
This document is published in:

Expert Systems with Applications (2011), 38 (6), pp. 7494–7510.

DOI: 10.1016/j.eswa.2010.12.118

© 2010 Elsevier Ltd.

http://dx.doi.org/10.1016/j.eswa.2010.12.118

Ontology-based context representation and reasoning for object tracking and

scene interpretation in video
Juan Gómez-Romero ⇑, Miguel A. Patricio, Jesús García, José M. Molina
Department of Computer Science, Applied Artificial Intelligence Group, University Carlos III of Madrid, Av. de la Universidad Carlos III, 22, 28270 Colmenarejo, Madrid, Spain

a r t i c l e i n f o a b s t r a c t
Keywords:
Object tracking
Information Fusion
Context aware systems
Ontologies
Rules
⇑ Corresponding author. Tel.: +34 91 8561327; fax
E-mail addresses: jgromero@inf.uc3m.es (J. G

uc3m.es (M.A. Patricio), jgherrer@inf.uc3m.es (J. Ga
Molina).
Computer vision research has been traditionally focused on the development of quantitative techniques
to calculate the properties and relations of the entities appearing in a video sequence. Most object track-
ing methods are based on statistical methods, which often result inadequate to process complex scenar-
ios. Recently, new techniques based on the exploitation of contextual information have been proposed to
overcome the problems that these classical approaches do not solve. The present paper is a contribution
in this direction: we propose a Computer Vision framework aimed at the construction of a symbolic
model of the scene by integrating tracking data and contextual information. The scene model, repre-
sented with formal ontologies, supports the execution of reasoning procedures in order to: (i) obtain a
high-level interpretation of the scenario; (ii) provide feedback to the low-level tracking procedure to
improve its accuracy and performance. The paper describes the layered architecture of the framework
and the structure of the knowledge model, which have been designed in compliance with the JDL model
for Information Fusion. We also explain how deductive and abductive reasoning is performed within the
model to accomplish scene interpretation and tracking improvement. To show the advantages of our
approach, we develop an example of the use of the framework in a video-surveillance application.

1. Introduction ences than could be achieved by using a single, independent sensor

In Computer Vision, tracking is the problem of estimating the
number of objects in a continuous scene, together with their
instantaneous locations, kinematic states, and other characteris-
tics. Tracking has been traditionally tackled by applying statistical
prediction and inference methods. Unfortunately, basic numerical
methods have proved to be insufficient when dealing with com-
plex scenarios that present interactions between objects (e.g.
occlusions, unions, or separations), modifications of the objects
(e.g. deformations), and changes in the scene (e.g. illumination).
These events are hard to manage and frequently result in tracking
errors, such as track discontinuity, inconsistent track labeling,
inconsistent track size, etc. (Yilmaz, Javed, & Shah, 2006).

In addition, other difficulties arise as a result of the imperfect
functioning of video cameras, the wide range of possible scenes,
and the necessity of combining data acquired by different sensors.
This last matter is a subject of study of the Data and Information
Fusion research area, which is specially concerned to Computer Vi-
sion and tracking. Fusion techniques combine data from multiple
sensors and related information to achieve more specific infer-

: +34 91 8561220.
ómez-Romero), mpatrici@inf.
rcía), molina@ia.uc3m.es (J.M.
(Hall & Llinas, 2009). In most cases, tracking requires the combina-
tion of data sources, and analogously, visual inputs are pervasive in
fusion applications. Fusion processes are classified according to the
JDL (Joint Directors of Laboratories) model, the prevailing theory to
describe fusion systems (Steinberg & Bowman, 2004). JDL estab-
lishes a common vocabulary to facilitate communication and
understanding among the heterogeneous specialists interested in
Information Fusion, and defines a functional model to structure fu-
sion applications.

A solution to overcome tracking issues is to provide the image-
processing algorithms with knowledge about the observed entities
not directly obtained by the cameras. For instance, predefined
background patterns (Boult, Micheals, Gao, & Eckmann, 2001), hu-
man-body models (Haritaoglu, Harwood, & David, 2000; Huang &
Huang, 2002), 2D and 3D object models (Remagnino et al., 1997),
color spaces (Orwell, Remagnino, & Jones, 1999), and Soft Comput-
ing techniques (Patricio et al., 2008) have been used to improve the
performance of tracking systems. According to Dey and Abowd
(2000), this information can be regarded as context, because it is
(implicitly or explicitly) used to characterize the situation of the
entities. In tracking, context can be considered as encompassing
any external knowledge used to complete the quantitative data
about the scene computed by straightforward image-analysis algo-
rithms: (i) information about the scene environment (structures,
static objects, illumination and behavioral characteristics, etc.);
1

(ii) information about the parameters of the recording (camera, im-
ag
by
in
19

tu
ca
el
a
te
In
m
st
20
of
bo
ni
th
du

ad
im
un
th
sp
Ro
pl
a
re
a
19
(M
im
kn

po
og
se

1

2

in
m
ar
w
an
is
ce

tr
ca
ti
ti
co
of
sh

us
ri
an

son has entered the room (interpretation). In view of that, the
tr
as

1.1. Contributions and structure of the paper

st
fr
de
te
ad
do

lig
ce
w
ho
ic
pe
co
kn
te
pr
W
it
ca

w
co
V
ti
se
de
w
pa
ti
pe
th
Fi
pl

2. Related work

be
ta
pr
20
in
ad
ad
Za
ba
un

va
kn
Th
de
Bo
lis
to
(L
as
e, and location features); (iii) information previously calculated
 the vision system (past detected events); (iv) user-requested
formation (data provided by human users) (Bremond & Thonnat,
96).
Most of the previous approaches in the Computer Vision litera-

re, however, have only taken into account local context. In these
ses, the context of an object is a measure computed from the pix-
 values of the surrounding objects that is interpreted according to
priori criteria (Yang, Wu, & Hua, 2009). Though effective, these
chniques are hardly extensible to different application domains.
 contrast, cognitive approaches propose building a symbolic
odel of the world, expressed in a logic-based language, which ab-
ractly represents the scene objects and their relations (Vernon,
08). Such model can be regarded as the mental representation

 the scene gained by cognitive software agents. It may include
th perceptions and more complex contextual information. Cog-
tive approaches are more robust and extensible, but they require
e development of suitable interpretation and reasoning proce-
res, which is not assumable or even possible in all cases.
Recent researchers in Information Fusion have recognized the

vantages of cognitive situation models, and have pointed out the
portance of formal context knowledge to achieve scene
derstanding. The last revision of the JDL specification highlights
e importance of context knowledge (Steinberg & Bowman, 2009),
ecially when visual inputs are to be interpreted (Steinberg &
gova, 2008). Conceptual models to acquire, represent, and ex-

oit formal knowledge in the fusion loop have been proposed, with
special interest in ontologies (Nowak, 2003). An ontology is a
presentation of the mereological aspects of a reality, created from
common perspective and expressed in a formal language (Gruber,
93), such as the standard Web Ontology Language OWL
cGuiness & van Harmelen, 2004). Nevertheless, practical
plementations of (visual) data fusion systems based on formal
owledge representations still scarce.
The present paper is a contribution in this direction. We pro-

se a Computer Vision framework that, by relying on an ontol-
y-based scene representation model, combines contextual and
nsor data to accomplish two tasks:

. Construction of a high-level symbolic interpretation of the situ-
ation (i.e. recognition of events).

. Improvement of the performance of object tracking procedures
(i.e. correction of the errors that appear in a classical tracking
procedure).

The framework applies logical reasoning from elemental track-
g data, obtained by a classical tracker, to construct an ontological
odel of the objects and the activities happening in the observed
ea. Once this interpretation of the scene is created, the frame-
ork carries out subsequent reasoning procedures with it to detect
d predict tracking errors. When an error is discovered, feedback
sent to the tracker in order to attune the low-level image-pro-
ssing algorithms.
The framework is designed as a processing layer on top of the

acking software. The inputs of the additional layer are the values
lculated by the tracking algorithm (which are considered percep-

ons) and additional knowledge about the scene in the form of sta-
c object descriptions, reasoning rules, etc. (which are considered
ntext). The outputs of the layer are the high-level representation
the scene (interpretation) and the recommended actions that

ould be executed by the tracker (feedback).
As a matter of example of the processing in the framework, let
suppose that a moving entity is detected by the tracking algo-

thm (perception). If this object is new, has a predetermined size,
d is close to a door (context), it can be deduced that a new per-
acking algorithm can be recommended to create a new track
sociated to this object (feedback).
In this paper, we describe the epistemological, functional, and
ructural characteristics of our Computer Vision framework. The
amework provides a theoretical and practical reference for the
sign of cognitive man–machine vision systems that exploit con-
xt knowledge. It can be applied in different vision applications by
apting the architecture and extending the general model with
main-specific knowledge.
The framework solves various challenges that have been high-

hted as crucial in related proposals (Lambert, 2003): (i) to dis-
rn what knowledge should be represented; (ii) to determine
hich representation formalisms are appropriate; (iii) to elucidate
w acquired and contextual inputs are transformed from numer-

al measures to symbolic descriptions. For that reason, in this pa-
r we focus on the specification of: (i) the structure and the
ntents of the knowledge model; (ii) the ontologies to encode this
owledge; (iii) the inference procedures to interpret the scene in

rms of symbolic descriptions; (iv) the inference procedures to
ovide feedback to the low-level image-processing algorithms.
e illustrate the advantages of our approach with an example of

s use in a video-surveillance application, which interestingly
n be extended to other domains.
The remainder of the paper is organized as follows. In Section 2,

e overview some related work pertaining to the use of formal
ntext knowledge models in Information Fusion and Computer

ision, particularly in ontology-based and surveillance applica-
ons. In Section 3, we provide an introduction to knowledge repre-
ntation and reasoning with ontologies. Next, in Section 4, w e
scribe the layered architecture of the framework. In Section 5,

e depict the composition of the interrelated ontologies encom-
ssed by the knowledge model of the contextual layer. In Sec-

on 6, we clarify the details of the reasoning processes
rformed with the contextual model. In Section 7, we exemplify
e functioning of the system with a practical case on surveillance.
nally, the paper concludes with a discussion on the results and
ans for future research work.
Several knowledge representations to create scene models have
en studied in Cognitive Vision. Most of them stress the impor-
nce of bridging the gap between raw images and symbolic inter-
etation, which is known as the grounding problem (Pinz et al.,
08). Nevertheless, logic-based languages have received modest
terest, in spite of their notable representation and reasoning
vantages. Moreover, in this case most approximations have used
 hoc first order logic representation formalisms (Brdiczka, Yuen,
idenberg, Reignier, & Crowley, 2006), which have certain draw-
cks: they are hardly extensible and reusable, and reasoning with
restricted first order logic models is semi-decidable.
Ontologies, in turn, overcome these limitations. In the last years,

rious works proposing models and methods to exploit context
owledge represented with ontologies have been pub-lished.
ese researches can be classified according to the four lev-els
fined by the JDL model for Information Fusion (Steinberg &
wman, 2004; Llinas et al., 2004). The canonical JDL model estab-
hes four operational levels in the transformation of input signals
 decision-ready knowledge, namely: signal feature assessment
0); entity assessment (L1); situation assessment (L2); impact
sessment (L3); process assessment (L4). Some authors have
2

discussed the convenience of considering the intermediate infor-

3.1. Representation

Table 1
Syntax of complex concepts and roles in SHOIQðDÞ.

Constructor DL
syntax

OWL syntax

Role constructors
Atomic role RA owl:ObjectProperty

Inverse role R� owl:inverseOf

Concrete role T owl:DatatypeProperty

Universal role U owl:TopObjectProperty

owl:topDataProperty

Concept constructors
Top concept > owl:Thing

Bottom concept \ owl:Nothing

Atomic concept A owl:Class

Concept negation :C owl:complementOf

Concept intersection C u D owl:intersectionOf

Concept union C t D owl:unionOf

Universal quantification "R.C owl:allValuesFrom

Existential quantification $R.C owl:someValuesFrom

Nominals {a, b, . . .} owl:oneOf

Qualified number
restriction

Pn S.C owl:maxQualifiedCardinality
a

6m S.C owl:minQualifiedCardinality
a

=q S.C owl:qualifiedCardinality
a

mation between L1 and L2, namely the L1–L1
2 layer (Das, 2008).

At image-data level (i.e. JDL level 0), one of the most important
contributions is COMM (Core Ontology for MultiMedia), an OWL
ontology to encode MPEG-7 data (Arndt, Troncy, Staab, Hardman, &
Vacura, 2008). COMM does not represent high-level entities of the
scene, such as people or events. Instead, it identifies the com-
ponents of a MPEG-7 video sequence in order to link them to
(Semantic) Web resources. Similarly, the Media Annotations Work-
ing Group of the W3C is working in an OWL-based language for
adding metadata to Web images and videos (Lee, Bürger, & Sasaki,
2009).

Other proposals are targeted at modeling video content at ob-
ject level (i.e. JDL L1). For example, François, Nevatia, Hobbs, Bolles,
and Smith (2005) have created a framework for video event repre-
sentation and annotation. In this framework, VERL (Video Event
Representation Language) defines the concepts to describe pro-
cesses (entities, events, time, composition operations, etc.), and
VEML (Video Event Markup Language) is a XML-based vocabulary
to markup video sequences (scenes, samples, streams, etc.). VEML
2.0 has been partially expressed in OWL. The limitation in the
number of entities represented in VEML 2.0 reduces its usefulness,
as it is discussed by Westermann and Jain (2007), who present a
framework that supports representation of uncertain knowledge.
An approach that stands halfway between data and object level is
due to Kokar and Wang (2002). In this research work, the data
managed by the tracking algorithm is represented symboli-cally, in
a similar fashion as we do; however, our approach addi-tionally
considers higher level knowledge, inferred by abductive reasoning.

Regarding high-level Information Fusion (i.e. JDL L2 and L3 lev-
els), Little and Rogova (2009), study the development of ontologies
for situation recognition, and propose a methodology to create do-
main-specific ontologies for Information Fusion based on the
upper-level ontology BFO (Basic Formal Ontology) and its sub-
ontologies SNAP and SPAN (for endurant entities and perdurant
processes, respectively). Other contribution is STO (Situation The-
ory Ontology), which encodes Barwise’s situation semantics
(Kokar, Matheus, & Baclawski, 2009). With a special focus on Com-
puter Vision, Neumann and Möller (2008), study scene interpreta-
tion based on Description Logics and reasoning with an inference
engine. These authors also distinguish between lower level repre-
sentations (GSD, Geometrical Scene Description) and higher level
interpretations, as we do. A practical application in surveillance
is shown by Snidaro, Belluz, and Foresti (2007), who have devel-
oped an OWL ontology enhanced with rules to represent and rea-
son with objects and actors.

All these research works focus on contextual scene recognition,
but as mentioned in Section 1, it is also interesting to apply this
knowledge to refine image-processing algorithms (which corre-
sponds to JDL L4), and particularly trackers. A preliminary ap-
proach to this topic has been presented in Sánchez, Patricio, García,
and Molina (2009). The present paper enhances this work by
offering an integral framework for object tracking, instead of a
particular solution, and by implementing extensible and modular
knowledge models represented with standard ontologies, which
can be reused in different domains.
3. Knowledge representation and reasoning with ontologies

Universal quantification "T.u owl:allValuesFrom

Existential quantification $T.u owl:someValuesFrom

Nominals {t1, t2, . . .} owl:oneOf

Qualified number
restriction

Pn T.u owl:maxQualifiedCardinality
a

6m T.u owl:minQualifiedCardinality
a

=q T.u owl:qualifiedCardinality
a

a n, m, q 2 {0, 1, 2, . . .}
In this section, we provide a brief introduction to knowledge
representation with Description Logic ontologies focused on the
OWL language. We will assume the reader is familiar with these
topics. For a comprehensive explanation, see Baader, Calvanese,
McGuinness, Nardi, and Patel-Schneider (2003).
Ontologies are highly-expressive, logic-based knowledge mod-
els aimed to describe a domain with an automatically processable
language (Studer, Benjamins, & Fensel, 1998). Description Logics
(DLs) are a family of logics to represent structured knowledge
(Baader, Horrocks, & Sattler, 2008) that have proved to be suitable
ontology languages (Baader, Horrocks, & Sattler, 2005). Ontology
languages are usually (equivalent to) a decidable DL, as it occurs in
the case of the previously mentioned OWL (Horrocks & Patel-
Schneider, 2004), and its successor OWL 2 (Hitzler, Krötzsch, Parsia,
Patel-Schneider, & Rudolph, 2008). Depending on the expres-sivity
of the used language, ontological representations range from
simple taxonomies defining term hierarchies to sophisticated
concept networks with complex restrictions in the relations.

DLs are structured in levels, each named with a string of capital
letters that denote the allowed expressions in it. In general, having
more constructors in a logic means that it is more expressive, and
consequently, the computational complexity (of reasoning proce-
dures) is greater. A commonly-used DL is SHOINðDÞ, which is in
practice equivalent to OWL DL, the most expressive subset of
OWL that is decidable. OWL 2 is compatible with SROIQðDÞ,
which extends SHOINðDÞ with various supplementary construc-
tors. In the remaining sections of this paper, we use SHOIQðDÞ,
an intermediate logic between OWL and OWL 2, and assume
OWL 2 as ontology language.

A DL ontology is developed from the following elements: con-
cept or classes (C, D), which represent the basic ideas of the do-
main; instances or individuals (a, b), which are concrete
occurrences of concepts; relations, roles, or properties (R, T), which
represent binary connections between individuals or individuals
and typed values (t, u). Complex concept and relation expressions
can be derived inductively from atomic primitives by applying the
constructors defined by the logic. The valid constructors in
SHOIQðDÞ are presented in Table 1.
3

Domain knowledge is represented by asserting axioms (O),
w
de
A
(t
ab
ax
ar

�

�

�

�

�
�

�

3.

ne
ed
In
ev
En
ou
co

sa
di
im
is
w
co
ab
m

en

ogies expressed in OWL and/or OWL 2 (and particularly, with
SH
pu
ex
re
er
is
in
m

gi
ti
co
in
(B
da
is
ti
pe
as
ab

O
in
te
on
us
ru
(M
re
re
pa

4. Framework architecture

in
tr
(t
th
of

sc
in
hich establish restrictions over concepts, instances, and relations,
scribing their attributes by delimiting their possible realization.
DL ontology is a triple K ¼ hT ;R;Ai, where T (the TBox) and R
he RBox) contain terminological axioms (respectively, axioms
out concepts and roles), and A (the ABox) contains extensional
ioms (axioms about individuals). In SHOIQðDÞ, valid axioms
e (not exhaustively):

C v D denotes that C is included in D (or D subsumes C)
(rdfs:subClassOf)
C � D denotes that C and D are equivalent (owl:equivalent-
Class)
R1 v R2 denotes that R1 is a subset of R2 (rdfs:subProperty-
Of)
R1 � R2 denotes that R1 and R2 are equivalent (owl:
equivalentProperty)
(a:C) denotes that a is an instance of C (C rdf:ID=a)
((a,b):R) denotes that a and b are related through R (R rdf:

resource=b)
((a,t):T) denotes that a has value t through data-valued property
T (T rdf:datatype=<type> t)

2. Reasoning

Reasoning with ontologies is an automatic procedure that infers
w axioms which have not been explicitly included in the knowl-
ge base but are logical consequences of the represented axioms.
general, an axiom O is said to be entailed by the ontology K if
ery possible realization of the ontology satisfies the axiom.
tailment is denoted as K � O. Reasoning in DLs can be carried
t with concepts in the TBox, individuals in the ABox, or TBox
ncepts and ABox individuals together.
The basic reasoning task regarding ontology concepts is concept

tisfiability. Intuitively, a concept is satisfiable if it is not contra-
ctory of the rest of the knowledge in the ontology. Another
portant task is concept subsumption, which infers if a concept
more general than another concept. The basic inference task

ith ontology individuals is to test if an axiom of the ABox is not
ntradictory of the other axioms in the ontology (i.e. it is satisfi-
le or consistent), or particularly in the ABox. If the assert is a
embership axiom (a:C), this test is called instance checking.
These tasks can be transparently executed with DL inference

gines, which allow loading, querying, and reasoning with ontol-
Fig. 1. Functional architectur
OIQðDÞ ontologies). Pellet (Sirin, Parsia, Cuenca Grau, Kalyan-
r, & Katz, 2007) and RACER (Häarslev & Möller, 2001) are two
amples of DL reasoners. The computational complexity of the
asoning procedures depends on the expressivity of the consid-
ed language. For general SHOIQðDÞ ontologies, this complexity
 NEXPTIME-complete, which is quite high. Fortunately, worst-case
ferences are infrequent, and reasoners have been highly opti-
ized to offer good execution times in the typical cases.
It should be underlined that, when reasoning with DL ontolo-

es, the open world assumption stands. The open world assump-
on supposes that the set of axioms in a knowledge base is not
mplete, and consequently, new knowledge cannot be inferred
ductively. This feature makes ontologies a monotonic formalism
ossu & Siegel, 1985), which means that it is not possible to up-
te, retract, or remove previous knowledge while reasoning. This

 an important restriction in our case, since we will rely on abduc-
ve reasoning, which implies knowledge update, to interpret the
rceived scenarios. Nevertheless, simplified versions of this
sumption are implemented by reasoning engines, and partial
duction with ontologies is therefore possible.
Likewise, rule-based reasoning is not directly supported by

WL, but several extensions have been proposed. One of the most
teresting is SWRL (Semantic Web Rule Language) (Horrocks & Pa-
l-Schneider, 2004), which allows deductive inference within OWL
tologies and is widely supported. Rule-based formalisms can be
ed with limitations, since reasoning with models combin-ing
les and OWL is decidable only under certain safety restric-tions
otik, Sattler, & Studer, 2005). These restrictions are, however,

laxed in certain specific rule languages implemented by
asoning engines, as it occurs in RACER, which is used in this
per.
The architecture of our Computer Vision framework is depicted
 Fig. 1. The schema shows the tracking system (the GTL, general
acking layer) and, built upon it, the context-based extension
he CL, context layer). The GTL and the CL communicate through
e GTL/CL interface. In this section, we describe the functioning
 the GTL, the CL, and the GTL/CL interface.

The GTL is a classical tracker; we will assume the tracker de-
ribed in Patricio et al. (2008), but the framework can be used
 combination with any other tracking software adapted to work
e of the framework.

4

with the interface. The CL manages the CL model, i.e. the ontolog-

tion); (2) blob-track1 association, which includes prediction, assign-

4.2. Context layer

Fig. 2. Functional architecture of the GTL.

A blob is a set of pixels that form a connected region. A track is a low-level
representation of a moving entity. It is represented as a single blob or as a set of
related blobs with properties: size, color, velocity, etc.
ical representation of the scene (including context and perceived
knowledge), and carries out procedures to update and reason with
it. The CL model is implemented as a set of interrelated ontologies.
The terminological axioms of the CL ontologies establish a con-
trolled vocabulary to describe scenes. The current state of the
scene is represented with instances of these concepts and rela-
tions. The GTL/CL interface, which guarantees interoperability
and independence between both layers, includes methods to up-
date the CL model according to the GTL tracking information, and
to consult recommendations calculated by the CL.

The framework works as follows:

1. The GTL calls the GTL/CL interface methods when tracks are cre-
ated, deleted, or updated.

2. The GTL/CL interface transforms GTL track data into CL ontolog-
ical instances, and insert them into the CL model.

3. Updated track information triggers reasoning processes in the
CL that, supported by context knowledge, update the whole
interpretation of the scene.

4. Recommendations are created by reasoning with the current
scene model and a priori knowledge.

5. The GTL calls the GTL/CL interface methods into consult recom-
mendations from the CL, and converts them to concrete actions.

The interaction between the GTL and the CL can be either syn-
chronous or asynchronous. In synchronous mode, the steps 1–5 are
sequentially executed in each iteration of the GTL. The GTL calls the
interface methods to update the CL model and, when the process-
ing in the CL is finished, it invokes the recommendation query
methods. Recommendations are processed by the GTL as they are
produced by the CL. In asynchronous mode, calls to the interface
query methods in step 5 can be done at any moment, not necessar-
ily after the sequence 1–4. To implement asynchrony, a queue of
recommendations has been implemented in the GTL/CL interface.
This way, low-level tracking and high-level reasoning are decou-
pled. Pending recommendations, marked with a time stamp, are
placed in the queue when reasoning in the CL finishes. The GTL re-
trieves recommendations from the queue, which can be accepted
or disregarded according to a priority ordering policy.

4.1. General tracking layer

The GTL is a software program that sequentially executes vari-
ous image-processing algorithms with a video sequence in order to
track all the targets within the local field of view. The GTL aims at
segmenting video frames, distinguishing moving objects from
background and labeling them consistently. GTLs are usually ar-
ranged in a pipelined structure of several modules, as shown in
Fig. 2, which correspond to the successive stages of the tracking
process. These steps are carried out for each frame of the input vi-
deo sequence.

The main modules of our GTL implementation are dedicated
to: (1) movement detection (background and foreground detec-
ment, and update; (3) track creation and deletion; (4) trajectory
generation. The modules have been developed in such a way that
implementations of different methods for detection, association,
etc. can be plugged in the pipeline.

The detector of moving objects (1) gives as a result a list of the
blobs that are found in a frame. For each blob, position and size val-
ues are calculated and stored in a data structure. The association
process (2) solves the problem of blob-to-track multi-assignment:
once blobs have been identified, the association process finds a cor-
respondence between detected blobs and existing tracks. A blob
can be assigned to none, one, or more tracks in an iteration of
the tracking procedure. Unassigned blobs may be removed by the
algorithm. Association errors (e.g. blobs are mistaken for the back-
ground, close or overlapping blobs are not correctly assigned),
which are frequent in complex scenarios, must be minimized.
The association of a blob to a track may mean changes in track val-
ues, which are processed next. Association does not create or de-
lete tracks; instead, these tasks are performed in the initialize/
delete stage (3), if needed. A simple criterion to create a new track
is when a blob in an image region has not been associated to any
track in the last frames, a situation that can be interpreted as the
apparition of a new object in the scene. In the last step (4), track
trajectories are recorded and analyzed.

In our framework, during the tracking process, the GTL invokes
methods of the GTL/CL interface when track information changes,
i.e. in the update and initialize/delete stages. These calls request
the interface to renew the symbolic CL model according to the re-
cent perceptions. Since new track data is passed to the interface
as numerical data types, the interface must transform them to
ontology instances and then modify the CL model. The updates of
the track information in the CL model trigger additional reasoning
processes, as explained in the next section. Reasoning ultimately re-
sults in the generation of a scene interpretation and recommenda-
tions. Recommendations must be expressed in such a way that the
GTL is able to convert them in concrete operations. Calls to the re-
trieval interface methods have been included in the assignment and
initialization/delete stages of the GTL.
The CL receives from the GTL tracking data, processes it, and
provides as a result a set of recommendations or actions that
should be performed by the GTL. Since the CL uses context knowl-
edge to interpret the scene, it additionally has context information
as input. Numerical inputs provided by the GTL to the GTL/CL inter-
face are called hard inputs, whereas contextual and human entries
are named soft inputs. Respectively, readable scene interpretations
are called soft outputs, and recommendations, interpretable by the
GTL, are named hard outputs.

1

5

A schema of the functional architecture of the CL is shown in Fig.
3.
in
fo

on
fr
ti
da
m
co
te
th
ca

CL

�

�

track properties (color, position, velocity, etc.), frames, etc. are

�

�

�

�

 The figure depicts the key novelty of our approach: informa-tion
 the CL, both contextual and perceived, is represented with a
rmal knowledge model implemented as set of OWL ontologies.

On the left side of Fig. 3, the schema shows the structure of the
tology-based representation model, organized in various levels

om less abstract (track data) to more abstract (activity descrip-
on and evaluation). This organization has been designed in accor-
nce with the JDL model. JDL, resulting from the consensus of the
ain experts in Information Fusion, has proved its usefulness as
nceptual schema to structure fusion systems. The rational sys-
matization of JDL provides a very convenient support to make
e CL model understandable and modular, in such a way that it
n be easier extended and reused.
The different types of data, information, and knowledge of the
are structured in the following layers:

Camera data (L0). To be precise, this data is not managed in the
CL, but in the GTL. Actually, the live or recorded sequence pro-
vided by the cameras (in some processable video format) is the
input which will be analyzed by the GTL.
Tracking data (L1). Entity data in our framework corresponds to
the output of the tracking algorithm represented with ontolog-
ical terms after the abstraction step. Instances of tracks and
kn
an
m
w

th
of
an
(4
vi
st
up
se
ce
ev
da
an

fo
pr
fr
je
ti
of
co

5.

pa
je
TR

re
of
hi
is
ob

kn
tiFig. 3. Functional architecture of the CL.
created in this initial representation of the moving objects of
the scene.
Scene objects (L1–L1

2). Scene objects are the result of making a
correspondence between existing tracks and possible scene
objects. For example, a track can be inferred to correspond to
a person (possibly by applying context knowledge). Scene
objects also include static elements, which may be defined a
priori. Properties and relations of these objects are also consid-
ered, which makes this knowledge stand between L1 and L2.
Activities (L2). Activities or events are the behaviors of the
objects of the scene. Activities describe relations between
objects which last in time, for example, grouping, approaching,
or picking/leaving an object. Activity recognition is achieved by
interpreting object properties in context.
Impacts and threats (L3). Activities may be associated with a
cost or threat value after evaluation. This measurement is quite
interesting in applications such as surveillance, because it con-
sistently relates activities and evaluations of the risk.
Feedback and process improvement (L4). JDL groups in L4 oper-
ations targeted at enhancing fusion processes at different levels.
This is the case of the modules of our framework that provide
suggestions to the tracking procedure. L4 knowledge consists
of the representation of these suggestions.

Each one of these levels corresponds to an ontology in the CL
owledge representation model, namely: TREN, SCOB, ACTV, and IMPC,
d a set of reasoning rules managed by the reasoner. The develop-
ent of these ontologies is explained in detail in Section 5,
hereas rules are presented in Section 6.

Interpretation of acquired data with contextual knowledge in
e CL is performed in four corresponding steps: (1) abstraction

acquired tracking data; (2) correspondence between tracks
d objects; (3) recognition of activities from object descriptions;
) evaluation of threats. In the first stage (1), tracking data pro-
ded by the tracking system is transformed into ontology in-
ances by accessing the intermediate GTL/CL interface, which
dates the CL abstract scene model. Subsequent symbolic repre-
ntations are created as a result of reasoning with the input per-
ptions (steps 2–4), and eventually, activities are recognized and
aluated. This process, which transforms numerical to symbolic
ta by applying rule-based inference, is depicted in Section 6
d exemplified in Section 7.
The calculation of the recommendations by the CL (5) is per-

rmed in parallel to scene interpretation (right side of Fig. 3). This
ocedure is also detailed in Section 6. Recommendations range

om non-concrete suggestions (e.g. take into account that new ob-
cts appear frequently in a region of the image) to precise indica-
ons (e.g. change covariance matrix of Kalman filter). It is a choice
 the application developer to manage recommendations at his
nvenience, as we show in the example of Section 7.

Knowledge representation: CL model contents

As introduced in the previous section, the CL model encom-
sses various ontologies that represent tracking data, scene ob-

cts, activities, impacts, and GTL recommended actions, namely:
EN, SCOB, ACTV, IMPC, and RECO. A simplified schema of the classes and
lations of these ontologies is depicted in Fig. 4. The main concepts
 the ontologies, which link representations at different levels, are
ghlighted in gray. For example, SceneObject, which is a L1 concept,
 imported by the L2 ontology, which describe activi-ties from
ject interactions.
We have distinguished in the CL model between the general

owledge (i.e. knowledge that is common to any vision applica-
on) and the specific knowledge (i.e. domain-specific knowledge).
6

Accordingly, we provide upper ontologies that contain very general tion 6. The specialization of the general ontologies and the applica-

Fig. 4. Excerpt of the CL ontological model.
terminological axioms,2 including reference basic concepts and rela-
tions, to be specialized in each application. Fig. 4 shows this distinc-
tion: the general ontologies include more abstract knowledge,
whereas the specific ontology SURV refines then with concepts, rela-
tions, and axioms for an indoor-surveillance application. In this man-
ner, the SCOB ontology defines a generic entrance object concept. In
the SURV ontology, a Mirror concept has been created by specialization
of the StaticObject concept. This distinction between general and spe-
cific knowledge is essential to guarantee the applicability of our
framework in different application areas. The physical separation be-
tween levels in files can be maintained by the specializing ontology
or it can be either flattened for the sake of simplicity.

Next, we explain the structure of the terminological part of the
general CL ontologies provided with the framework, i.e. the con-
cept and relation definitions. The creation of the instances of these
ontologies as a result of reasoning processes is described in Sec-
2 http://www.giaa.inf.uc3m.es/miembros/jgomez/ontologies/ontologies.html.
tion of the framework to a surveillance scenario is depicted in
Section 7.

5.1. Object assessment knowledge: tracking data and scene objects

Object knowledge is represented in the CL model with the
ontologies TREN (TRacking Entities) and SCOB (SCene OBjects). These
ontologies are used to describe track data and tracked entities
information, respectively. TREN is an ontological encoding of the
GTL data; it does not add further information to the track values
provided by the GTL. SCOB is used to represent scene objects from
a cognitive perspective; instead of unspecific tracks, it concretes
the type of moving objects, which is necessary to comprehend
the scene.

5.1.1. Tracking data
The core concepts in TREN are Frame and Track. A frame is iden-

tified by a numerical ID and can be marked with a time stamp using
an OWL-Time DateTimeDescription (Hobbs & Pan, 2006).
7

With respect to tracks, it is necessary to represent their tempo-
ra
ke
qu
ch
Th
va
w
Se
de
W
T

va

si
is
on
de
th
ha
tio

a
T

de
ch
tS

A
(e
ad

5.

an
sc
to
la
be
m
je
m
no
en
th

th
na
th
ch
ce
a
ar
tr
re
ar

io
th
si
th
w
co
pr
er
ex
to

5.2. Situation and impact assessment: activities and impacts

vi
ti
ex
th
Si

to
of
Im

er
m
og
th
an
to
th
le

ev
pl
su
of
ap

5.3. Process assessment: recommendations
l evolution and not only its state in a given instant. We want to
ep all the information related to a track during the complete se-
ence (activity, occlusions, position, size, velocity, etc.), which
anges between frames, and not only its lastly updated values.
erefore, we must associate to each track various sets of property
lues that are valid only during some frames. To solve this issue,
e have followed an ontology design pattern proposed by the W3C
mantic Web Best Practices and Deployment Working Group to
fine ternary relations in OWL ontologies (Noy & Rector, 2006).
e have associated a set of TrackSnapshots to each Track. Each

rackSnapshot, representing track feature values, is asserted to be
lid in various frames.
Additionally, track properties must be defined as general as pos-

ble, in such a way that they can be easily extended. To solve this
sue, we have followed the qualia approach, used in the upper
tology DOLCE (Gangemi, Guarino, Masolo, Oltramari, & Schnei-
r, 2002). This modeling pattern distinguishes between properties
emselves and the space in which they take values. This way, we
ve associated properties to ActiveTrackSnapshots, such as TPosi-

n or TSize. TPosition is related with the property TpositionValue to
single value of the TPositionValueSpace. A 2DPoint is a possible
PositionValueSpace. The definition of geometrical entities has been
veloped according to the proposal by Maillot, Thonnat, and Bou-
er (2004), which defines primitive concepts such as Point, Poin-

et, Curve (a subclass of PointSet), or Polygon (a kind of Curve).
dditional axioms or rules to calculate complex properties of tracks
.g. distances), as well as spatial relationships (inclusion,
jacency, etc.), could be considered and created in TREN.
1.2. Scene objects
im
fo
kn
in
ci
co
fo

ca
cl
P

G
w
ge

th
on

er
su
ca
od
of
ci
ni

6. Reasoning: scene recognition and feedback to the tracker

m
ro
th
th
pr
ac
of
Scene objects are real-world entities that have a visual appear-
ce. The SCOB ontology offers a general terminology to represent
ene objects and properties. In contrast to TREN, SCOB is expected
be extended in particular applications. For example, in a surveil-

nce application, concepts such as person, car, door, or column will
created to particularize the more general SCOB concepts. SCOB

ainly contains L1 knowledge, that is, knowledge about single ob-
ct without considering interactions between them. However, it
ay be interesting to represent some relations between objects
t strictly pertaining to activities. For this reason, the tracked
tities knowledge and the associated context knowledge is in
e L1–L1

2 JDL level.
The main concept in SCOB is SceneObject. SceneObject is a concept

at includes all the interesting objects in the scene, either dy-
mic or contextual. Most contextual object instances belong to
e StaticObject concept, since their properties usually do not
ange. Dynamic object instances belong to the TrackedObject con-
pt, which encompasses all the scene objects that have associated
Track (of the TREN ontology, which is imported). Tracked objects
e associated to a unique track during their lifetime, though this
ack can have associated several snapshots. If the same track is
cognized as two different objects, two instances of TrackedObject

e created.
SceneObjects have properties, e.g. position, illumination, behav-

r, etc., which may vary in the sequence. Some of the values of
ese properties may be derived from the associated track, e.g. po-
tion values. In order to represent them properly, we have applied
e combined snapshot/qualia approach explained for tracks. Thus,
e have corresponding SceneObjectSnapshot and ObjectProperties

ncepts in SCOB. In this way, it is possible to describe the changing
operties of an object during its whole life and to add new prop-
ties easily. In the current SCOB ontology, objects are assumed to
ist in a 2D space, but the adaptation to a 3D space is easy thanks
this design.
The terminological axioms of the ACTV (ACTiVities) ontology pro-
de a vocabulary for describing events in the scene. Scene situa-
ons are defined in terms of relations between scene objects
pressed in the SCOB ontology, which is imported. For convenience,
ese relations have been reified as concepts descending from a top
tuation concept. Likewise, the IMPC (IMPaCts) ontology is built on
p of ACTV and expresses the relation between situations (instances
the Situation concept) and impact evaluations (instances of the
pact concept).
Since the number of possible scenes is countless, only very gen-

al activities have been included in ACTV. Domain-specific activities
ust be created by refinement of the elements of the ACTV ontol-
y. We offer a reference taxonomy based on the upper levels of
e ontology for cognitive surveillance presented by Fernández
d González (2007). We have also introduced some properties
 establish the temporal duration of the situations that follows
e same pattern based on snapshots described for the lower
vels.

The IMPC ontology, in turn, contains a vocabulary to associate an
aluation value to ACTV Situation instances. This value can be a sim-
e numerical assessment or, more probably, a complex expression
ggesting or predicting future actions. To allow the representation
different impact evaluations, the qualia approach has been

plied.
The JDL process assessment level encompasses actions aimed at
proving the quality of the acquired data and enhancing the per-

rmance of the Fusion procedure. In our case, process assessment
owledge includes certain meta-information about the function-

g of the framework that can be used to improve it. More pre-
sely, the RECO (RECOmmendations) L4 ontology includes
ncepts and relations that represent actions of the GTL, either per-
rmed by it or suggested to be carried in the near future.

The main concept of the RECO ontology is Action, which generi-
lly includes all the actions that the GTL can execute. Actions are
assified in SuggestedActions, which are calculated by the CL, and
erformedActions, if they have been previously executed by the
TL. The GTL/CL interface creates instances of PerformedAction

hen the create and update methods are invoked, whereas Sug-

stedAction instances are created as a result of the processing of
e CL. We have included some Actions in the general CL model
tologies that can be extended in different applications.
Actions, and in particular SuggestedAction instances can be gen-

ated at different abstraction levels, but they need to have as a re-
lt an operation that can be processed by the GTL (or, at least, that
n be transformed by the GTL/CL interface to actual GTL meth-
s). SuggestedActions are placed in the recommendations queue
the framework, as explained in Section 4. Actions have also asso-

ated a time stamp to support the development of selection tech-
ques based on their creation time.
As detailed in the previous section, the CL ontologies offer a for-
al vocabulary to symbolically describe the dynamics and the sur-
undings of the observed scene. The instances of the concepts and
e relations of the CL ontology represent the evolution in time of
e scene tracks, objects, situations, and impacts. Thus, scene inter-
etation is the process of creating instances of the CL ontologies
cordingly and consistently to the perceived data. The instances

the CL model are created in successive reasoning steps,
8

corresponding to the correspondence, recognition, and evaluation

;;; Simple nRQL query

t-posit

Fig. 5. Matching between variables and instances in a model query.
procedures depicted in Fig. 3.
Standard ontology reasoning procedures can be performed

within the CL ontologies to infer additional knowledge from the
explicitly asserted facts (tracking data and a priori context). By
using a DL inference engine, tasks such as classification or instance
checking can be performed. It is as well possible to perform other
extended inferences based on them, or to add SWRL rules. Never-
theless, as mentioned in Section 3.2, monotonicity of DLs forbids
adding new knowledge to ontologies while reasoning. Rules, and
specifically SWRL rules, also have this restriction as a consequence
of the DL safety condition. This is a serious drawback to the use of
ontologies in scene interpretation. As it has been pointed out by
several authors, while standard DLs are valuable for scene repre-
sentation, scene interpretation requires more expressive retrieval
languages for querying the models (Neumann & Möller, 2008). Two
reasons have been argued: scene interpretation cannot be modeled
as classification, because it is more a model constructing task; and
direct instance checking is not possible, since individuals do not
exist for undiscovered objects.

In essence, the problem is that scene interpretation is a paradig-
matic case of abductive reasoning, in contrast to the DL deductive
reasoning. Abductive reasoning takes a set of facts as input and
finds a suitable hypothesis that explains them – sometimes with an
associated degree of confidence or probability. This is what is
needed in our case: we want to figure out what is happening in the
scene from the observed and the contextual facts. In terms of the
architecture of the CL, scene interpretation can be seen as an
abductive transformation from knowledge expressed in a lower le-
vel ontology to knowledge expressed in a higher level ontology. In
contrast to monotonic DL reasoning, which can be considered an
intra-ontology procedure, this process can be regarded as inter-
ontology reasoning. Abductive reasoning is out of the scope of clas-
sical DLs (Elsenbroich, Kutz, & Sattler, 2006), and is not supported
by ontologies. Fortunately, it can be simulated by using customized
procedures or, preferably, by defining transformation rules in a
suitable query language.

Interestingly enough, RACER reasoner allows abductive reason-
ing. In our framework, we use RACER features beyond the usual DL
support to accomplish scene interpretation. RACER transparently
supports standard (deductive) and non-standard (abductive)
ontology-based reasoning with nRQL (new RACER Query Language)
(Wessel & Möller, 2005). nRQL is a modification and query lan-
guage that allows instance querying and rule definition. In this sec-
tion, we explain some nRQL features used in the implementation of
the framework. We describe various examples of nRQL rules based
on the terms of the CL model that show how heuristic and com-
mon-sense knowledge (i.e. context knowledge) can be formally
represented and applied to accomplish high-level scene interpreta-
tion and low-level tracking refinement.

6.1. Model querying

The basic queries in nRQL are instance queries. nRQL instance
queries, expressed in a Lisp-like syntax, consists of a head and a
body. The body is a set of conditions defined with concept and role
expressions involving variables (noted with ‘?’). Variables are
bound to the named instances of the ontology (both asserted and
inferred). The head is a list that includes various of the variables
in the body. The result of the query is the set of bindings of the
variables in the head that satisfy the logical condition of the body.

In our framework, instance queries are used to get information
from the model. For example, the next query finds all the instances
of SceneObject that are being observed in the current scene. For the
sake of simplicity, we will abbreviate the complete namespaces of
the CL ontologies from this point on.
(retrieve

(?x)

(and

(?x scob:SceneObject)

(?x ?s scob:hasObjectSnapshot)

(?s scob:SceneObjectSnapshot)

(?s tren:unknown_frame tren:isValidInEnd)

)
)

More precisely, the query retrieves the SceneObject instances
that have associated a snapshot (with property hasObjectSnapshot)
which is currently valid (i.e. it has an unknown end of validity
frame – property isValidInEnd). Matching between ontology in-
stances and variables in this query is shown in Fig. 5. We assume
that mirror1 has been asserted to be an instance of the Mirror

concept, and o is a SceneObject. a and b are SceneObjectSnapshot in-
stances respectively related to o and mirror1 with hasObjectSnapshot

property. Instances a and b are respectively related to f and
unknown_frame with isValidEnd property. Since a is not related to
unknown_frame, it does not match the query pattern, and the result
of the consult is the binding (?x, mirror1).

It is also possible to create defined queries, which are stored
queries that can be nested inside another retrieve commands.
The following command defines a query, named current-posi-

tion-of-object, that retrieves the current position of an object
(instance of OPosition concept). Defined queries can be used in sub-
sequent consults. Analogous stored queries have been created for
convenience to perform other common consults (current position
of a track, current area, etc.).

;;; Defined query
(defquery curren
 ion-of-object (?o ?op)
(and
(?o
 scob:SceneObject)
(?o ?osn
 scob:hasObjectSnapshot)
(?osn
 tren:unknown_frame

tren:isValidInEnd)
(?osn ?opr
 scob:hasObjectProperties)
(?opr ?op
 scob:OhasPosition)
(?op
 scob:OPosition)
)

)

9

6.

ic
of
re
Th
pa
ob

6.

lo
in
(R
bo
ob
re
Sc
su
th
us

lo
er
th
on
th
st
RC
r,
ac

su
an

6.

re
in
to
th
in
w
vi

on
st
ru
eq
ha
og
th
O

m

2. Arithmetical calculus

More complex queries have been created to compute arithmet-
al functions on the values of the CL instances. nRQL admits the use

lambda calculus expressions to denote computations on the
trieved values, both in the head and the conditions of the queries.
e query below calculates the Euclidean distance between any
ir of 2D points of the scene. The query can be easily adapted to
tain other object and track numerical properties:

;;; Query with arithmetical operations

(retrieve

(?p1 ?p2

(
(lambda

(x1 x2 y1 y2)

(expt

(+

(expt

(– (first x1) (first x2)) 2)

(expt

(– (first y1) (first y2)) 2)

)
1/2)

)
(datatype-fillers (tren:x ?p1))

(datatype-fillers (tren:x ?p2))

(datatype-fillers (tren:y ?p1))

(datatype-fillers (tren:y ?p2))

))
(and

(?p1 tren:2DPoint)

(?p2 tren:2DPoint)

)
)

3. Spatial and temporal reasoning
6.

w
ab
ob

6.

is
Spatial reasoning is essential in Computer Vision systems. Topo-
gical reasoning has been implemented in our framework by rely-
g on the native support of RACER for RCC-based predicates. RCC
egion Connection Calculus) is a logic-based formalism to sym-
lically represent and reason with topological relations between
jects (Randell, Cui, & Cohn, 1992). RCC semantics cannot be di-
ctly represented with OWL (Katz & Cuenca Grau, 2005; Grüntter,
harrenbach, & Bauer-Messmer, 2008), but RACER offers ad hoc
pport for them. Specifically, RACER supports the RCC-8 subset
rough the definition of an additional layer (substratum) and the
e of special query symbols.
The use of RCC predicates in our framework is shown in the fol-

wing query. First, the RCC substrate is activated. Next, the prop-
ty insideOf, defined in the SCOB ontology, is stated as equivalent to
e RCC predicates ntpp (inclusion of the first object in the second
e without connection) and tpp (inclusion of the first object in
e second one with tangential connection). Finally, all the in-
ances of Person located inside a Building are retrieved. With the
C substrate activated, if a person p is asserted to be inside a room
and the room is inside of a building b, the query retrieves p,
cording to the semantics of ntpp and tpp.

;;; RCC-based topological query

(enable-rcc-substrate-mirroring)

(rcc-synonym scob:insideOf (:ntpp:tpp))

(retrieve

(?�x ?�y)
(and

(?�x ?�y scob:insideOf)

(?�x surv:Person)

(?�y surv:Building)

)
)
RCC semantics can also be used with temporal properties, in

ch a way that a time interval can be asserted to be included in

other one, consecutive, partially coincident, etc.

4. Deductive rules

More interestingly, the framework uses RACER capability for
asoning with rules. nRQL rules have a structure very similar to
stance queries. The antecedent of the rule is a pattern equivalent
the body of a query. The consequent includes logical conditions

at must be satisfied by the ontology, or expressions to create new
stances. Deductive rules only include conditions of the first type,
hich means that they do not contain in the consequent any indi-
dual not mentioned in the antecedent.

Deductive rules are used to maintain the consistency of the
tology and to explicitly assert axioms affecting existing in-

ances. For example, the following command prepares a deductive
le that states that the position value of a TrackedObject must be
ual to the position value of its associated Track. If both positions
ve been introduced and the (x, y) values are not equal, the ontol-
y is reported as inconsistent. If the (x, y) values of the position of
e Track have been introduced, while the (x, y) values of the Track-

bject have not been, then these values of the second position are
ade equal to the values of the first one.

;;; Rule 1. Deductive rule

(prepare-rule

(and

(?o scob:TrackedObject)

(?t tren:Track)

(?o ?t scob:hasAssociatedTrack)

(?t ?tp current-position-of-track)

(?o ?op current-position-of-object)

(?tp ?tpt tren:TpositionValue)

(?op ?opt scob:OpositionValue))

(
(instance ?opt

(some tren:x

(= racer-internal%has-real-value

((lambda (x) (float (first x)))

(datatype-fillers (tren:x ?tpt))))))

(instance ?opt

(some tren:y

(= racer-internal%has-real-value

((lambda (y) (float (first y)))

(datatype-fillers (tren:y ?tpt))))))

)
)

5. Abductive rules
Abductive rules include new individuals in the consequent,
hich are created as new instances of the ontology. As explained,
ductive rules are used in the framework to achieve its two main
jectives: scene interpretation and creation of feedback for the GTL.

5.1. Scene interpretation
Abductive rules are defined in the framework to interpret what
happening in the scene from the basic tracking data. In that
10

manner, symbolic scene descriptions are built from visual mea-

6.5.2. Feedback

(?mirrored_area ?maa current-area-of-

object)

(?o1p ?ma scob:insideOf)

(?o2p ?maa scob:insideOf))

(
(instance

(new-ind ref-ins ?mirror_person)
surv:ReflectionSituation)

(related

(new-ind ref-ins ?mirror_ person)

?mirror

surv:mirror)

(related

(new-ind ref-ins ?mirror_person)
?mirror_person
surv:personInMirror)

(related

(new-ind ref-ins ?mirror_ person)

?real_person
surv:mirroredPerson)

)
)

sures through various inference steps (correspondence, recogni-
tion, evaluation) that calculate instances of an upper ontology
with rules operating on instances of a lower ontology.

An example of an abductive rule to calculate correspondences
between tracks and objects is presented below. This rule creates
a new Person instance when a track bigger than a predefined size
(25 � 40) (and not associated to any object) is detected in the im-
age. The created Person instance is associated with the identified
track – it would be as well necessary to initialize the properties
of the new object, even if they are not assigned concrete numerical
values, but this is omitted in the example.

;;; Rule 2. Correspondence abduction rule

(prepare-rule

(and

(?t scob:unknown_object
scob:isAssociatedToObject)

(?t ?ts current-size-of-track)

(?ts ?d tren:TsizeValue)

(?d tren:2DDimension)

(?d (>= tren:w 25.0))

(?d (>= tren:h 40.0)))

(
(instance

(new-ind person-ins ?t) surv:Person)

(forget-role-assertion

?t

scob:unknown_object
scob:isAssociatedToObject)

(related

(new-ind person-ins ?t)

?t

scob:hasAssociatedTrack)

)
)

Abduction rules for scene recognition can involve knowledge at
different levels. Another example of abductive rule is the following
one, which recognizes the situation when a person is reflected by a
mirror. This rule is fired when a person is inside of the area of influ-
ence of a mirror and, at the same time, there is another detected
person inside of the corresponding mirror. For the sake of clarity,
in this example rule we suppose that the value of the insideOf prop-
erty has been previously calculated. As a result, the rule creates a
new instance of the ReflectionSituation concept with suitable prop-
erty values (the person and the mirror involved in the activity).
In this case, it would be also convenient to assign to the new Reflec-

tionSituation instance a proper SituationSnapshot instance – this part
of the rule consequence is omitted.
;;; Rule 3. Recognition abduction rule

(prepare-rule

(and

(?real_person surv:Person)

(?real_person ?o1p current-position-of-

object)

(?mirror_person surv:Person)

(?mirror_person ?o2p current-position-of-

object)

(?mirror surv:Mirror)

(?mirror ?ma current-area-of-

object)

(?mirrored_area surv:MirroredArea)

(?mirror ?mirrored_area surv:mirrorsArea)
In essence, process refinement is very similar to scene interpre-
tation, since in both cases abductive reasoning is carried out to
draw new knowledge – in this case, instances of the RECO ontology.
From the current interpretation of the scene, the historical data,
and the predictions, feedback abductive rules are triggered to cre-
ate instances of the SuggestedAction concept. As explained in Sec-
tion 4, these actions are retrieved by the GTL through the GTL/CL
interface and interpreted accordingly, resulting (if not discarded)
in corrections of the tracking parameters, modifications of the data
structures managed by the algorithm, etc.

Recommendations can be generated at different abstraction lev-
els, i.e. they can involve Tracks, SceneObjects, Situations, Impacts, etc.
or even combinations of them. In practice, that means that feed-
back rules have terms of the TREN, SCOB, ACTV, and IMPC ontologies in
their antecedent; and terms of the RECO ontology in their conse-
quent. The following rule obtains a recommendation that suggests
ignoring the track associated to a reflection in a mirror.

;;; Rule 4. Feedback abduction rule

(prepare-rule

(and

(?s surv:ReflectionSituation)

(?s ?personInMirror surv:personInMirror)

(?personInMirror ?t scob:hasAssociatedTrack))

(
(instance

(new-ind ign-instance ?s)

surv:IgnoreTrack)

(related

(new-ind ign-instance ?s)

?t

surv:trackToBeIgnored)

)
)

7. Example: surveillance application
The queries and rules of the previous section give insights on
the implementation of reasoning processes within our frame-
work. In this section, we depict the functioning of the framework
with an example of a video-surveillance application. Firstly, we
11

describe how the CL model is created and contextual information
an
in

qu
pl
th
ar
ab

7.

Se
Th
AC

�

�

�

Before the GTL is started, it is necessary to annotate the sce-
na
SU

w
th
an
vi
gr
st
st
is

Fig. 6. Frames 1 and 2 of the video sequence.

av
PE
m

d rules are introduced. Secondly, we depict the reasoning with-
the CL.
For the sake of simplicity, we use two frames of a video se-
ence of the PETS2002 benchmark.3 In this recording, several peo-

e walk in front of a shop window. Fig. 6(a) shows the initial state of
e scenario. We have marked a mirror and its associated mirrored
ea on the frame. Fig. 6(b), which is assumed to be the next avail-
le frame, shows two new tracks detected by the GTL.
1. Initialization of the CL model on

te
al
ti

�

�

�

�

We have developed the specific SURV ontology (introduced in
ction 5) that specializes the generic CL model to this scenario.
e SURV ontology imports the general CL ontologies (TREN, SCOB,

TV, IMPC, RECO), and additionally includes new:

Concepts:
Person, Mirror, MirroredArea, ReflectionSituation, Building, Room, etc.
Relations:
isMirroredBy, mirrorsArea, etc.
Axioms:
Mirror v StaticObject,
MirroredArea v StaticObject,
ReflectionSituation v ObjectInteraction v Situation,
Mirror v $mirrorsArea.MirroredArea, etc.
3 The Performance Evaluation of Tracking and Surveillance (PETS) dataset has
ailable numerous scenarios. We have selected a 1-min long sequence from the
TS2002 dataset, which was intended to track pedestrians walking inside a shopping
all (http://www.cvg.cs.rdg.ac.uk/PETS2002/pets2002-db.html).

th
rio. Annotating the scenario means to create instances of the
RV ontology describing the static objects. Thus, in this example
e first create new instances describing the scene of Fig. 6(a):
e presence of a mirror (mirror1), its location (mirror1_position),
d the extension of its area of influence (mirroredArea1). Fig. 7 pro-

des an excerpt of the corresponding ontology instances. The
aphical representation highlights in red4 italics the new in-
ances, and in red dashed lines the new relations between in-
ances. Besides, the corresponding OWL code (in RDF/XML syntax)
presented. These instances have been created with the Protégé5

tology editor.
After initialization, the SURV ontology is loaded into RACER. Con-

xtual rules for scene interpretation and feedback reasoning are
so loaded. In this example, we use the four rules defined in Sec-
ons 6.4 and 6.5. These rules are naive examples to illustrate:

Rule 1. Deduction of values: the position values of a tracked entity
and the associated track must be equal
Rule 2. Object association: if a track is bigger than (25 � 40), then
it corresponds to a person
Rule 3. Activity recognition: if there is a person inside a mirror
and a person inside its associated mirrored area, then a reflection
is happening
Rule 4. Feedback provision: if a reflection is happening, then the
reflected track should be ignored
4 For interpretation of the references to color in this text, the reader is referred to
e web version of this article.
5 http://protege.stanford.ed.

12

7.2. Processing in the framework

2. Correspondence. The new track1 (and related instances) match

Fig. 7. Initial scene annotation (graphical and OWL XML-based notation).
The GTL begins by processing frame 1. Since no moving objects
are detected, no track data updates are communicated to the CL.

After that, the GTL processes frame 2. In this case, two new
tracks are detected: track 1 and track 2, with the properties de-
picted in Fig. 6(b). The GTL invokes the GTL/CL interface, and noti-
fies the CL that two new tracks have been created. This call triggers
the reasoning procedures in the CL layer:

1. Abstraction. Two Track instances (track1, track2) are created and
added by the GTL/CL interface to the scene model managed by
the RACER reasoner. These instances are assigned property val-
ues according to the values calculated by the GTL. For instance,
size of track1 is (25 � 45) and position is (360, 105). Fig. 8 graph-
ically shows some of the new instances and connections
between instances added to model as a result of the creation
of track1 (new instances created in this step are marked in red
italics; new relations are in red dashed lines).
Rule 2 with bindings: ?t := track1; ?ts := track1_size; ?d := d1.
Accordingly, a new instance of Person, named person1, is created
and associated to track1 (with hasAssociatedTrack). Analogously,
track2 matches Rule 2, and consequently a new instance of Per-

son, named person2, is created and associated to track2. Fig. 9
shows an excerpt of some of these new instances, focusing on
person1. It can be seen that the position values of person1 have
not been yet assigned.

3. Additional correspondence. The instances track1 and person1

match Rule 1 with bindings: ?o := person1; ?t := track1;
?tp := track1_position; ?op := person1_position; ?tpt := mir-

ror1_p1; ?opt := person1_p1.
Consequently, the (x, y) values of point person1_p1 are
made equal to (380, 105). Analogously, track2 and person2
match Rule 1, and therefore the (x, y) values of point person2_p1
are made equal to (425, 100). Fig. 10 shows an excerpt of
the ontology after the assignment of (x, y) position values to
person1.
13

4. Recognition. With the previous assignments, the instances of the

5.

ce
so
th
be
de
an

8.

ac
je
sic
th
ed
in
heFig. 8. Ontology instances added after the creation of track1.

Fig. 9. Ontology instances added after the creation of th
ontology match Rule 3 with the following variable bindings:
?real_person := person1; ?o1p := person1_position; ?mirror_
person := person2; ?o2p := person2_position; ?mirror := mirror1;
?ma := mirror1_area; ?mirrored_area := mirrored_area1; ?maa :=
mirrored_area1_area.
As a result of this rule, a new instance of ReflectionSituation,
named reflection1, is created. mirror1, person1, and person2 are
associated to reflection1 through the properties mirror, mirrored-

Person, and personInMirror, respectively. These new instances
are shown in Fig. 11.
Feedback. The new Reflection instance make possible matching
of Rule 4 with the following variable bindings: ?s := reflection1;
?personInMirror := person2; ?t := track2.
As a result of this rule, a new instance of IgnoreTrack, named
ignore_action1, is created, with track2 as the track to be ignored
by the GTL (Fig. 12).

After firing Rule 4, reasoning stops, because no more rule ante-
dents are matched. The feedback action obtained after the rea-
ning process – the ignore track recommendation – is placed in
e recommendations queue. In synchronous mode, the queue will
consulted by the GTL before processing the next frame of the vi-
o sequence. The recommendation will be interpreted by the GTL,
d suitable actions will be carried out.
Conclusions and future work
In this paper, we have presented a context-based framework to
hieve high-level interpretation of video data and to improve ob-
ct tracking in complex scenarios. The framework extends a clas-
al tracking system (the GTL) with an ontological layer (the CL)
at represents and reasons with sensorial data and context knowl-
ge, in order to avoid the issues that makes classical object track-
g procedures fail in complex scenarios. Based on contextual and
uristic knowledge formally represented with ontologies and
e correspondence between person1 and track1.

14

rules, the CL applies abductive and deductive reasoning to build a Formal representation of knowledge with ontologies in our

Fig. 10. Ontology instances added after deduction of position values to person1.

Fig. 11. Ontology instances created after recognition of situation reflection1.
symbolic model of the scene structured in various abstraction lev-
els – from low-level tracking data to high-level activity descrip-
tions –, according to the JDL Information Fusion model. The
interpretation of the scenes in the CL are used to generate feedback
to the GTL and enhance the quantitative tracking procedures.
framework has several advantages. General reasoning methods
(i.e. DL-deduction and rules) and existing inference engines (i.e.
RACER) can be used, reducing the effort needed to implement
scene interpretation procedures. We have proposed a layered set
of general ontologies that can be extended in different scenarios
15

and example rules, facilitating the development of domain-specific
m
ad
el
w
ar
al
u
in
en
ev
an
o

w
te
th
p
al
m
m
w
ab
au
d
b
fu
b
re
re
an

A

0
C

R

Ar

Ba

Ba

Baader, F., Horrocks, I., & Sattler, U. (2008). Handbook of knowledge representation.

Bo

Bo

Br

Br

D
D

El

Fe

Fr

G

G

G

H

H

H

H

H

H

H

H

Ka

Fig. 12. Ontology instances created after creation of recommended action ignore_action1.
odels and rule bases. Consequently, the framework can be easily
apted to different domains. The structure of the knowledge mod-
is compliant to the well-defined JDL conceptual framework,

hich provides a sound and formal substrate for the framework
chitecture. Additionally, symbolic representations of scenes are
so more interpretable, which facilitates participation of human
sers in the system, debugging and adjusting the algorithms, and
teroperation with other components and systems. Interestingly
ough, our representation allows the description of the temporal
olution of the system, and not only its state in a precise instant,
d spatial reasoning. Particularly, we have shown a brief example

n the use of the framework in a surveillance application.
We plan to continue this research work various directions. First,

e will fully integrate the CL with the tracking software. We will
st our proposal with existing datasets to demonstrate – beyond
e presented example – that the contextual layer effectively inter-

rets the perceived scene and reduces tracking errors, and we will
so measure the improvement with respect to other methods. This
ay imply further refinements or simplifications of the current
odel, which has been developed with a very broad scope. Like-
ise, suitable descriptive ontologies extending the model and
duction rules will have to be created (manually or semi-
tomatically), which poses a notable challenge because it may

emand a considerable effort. Machine learning methods could
e considered in this case. Real-time applications will require
rther studies on the performance of the framework, which has

een briefly considered. The eventual objective of the future
search works is to incorporate uncertain information and
asoning in the framework, which is inherent to most fusion
d vision applications.

cknowledgements

This work was supported in part by Projects CICYT TIN2008-
6742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB,
AM MADRINET S-0505/TIC/0255 and DPS2008–07029-C02–02.

eferences

ndt, R., Troncy, R., Staab, S., Hardman, L., & Vacura, M. (2008). COMM: Designing a
well-founded multimedia ontology for the web. In Proceedings of the sixth
international semantic web conference (ISWC 2007) (pp. 30–43). Busan, South
Korea.

ader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. F. (2003).
The description logic handbook: Theory, implementation, and applications.
Cambridge University Press.

ader, F., Horrocks, I., & Sattler, U. (2005). Description logics as ontology languages
for the semantic web. Mechanizing Mathematical Reasoning, 228–248.
In Description logics (pp. 135–180). Elsevier.
ssu, G., & Siegel, P. (1985). Saturation, nonmonotonic reasoning and the closed-

world assumption. Artificial Intelligence, 25, 13–63.
ult, T. E., Micheals, R. J., Gao, X., & Eckmann, M. (2001). Into the woods: Visual

surveillance of non-cooperative and camouflaged targets in complex outdoor
settings. Proceedings of the IEEE, 89(10), 1382–1402.

diczka, O., Yuen, P. C., Zaidenberg, S., Reignier, P., & Crowley, J. L. (2006).
Automatic acquisition of context models and its application to video
surveillance. In Proceedings of the 18th international conference on pattern
recognition (ICPR 2006) (pp. 1175–1178). Hong Kong, China.

emond, F., & Thonnat, M. (1996). A context representation for surveillance
systems. In Proceedings of the workshop on conceptual descriptions from images at
the fourth european conference on computer vision (ECCV’96). Cambridge, UK.

as, S. (2008). High-level data fusion. Artech House Publishers.
ey, A., & Abowd, G. (2000). Towards a better understanding of context and

context-awareness. In Proceedings of the workshop on the what, who, where,
when, and how of context-awareness (CHI 2000). The Hague, Netherlands.

senbroich, C., Kutz, O., & Sattler, U. (2006). A case for abductive reasoning over
ontologies. In Proceedings of the OWL workshop: Experiences and directions
(OWLED’06). Athens, Georgia, USA.

rnández, C., & González, J. (2007). Ontology for semantic integration in a cognitive
surveillance system. In Proceedings of the second international conference on
semantic and digital media technologies (pp. 260–263). Genoa, Italy.

ançois, A. R., Nevatia, R., Hobbs, J., Bolles, R. C., & Smith, J. R. (2005). VERL: An
ontology framework for representing and annotating video events. IEEE
Multimedia, 12(4), 76–86.

angemi, A., Guarino, N., Masolo, C., Oltramari, A., & Schneider, L. (2002).
Sweetening ontologies with DOLCE. In 13th international conference on
knowledge engineering and knowledge management (EKAW02) (pp. 223–233).
Sigüenza, Spain.

ruber, T. R. (1993). A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2), 199–220.

rüntter, R., Scharrenbach, T., & Bauer-Messmer, B. (2008). Improving an RCC-
derived geospatial approximation by OWL axioms. In Proceedings of the seventh
international semantic web conference (ISWC 2008) (pp. 293–306). Karlsruhe,
Germany.

äarslev, V., & Möller, R. (2001). Description of the RACER system and its
applications. In Proceedings of the international workshop on description logics
(DL2001). California, USA: Stanford University.

all, D. L., & Llinas, J. (2009). Multisensor data fusion. In Handbook of multisensor
data fusion (pp. 1–14). CRC Press.

aritaoglu, I., Harwood, D., & David, L. S. (2000). W4: Real-time surveillance of
people and their activities. IEEE Transactions Pattern Analysis and Machine
Intelligence, 22(8), 809–830.

itzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., & Rudolph, S. (2008). OWL 2
Web Ontology Language primer. Online, W3C recommendation. Available from
http://www.w3.org/TR/owl2-primer/.

obbs, J., & Pan, F. (2006). Time ontology in OWL. Online, W3C working draft.
Available from http://www.w3.org/TR/owl-time/.

orrocks, I., & Patel-Schneider, P. (2004). Reducing OWL entailment to description
logic satisfiability. Web Semantics: Science, Services and Agents on the World Wide
Web, 1(4), 345–357.

orrocks, I., & Patel-Schneider, P. F. (2004). A proposal for an OWL rules language. In
Proceedings of the 13th international conference on World Wide Web (WWW 2004)
(pp. 723–731). New York, NY, USA.

uang, Y., & Huang, T. (2002). Model-based human body tracking. In Proceedings of
the 16th international conference on pattern recognition (ICPR 2002) (Vol. 1, pp.
552–555).

tz, Y., & Cuenca Grau, B. (2005). Representing qualitative spatial information in
OWL-DL. In Proceedings of OWL: Experiences and directions workshop (OWLED
2005). Galway, Ireland.
16

Kokar, M., & Wang, J. (2002). Using ontologies for recognition: An example. In Fifth Randell, D. A., Cui, Z., & Cohn, A. G. (1992). A spatial logic based on regions and

international conference on information fusion (Vol. 2, pp. 1324–1330). Annapolis,
MD, USA.

Kokar, M. M., Matheus, C. J., & Baclawski, K. (2009). Ontology-based situation
awareness. Information Fusion, 10(1), 83–98.

Lambert, D. (2003). Grand challenges of information fusion. In Proceedings of the
sixth international conference of information fusion (Vol. 1, pp. 213–220). Cairns,
Australia.

Lee, W., Bürger, T., & Sasaki, F. (2009). Use cases and requirements for ontology and
API for media object 1.0. Online, W3C working draft. Available from http://
www.w3.org/TR/media-annot-reqs/.

Little, E. G., & Rogova, G. L. (2009). Designing ontologies for higher level fusion.
Information Fusion, 10(1), 70–82.

Llinas, J., Bowman, C., Rogova, G., Steinberg, A., Waltz, E., & White, F. (2004).
Revisiting the JDL data fusion model II. In Proceedings of the seventh international
conference on information fusion (pp. 1218–1230). Stockholm, Sweden.

Maillot, N., Thonnat, M., & Boucher, A. (2004). Towards ontology-based cognitive
vision. Machine Vision and Applications, 16(1), 33–40.

McGuiness, D., & van Harmelen, F. (2004). OWL web ontology language overview.
Online, W3C recommendation. Available from http://www.w3.org/TR/owl-
features/.

Motik, B., Sattler, U., & Studer, R. (2005). Query answering for OWL-DL with rules.
Web Semantics: Science, Services and Agents on the World Wide Web, 3(1), 41–60.

Neumann, B., & Möller, R. (2008). On scene interpretation with description logics.
Image and Vision Computing, 26, 82–101.

Nowak, C. (2003). On ontologies for high-level information fusion. In Proceedings of
the sixth international conference on information fusion (Vol. 1, pp. 657–664).
Cairns, Australia.

Noy, N., & Rector, A., 2006. Defining n-ary relations on the semantic web. Online,
W3C semantic web best practices and deployment working group note.
Available from http://www.w3.org/TR/swbp-n-aryRelations/.

Orwell, J., Remagnino, P., & Jones, G. (1999). Multi-camera colour tracking. In Second
IEEE workshop on visual surveillance (VS’99) (pp. 14–21). Fort Collins, Colo, USA.

Patricio, M. A., Castanedo, F., Berlanga, A., Pérez, O., García, J., & Molina, J. M. (2008).
Computational intelligence in multimedia processing: Recent advances. In
Computational intelligence in visual sensor networks: Improving video processing
systems (pp. 351–377). Springer.

Pinz, A., Bischof, H., Kropatsch, W., Schweighofer, G., Haxhimusa, Y., Opelt, A., et al.
(2008). Representations for cognitive vision. ELCVIA: Electronic Letters on
Computer Vision and Image Analysis, 7(2), 35–61.
connection. In Proceedings of the third international conference on principles of
knowledge engineering and reasoning (pp. 165–176). Cambridge, MA, USA.

Remagnino, P., Baumberg, A., Grove, T., Hogg, D., Tan, T., Worrall, A., & Baker, K.
(1997). An integrated traffic and pedestrian model-based vision system. In
Proceedings of the eighth british machine vision conference (BMVC97) (pp. 380–
389). Essex, UK.

Sánchez, A. M., Patricio, M. A., García, J., & Molina, J. M. (2009). A context model and
reasoning system to improve object tracking in complex scenarios. Expert
Systems with Applications, 36(8), 10995–11005.

Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., & Katz, Y. (2007). Pellet: A
practical OWL-DL reasoner. Web Semantics: Science, Services and Agents on the
World Wide Web, 5(2), 51–53.

Snidaro, L., Belluz, M., & Foresti, G. L. (2007). Domain knowledge for surveillance
applications. In Proceedings of the 10th international conference on information
fusion (pp. 1–6). Quebec, Canada.

Steinberg, A. N., & Bowman, C. L. (2004). Rethinking the JDL data fusion levels. In
Proceedings of the MSS national symposium on sensor and data fusion. Columbia,
SC, USA.

Steinberg, A. N., & Bowman, C. L. (2009). Revisions to the JDL data fusion model. In
Handbook of multisensor data fusion (pp. 45–67). CRC Press.

Steinberg, A. N., & Rogova, G. (2008). Situation and context in data fusion and
natural language understanding. In Proceedings of the 11th international
conference on information fusion (pp. 1–8). Cologne, Germany.

Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: Principles
and methods. Data Knowledge Engineering, 25, 161–197.

Vernon, D. (2008). Cognitive vision: The case for embodied perception. Image and
Vision Computing, 26(1), 127–140.

Wessel, M., & Möller, R. (2005). A high performance semantic web query answering
engine. In Proceedings of the international workshop on description logics
(DL2005). Edinburgh, Scotland.

Westermann, U., & Jain, R. (2007). Toward a common event model for multimedia
applications. IEEE Multimedia, 14(1), 19–29.

Yang, M., Wu, Y., & Hua, G. (2009). Context-aware visual tracking. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 31(7), 1195–1209.

Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. ACM Computing
Surveys, 38(4), 1–45.
17

