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This paper investigates the use of Higher Order Spectra parameters to identify the most common multiple
cardiac arrhythmias. In detail, we calculated magnitude of bispectrum, three values of bispectrum
entropy, mean and variance of the phase of bispectrum integrated over a particular region wherein no
bispectrum aliasing is assumed. This set of features is used to distinguish normal QRS from five different
classes of arrhythmia over a large amount of normal and pathologic ECG signals. An accurate parametric
and non-parametric analysis of these feature distributions is also performed in order to identify the opti-
mum classifier. Experimental tests were performed on signals gathered from the MIT-BIH Arrhythmias
Database, and mean and standard deviation of all confusion matrixes obtained from 20 steps of cross val-
idation are shown. Results showed that the bispectrum is high performance, reliable and robust method
to identify arrhythmias.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of single waves of electrocardiogram (ECG) signal,
such as QRS complex, P and T waves, is one of the essential tasks in
the cardiovascular arrhythmia detection. Therefore, automatic
arrhythmias recognition as medical decision support, is the most
important research area in the ECG signal processing (de Chazal,
Dwyer, Reilly, & Tabakov, 2004). Recently, a large amount of meth-
ods was developed to obtain efficient and robust features, ex-
tracted from QRS complexes, for automatic recognition by means
of classifier algorithms. Generally, these algorithms can be based
on three main analysis techniques: in the time, frequency and
time–frequency domain. Regarding the time analysis, which is
known as morphology based technique, the standard features are
heartbeat interval, amplitude parameters (QRS, ST), duration
parameters (QRS, QT, and PR), and combined parameters (Q/R ratio,
S/R ratio). More recently, two QRS descriptors have been defined to
recognize pathological events in real-time mode (Iliev & Krasteva,
2007), two indexes from QRS slope analysis have been introduced
(Pueyo, Sörnmo, & Laguna, 2008) in order to quantifying ischemia-
induced ECG changes in percutaneous transluminal coronary angi-
oplasty (PTCA), whilst either advanced morphologic parameters
from Karhunen–Loéve transform with an adaptive neurofuzzy lo-
gic classifier (Pang et al., 2005) or ECG parameters from the Dilated
Discrete Hermite expansion (Gopalakrishnan, Acharya, & Mugle,
2004) were used in heart ischemia detection.
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Regarding features extracted from QRS complex in the
frequency domain, methods based on a Fourier transform have
been developed in order to discriminate different kinds of rhythms
by means of several classifiers where the most common are
Artificial Neural Networks (ANNs) (Minami, Nakajima, & Toyoshima,
1999). Latest works used a Fourier Power Spectrum (FPS) of
QRS complex, observed in the range of 0–20 Hz, to classify the
cardiac arrhythmias with Grey Relational Analysis (GRA) (Lin,
2008).

Regarding the time–frequency techniques, Wavelet Transforms
(WT) have been applied to extract features of cardiac arrhythmias
(Addison, 1999). In particular, spatial transformation of QRS com-
plex by using Morlet Wavelet has been proposed to obtain features
for an ANN (Lin, Du, & Chen, 2008). Wigner–Ville distribution has
been used to characterize atrial fibrillation in the ECG and to track
the variations in fundamental frequency of the fibrillatory waves
(Stridh, Sörnmo, Meurling, & Olsson, 2001).

From current literature, several features are obtained from
Higher Order Spectra (HOS) of each QRS complex.

This choice is motivated by the following considerations
(Mendel, 1991):

� Shape information of a signal resides primarily in the phase and
not in the amplitude of its Fourier transform.
� HOS retain both amplitude and phase information from the

Fourier transform of the signal.
� HOS are translation invariant. Functions can be defined from

HOS, which satisfy desirable properties, such as scaling and
amplification invariance. These functions can be then utilized
as invariant features for pattern recognition.
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� HOS, of order greater than two, have zero expected value for
Gaussian noise. Therefore, the obtained features have high
immunity to additive Gaussian noise.
� Even if the signal is subjected to a time shift, the phase of

bispectrum remains unaltered.

This work is focused on the following features: invariants of the
bispectrum integrated in the triangular region showed in Fig. 3
(Chandran & Elgar, 1993), mean magnitude and phase of Shannon
entropy (Chang & Sun, 2004; Grassberger, Schrieber, & Schraffrach,
1991) integrated in the same triangular region (Chua, Chandran,
Acharya, & Lim, 2008).

Six classes of the most important arrhythmic QRS complexes
are used as target of the classifiers: (i) Normal Beat (NB), (ii) Paced
Beat (PB), (iii) Left Bundle Branch block Beat (LBB), (iv) Right Bun-
dle Branch block Beat (RBB), (v) Premature Ventricular Contraction
Beat (PVCB), (vi) Atrial Premature Contraction-1 Beat (APCB) (see
Fig. 1).

Usually, the arrhythmias recognition tasks are performed by
means of ANNs, it is due to their ability to separate feature spaces
into non-linear regions (Kinnebrock, 1992). However, this paper
aims at demonstrating a strong robustness of the extracted fea-
tures from HOS, which do not require further space transforma-
tion. Accordingly, the optimum classifier is carried out from a
study of the feature distributions, between non-parametric and
parametric methods (Duda, Hart, & Stork, 2001; Friedman, Hastie,
& Tibshirani, 2000; Heijden, Duin, Ridder, & Tax, 2004; Jain, Duin,
& Mao, 2000; Schlesinger & Hlavac, 2002; Vapnik, 1998; Webb,
2002). A deep discussion on the distributions is also reported into
Conclusion and Discussion section. Experimental tests were per-
formed on signals gathered from the MIT-BIH Arrhythmias Data-
base and in order to evaluate performance of each classifier, we
calculated mean and standard deviation of all confusion matrixes
obtained from 20 steps of cross validation (Kohavi & Provost,
1998).
Fig. 1. The most common cardiac arrhythmias from Lin et al. (2008).
2. Materials and methods

‘High Order Spectra’ (HOS) or polyspectra of a stochastic process
are defined from moments or cumulants of order greater than two.
In particular, this work is focused on the two dimensional third or-
der cumulant Fourier transform, called bispectrum (Mendel, 1991;
Nikias, 1993):

Bðf1; f2Þ ¼
Z Z þ1

t1 ;t2¼�1
c3ðt1; t2Þexp�jð2pf1t1þ2pf2t2Þdf1 df2 ð1Þ

with the condition:

jx1j; jx2j 6 p for x ¼ 2pf

The c3(t1, t2) variable represents the third order cumulant, which is
defined as follows:

c3ðt1; t2Þ ¼ E sðt1Þsðt2Þsðt1 þ t2Þf g ð2Þ

where s(t) is a square integrable stationary signal with zero mean.
Thus, the bispectrum measures the correlation among three spec-
tral peaks, x1, x2 and (x1 + x2) and estimates the phase coupling.

Sometime bispectrum is unable to distinguish between pairs of
frequency strongly coupled and pairs of frequency weakly coupled
but at high frequency, because their bispectrum values are similar.
In order to overcome this limitation it is possible to evaluate power
and calculate the bicoherence function. The bicoherence function is
the bispectrum normalized form with respect to its power
spectrum:

Bcoðf1; f2Þ ¼
Bðf1; f2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pðf1ÞPðf2ÞPðf1 þ f2Þ
p ð3Þ

where P(f) is the estimated power spectrum of the s(t) signal.

2.1. Bispectrum features

A previous study demonstrated that the bispectrum have the
following symmetry properties (Nikias & Raghuveer, 1987):

Bðf1; f2Þ ¼ Bðf2; f1Þ ð4Þ
Bðf1; f2Þ ¼ B � ð�f2;�f1Þ ð5Þ
Bðf1; f2Þ ¼ B � ð�f1;�f2Þ ð6Þ
Bðf1; f2Þ ¼ Bð�f1 � f2; f2Þ ð7Þ
Bðf1; f2Þ ¼ Bðf1;�f1 � f2Þ ð8Þ
Bðf1; f2Þ ¼ Bð�f1 � f2; f1Þ ð9Þ
Bðf1; f2Þ ¼ Bðf2;�f1 � f2Þ ð10Þ

that divides the (f1, f2) plane in eight symmetric zones (see Fig. 2).
Fig. 2. The eight symmetric zones of bispectrum.
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Bispectrum of a real signal is uniquely defined by its values in
the triangular region of computation, 0 6 f1 6 f2 6 f1 + f2 6 1,
provided there is no bispectral aliasing (Brillinger, Rosenblatt, &
Petropulu, 1967).

The bispectral feature set consists of: mean and variance of
bispectral invariants (mean and variance of P(a)), mean magnitude
(Mmean) of the bispectrum and the phase entropy (Pe), normalized
bispectral entropy (P1) and normalized bispectral squared entropy
(P2).

Specifically, let us introduce the bispectral parameter, P(a),
which is invariant to translation, dc-level, amplification, and scale.
It is defined as follows:

PðaÞ ¼ arctan
IiðaÞ
IrðaÞ

� �
ð11Þ

where:

IðaÞ ¼ IrðaÞ þ jIiðaÞ ¼
Z 1

1þa

f1¼0þ
Bðf1; af1Þdf1 ð12Þ

for 0 < a 6 1 and j ¼
ffiffiffiffiffiffiffi
�1
p

where a is the slope of the straight line on
which bispectrum is integrated.

In this work, only the mean and variance of this features are
considered.

Mean magnitude and phase entropy (Chang & Sun, 2004) are
calculated within the region defined in Fig. 3.

Mean magnitude is defined as:

Mmean ¼
1
L

X
X

jBðf1; af1Þj ð13Þ

and phase entropy is:

Pe¼
X

n

pðWnÞlogðpðWnÞÞ ð14Þ

pðWnÞ ¼
1
L

X
X

1 U Bðf1; af1Þð Þ�Wnð Þ ð15Þ

Wn ¼ fUj � pþ 2pn=N 6 / 6 �pþ 2pðnþ 1Þ=Ng ð16Þ

with n = 0, 1, . . . , N � 1.
L is the number of points within the region in Fig. 3, U refers to

the phase angle of the bispectrum, X refers to the space of the de-
fined region in Fig. 3, and 1(�) is an indicator function which is
equal to 1 when the phase angle U is within the range of bin Wn

in Eq. (16).
The mean magnitude of the bispectrum can be useful in dis-

criminating between processes with similar power spectra but dif-
ferent third order statistics. However, it is sensitive to amplitude
changes.

Normalized bispectral entropy (P1) is equal to:

P1 ¼ �
X

n

pnlogðpnÞ ð17Þ
Fig. 3. Bispectrum invariants from Chua et al. (2008).
where:

pn ¼
jBðf1; af1ÞjP
XjBðf1; af1Þj

ð18Þ

and X is the region as in Fig. 3.
Normalized bispectral squared entropy (P2) is calculated as:

P2 ¼ �
X

n

pnlogðpnÞ ð19Þ

where:

pn ¼
jBðf1; af1Þj2P
XjBðf1; af1Þj2

ð20Þ

and X is the region as in Fig. 3.
For each QRS extracted by the MIT-BIH arrhythmia database re-

cords, the bispectrum was computed using an indirect method as
Fast Fourier Transform (FFT) of a third order cumulant estimation.
All features are extracted as above described.

For each one of the six classes, the features distribution was
studied by means of Royston test (Royston, 1983; Royston, 1992)
which is an extension of the Shapiro–Wilk test. The Royston meth-
od combines each single univariate normality analysis into one
omnibus statistic test for multivariate normality (see Table 6).

2.2. Classifier

In this work two classifiers are used. The first, which is named
Mixture of Gaussian (MOG), represents a classifier based on para-
metric methods. The second, which is named is K-Nearest Neigh-
bor (K-NN) classifier, is one of the most popular non-parametric
classification tools. These classifiers are explained as follows:

2.2.1. MOG
Mixture of Gaussian algorithm uses a model-based approach to

cluster the input data Fig. 4. Each class is represented by a known
probabilistic distribution (Gaussian distribution) centered in the
centroid of the cluster (see Fig. 4).

All input data are modeled by a combination of these
distributions.

If mean and variance of all Gaussian distributions are known,
MOG algorithm calculates a distance function as the probability
that a new data refer to a specific class.

dðxi; cjÞ ¼ P xijGj
� �

¼ P xijmj;rj
� �

Otherwise, these parameters should be estimated by means of
an iterative algorithm, which is commonly named expectation
maximization (EM) (Xu & Jordan, 1992).
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Fig. 4. Mixture of Gaussian.
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2.2.2. K-NN–VDC
Non parametric K-Nearest Neighbor (K-NN) (Cover & Hart,

1967) algorithm uses the ‘‘proximity’’ concept between two exam-
ples belonging to the same class.

Our implementation was performed according to the following
steps:

1. In the training phase, the K-NN just stores the training set data
together with the labeling information.

2. In the test phase the K-NN calculates the Euclidean distance
between the new test example and all the examples of the
training set as follows:
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Fig. 7. Bispectrum class 3 Right Bundle Branch Block Beat.
D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 � q1Þ

2 þ ðp2 � q2Þ
2 þ � � � þ ðpn � qnÞ

2
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðpi � qiÞ
2

vuut ð21Þ

where P = (p1,p2, . . . ,pn) is a training set example, Q = (q1,q2, . . . ,
qn) is the new test set example, n is the number of features.
Bispectrum plot of Atrial Premature Contraction QRS
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Fig. 5. Bispectrum class 1 Atrium Premature Contraction.

Bispectrum plot of Premature Ventricular Contraction QRS
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Fig. 6. Bispectrum class 2 Ventricular Premature Contraction.

Bispectrum plot of Left Bundle Branch Block Beat QRS
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Fig. 8. Bispectrum class 4 Left Bundle Branch Block Beat.

Bispectrum plot of Paced Beat QRS
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Fig. 9. Bispectrum class 5 Paced Beat.
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Afterwards, the K-NN, found the K examples that have the min-
imum distance, simply associates the more frequent class to the
example test.

In order to verify the robustness of pattern recognition of the
QRS complexes, the result of K-NN was compared with a simple
Vector Distance classifier (VDC), which is a K-NN classifier with
K = 1 (see Table VDC vs K-NN).
3. Experimental results

QRSs are extracted by the MIT-BIH arrhythmia database re-
cords, labelled as 107, 109, 111, 118, 119, 124, 200, 209, 212,
214, 217, 221, 231, 232 and 233. The feature set is showed in Table
5, where each row indicates the specific class and the columns
reporting the kind of cardiac arrhythmia, the number of QRSs ex-
tracted, mean and standard deviation of all features for each six
classes (from Fc1 to Fc6), respectively.

An estimation of each bispectrum per class is reported (see
Figs. 5–10).
Bispectrum plot of Normal QRS
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Fig. 10. Bispectrum class 6 Normal Beat.

Table 1
Confusion matrix of MOG classifier.

Mean ± std of MOG

69.8417 ± 6.9049 0.7480 ± 0.3745 7.5280 ± 2.2377
1.2137 ± 0.6017 65.8211 ± 17.3218 0.7133 ± 0.3627
6.1082 ± 1.2531 3.3496 ± 0.5837 56.7483 ± 4.5267
2.1636 ± 0.7244 21.2846 ± 12.3493 20.6713 ± 1.3181
0.7256 ± 0.4520 6.3252 ± 5.1367 0.7867 ± 0.2290
19.9472 ± 6.5779 2.4715 ± 0.8900 13.5524 ± 5.8281

Table 2
Confusion matrix of K-NN classifier.

Mean ± std of K-NN

71.2137 ± 2.6797 0.7398 ± 0.3518 4.0594 ± 0.6186
0.3958 ± 0.3370 86.3496 ± 1.1333 0.4650 ± 0.2132
15.2902 ± 2.1116 3.6016 ± 0.4727 87.5455 ± 0.8918
0.6069 ± 0.4618 4.0976 ± 0.5721 5.0140 ± 0.4813
0.1187 ± 0.1596 2.4959 ± 0.7181 0.1364 ± 0.0698
12.3747 ± 1.3369 2.7154 ± 0.4480 2.7797 ± 0.5042
In Tables 1–3 the confusion matrix of the used classifiers is
showed; for each row and column the percentage of class recogni-
tion is reported in these tables the main diagonal represents the
percentage of the recognition of that particular class (in bold),
while the remaining data represent the errors of the recognition.

In Table 6, the study of the feature distributions is reported. In
this table the rows refer to the classes, the columns refer to statis-
tics Royston parameter, equivalent degrees of freedom, p-value,
test-significance and normal distribution response.
4. Conclusion and discussion

In this paper, a method able to extract a robust set of features
from the bispectrum was implemented, and the optimum classifier
was determined and validated through six classes of normal and
pathological QRSs. The bispectrum was calculated as Fourier trans-
form of an estimation of the third order cumulant.

In order to choose the best classifier, a study of the feature dis-
tributions was carried out by means of Royston test. The results ob-
tained from this test demonstrated that the feature distributions
are Gaussian for all the considered classes (see Table 6). Accord-
ingly, the MOG solution should theoretically be the most suitable
classifier. Nevertheless, as shown in the same table, all p-values
associated to each class, resulted under 0.6. It means that all
Gaussian distributions have a high variance, therefore distribution
tails are too overlapped (see confusion matrix Table 1) providing
high numbers of positive and negative false, thus it did not result
the most appropriate classifier. Instead, the use of non-parametric
classifiers such as K-NN and VDC resulted the best choice, and in
addition they did not required any statistical value from the distri-
butions (see Tables 2 and 3). It means that a classifier which asso-
ciates a new sample with a class, based on the occurrence of
samples of that class into a region around the new sample, showed
a better classification.

Regarding feature robustness, this paper showed very small
differences between VDC (K-NN with K = 1) and classic K-NN
(see Table 4) in terms of sensitivity. It means that the features
were satisfactorily located that either the use the smallest K value
(K = 1) or the optimum K value does not add significant differ-
ences. In addition VDC does not distort the feature space of inputs
with additional transformations demonstrating the excellent
feature placement. Worst outcome is from Atrium Premature
0.9704 ± 0.5285 0.4369 ± 0.2747 11.4181 ± 6.0215
1.4632 ± 1.2770 5.9778 ± 2.1344 0.1293 ± 0.1419
1.9522 ± 0.6563 3.4258 ± 0.8692 2.7651 ± 0.6002

77.8772 ± 3.8705 22.0527 ± 2.7164 5.1207 ± 3.1554
0.6141 ± 0.2602 65.2705 ± 2.8818 0.1616 ± 0.1161

17.1228 ± 3.4720 2.8363 ± 2.0367 80.4052 ± 7.3764

0.1289 ± 0.0700 0.1318 ± 0.1310 0.8556 ± 0.1668
1.5087 ± 0.3012 2.8433 ± 0.6029 0.1703 ± 0.0867
6.9105 ± 0.7787 1.4910 ± 0.6612 2.0647 ± 0.2996

82.3768 ± 1.2211 0.8460 ± 0.4097 2.5647 ± 0.3433
0.4397 ± 0.1292 94.4452 ± 1.3997 0.0086 ± 0.0177
8.6353 ± 0.8665 0.2427 ± 0.1736 94.3362 ± 0.5241



Table 3
Confusion matrix of VDC classifier.

Mean ± std of VDC

66.2797 ± 2.1497 0.8699 ± 0.3089 4.5000 ± 0.4270 0.1668 ± 0.1002 0.1040 ± 0.0994 2.1099 ± 0.2626
0.7652 ± 0.3622 86.4634 ± 1.3156 0.8776 ± 0.2182 1.5049 ± 0.3303 1.9626 ± 0.4082 0.4267 ± 0.1135
19.5251 ± 1.4502 3.1545 ± 0.5955 85.0420 ± 0.8167 5.9666 ± 0.6966 0.5409 ± 0.2982 2.1078 ± 0.2548
0.4485 ± 0.2582 4.4472 ± 0.5881 6.1399 ± 0.6408 84.0447 ± 0.8089 0.2774 ± 0.1855 3.7392 ± 0.4141
0.0264 ± 0.0812 2.1301 ± 0.4014 0.1538 ± 0.0837 0.2957 ± 0.1177 96.7753 ± 0.6688 0.0129 ± 0.0246
12.9551 ± 1.6375 2.9350 ± 0.7562 3.2867 ± 0.4515 8.0212 ± 0.6497 0.3398 ± 0.2085 91.6034 ± 0.5484

Table 4
K-NN–VDC.

K-NN–VDC

4.4987 ± 3.6595 0.1463 ± 0.4716 �0.8497 ± 0.8272 �0.1175 ± 0.1832 0.1526 ± 0.3015 �0.9784 ± 0.4203
�0.2902 ± 0.4440 �0.3821 ± 1.4989 �0.1888 ± 0.3201 �0.0152 ± 0.4142 0.2427 ± 0.7027 �0.1207 ± 0.1926
�5.7388 ± 2.4985 0.8537 ± 1.1090 2.4755 ± 1.0804 1.1259 ± 1.0175 0.3814 ± 0.3241 0.2845 ± 0.3685
0.2902 ± 0.2406 �0.2602 ± 1.0262 �0.8601 ± 1.1328 �1.8461 ± 1.1462 �0.0693 ± 0.3198 �0.6293 ± 0.5020
�0.0528 ± 0.2652 �0.1870 ± 0.5881 �0.0105 ± 0.0762 �0.0569 ± 0.1494 �0.9293 ± 0.8076 0.0129 ± 0.0578
1.2929 ± 2.7619 �0.1707 ± 0.7939 �0.5664 ± 0.5515 0.9098 ± 1.0136 0.2219 ± 0.2895 1.4310 ± 0.7337

Table 5
Features set.

Cardiac arrhythmia QRSs Fc1 Fc2 Fc3 Fc4 Fc5 Fc6

APCB 1895 �0.3132 ± 0.3415 0.6313 ± 0.3113 0.4903 ± 0.5975 �36,4895 ± 0.1729 5.5602 ± 0.5416 3.7145 ± 0.6230
PVCB 3071 �0.3530 ± 0.1726 0.7856 ± 0.1190 1.5760 ± 1.4491 �35,9997 ± 0.1626 5.7608 ± 0.1204 3.4871 ± 0.2303
RBB 7147 �0.2619 ± 0.2368 0.8336 ± 0.0979 1.0410 ± 1.1632 �36,5735 ± 0.3315 5.7957 ± 0.2693 3.7044 ± 0.4704
LBB 6593 �0.2959 ± 0.1725 0.8656 ± 0.1035 0.9543 ± 1.0815 �36,1659 ± 0.1269 5.6245 ± 0.1282 3.3827 ± 0.1119
PB 3604 0.0215 ± 0.1846 0.9076 ± 0.0778 0.4376 ± 0.3157 �35,9844 ± 0.1633 5.4687 ± 0.1485 3.3332 ± 0.0635
NB 11596 0.0887 ± 0.2138 0.7944 ± 0.1547 0.0808 ± 0.1123 �36,2950 ± 0.2234 5.5334 ± 0.2177 3.4793 ± 0.3528

Table 6
Royston’s test.

Royston’s
test

Royston’s
statistic

Equivalent
d.o.f.

p-Value Significance Normal
distribution

Class 1 1.698433 1.053070 0.204650 0.050 Yes
2 0.804412 1.611792 0.567010 0.050 Yes
3 1.615098 1.280200 0.271557 0.050 Yes
4 0.743726 1.284151 0.487213 0.050 Yes
5 1.246641 1.462444 0.395291 0.050 Yes
6 1.497941 1.066260 0.237792 0.050 Yes
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Contraction because there was not a sufficient training set of
examples.

The outstanding result obtained opens a new scenario of low le-
vel hardware implementation (such as micro controllers) for porta-
ble electronics in smart home care system.
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