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planning protection policies for natural s
that are often studied to detect human act
works and urban nuclei (Goetz, Jantz, & 
Scott, Loveland, & Pidgorna, 2009). The
 impact on the natural environment is an evident global fact. Natural, industrial and touristic areas coexist 
re than delicate balance. In Andalusia, in the south of Spain, the Regional Ministry for the Environment is 
ible for the control and preservation of natural resources. This task bears a high cost in time and money. 
 sensing and the use of intelligent techniques are excellent tools to reduce such costs. This work explores 
t use of the lidar sensor, which provides a great quantity of information describing three dimensional 
nd the application of intelligent techniques for rapid and efficient land use and land cover classification 
e objective of differentiating urban land from natural ground close to protected areas of Huelva province. 
, seven types of land use and land cover have been studied for a riparian area next to the mouth of the 
into and Odiel, extracting 33 distinct features from the lidar point cloud. Subsequently, a supervised 

g algorithm is applied to construct a model which, with a resolution of 4 m2, obtained relative precision 
n 71% and 100%and an average total precision of 85%.
1. Introduction

The coast of Huelva, in the south of Spain, is a clear example of 
industrial progression and environmental protection coexisting in 
a common space. In proximity to the capital, a great number of 
industrial areas exist including the refineries that feed fuel to the 
southern area of Spain as well as coastal areas with high touristic 
development. The combination of both factors puts large natural 
areas at risk such as the Doñana National Park, within which can 
be found endangered species such as the Iberian Lynx (lynx pardi-
nus), in great risk of extinction. The human impact on this and 
other areas of the territory concerns the Regional Ministry for 
the Environment of Andalusia which is designating large quantities 
of resources to control it.

The human influence on natural surroundings is not only a local 
fact. Many authors recognize that human beings and their activi-
ties are the principle factor that influences the evolution of the nat-
ural environment. In addition, human impact is a key factor when 
paces. Two key factors 
ivity are transport net-
Jantz, 2009; Svancara, 
se parameters permit
evaluating the risk of damage to natural areas nearby (Jones et
al., 2009) and to draw up policies to correct the possible effects
of human development. One of the most important tools to control
these factors is the control and monitoring of land uses and land
cover (LULC) using remote sensing.

Since its appearance, remote sensing has been used with
different purposes in terms of natural resources. Recently, many
authors have used remote sensing to monitor species (Stow,
Hamada, Coulter, & Anguelova, 2008), or changes in cities
(Gamanya, Maeyer, & Dapper, 2009), characterize the morphology
of urban nuclei (Gill et al., 2008), study the richness of bird species
in natural areas (Goetz, Steinberg, Dubayah, & Blair, 2007) or the
severity of fires (Kokaly, Rockwell, Haire, & King, 2007), etc. In
terms of monitoring changes, the authors mainly tend to use clas-
sical remote sensing techniques based on satellite images (Fraser,
Olthof, & Pouliot, 2009; Pignatti et al., 2009; Townsend, Looking-
bill, Kingdon, & Gardner, 2009). It is important to bear in mind that
studies of monitoring changes in natural environments are based
on the interpretation of LULC maps (Svancara et al., 2009; Wang
et al., 2009). In this way, an advance in the generation of these
products will imply a possible direct improvement of the results
obtained with these methodologies. Furthermore to the monitor-
ing of changes, LULC has been studied profusely (Schubert, Sand-
ers, Smith, & Wright, 2008, 2009) with the general objective of
treating areas of particular interest from an economical or environ-
mental point of view. In these cases, planning and management
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play an important role at the time of exploiting the resources but
are always subject to the quality of the products extracted from re-
mote sensing (Dorigo et al., 2007; Kennedy et al., 2009).

The new technologies based on novel sensors, such as lidar, have
become an excellent tool for improving the results of traditional re-
mote sensing (Chen, 2007). Its capacity to register the height of ob-
jects overcomes the limitations that usually come with working
with images. Due to this ability, it is relatively simple to distinguish
between the ground and objects to develop digital terrain models
(DTM), a primary product for a wide variety of applications. To pro-
duce DTM’s, a multitude of techniques have been proposed from
the lidar point cloud (Evans & Hudak, 2007; Sithole & Vosselman,
2003). It is very important to point out that the laser is not affected
by shadows and their associated problems nor does it need to be
flown during the day due to its special characteristics. All these
advantages, along with a progressive decrease in the related costs
compared to other data sources such as satellite images, make lidar
one of the leading technologies in environmental investigation.

In accordance with the proven usefulness of lidar, many investi-
gators have chosen to use it as supporting technology for images. In
this way, they tend to fuse sensors, with the objective of improving
the results obtained separately (Arroyo, Pascual, & Manzanera,
2008; Bork & Su, 2007; Chust, Galparsoro, Franco, & Uriarte, 2008;
Dalponte, Bruzzone, & Gianelle, 2008) whilst others focus their ef-
forts on lidar as the only data source with excellent results (Chen,
Su, Li, & Sun, 2009; Pascual, Garcia-Abril, Garcia-Montero, Martin-
Fernandez, & Cohen, 2008). Each strategy has its own advantages
and disadvantages. The fusion provides a large quantity of data that
produces extra information for any classification method. But also, it
requires greater effort to adapt data from multiple sensors giving
place to an increase in development and testing time. Furthermore,
some studies show little improvement in classifications based on fu-
sion among lidar and other sensors when they are used to carry out
determined tasks (Jensen, Humes, Vierling, & Hudak, 2008; Thessler
et al., 2008). Other works (Townsend et al., 2009) advise being cau-
tious when merging data in general, including if they are of the same
typology which could be the case with satellite images.

Another important decision to bear in mind is the work para-
digm selection. In classical remote sensing, the smallest significant
unit is the pixel which is characterized by having a standard size.
The data sources are divided in one series of pixels from which
information is extracted to be used later for general classification.
Instead, recently, a new paradigm of work has started to be ap-
plied, object-oriented approaches (Gamanya, Maeyer, & Dapper,
2007). An object, contrary to a pixel, does not have a fixed size
but depends on the type of the object in question. Thus, the data
to classify is decomposed in diverse objects of variable size which
have been extracted through some type of segmentation technique
at a previous stage. Lately, the application of object-oriented tech-
niques has commenced on lidar as a unique data source to resolve
various tasks with good results (Antonarakis, Richards, & Brasing-
ton, 2008; Donoghue, Watt, Cox, & Wilson, 2007). In this case,
the object-oriented techniques apply a segmentation from com-
puter vision techniques using a set of features extracted from lidar.
Afterwards, the classification method proceeds to learn from the
segmented objects to classify future instances. Despite the results
being very promising, unresolved problems still exist, essentially
because segmentation of lidar data is not a process easily auto-
mated needing the interaction with the user to achieve good re-
sults. An additional problem is that the return intensity is one of
the main parameters used in carrying out segmentation with lidar.
This datum can be affected by other factors (impact angle, sensor
distance (Hofle & Pfeifer, 2007) which can modify its value and fal-
sify the final result. As opposed to object orientation, the tradi-
tional pixel-based approaches and work with models resulting of
the application of advanced intelligent techniques (Witten & Frank,
2005) could be applied on lidar with good results and with much
greater levels of automation. In this sense, numerous studies show
that intelligent techniques could be applied to lidar data, such as
vector-support machines (Koetz, Morsdorf, van der Linden, Curt,
& Allgower, 2008), artificial neural networks (Brzank, Heipke, Goe-
pfert, & Segel, 2008) or clustering (Pascual et al., 2008).

In this work we show a new application of intelligent techniques
with the objective of extracting hidden knowledge in lidar data and
use it to work on urban and natural areas with the objective of:

� Defining a general method based on intelligent techniques to
classify high resolution LULC using lidar as a unique data source
and to demonstrate its value to detect human activity in an
automated manner.
� Using this method to evaluate the human impact on a riparian

area located on the Atlantic coast of Huelva province (Andalu-
sia, Spain) close to the Doñana National Park.

2. Data description

The data for this work was provided by REDIAM (Andalusia
Environment Information Network) which pertains to the Regional
Ministry for the Environment of Andalusia. The data was taken in
coastal areas of the province of Huelva (see Fig. 1) and Cadiz
between the 23rd and 25th of September 2007 and the flight
was operated at an average height of 1200 m with low inclination
angles (<11�) and nominal density of 2 pulses/m2. The pulses were
geo-referenced and correctly validated by the distributor of the
data and having 1,384,875 records. The reported precision indi-
cates a maximum error of 0.5 m in the x–y positions, and of
0.15 m in the z-position. As well, the rest of the LAS standard is
available: intensity, angle, etc. Along with the lidar flight, aerial
photographs were taken of the area and they were used in the
training and testing selection phases.

The study area is located in the south of Spain, in the mouth of
the Tinto and Odiel rivers (UTM30; 150960E 4124465N). Near the
city of Huelva, this area presents a mix of land uses among which
are found industrial areas, roads and railways, port facilities and
natural areas. The vegetation can be divided in three large groups.
The first being tall vegetation which is formed by scarce trees of
the genus eucalyptus in the area. The middle vegetation would be
formed by different types of Mediterranean bushes that principally
surround roads and urban areas. Pastures are classified as low veg-
etation. Furthermore, the undeveloped land formed by marshland
close to the river is another important class which must be taken
into account in this ecosystem.

Lidar data can be exploited mainly depending on three factors:
density, intensity and height. A brief study of the different re-
sponses of each terrain type could be useful to outline the main dif-
ferences between each of the classes.

2.1. Water

The non-bathymetric lidar sensor does not usually reflect itself
on underwater areas. This means that pixels classified as water will
have low density. Furthermore, the few that do reflect will have
low energy due to the large amount it refracts and loses. Finally,
the differences among heights will be rare given that river mouths
generally have gentle swells.

2.2. Marshland

Marsh areas are transitions between underwater terrain and
vegetated or urban terrain. They are formed by low bush and dif-
ferent types of grass. It is characterized by low heights and med-
ium/high intensity distribution.



Fig. 1. Study area. The area is found near the city of Huelva, in the mouth of the Tinto and Odiel rivers.
2.3. Low vegetation

These areas are interior with sparse and very low vegetation
which produces low returns. They have the maximum intensity
distribution due to their high reflectivity rate in respect of vegeta-
tion cover. Their height is low but greater than in marshland areas.

2.4. Middle vegetation

This class is formed by medium sized bushes and located
mainly among roads, trees, etc. They have an average level of dou-
ble or triple returns per pulse. The intensities are also of a mid level
varying in relation to whether impact is made on trunk or on leaf.
The average height is around one meter.

2.5. High vegetation

It is mainly formed by trees and large bush structures. The high-
est index of multiple returns can be found in this group whilst the
average height is found to be in the high area of the overall height
distribution.

2.6. Transport networks

This class is formed by all infrastructures used to transport peo-
ple or materials. It is characterized by high intensities and low
heights. Furthermore, the majority of pulses only produce one re-
turn due to the absence of obstacles.

2.7. Urban areas

The most complicated class due to its variability. Intensities and
heights vary depending on the material and type of construction.
Buildings, landfill and port facilities are found in this class.

3. Method

The general form in which the authors evaluate the environmen-
tal impact is based on products generated by remote sensing tech-
niques such as LULC maps. In our case, to develop these products,
the classification of lidar data is required. With this objective, this
study proposes a method based on the application of intelligent
techniques on a collection of features previously generated. In
Fig. 2, an overall view of the whole classification process can be
found which will be described in detail in the following headings.

3.1. Area selection and pre-processing

The pixel-oriented strategy obliges us to create a matrix where
each element is a pixel. Each pixel represents an area in function of
the resolution. The value of resolution must be provided by the
user as a method parameter to determine the area within each pix-
el. In our case, the resolution was fixed at 4 m2. The resolution de-
pends on the density of the points directly: on one hand, two
pulses per m2 is not advised for use with bigger resolutions mainly
due to lack of sufficient pulses to apply the algorithm; on the other
hand, lower resolutions produce noise in smaller classes like roads,
which usually are not wider than 3 or 4 m. The resolution chosen
implies that the total pixels for classification are 141,376. Apart
from the resolution, it is necessary to supply a DTM (Garcia-Gut-
ierrez, Martinez-Alvarez, & Riquelme-Santos, 2008) to extract the
actual heights of the returns.

In addition, the flight must be pre-processed to eliminate dis-
tinct types of noise, applying two types of techniques. The first is
a correction of intensity (Hofle & Pfeifer, 2007) in accordance to
Eq. (1), where I is the original intensity for a return, R is the dis-
tance from the laser source to the furthest return and Rs is the ac-
tual distance from the source to the return itself. The second
technique of pre-processing applies a statistical method of outlier
elimination on the z component of the points. Thus, through a filter
on the 95th percentile, those points with heights above 17 m are
eliminated. Lastly, a smoothing method is applied based on (Lee,
1980) to mitigate the influence of possible outliers that appear
undetected with respect to return intensity.

IðRsÞ ¼ I � R2

R2
s

: ð1Þ
3.2. Model generation

Supervised learning needs previously classified data. For this
task, knowledge extracted from the available products in the REDI-
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Fig. 2. Classification process.

Table 1
Thirty-three candidate predictor variables with 10 final selected variables indicated in
bold.

Variable Description Type

IMIN Intensity minimum Intrapixel
IMAX Intensity maximum Intrapixel
IMEAN Intensity mean Intrapixel
IVAR Intensity variance Intrapixel
ISTD Intensity standard deviation Intrapixel
IAAA Intensity average absolute deviation Intrapixel
IRANGE Intensity range Intrapixel
HMIN Height minimum Intrapixel
HMAX Height maximum Intrapixel
HMEAN Height mean Intrapixel
HVAR Height variance Intrapixel
HSTD Height standard deviation Intrapixel
HAAA Height average absolute deviation Intrapixel
HRANGE Height range Intrapixel
IKURT Intensity Kurtosis Intrapixel
ISKEW Intensity Skewness Intrapixel
HKURT Height Kurtosis Intrapixel
HSKEW Height Skewness Intrapixel
ICV Intensity coefficient of variation Intrapixel
HCV Height coefficient of variation Intrapixel
SLP Slope Interpixel
RDIFF Relative difference among neighbours Interpixel
RZDIFF Elevation difference between first and last return Interpixel
PCT1 Percentage 1st returns Intrapixel
PCT2 Percentage 2nd returns Intrapixel
PCT3 Percentage 3rd or later returns Intrapixel
PCT31 Percentage 3rd returns over 1st returns Intrapixel
PCT21 Percentage 2nd returns over 1st returns Intrapixel
PCT32 Percentage 3rd returns over 2nd returns Intrapixel
NOTFIRST Percentage 2nd or later returns Intrapixel
EMP Empty plots surrounding Interpixel
TPO Total number of points Intrapixel
CRR Canopy relief ratio Intrapixel
AM is used to manually classify around 3% of all data (2168 pixels).
Furthermore, to extract the training set, it is necessary to use sup-
porting photographs taken on the same flight as that of lidar data.

Once the resolution is fixed and input data pre-processed, con-
struction of the pixel matrix follows. Each selected pixel is labelled
as part of the training set. For each pixel, a set of features based on
the intensity, height and pulse distribution is calculated. These fea-
tures can be classified as intrapixel or interpixel. The intrapixel fea-
tures are those which are calculated with pulse data found within a
pixel, whilst the interpixel features are those which are character-
ized as defining a relation between each pixel and its eight adja-
cent neighbours. With these features, characterization of the
terrain is attempted, formalizing the visual differences or morphol-
ogies of the different classes.

Table 1 contains the 33 different features used in this study. The
majority of the features have been extracted from the bibliography
(Hudak, Crookston, Evans, Halls, & Falkowski, 2008) except the fol-
lowing, which are original contributions of this work:

� RZDIFF: Summation of the distances between the first returns
and subsequent returns.
� RDIFF: Difference in heights between neighbouring pixels.
� EMP: Number of empty neighbouring pixels.

Once the training set formed by the labelled pixels with their
classes is completed, the generation of features proceeds. To carry
out this task, original ad hoc software was developed. Before gen-
erating the model, a method of attribute selection is applied: CFS
(Hall, 1999) that evaluates the worth of a subset of attributes by
considering the individual predictive ability of each feature along
with the degree of redundancy between them. Subsets of features
that are highly correlated with the class while having low intercor-
relation are preferred. For our data, the method selected 13 attri-
butes: IMEAN, IMIN, HMEAN, HMIN, HMAX, HCV, SLP, CRR,
ISKEW, PCT21, EMP, RDIFF and RZDIFF. As it is possible to observe,
the three new features were included in the subset, verifying their
importance.

With the selected features already generated, the next phase is
the execution of the classification algorithm. Three types of intelli-
gent techniques have been studied to extract the model: vector-
support machines (SVM) (Cortes & Vapnik, 1995), artificial neural
networks (ANN) and decision trees (DT) (Friedl & Brodley, 1997).
The following implementations were chosen: in the case of the
neural network, a Multilayer Perceptron, a classifier that uses back-
propagation to classify instances; for the SVM, the implementation
of EL-Manzalawy & Honavar (2005) was used; for the decision tree
definition, the algorithm C4.5 (Quinlan, 1996) was used. The three
models were executed in the data mining environment WEKA
(Witten & Frank, 2005).



Table 3
Summary of the tests on ANN and confusion matrix.

User
classnsample

Water Marsh Roads and
railways

Low
veg.

Mid
veg.

High
veg.

Urban
terrain

Water 83 5 0 0 0 0 0
Marshland 3 620 0 0 4 0 2
Roads and

railways
1 1 185 0 9 0 6

Low veg. 0 1 0 138 0 0 3
Mid veg. 0 2 4 0 113 1 14
High veg. 0 0 0 0 2 105 7
Urban

terrain
1 17 7 6 16 12 800

Producer’s
accuracy

0.94 0.95 0.94 0.96 0.78 0.88 0.96

User’s
accuracy

0.94 0.99 0.92 0.97 0.84 0.92 0.93

Total
accuracy

94.28

KIA 0.92

Table 4
Summary of the tests on DT and confusion matrix.

User
classnsample

Water Marsh Roads and
railways

Low
veg.

Mid
veg.

High
veg.

Urban
terrain

Water 88 0 0 0 0 0 0
Marshland 0 624 0 0 0 0 5
Roads and

railways
0 1 190 0 4 0 7

Low veg. 0 0 0 134 0 0 8
Middle veg. 0 1 3 0 120 2 8
High veg. 0 0 0 0 0 105 9
Urban

terrain
0 6 7 1 11 4 830

Producer’s
accuracy

1.0 0.99 0.95 0.99 0.88 0.95 0.96

User’s
accuracy

1.0 0.99 0.94 0.94 0.9 0.92 0.97

Total
accuracy

96.45

KIA 0.95
4. Results

4.1. Comparison of methods

To select the technique which is best adapted to our data, a 10-
fold cross validation was carried out also used to evaluate the clas-
sification methods in remote sensing (Tooke, Coops, Goodwin, &
Voogt, 2009). The tests carried out show that the decision trees ob-
tained the best results. In Table 2–4, the total and partial precisions
and the kappa index of agreement (KIA) obtained for the three
techniques on the 2168 training pixels are shown. The three tech-
niques obtained high precision when classifying the pixels, but the
application of the decision tree produced an improvement of al-
most 2% points. So, the decision tree is chosen as the model extrac-
tion method. It is important to emphasize that this technique
provides a white box model (it explains how decisions are made).
The other techniques do not provide an easily understandable
model. Bearing in mind that the final user is not an expert in intel-
ligent techniques, greater control of the model would improve sat-
isfying their needs. In addition, the potential of decision trees to
indicate which features in the original set are interesting or not
and to what extent, which allows automatic selection of attributes,
must be underlined.

In order to evaluate the statistical significance of the measured
differences in algorithm ranks, a procedure suggested in several
works (Demsar, 2006; Garcia & Herrera, 2008) for robustly com-
paring classifiers across multiple datasets is used. In this case,
there is only one dataset because lidar data has high costs to be ob-
tained. Therefore, the training set is split in five subsets randomly.
Then, a 10-fold-cross-validation is made for every subset. At the
end, there are 50 measures for every algorithm and then, the pro-
cedure is carried out.

The chosen procedure involves the use of the Friedman test to
establish the significance of the differences between classifier
ranks and, potentially, a post hoc test to compare classifiers to each
other. In our case, the goal was to compare the performance of the
rival algorithms to that of C4.5 (control classifier). Pairwise com-
parisons should not be used when we in fact only test whether a
newly proposed method is better than the existing ones. Thus,
the Holm procedure was selected as the appropriate post hoc test.

The Friedman test is a non-parametric statistical test for evalu-
ating the differences between more than two related sample
means – where the related samples are, in our case, the perfor-
mances of k classifiers across n target datasets. In our case, we
are working with five datasets made by random selections from
Table 2
Summary of the tests on SVM and confusion matrix.

User
classnsample

Water Marsh Roads and
railways

Low
veg.

Mid
veg.

High
veg.

Urban
terrain

Water 87 1 0 0 0 0 0
Marsh 2 624 0 0 3 0 0
Roads and

railways
0 1 179 0 2 0 20

Low veg. 0 0 0 138 1 0 3
Mid veg. 0 1 2 0 116 1 14
High veg. 0 0 0 0 1 103 10
Urban

terrain
0 19 5 7 11 5 812

Producer’s
accuracy

0.98 0.97 0.96 0.95 0.87 0.94 0.95

User’s
accuracy

0.99 0.99 0.98 0.97 0.87 0.9 0.94

Total
accuracy

94.97

KIA 0.93
the original set. The null hypothesis being tested is that all
classifiers perform the same and any observed differences are
merely random. This is equivalent to testing whether the measured
average ranks rj are significantly different from the expected
mean rank. The statistic used in the Friedman test can be seen in
Eq. (2).

X2
F ¼

12n
kðkþ 1Þ

X
j

r2
j �

kðkþ 1Þ2

4

!
: ð2Þ

Average ranks provide a fair comparison of the algorithms,
revealing that, on average, C4.5 ranks first. Given the measured
average ranks, the Friedman test checks whether the average ranks
are significantly different from the mean rank r = 2.0 expected un-
der the null hypothesis. Leaning on a statistical package (MATLAB),
p-value for the Friedman test has resulted on a value of 2.923e�10
so the null hypothesis is rejected, having found that the measured
average ranks are significantly different (at a = 0.05). Provided that
the Friedman test rejects the null hypothesis, we can proceed with
a post hoc test that evaluates the relative performance of the stud-
ied algorithms against a control algorithm r0 (in our case, C4.5).
One such test is the Holm step-down procedure that tests hypoth-
eses sequentially ordered by their significance. The z-statistic com-
paring the ith classifier against the control one can be seen in Eq.
(3).



z ¼ ðri � r0Þffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ

6n

q : ð3Þ

With the Holm post hoc test, we can decide whether C4.5 is sig-
nificantly better than its rival algorithms. If pi is below a/(k � i), the
corresponding hypothesis is rejected and we proceed to comparing
pi + 1 with a/(k � i � 1). As soon as a certain null hypothesis cannot
be rejected, all the remaining hypotheses are retained as well. In
our case, the Holm procedure rejects all hypotheses as can be seen
in Table 5, since the corresponding p-values are smaller than the
adjusted a values in all cases. The analysis, thus, reveals that at
a = 0.05, the performances of all rival algorithms (SVM and Multi-
layer Perceptron) are significantly worse than that of C4.5.
4.2. Model precision

As was pointed out previously, to construct the decision tree
(see Fig. 3) 3% of the available pixels were used. The subsequent
Table 5
Holm test summing up with C4.5 (averaged rank = 1.33).

i Test Averaged rank (ri) p-Value of z a/(k � i) Comment

1 ANN 2.63 0.00001 0.0253 Reject Ho
2 SVM 2.04 0.0017 0.0500 Reject Ho

Fig. 3. A part of the model for the study zone.
classification of the remaining points produces the results in
Fig. 4 which will be commented on in the following section. To
estimate the error, a stratified test with 187 points was carried
out. The data of the test were randomly selected from the initial
unclassified set and the classes to which they pertained were eval-
uated. In a stratified test, the proportion among the classes was
maintained in respect to the original proportion of the training
data. In Table 6, it is possible to observe the results of the test
through the confusion matrix, producer and user’s accuracies,
and the kappa estimator of the tree obtained in the training phase.

The C4.5 algorithm gives rise to another selection of attributes.
Apart from the subset of 13 features generated by the CFS method,
10 final features remain. Within them, it is important to emphasize
that two of the new proposed features appear, RDIFF and RZDIFF.
The level of the node in which a feature is used gives the impor-
tance of that feature for the algorithm, more so, the closer to the
root of the tree it is. In Table 7, the distances of each selected fea-
ture in respect to the root of the tree can be viewed. Note that the
new features, RZDIFF and RDIFF, are used in level 2 and level 6
nodes, respectively.

The final result of the classification is a LULC map at a resolution
of 4 m and an average precision of 85%. In Fig. 4, a comparison of
the original orthophoto, the training set and the final result of
the classification is shown.
5. Discussion

In terms of the results of the classification method (Table 6), it
must be taken into account that although the riparian areas pres-
ent great difficulties for classification, the results show a great
overall precision. According to the latest studies (Shao & Wu,
2008), the general precisions of LULC maps developed for many
organizations do not exceed 85% despite this being the standard
for considering a LULC map a useful product. The proposed method
demonstrates achieving this level generally and even exceeding it
amply for specific classes. Analyzing the results in more depth,
we see that separability between classes through our lidar data is
proved and the method can be applied without the need of other
auxiliary sources.

Regarding the analysis of each class, it can be observed that the
best results coincide with the submerged areas, roads and marsh-
lands with precisions exceeding 90%. The worst results are those
that provide classification of middle vegetation and urban areas
with values around 72% of the overall precision. The latter is due
to medium vegetation being an intermediate class that can confuse
the algorithm as low vegetation and the urban class is a compli-
cated class with many subtypes. Some of them can share charac-
teristics of other classes, which leads to a greater probability of
failure.

Although good results have been obtained, some areas with a
relative high level of errors can be detected in the final result,
mainly in the areas of the harbor. This is inherent in pixel-oriented
approaches which attempt to classify without considering the con-
text of each pixel. The same problem appears in some roofless con-
structions. In the case of the port area, the type of terrain that
supports it posses a reflective response very similar to other terrain
nearby which causes the algorithm to fail. This problem must be
addressed in future works. Furthermore, some areas show severe
levels of noise probably caused by outliers in intensity. The pasture
areas are an example of this behaviour where pixels with equal
height distribution and density give place to two distinct classes.
Bearing in mind that lidar only works with heights, densities and
intensities, it is concluded that the error must be in the intensity.
Therefore, work must continue in the pre-processing of the
intensity.



Fig. 4. Original orthophoto, training set and final result; water in blue, urban areas in red, roads in dark grey, medium vegetation in green, low vegetation or naked earth in
yellow, high vegetation in light green, marshlands in brown and data not classified in light grey. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Table 6
Summary of the final test set and confusion matrix.

User
classnsample

Water Marsh Roads and
railways

Low
veg.

Mid
veg.

High
veg.

Urban
terrain

Water 32 0 0 0 0 0 0
Marshland 0 30 0 0 0 0 4
Roads and

railways
0 0 28 0 0 0 7

Low veg. 0 0 0 14 0 0 1
Mid veg. 0 0 0 2 12 0 3
High veg. 0 0 0 0 0 3 0
Urban

terrain
0 0 2 4 5 1 38

Producer’s
accuracy

1.0 1.0 0.93 0.7 0.71 0.75 0.73

User’s
accuracy

1.0 0.88 0.8 0.93 0.71 1.0 0.76

Total
accuracy

0.85

KIA 0.81

Table 7
Ten final variables selected by C4.5 decision tree and their
distance to the root.

Attribute Tree level

HMEAN 0
HMAX 1
HMIN 2
RZDIFF 2
CRR 3
HCV 3
IMEAN 3
ISKEW 4
IMIN 5
RDIFF 6
Apart from the map generated (Fig. 4), it is relatively simple to
analyze the condition of the study area. As can be observed, the ur-
ban zone (in red) extends practically over the whole area. The
roads segment the central area in such a way that the little vegeta-
tion that remains appears isolated by roads or railways. Only areas
prone to flooding remain as original marshlands, whilst high vege-
tation appears to extend through old abandoned urban areas. The
dry pastures occupy the central area but surrounded by roads
and urban areas, which could provoke its disappearance in the near
future. The generated map reveals that the area which contains
major roads is found to be subjected to great human impact, whilst
the bulk of peripheral areas maintain their original land, except for
small auxiliary constructions. In this way, the theory (Goetz et al.,
2009; Svancara et al., 2009) that roads are a key parameter to eval-
uate exposed risk to any type of original terrain, protected or not, is
confirmed.
6. Conclusions and future work

Public investments destined for conservation of the environ-
ment can be seen to reduce in the context of economic crisis. The
low level of automation to apply policies and environment protec-
tion methodologies causes implementation costs to be higher in
many cases. It is therefore necessary, to apply new techniques that
reduce such costs and improve the quality of the final product to
increase productivity.



In this work, an approach based on lidar data and intelligent
techniques to classify land uses and land cover of Mediterranean
riparian areas was analyzed. The objective is to evaluate environ-
mental quality of the land in an area close to natural surroundings
in the south of Spain. The developed method is based on a pixel-
oriented focus which classifies raw data in seven different classes.
From lidar data, a series of features are calculated (some of them
are original in this work) which are associated with each pixel.
Thereafter, an attribute selection method is applied to reduce the
set of variables to consider. Lastly, the extraction algorithm of
the classification model is applied. The tests carried out selected
the algorithm C4.5, which generates a decision tree, as the model.
Therefore, it has been demonstrated that different types of terrain
can be characterized using intelligent techniques in a multi-staged
process using lidar data.

With the application of intelligent techniques on lidar, it
achieves: first, to reduce development time of products required
in environmental tasks due to an increase in automation; and sec-
ond, reuse lidar data which is traditionally used to develop DTM’s,
and as has been seen, can serve to develop LULC maps. The method
does not make use of additional data such as images and the pre-
cision shown is adequate to treat areas extremely complicated to
classify whilst maintaining a very low computational cost.

In relation to future works, two problems arise. The first is the
need to integrate a method to work with temporal series of lidar
flights with the objective of giving capacity to the system to mon-
itor the distinct study areas. The second is the improvement of the
classification method itself, as some problems have already been
detected. Some are inherent in pixel-oriented approaches such as
the detection of partial structures. In the future, it would be very
interesting to apply a prior phase in which at low addition to the
computational cost, an object-oriented segmentation and classifi-
cation could be carried out to extract the most difficult structures
to classify. Furthermore, it has been observed that the detection of
outliers in the lidar return intensity is a task to be improved, since
it generates the majority of classification errors.
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