in the domain of computer errors in public administration

organisms and private companies, it could be easily adapted to work with

different domains. Moreover, this system is recently implanted and more in-

tensive research to improve the algorithms and the techniques applied will be

done. One of the main interests is to change the manual categorisation into an

automatic one. This would prevent CBR-TM from the mistakes that the op-

erators can make. Anyway, the approach that has been taken in this research

was to adapt generic algorithms that could be suitable, in principle, to any

customer support domain. The flexibility of the CBR-TM module architecture

23

allows to add any new algorithm that can fit better the purposes of a specific

helpdesk.

References

[1] Aamodt, A., & Plaza, E. (1994). Case-based reasoning: foundational issues,

methodological variations and system approaches. AI Communications, 7(1),

39-59.

[2] Acorn, T., & Walden, S. (1992). SMART: Support Management Automated

Reasoning Technology for Compaq Customer Service. In: Proc. ITS’92, vol. 4,

AAAI Press, (pp. 3-18), Berlin.

[3] Althoff, K-D., Auriol, E., Barletta, R., & Manago, M. (1995). A Review of

Industrial Case-Based Reasoning Tools, AI Perspectives Report, AI Intelligence,

Oxford OX2 7XL.

[4] eGain (2008). www.egain.com.

[5] Empolis Knowledge Management GmbH - Arvato AG (2008).

http://www.empolis.com/.

[6] Goker, M., & Roth-Berghofer, T. (1999). The development and utilization of

the case-based help-desk support system HOMER. Engineering Applications of

Articial Intelligence, 12(6), 665-680.

[7] Bergmann, R., Althoff, K-D., Breen, S., Goker, M., Manago, M., Traphoner, R.,

& Wess, S. (2003). Developing Industrial Case-Based Reasoning Applications,

The INRECA Methodology (2nd ed.). Lecture Notes in Articial Intelligence,

vol. 1612, Springer-Verlag.

[8] Kaidara Software Corporation (2008). http://www.kaidara.com/.

24

[9] Kang, B.H., Yoshida, K., Motoda, H., & Compton, P. (1997). Help Desk System

with Intelligent Interface. Applied Articial Intelligence, 11(7-8), 611-631.

[10] Kolodner, J. (1993). Case-based Reasoning. Morgan Kaufmann Publishers.

[11] Kriegsman, M., & Barletta, R. (1993). Building a Case-Based Help Desk

Application. IEEE Expert: Intelligent Systems and Their Applications, 8(6),

18-26.

[12] Raman, R., Chang, K.H., Carlisle, W.H., & Cross, J.H. (1996). A self improving

helpdesk service system using case-based reasoning techniques. Computers in

Industry, 2(30), 113-125.

[13] Roth-Berghofer, T., & Iglezakis, I. (2000). Developing an Integrated Multilevel

Help-Desk Support System. In: Proc. GWCBR’00, DaimlerChrysler, Research

and Technology, FT3/KL, (pp. 145-155).

[14] Roth-Berghofer, T. (2004). Learning from HOMER a case-based helpdesk

support system. Advances in Learning Software Organizations, Springer-Verlag,

88-97.

[15] Shimazu, H., Shibata, A., & Nihei, K. (1994). Case-Based Retrieval Interface

Adapted to Customer-Initiated Dialogues in Help Desk Operations. In: Proc.

AAAI’94, vol. 1, AAAI Press, (pp. 513-518).

[16] Simoudis, E. (1992). Using Case-Based Retrieval for Customer Technical

Support. IEEE Intelligent Systems, 7(5), 10-12.

[17] Soria, E., Balaguer, E., Palomares, A., & Martn, J. (2006). Predicting Service

Request in Support Centers based on Nonlinear dynamics, ARMA Modelling

and Neural Networks. Expert Systems with Applications, vol. 34(1), 665-672.

[18] Tissat S.A (2008). www.tissat.es.

[19] Tversky, A. (1997). Features of similarity. Psychological Review, 84(4), 327-352.

25

[20] Watson, I. (1997). Applying Case-Based Reasoning, Techniques for Enterprise

Systems. Morgan Kaufmann Publishers Inc.

26

Figure Captions

Figure 1: Overview of the data structure in I2TM and CBR-TM.

Figure 2: System Operation.

Figure 3: CBR-TM ability to manage noisy data in the requests features.

Figure 4: CBR-TM ability to manage lost data in the requests features.

Figure 5: CBR-TM ability to manage noisy data in the case-base.

Figure 6: CBR-TM ability to manage lost data in the case-base.

Figure 7: Influence of the processed data on the CBR-TM performance.

Figure 8: Influence of the amount of simultaneous customers on the CBR-TM

performance.

27

