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Belief rule base (BRB) systems are an extension of traditional IF-THEN rule based systems and capable of
capturing complicated nonlinear causal relationships between antecedent attributes and consequents. In
a BRB system, various types of information with uncertainties can be represented using belief structures,
and a belief rule is designed with belief degrees embedded in its possible consequents. For a set of inputs
to antecedent attributes, inference in BRB is implemented using the evidential reasoning (ER) approach.
In this paper, the inference mechanism of the ER algorithm is analyzed first and its patterns of monotonic
inference and nonlinear approximation are revealed. For a practical BRB system, it is difficult to deter-
mine its parameters accurately by using only experts’ subjective knowledge. Moreover, the appropriate
adjustment of the parameters of a BRB system using available historical data can lead to significant
improvement on its prediction performance. In this paper, a training data selection scheme and an adap-
tive training method are developed for updating BRB parameters. Finally, numerical studies on a multi-
modal function and a practical pipeline leak detection problem are conducted to illustrate the function-
ality of BRB systems and validate the performance of the adaptive training technique.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Among knowledge based systems, rule base is one of the most
common and easily understood schemes for expressing various
types of knowledge (Davis, 1986; Hayes-Roth, 1985). Moreover,
it has also been convincingly argued that other knowledge
representation forms can be transformed into rule-based schemes
(Nilsson, 1982; Sun, 1995). As such, rule-based systems, usually
constructed from human knowledge in the formats of IF-THEN
rules, have seen wide applications in fields of artificial intelligence
and decision support systems (Azibi & Vanderpooten, 2002; Ligęza,
2006; Negnevitsky, 2002).

On the basis of the concept of belief structures and the eviden-
tial reasoning (ER) approach, Yang, Liu, Wang, Sii, and Wang (2006)
proposed a generic belief rule based inference system, which ex-
tends the applicability of traditional rule based systems,. In a belief
rule base (BRB) system, various types of input information with
uncertainties are represented using belief structures, and belief
rules are designed with an extended IF-THEN scheme, in which
each possible consequent is associated with a belief degree. An in-
put to a BRB system is first transformed into a belief distribution,
which is then used to calculate the activation weights of belief
rules. The output of a BRB system is generated using the ER ap-
proach. Compared with conventional rule based systems, a BRB
ll rights reserved.

hen).
system is capable of not only incorporating a more informative
knowledge representation scheme for both quantitative data and
qualitative information with uncertainties, but also capturing more
complicated nonlinear causal relationships between antecedent
attributes and consequents (Yang et al., 2006).

In the implementation of a BRB system, its belief rule base and
inference engine are two essential components. The belief rule
base can be initially established by human experts with domain-
specific knowledge and facts. The inference engine is used to rea-
son from the belief rule base for generating output from a specific
set of inputs to its antecedent attributes. Since the ER algorithm is
the kernel reasoning engine of a BRB system, it is necessary to
investigate thoroughly and understand properly its inference
mechanism. Yang and Xu (2002a) studied the typical non-linear
reasoning patterns of the ER approach under harmonic, quasi-
harmonic, and contradictory evidence. Moreover, training tech-
niques are developed to tune the parameters of an initial BRB
system when observed input–output data are available. Such train-
ing is necessary for a large scale BRB system because it is difficult
to determine its parameters accurately by using only experts’ sub-
jective knowledge. Yang, Liu, Xu, Wang, and Wang (2007) and Zhou
et al. (2009, 2010) proposed relevant training schemes for locally
updating the parameters of a BRB system.

In this paper, we first provide a more general analysis about the
ER inference patterns on both the belief degrees and the activation
weights. A heuristic scheme for training data selection is then pro-
posed in light of the characteristics of BRB. Since updating the
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referential values of antecedent attributes is crucial for identifying
the critical points of a BRB system, an adaptive training method is
developed to fine tune all parameters in a BRB system, including
rule weights, attribute weights, basic belief degrees and the refer-
ential values of antecedent attributes. The optimization problems
are solved using the nonlinear optimization solver in the Optimiza-
tion Toolbox of Matlab. Two numerical studies are provided to
illustrate the inference mechanism and validate the adaptive train-
ing method. The first one is concerned with a numerical multi-
modal function, and the second deals with a practical pipeline leak
detection problem.

The rest of this paper is organized as follows: In the following
section, the concepts of belief structures and BRB are briefly dis-
cussed, followed by a schematic architecture for BRB inference sys-
tems. In Section 3, the inference patterns of the ER approach are
studied and illustrated, including monotonic inference and nonlin-
ear approximation. The training data selection scheme and the
adaptive training method for updating BRB parameters are devel-
oped in Section 4. In Section 5, a numerical multi-modal function
and a practical application on pipeline leak detection are given to
illustrate the functionality of BRB systems and validate the perfor-
mance of the adaptive training method. The paper is concluded in
Section 6.

2. Belief rule based systems

2.1. Belief structure

In BRB systems, belief structures are used to represent various
types of information with uncertainties. Generally, a belief struc-
ture is characterized by a distribution, which was originally de-
signed to model a subjective assessment with uncertainty (Yang
& Singh, 1994). To evaluate the safety of an engineering system,
for example, an expert may assert that he is 50% sure that the
safety is average and 30% sure it is good. Here, system safety is
an attribute and average and good are linguistic variables for
describing the relative states of system safety, which are referred
to as distinctive evaluation grades. The percentage values of 50%
and 30% are referred to as the degrees of belief on relevant evalu-
ation grades. In engineering system safety expressions, a set of
evaluation grades can be defined as follows (Liu, Yang, Ruan,
Martinez, & Wang, 2008),

H ¼ fpoorðH1Þ; fairðH2Þ; averageðH3Þ; goodðH4Þg:

Then, the corresponding belief distribution in the above exam-
ple is represented as,

a ¼ f0;0;0:5;0:3g:

Note that the assessment information is incomplete as the total be-
lief degree is less than 1, and the missing belief degree of 0.2 repre-
sents the degree of ignorance.

Suppose a set of Ni distinctive evaluation grades can provide
complete standards for evaluating an attribute xi (i = 1, . . . , T), as
represented by,

HðxiÞ ¼ fHi;n; n ¼ 1; . . . ;Nig;

where Hi,n denotes the nth evaluation grade for attribute xi. Accord-
ingly, the belief distribution of attribute xi can be formulated as
follows:

SðxiÞ ¼ fðHi;n;ai;nÞ; n ¼ 1; . . . ;Nig;

where ai,n is the belief degree to which xi is assessed to evaluation
grade Hi,n, and ai;n P 0 and

PNi
n¼1ai;n 6 1. The belief information

is regarded as complete if
PNi

n¼1ai;n ¼ 1 and incomplete ifPNi
n¼1ai;n < 1. Note that both quantitative data and qualitative infor-
mation, with or without uncertainties, can be transformed into the
united belief distribution.

2.2. Belief rule base

Over the past few decades, IF-THEN rules have been frequently
used to construct knowledge based systems. More recently, Yang
et al. (2006) proposed a new knowledge representation scheme
by building a generic IF-THEN rule, referred to as belief rule, using
the above mentioned belief structure. In a belief rule, all possible
consequents are associated with belief degrees, and the weights
of both antecedent attributes and rules are also evaluated. Such a
belief rule base is capable of capturing vagueness, incompleteness,
and nonlinear causal relationships between antecedent attributes
and consequents, and traditional IF-THEN rules can be represented
as a special case (Yang et al., 2006). Formally, a belief rule can be
defined as follows:

Rk :

IF x1 is Ak
1 ^ x2 is Ak

2 ^ � � � ^ xTk
is Ak

Tk
;

THEN fðD1;b1;kÞ; ðD2; b2;kÞ; . . . ; ðDN ;bN;kÞg;
PN
n¼1

bn;k 6 1
� �

;

with rule weight hk;

and attribute weight d1;k; d2;k; . . . ; dTk ;k; k 2 f1; . . . ; Lg:
ð1Þ

where x1; x2; . . . ; xTk
denote the antecedent attributes in the kth rule.

These attributes belong to the whole set of antecedent attributes
X = {xi; i = 1, . . . , T}, in which each element takes values (or proposi-
tions) from an array of finite sets A = {A1, . . . , AT}. The vector
Ai = {Ai,n; n = 1, . . . , Ni = |Ai|} is defined as the set of referential values
for antecedent attribute xi. In the kth rule, Ak

i represents the referen-
tial value taken by the ith antecedent attribute. Tk denotes the total
number of antecedent attributes in the kth rule. bn,k represents the
belief degree to which Dn is believed to be the consequent, given
the logical relationship of the kth rule Fk : x1 is Ak

1^
x2 is Ak

2 ^ � � � ^ xTk
is Ak

Tk
. If

PN
n¼1bn;k ¼ 1, the kth rule is said to be

complete; otherwise, it is incomplete. The extreme casePN
n¼1bn;k ¼ 0 denotes total ignorance on the consequent. Note that

the element Dn in the set of consequents D = {Dn; n = 1, . . . , N} can
either be a conclusion or an action (Yang et al., 2006).

As defined above, a belief IF-THEN rule represents a functional
mapping between antecedents and consequents with uncertain-
ties, and it can provide a more informative and realistic scheme
than traditional IF-THEN rules. Furthermore, the parameters,
including belief degrees bn,k, rule weights hk and attribute weights
di,k can be assigned initially by experts and subsequently trained or
updated using appropriate learning algorithms if data regarding
the inputs and outputs of BRB systems are available.

Once a generic BRB R = hX, A, D, Fi is established, the knowledge
embedded in these belief rules can be used to perform inference for
a specific input vector. The inference process of BRB systems is
briefly discussed in the following subsection.

2.3. Inference of BRB systems

To a multiple input BRB system, suppose the following T attri-
butes are all the factors influencing the system’s output, i.e.,

X ¼ fxi; i ¼ 1; . . . ; Tg:

The relative weights d = {d1, ... , dT} of the T attributes can be ini-
tially estimated using an appropriate method such as the eigenvec-
tor or geometric mean method. The weight di represents the
relative important of attribute xi and is usually normalized, so that,

0 6 di 6 1 and
XT

i¼1

di ¼ 1:
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Fig. 1. Single-layer BRB inference system.
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Then, the inference of estimated output on a set of inputs can be
summarized as three main steps: (1) input transformation, which
transforms various formats of information into belief distributions,
(2) calculation of activation weights, which matches a specific in-
bn ¼
ðwkbn;k þ 1�wk

PN
i¼1bi;kÞðwlbn;l þ 1�wl

PN
i¼1bi;lÞ � ð1�wk

PN
i¼1bi;kÞð1�wl

PN
i¼1bi;lÞPN

j¼1½ðwkbj;k þ 1�wk
PN

i¼1bi;kÞðwlbj;l þ 1�wl
PN

i¼1bi;lÞ � ð1�wk
PN

i¼1bi;kÞð1�wl
PN

i¼1bi;lÞ�
ð2Þ
put vector to belief rules, and (3) inference using evidential reason-
ing. Here we consider a basic single-layer multiple input single
output (MISO) system, whose inference architecture is illustrated
in Fig. 1.

As shown in Fig. 1, various types of input information are first
transformed into the belief structure using the rule and utility
based techniques (Yang, 2001), so that both quantitative data
and qualitative information with uncertainties can be handled in
a consistent manner. To simplify the discussion and focus on the
main research issues of this paper, suppose all inputs are numerical
bn ¼
wkðwlbn;l þ 1�wlÞbn;k þ ð1�wkÞwlbn;l

wkðwlbn;l þ 1�wlÞbn;k þ ð1�wkÞwlbn;l þ
PN

j¼1j–nðwkðwlbj;l þ 1�wlÞbj;k þ ð1�wkÞwlbj;lÞ
: ð3Þ
in the following discussion. The details about how to transform
other types of inputs are discussed in the literature (Yang, 2001).
Subsequently, the activation weights, which reflect the matching
degrees of an input vector to all belief rules in the rule base, are cal-
culated by a distributed multiplicative algorithm. Finally, based on
the constructed belief decision matrix, the evidential reasoning
method is used to infer the estimated output on the given inputs.
A brief introduction on the inference steps of BRB systems is pro-
vided in Appendix A. Mathematically, according to the analytical
ER algorithm in Eq. (A-15), the combined belief degree bn to the fi-
nal output is entirely determined by the basic belief degree bn,k and
the activation weight wk for each rule.
3. Analysis of evidential reasoning inference mechanism

To facilitate the application of BRB systems, the inference mech-
anism of the ER approach need to be investigated. Yang and Xu
(2002a) studied the typical non-linear reasoning pattern of the
ER approach under harmonic, quasi-harmonic, and contradictory
evidence. In this section, we provide a more general analysis on
the information inference patterns of the ER approach. Two typical
belief rules Rk and Rl are used to analyze the inference patterns of a
BRB system. If a set of inputs to antecedent attributes activates
more than two belief rules, with the recursive nature of the ER ap-
proach, we can also assume that Rl is an intermediate belief rule
generated by aggregating all other activated belief rules except
for Rk Suppose the belief distributions of the two rules Rk and Rl

are given as follows:

Rk : fðDn;bn;kÞ; n ¼ 1; . . . ;Ng with
XN

n¼1

bn;k ¼ 1;
Rl : fðDn;bn;lÞ; n ¼ 1; . . . ;Ng with
XN

n¼1

bn;l ¼ 1:

The activation weights are assumed to be wk and wl, respec-
tively, and wk + wl = 1.

According to analytical Eq. (A-15), the combined belief degree
bn (n = 1, ... , N) can be calculated as follows:
This expression exhibits strongly nonlinear relationships among
the combined belief degrees and the parameters of the basic belief
degrees and the activation weights. In the following we analyze
this nonlinear inference mechanism in accordance with the two
different types of parameters.
3.1. Monotonic inference to the basic belief degrees

Let us fix all other parameters except bn,k Eq. (2) can then be
transformed as
It is easily known from Eq. (3) that bn increases monotonically
and bi (i – n) decreases monotonically with the increase of bn,k.
In Appendix B.1, we prove that in the analytical ER algorithm the
first order derivatives of bn (n = 1, ... , N) with respect to bn,k is not
less than zero, i.e., @bn

@bn;l
P 0. We can therefore conclude that bn in-

creases monotonically with bn,k.
To illustrate the monotonic reasoning pattern, we consider an

illustrative case in which the consequents of the activated rules
Rk and Rl are assessed by,

Rk : fðDn�1;bn�1;kÞ; ðDn;bn;kÞ; ðDnþ1;bnþ1;kÞg with

bn�1;k þ bn;k þ bnþ1;k ¼ 1;
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Rl : fðDn�1; bn�1;lÞg with Dn�1;l ¼ 1

and wk = 2wl, bn�1;k ¼ bnþ1;k ¼ 1
2 ð1� bn;kÞ. We then have,

bn�1 ¼
4� 3bn;k

6� bn;k
; bn ¼

4bn;k

6� bn;k
; bnþ1 ¼

2� 2bn;k

6� bn;k

The curves of bn�1, bn and bn+1 with respect to bn,k are shown in
Fig. 2.

In Fig. 2, it shows that bn�1 and bn+1 monotonically decrease and
bn monotonically increases with the increase of bn,k The relation-
ships between the combined belief degrees and the basic belief de-
grees are not a simple linear weighted sum. At bn,k = 0, the
judgements are quasi-harmonic as discussed by Yang and Xu
(2002a). We have bn�1 = 2/3, bn = 0 and bn+1 = 1/3, which satisfies
the synthesis axioms (Yang & Xu, 2002b). At bn,k = 1, the conse-
quent is completely assessed to Hn, which is contradictory to the
consequent in rule Rl, we have bn�1 = 0.2, bn = 0.8 and bn+1 = 0,
and bn = (wk/wl)2bn�1 = 4bn�1. bn increases quickly since the acti-
vated rule Rk is twice as important as Rl.

3.2. Nonlinear approximation to the activation weights

Suppose wk = w and note that wl = 1 � w. Eq. (2) can then be
transformed as follows:

bn ¼
ðbn;k þ bn;l � bn;kbn;lÞw2 þ ðbn;kbn;l � 2bn;lÞwþ bn;l

ð2�
PN

j¼1bj;kbj;lÞw2 � ð2�
PN

j¼1bj;kbj;lÞwþ 1
ð4Þ

To illustrate the nonlinear approximation process, we consider
a specific case in which the consequents of the activation rules Rk

and Rl are assessed by,

Rk : fðDn�1;0Þ; ðDn;1=3Þ; ðDnþ1;2=3Þg;

Rl : fðDn�1;1=2Þ; ðDn;1=2Þ; ðDnþ1;0Þg:

We then have,

bn�1 ¼
3w2 � 6wþ 3

11w2 � 11wþ 6
; bn ¼

4w2 � 5wþ 3
11w2 � 11wþ 6

;

bnþ1 ¼
4w2

11w2 � 11wþ 6

Fig. 3 shows the curves of bn�1, bn and bn+1 with respect to
weight w. With the increase of w, the combined belief degrees on
consequents approximate more closely to the belief degrees of
the consequent in rule Rk than that in rule Rl It is worth noting that
the nonlinear approximation process is not monotonic. In Fig. 3,
the combined belief degree bn initially increases monotonically
from bn,l = 1/2 and then decreases monotonically to bn,k = 1/3, tak-
ing the maximum value of 0.5095 at wk = 0.1883. The nonlinear
pattern can also be analyzed using the gradient information, and
the first order derivatives with respect to the activation weights
can be found in Appendix B.2.

As discussed above, the combined belief degree bn is
determined by the belief degree bn,k and the activation weight wk

which is further affected by the rule weight hk, attribute weight
di and belief degree ai,n. For a quantitative attribute xi, ai,n is trans-
formed from input values using the vector of referential values
Ai = {Ai,n; n = 1, . . . , Ni}. So, a change on these parameters including
bn,k, hk, di and Ai = {Ai,n; n = 1, ... , Ni} can have significant impact on
the inference performance of a BRB system. For achieving desirable
inference performance, these parameters need to be trained if in-
put–output data are available.
4. Training techniques of BRB systems

For improved inference performance, input–output data sets
should be collected to train a BRB system. Fig. 4 shows the func-
tional training framework of BRB systems.

In Fig. 4, x̂m represents a given input vector; ŷm is the corre-
sponding observed output of the real system; ym is the inference
output generated by the BRB system; n(P) reflects the difference
between ŷm and ym as defined later, where P is the vector of train-
ing parameters, including bn,k, hk, di and Ai It is desirable that n(P) is
as small as possible. An optimal training algorithm is designed to
adjust the parameters in order to minimize the difference between
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the observed output and the inference output for the whole set of
training data.

4.1. Training data selection

The selection of training data not only affects the inference per-
formance of BRB systems, but also has considerable impact on its
applicability. Generally speaking, training data should be selected
to cover all possible working conditions of a BRB system. On the
other hand, it is also widely believed that comparatively large
training data sets may provide better learning performance for
intelligent systems (Jang, 1993; Weiss & Provost, 2003). However,
the nonlinear inference mechanism of a BRB system makes its
training models intractable for large data sets due to the require-
ments of large storage memory and enormous amounts of training
time. Thus, it is crucial to select appropriate data sets for BRB sys-
tem training.

In a BRB system, belief rules usually decomposes a T-dimen-
sional input space into multiple regional working domains by
means of the referential values of antecedent attributes
Ai = {Ai,n; n = 1, . . . , Ni} as shown in Fig. 5. The number of working
domains is the Cartesian products of the independent partitions
of all antecedent attributes. Take xi for example. Its partitions con-
sist of the intervals ½Ai;ni

;Ai;niþ1�; ni ¼ 1; . . . ;Ni � 1. The working do-
main starting at the referential point ðA1;n1 ; . . . ;Ai;ni

; . . . ;AT;nT Þ can
be represented as a T-dimensional subspace ½A1;n1 ;A1;n1þ1� � � � � �
½AT;nT ;AT;nTþ1�, and 2T belief rules are associated with this working
domain. The total number of working domains is

QT
i¼1ðNi � 1Þ. Each

input data in the whole historical data set can be assigned to one or
several specific working domains. For example, an input vector
transformed from qualitative information may be assigned to
everal working domains since it is assessed by a distribution.
One of the common approaches for training data selection is to
use a predetermined percentage to randomly select training data
from a data subset associated with a working domain.
Further, we can employ the following guidelines or knowledge hid-
den in belief rule base to adjust the process of sampling training
data.

(1) Select representative training data for all working domains
defined by belief rules; make the selected data distribute
as evenly as possible in each working domain, and avoid
redundant, insignificant and repeated data.

(2) Increase the amount of training data for more important
working domains. Important working domains can be
assigned by experts or identified by statistical analysis of
historical data.
Fig. 5. Training data selection of BRB systems.
(3) Increase the amount of training data for the working
domains in which relevant belief rules have high variation.
Let bnðA1;n01

; . . . ;Ai;n0
i
; . . . ;AT;n0T

Þ represent the basic belief
degree in the vth belief rule associated with the working
domain starting at the referential point ðA1;n1 ; . . . ;Ai;ni

; . . . ;

AT;nT Þ, with n0i equal to ni or ni + 1. Without loss of generality,
suppose n0i is equal to ni and its upward neighboring referen-
tial point is ðA1;n01

; . . . ;Ai;n0
i
þ1; . . . ;AT;n0T

Þ. Then the variation of a
working domain can be evaluated with the product of ‘‘gra-
dient-like’’ information of its neighboring boundary belief
rules as follows,

�

rgðyÞ ¼

Y2T

v¼1

XN

n¼1

uðDnÞbnðA1;n01
; . . . ;Ai;n0

i
þ1; . . . ;AT;n0T

Þ
����

�
XN

n¼1

uðDnÞbnðA1;n01
; . . . ;Ai;n0

i
; . . . ;AT;n0T

Þ
����� ð5Þ
4.2. Adaptive training method

As discussed above, belief rules are essentially the sampled in-
put-output points of real systems on the referential values of ante-
cedent attributes. As such, the process of adaptively updating the
referential values of antecedent attributes is important for improv-
ing the generalization and identification capability of BRB systems.
As an extension to the original local training model proposed by
Yang et al. (2007), in this section an adaptive training model is
presented to optimize all the parameters in a BRB system including
not only belief degrees bn,k rule weights hk and attribute weights di

as considered in the local training model (Yang et al., 2007), but
also the referential values of antecedent attributes Ai = {Ai,n;
n = 1, . . . , Ni = |Ai|}. According to the physical and functional
requirements of BRB systems, the parameters must satisfy the fol-
lowing linear equality and inequality constraints:

(1) A basic belief degree must not be less than zero or more than
one, i.e.,
0 6 bn;k 6 1; n ¼ 1; . . . ;N; k ¼ 1; . . . ; L ð6aÞ
(2) If the kth belief rule is complete, its total belief degree in the
consequents will be equal to one, i.e.,
XN

n¼1

bn;k ¼ 1; k ¼ 1; . . . ; L: ð6bÞ
Note that if this equality constraint is required for all the belief
rules then the trained belief rule base will be complete.

(3) A rule weight is normalized, so that it is between zero and
one, i.e.,
0 6 hk 6 1; k ¼ 1; . . . ; L: ð6cÞ
(4) An attribute weight is normalized, so that it is between zero
and one, i.e.,
0 6 di 6 1; i ¼ 1; . . . ; T: ð6dÞ
(5) Without loss of generality, suppose xi is a ‘‘profit’’ attribute,
so its referential values must satisfy the preference con-
straints, i.e.,
Ai;n � Ai;nþ1 6 0; i ¼ 1; . . . ; T; n ¼ 1; . . . ;Ni � 1 ð6e:1Þ
Alternatively, we can also assign a small value Vi to differentiate
between two adjacent referential values for attribute xi. In this
case, constraint (6e � 1) can be changed to,



Table 1
Initial belief rule base for the nonlinear function.

Rule
no.

Rule
weight

x f(x) Consequents
{D1, D2, D3, D4, D5} = {�2.5, �1, 1, 2, 3}

1 1 0 0 {(D1, 0), (D2, 0.5), (D3, 0.5), (D4, 0), (D5, 0)}
2 1 0.5 0.12 {(D1, 0), (D2, 0.44), (D3, 0.56), (D4, 0), (D5, 0)}
3 1 1 0.84 {(D1, 0), (D2, 0.08), (D3, 0.92), (D4, 0), (D5, 0)}
4 1 1.5 1.16 {(D1, 0), (D2, 0), (D3, 0.84), (D4, 0.16), (D5, 0)}
5 1 2 �1.51 {(D1, 0.34), (D2, 0.66), (D3, 0), (D4, 0), (D5, 0)}
6 1 2.5 �0.06 {(D1, 0), (D2, 0.53), (D3, 0.47), (D4, 0), (D5, 0)}
7 1 3 1.2 {(D1, 0), (D2, 0), (D3, 0.8), (D4, 0.2), (D5, 0)}
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Fig. 6. Comparisons on the BRB systems with different training methods.
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Ai;n � Ai;nþ1 6 Vi; i ¼ 1; . . . ; T; n ¼ 1; . . . ;Ni � 1: ð6e:2Þ

In a BRB system, suppose a set of observed training data is pro-
vided in the form of M input–output pairs ðx̂m; ŷmÞ; m ¼ 1; . . . ;M,
with x̂m and ŷm being numerical values. The inference output is
represented as belief distribution as described in Eq. (A-13), and
its numerical value can be calculated as follows using Eq. (A-14).

ym ¼
XN

n¼1

uðDnÞbnðmÞ;

where bn(m) represents the inference output of the BRB system to
the mth input. Thus, the objective of the optimal training model is
to adjust the basic belief degrees bn,k rule weights hk, attribute
weights di, and referential values of antecedent attributes Ai = {Ai,n;
n = 1, . . . , Ni = |Ai|}, which are denoted by P = P(bn,k, hk, di, Ai), in or-
der to minimize the total mean squared error that is defined as fol-
lows (Yang et al., 2007),

min
P

nðPÞ; ð7aÞ

where

nðPÞ ¼ 1
M

XM

m¼1

ðym � ŷmÞ2 ð7bÞ

The optimization objective given in Eq. (7b) is obviously a typ-
ical nonlinear function. This training model with nonlinear optimi-
zation objective and linear equality and inequality constraints can
be solved using existing nonlinear optimization software packages,
such as the fmincon function in the Optimization Toolbox of Matlab
(Coleman, Branch, & Grace, 1999).

To illustrate the effects of adaptively training the referential val-
ues of antecedent attributes, we use a nonlinear mathematical
function to measure the inference performance of the BRB systems
without training, with local training and with adaptive training,
respectively. The nonlinear function is given as follows:

f ðxÞ ¼ x sinðx2Þ; 0 6 x 6 3 ð8Þ

For constructing an illustrative BRB system, we first evenly as-
sign seven referential values within the definition interval of the
independent variable, and the vector of referential values is de-
fined by {0, 0.5, 1, 1.5, 2, 2.5, 3}. For each of the referential points,
we can calculate the real output using the above given function,
and then transform a numerical output to a belief distribution
using the vector of referential values for consequents defined as
{D1, D2, D3, D4, D5} = {�2.5, �1, 1, 2, 3}. Finally, we can construct
the initial belief rule base in which the belief rules are listed in Ta-
ble 1. Note in Table 1 that the expected value of the consequents of
each belief rule is equal to the value of the function at the same in-
put value. For example, in rule no. 1, y1 = �2.5 � 0 + �1 � 0.5 +
1 � 0.5 + 2 � 0 + 3 � 0 = 0, and f(x = 0) = 0, so y1 = f(x = 0).

Subsequently, we generate 1000 training data which are evenly
distributed within the definition interval of the input variable.
Using the inference methodology discussed in Section 2.3, we
can obtain the numerical inference output. Fig. 6 compares the ac-
tual output (real line in blue1) and the inference output (dashed
line in red) of the BRB systems without training, with local training
and with adaptive training, respectively.

It is evident from Fig. 6 that the inference values using initial
belief rule base without training do not match the real values sat-
isfactorily. This means that the initial rule base is not constructed
properly although each single belief rule reflects the correct input-
output relationship. With local training, the system outputs can
minimize the deviation between inference outputs and real out-
1 For interpretation of color in Fig. 6, the reader is referred to the web version of
this article.
puts. However, due to the monotonic inference pattern of eviden-
tial reasoning as discussed in Section 3, it is difficult to
approximate the real values infinitely in some areas if the referen-
tial points are fixed.

However, after the referential values of inputs are adaptively
updated using the proposed training method, the inference preci-
sion can be improved significantly, and the trained belief rule base
can accurately replicate the nonlinear relationship between input
and output using the same training data set. Moreover, the BRB
system with the adaptive adjustment of referential values is also
capable of identifying the critical working points as shown in the
bottom subplot of Fig. 6. In the above nonlinear function, the local
extreme points, which are regarded as critical points, are 1.355,
2.195, and 2.814 in the defined interval of the input variable. With
the adaptive training, all the critical points are closely identified by
the updated referential values {0, 0.436, 1.333, 1.464, 2.197, 2.807,
3}. The trained belief rule base is provided in Table 2.

It should be mentioned in Table 1 that only two adjacent conse-
quents are associated with non-zero belief degrees since the belief
distribution of each rule is transformed from a quantitative data,
while in Table 2, most consequents of each trained belief rule are
with non-zero belief degrees. It means that with training the BRB
system can conduct a joint interpolation of all the consequents.
This feature of BRB may make it capable of simulating complex
systems in a better way than other simple interpolation methods.

5. Numerical studies

In order to illustrate the functionality of BRB systems and vali-
date the effectiveness of the training techniques under study in
this paper, in the section we apply BRB to a multi-modal function
and a practical pipeline leak detection problem.



Table 2
Trained belief rule base for the nonlinear function.

Rule
no.

Rule
weight

x Consequents {D1, D2, D3, D4, D5} = {�2.5, �1, 1, 2, 3}

1 1.00 0 {(D1, 0.01), (D2, 0.53), (D3, 0.40), (D4, 0.03), (D5,
0.03)}

2 0.96 0.436 {(D1, 0.06), (D2, 0.42), (D3, 0.44), (D4, 0.02), (D5,
0.06)}

3 0.76 1.333 {(D1, 0.02), (D2, 0), (D3, 0.78), (D4, 0.04), (D5, 0.16)}
4 0.80 1.464 {(D1, 0.15), (D2, 0.09), (D3, 0.27), (D4, 0.05), (D5,

0.44)}
5 0.70 2.197 {(D1, 0.86), (D2, 0.11), (D3, 0.03), (D4, 0), (D5, 0)}
6 0.60 2.807 {(D1, 0), (D2, 0), (D3, 0.04), (D4, 0.10), (D5, 0.86)}
7 0.41 3.00 {(D1, 0.20), (D2, 0.15), (D3, 0.03), (D4, 0), (D5, 0.62)}
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Fig. 8. Inference output of BRB system on Himmelblau function.
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5.1. A multi-modal function

Himmelblau function (Himmelblau, 1972) is a multi-modal
function commonly used as a benchmark function for testing opti-
mization techniques. In this section we use it to test the inference
and identification capability of BRB systems, since lots of inference
or prediction problems in engineering systems often involve multi-
ple working modes, which may be regarded as the modals in the
multi-modal function. The Himmelblau function is mathematically
represented as below (Andrei, 2008),

f ðx; yÞ ¼ ðx2 þ y� 11Þ2 þ ðxþ y2 � 7Þ2; �6 6 x; y 6 6: ð9Þ

The function has one local maximum f(x, y) = 181.616 at point
(�0.270844, �0.923038), and four identical local minimums
f(x, y) = 0 at points (3.0, 2.0), (3.584428, �1.848126), (�2.805118,
3.131312) and (�3.779310, �3.283186). Its contour graph is
shown in Fig. 7.

Note that the four local minimums are distributed irregularly
on the rugged surface. Without loss of generality, we assign seven
referential values {�6, �4, �2, 0, 2, 4, 6} for transforming both
independent variables, and five referential values {0, 200, 500,
1000, 2200} for formulating the consequents. The belief rules can
be initially constructed using the real outputs at the 7 � 7 referen-
tial points. Initially, we assume that all the attribute weights and
rule weights are equal to 1. To test the inference performance of
the BRB system with adaptive training method, we generated
15 � 5 training data which are evenly distributed on the surface
of the multi-modal function. The trained belief rule base for Him-
melblau function is given in Appendix table C.1. Fig. 8 shows the
real output and the inference output of the trained BRB system.

It is obvious from Fig. 8 that the BRB system updated using
the adaptive training method is capable of providing superior data
Fig. 7. Contour graph of Himmelblau function.
fitting performance for this complicated nonlinear multi-modal
function. The updated referential values for the two antecedent
variables are {�6, �3.8813, �2.05381, �1.03, 3.079516,
5.229138, 6} and {�6, �4.85368, �3.1657, �0.21, 3.060166,
4.585267, 6}, respectively, and the referential points with the for-
mat of belief rules approximately identify the critical local maxi-
mal and minimal points.

5.2. A practical application: pipeline leak detection

Environmental and personal safety issues and economic losses
to pipeline operating companies require the development of effec-
tive methods for pipeline leak detection. Based on the basic mass
balance principle, a belief rule based expert system was developed
for leak detection in a pipeline of more than 100km installed in
Britain (Xu et al., 2007).

5.2.1. Problem formulation
In a liquid transmission pipeline, leaks generally cause pressure

to change and also create flow discrepancy between inlet and out-
let. According to the principle of conservation of mass and histor-
ical information, human experts can provide a set of rules to
represent typical relationships between the changing patterns of
flow and pressure and leak size. For example, if the inlet flow of
a pipeline is larger than its outlet flow, and the pressure in the
pipeline still decreases although the total content in the pipeline
is increasing, then it is highly likely that there is a leak (Xu et al.,
2007). In general, leak size is related to the change scale of flow
and pressure. Therefore, the difference between inlet flow and out-
let flow and the average pipeline pressure change over time, which
are denoted as FlowDiff and PressureDiff, respectively, are selected
as the antecedent attributes in inferring the consequent of leak
rate, denoted by LeakSize. A series of samples with 4%, 16%, and
25% leak rate were generated from a pipeline more than 100 km
in length. The values of FlowDiff and PressureDiff are calculated
from the operational data, which are sampled from the mass flow
meters at the inlet and outlet and the pressure meters at the inlet,
outlet and eight middle points along the pipeline at the rate of 10 s
(Xu et al., 2007). The LeakSize values are controlled during the leak
trial. Fig. 9 shows the FlowDiff, PressureDiff and LeakSize associated
with a series of 25% leak trial data collected in about 5 and half
hours.

It is obvious that the leak period is clearly marked by the large
FlowDiff, but the leak size is affected by both FlowDiff and Pressure-
Diff. In the following study, we will use these data to train and test
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the BRB system for correctly detecting the leak and precisely esti-
mating the leak sizes.

5.2.2. Constructing an initial belief rule base

(1) Referential values of the antecedents and consequent
According to the experts’ knowledge, the numerical
referential values and corresponding linguistic terms for
the antecedents and consequent are provided (Xu et al.,
2007).
For the antecedent FlowDiff, the following eight referential
points are used:
H1 ¼ fNL; NM; NS; NVS; Z; PS; PM; PLg;
where the linguistic terms are negative large (NL), negative
medium (NM), negative small (NS), negative very small
(NVS), zero (Z), positive small (PS), positive medium (PM),
and positive large (PL). The vector of the corresponding
numerical referential values is given by,
A1 ¼ f�10;�5;�3;�1;0;1;2;3g ð10Þ
For the antecedent PressureDiff, the following seven referen-
tial points are used:
H2 ¼ fNL; NM; NS; Z; PS; PM; PLg;
0.01
and the vector of the corresponding numerical referential val-
ues is given by,
A2 ¼ f�0:01;�0:005;�0:002; 0;0:002; 0:005;0:01g ð11Þ
0.002

0.005

D
iff
For the consequent LeakSize, the following five referential
points are used:
0    

re
ss

ur
e

D ¼ fD1;D2;D3;D4;D5g ¼ fZ; VS; M; H; VHg;
-0.005

-0.002P
where the linguistic terms are zero (Z), very small (VS), med-
ium (M), high (H) and very high (VH), and the vector of the
corresponding discernible referential values is
D ¼ f0;2;4;6;8g ð12Þ
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-0.01

FlowDiff

Fig. 10. Statistical distribution of trial data using referential values.
(2) Belief rule base
Using the linguistic terms or the equivalent numerical refer-
ential values, the belief rule in the BRB system for leak detec-
tion can be represented as follows:
Rk :

IF FlowDiff is Ak
1 ^ PressureDiff is Ak

2;

THEN LeakSize is fðD1;b1;kÞ; ðD2;b2;kÞ; . . . ; ðD5;b5;kÞg;

ð
P5
n¼1

bn;k 6 1Þ;

with rule weight hk; and attribute weight d1;k; d2;k;

k 2 f1; . . . ; Lg:
Here, Ak
1 and Ak

2 are referential values as defined in Eqs. (10) and
(11). The complete rule base includes 8 � 7 combinations of the
two antecedents. With the practitioner’s experiences and historical
data, the initial BRB are constructed as shown in Appendix table
D.1. To improve the inference performance, further training is nec-
essary to fine tune those parameters in the initial BRB system.

5.2.3. Training and testing of the rule base
In order to select effective training data from the trial data with

no leak and 25% leak rate, the statistical distribution on the work-
ing domains separated by the initial referential values of anteced-
ents is given in Fig. 10.

According to the training data selection scheme discussed in
Section 4.1, 500 training data from a total sample of 2008 are se-
lected for the different working domains. Thus, the input to both
the real system and the rule based system is given by,
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XðtÞ ¼ ðFlowDiff ðtÞ;PressureDiff ðtÞÞ:

The observed output ŷðtÞ is the controlled leak size in the trial
data. The inference output y(t) is calculated using the inference
method discussed in Section 2.3. The training and testing process
is outlined as follows.

(1) Set initial parameters of BRB system
The initial degree of beliefs are given by experts and listed in
Appendix table D.1. The rule weights hk(k = 1, . . ., 56) and the
attribute weights di (i = 1, 2) are all assumed to be 1, and the
referential values of the antecedents are given in Eqs. (10)
and (11).

(2) Inference using evidential reasoning
As discussed in Appendix A, each numerical training sample
[FlowDiff(t), PressureDiff(t)] can be transformed to belief
degrees on the initial referential values using input transfor-
mation techniques. The activation weight of each rule is cal-
culated by Eq. (A-3). The activated rules can then be
combined using the ER approach. Finally, the estimated out-
put is calculated by Eq. (A-14).
Fig. 11 shows that the values of the estimated LeakSize
inferred by the initial BRB system are rather different from
the sample data. So it is necessary to update the parameters
in the initial BRB system.

(3) Train the initial BRB system
As discussed in Section 4.2, the objective of the training pro-
cess is to find a set of updated parameters P in order to min-
imize the difference between the observed and estimated
n(P), which can be calculated by Eq. (7b). The constraints
in the training model are given by Eqs. (6a), (6b), (6c), (6d)
and (6e-2) with V1 = 1, V2 = 0.002. The constrained nonlinear
optimization problem can be solved using the nonlinear
optimization solver in Matlab. The trained belief rules with
rule weights are listed in Appendix table D.2. The updated
attribute weights are d1 = 1 and d2 = 0.45, and the updated
referential values are as follows:
0.0

Le
ak

S
iz

e

A1 ¼ f�10;�4:1;�2:8;�1:79;�0:79; 0:25;2;3g;

A2 ¼ f�0:01;�0:008;�0:005; 0:003;0:0058;0:008;0:01g:
As shown in Fig. 12, the BRB system with adaptive training method
can closely replicate the relationship between antecedents FlowDiff,
PressureDiff and consequent LeakSize in the selected training data.
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Fig. 11. Training data and the output by the initial BRB system.
(4) Test the trained BRB system
To test the trained BRB system, all the 2008 samples in Fig. 9
are used. Fig. 13 shows that the observed LeakSize and the
estimated LeakSize for the same antecedent values. It dem-
onstrates that the estimated outputs match the observed
ones very closely.
Fig. 14 displays the observed LeakSize and the estimated
LeakSize on the time scale. It shows that the adaptively
trained rule base can clearly detect the leak events and clo-
sely predict the leak sizes which happened at around
9:35 a.m and ended at around 10.53 a.m.
It is worth noting that a confirmation period was applied in
the trial data for avoiding false leak alarms (Xu et al., 2007).
In the testing data in Figs. 13 and 14 samples fall into the
confirmation period, which started at around 9:35 a.m and
ended at around 9:38 a.m as in Fig. 14.

5.2.4. Comparative analysis and discussions
For the same size of training data, the BRB system updated

using the adaptive training method, as studied in this paper, dem-
onstrates much better inference performance than the BRB system
updated using the local training method (Xu et al., 2007), and can
accurately replicate the complex nonlinear relationship among the
antecedents and consequents. In Table 3, the mean absolute error
(MAE), root mean squared error (RMSE) and Pearson’s correlation
coefficient (PCC) between the observed LeakSize and the estimated
LeakSize are used to measure the inference capability. The smaller
Fig. 13. Testing data and the system output after adaptive training.
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Fig. 14. Testing data and the system output after adaptive training on the time scale.

Table 3
Comparison on local training and adaptive training.

Training algorithms MAE RMSE PCC

Local training 0.22229 0.63791 0.96102
Adaptive training 0.20643 0.63170 0.96697
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MAE and RMSE values indicate that the BRB system updated using
the adaptive training method has better inference accuracy than
the local training method, and the larger PCC value demonstrates
that it provides better performance in quickly tracking the chang-
ing dynamics of the observed output.

The slight difference between the observed LeakSize and the
estimated LeakSize can be further decreased using noise reduction
techniques since the inputs, especially PressureDiff, have lots of
noise, which is probably caused by dynamic changes in the pipe-
line and possible data measurement and communication errors
(Carpenter, Nicholas, & Henrie, 2005; Silva da, Morooka,
Guilherme, Fonseca da, & Mendes, 2005; Xu et al., 2007). The
application of noise reduction techniques to improve the perfor-
mances of BRB systems is not the focus of this paper, and is subject
to further research. It should be noted that experts can employ
physical principles or prior knowledge to intervene the training
process as discussed by Zhou et al. (2009). Also, the computational
complexity of the adaptive training method only increases slightly
compared with the local training method even if gradient-based
optimization techniques are used for training a BRB system, since
the referential values just account for a small portion of all the
training parameters of the BRB system.

6. Concluding remarks

As an extension of traditional rule based systems, BRB systems
provide a more realistic and flexible non-black-box approach for
representing human knowledge, aggregating information, and
transparently inferring output. The distributed modeling frame-
work employed in a BRB system makes it possible to handle both
quantitative data and qualitative information, either complete or
incomplete, and enables users to describe antecedent attributes
in a flexible, reliable, explicit and systematic manner. The in-depth
studies of this paper reveal the inference mechanism of the ER ap-
proach and led to the development of the adaptive training method
for updating the parameters of BRB systems including the referen-
tial values. The main contributions of this paper are summarized as
follows:
(1) The general architecture for single-layer BRB inference sys-
tems is organized and its reasoning process is briefly
discussed.

(2) The typical reasoning patterns of the ER approach are exam-
ined both experimentally and analytically. These studies
reveal the distinctive features of BRB systems, and also dem-
onstrate the necessity for adaptively updating the parame-
ters of BRB systems.

(3) A heuristic training data selection scheme for BRB systems
are proposed. The adaptive training method is proposed to
fine tune all parameters of a BRB system, including rule
weights, attribute weights, the basic belief degrees of conse-
quents and the referential values of antecedent attributes.

In addition, two numerical studies are conducted to apply the
BRB systems to a multi-modal function and a practical pipeline
leak detection problem. The superior knowledge representation
and inference performances demonstrate that BRB systems have
wide potential applications in knowledge-based system develop-
ment, such as risk analysis, classification, and fault diagnosis
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Appendix A. Introduction to the inference process of BRB
systems

The inference of BRB systems mainly includes three steps: (A.1)
input transformation, (A.2) calculation of activation weights, and
(A.3) inference using evidential reasoning, which is briefly dis-
cussed and summarized for the completeness of this paper. More
details can be found in the literature (Yang et al., 2006, 2007).

A.1. Input transformation

Suppose hi,n (n = 1, ... , Ni) is the nth possible referential value for
attribute xi. Without loss of generality, let us assume that xi is a
‘‘profit’’ attribute, which means a large value hi,n+1 is preferred to
a smaller value hi,n. Let hi;Ni

be the largest referential value and
hi,1 the smallest referential value for attribute xi. Note that these
referential values can be assigned directly by experts and further



Table A-I
Belief rule expression matrix for a BRB system.

Input Belief output

D1 D2 � � � Dn � � � DN

A1(w1) b1,1 b2,1 � � � bn,1 bN,1

A2(w2) b1,2 b2,2 � � � bn,2 bN,2

� � �
Ak(wk) b1,k b2,k � � � bn,k bN,k

� � �
AL(wL) b1,L b2,L � � � bn,L bN,L
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learned from available input–output data pairs. Given the initial
referential values for an attribute, the process of input transforma-
tion is thus equivalent to transforming a numerical value into a be-
lief distribution on all the referential values. Specifically, the
attribute xi with an input value hi can be transformed to the follow-
ing belief distribution,

SðxiÞ ¼ fðhi;n;ai;nÞ; n ¼ 1; . . . ;Nig:

where,

ai;n ¼
hi;nþ1 � hi

hi;nþ1 � hi;n
; ai;nþ1 ¼ 1� ai;n if hi;n 6 hi 6 hi;nþ1;

ai;m ¼ 0 for m ¼ 1; . . . ;Ni; and m – n;nþ 1:

To convert the above piecewise conditional expressions to a
unified formula, define two intermediate variables hi;0 ¼ hi;Ni

;

hi;Niþ1 ¼ hi;1, and then the belief degrees of inputs can be calculated
as follows:

ai;n ¼min max
hi;nþ1 � hi

hi;nþ1 � hi;n
;0

� �
;max

hi � hi;n�1

hi;n � hi;n�1
;0

� �� �
;

n ¼ 1; . . . ;Ni ðA:1Þ

Furthermore, suppose the referential value hi,n for attribute xi is
judged to be equivalent to the evaluation grade Hi,n in the belief
structure, or

hi;n means Hi;n ðn ¼ 1; . . . ;NiÞ:

Then, the multiple inputs can be generally represented as,

X ¼ fðHi;n;ai;nÞ; n ¼ 1; . . . ;Niji ¼ 1; . . . ; Tg; ðA:2Þ

where ai;n P 0 and
PNi

n¼1ai;n 6 1. ai,n represents the likelihood that
the input to attribute xi is assessed to the evaluation grades Hi,n or
takes the referential value hi,n After all the inputs are transformed
into belief distributions, the activation weight on each belief rule
can be calculated with a matching algorithm.

A.2. Calculation of activation weights

Generally, in belief rules, the ‘‘^’’ connective is used to represent
the logical relationship of antecedent attributes. That means the
consequent of a rule is not believed to be true unless all the ante-
cedents of the rule are activated. With the belief distributions cal-
culated above, the activation weight wk of the kth rule is calculated
as follows (Yang et al., 2006),

wk ¼
hk
QTk

i¼1ðak
i;nÞ

�diPL
l¼1½hl

QTl
i¼1ðal

i;nÞ
�di �

and �di ¼
di

maxi¼1;...;Tk
fdig

; ðA:3Þ

where the rule weight hk (k = 1, . . . , L) and attribute weight di

(i = 1, . . . , T) are initially provided in the belief rule base. Note that
relative weight for each attribute can be different in different belief
rules. Because the rule weight hk represents the relative importance
of the kth rule, without loss of generality, we can also assume that
the values of rule weights are normalized, so that

0 6 hk 6 1 and
XL

k¼1

hk ¼ 1:

ak
i;n ði ¼ 1; . . . ; TkÞ; which is called the individual matching degree, is

the belief degree to which the input for the ith antecedent attribute
is assessed to the referential value Ak

i in the kth rule. hk
QTk

i¼1ðak
i;nÞ

�di is
called the combined matching degree, which reflects the matching
degree between inputs and the referential values for all antecedents
in the kth rule. According to the characteristics of power and expo-
nential functions, the combined matching degree is monotonically
non-decreasing with the matched belief degree ak

i;n, and monotoni-
cally non-increasing with attribute weight �di (or di). Note that if
�di ¼ 0, then ðak

i;nÞ
�di ¼ 1, which means that an antecedent with zero

importance does not make any impact on the activation weight; if
�di ¼ 1, then ðak

i;nÞ
�di ¼ ak

i;n, which means the most important anteced-
ent has significant impact on the activation weight. After normali-
zation, the activation weight wk is used to measure the degree to
which the kth belief rule is weighted and activated. With the calcu-
lation of activation weight, the estimated output on a specific input
vector can be inferred using the ER approach.

A.3. Inference using evidential reasoning

In a BRB system, suppose that all L rules are independent of
each other. The rule base can then be summarized using a belief
rule expression matrix (Yang et al., 2007), as show in Table A.1.
In the matrix, it is worth noting that the basic belief degree bn,k

should be updated if incompleteness or ignorance occurs in evalu-
ating the input of antecedents. The details are discussed by Yang
et al. (2007). wk is the activation weight of the kth rule as discussed
above.

Based on the belief rule expression matrix, the ER approach can
be used to combine activated rules and infer the belief distribution
of output. The kernel of the ER approach is a recursive reasoning
algorithm which is developed on the basis of and Dempster–Shafer
(D–S) theory (Dempster, 1968; Shafer, 1976), fuzzy set theory
(Zadeh, 1965), and decision theory (Giovanni & Lurdes, 2009; Yoon
& Hwang, 1995). Under the representation scheme of belief
structures, the ER approach can simultaneously deal with both
quantitative and qualitative information under uncertainty. The
reasoning procedure of the ER approach can be summarized as
follows.

Firstly, transform the basic belief degree bn,k in the belief rule
expression matrix into basic probability mass mn,k which repre-
sents the degree to which the kth activated rule supports the
hypothesis that Dn is the consequent. Let mD,k be the remaining
probability mass unassigned to any known consequents. mn,k and
mD,k can be calculated from the basic belief degree bn,k as follows
(Yang & Xu, 2002b),

mn;k ¼ wkbn;k; n ¼ 1; . . . ;N; k ¼ 1; . . . ; L; ðA:4Þ

mD;k ¼ 1�
XN

n¼1

mn;k ¼ 1�wk

XN

n¼1

bn;k; k ¼ 1; . . . ; L: ðA:5Þ

Decompose mD,k into �mD;k and ~mD;k as follows:

�mD;k ¼ 1�wk; ~mD;k ¼ wk 1�
XN

n¼1

bn;k

 !
; k ¼ 1; . . . ; L ðA:6Þ

with mD;k ¼ �mD;k þ ~mD;k.
Then, the final output distribution can be inferred using the

analytical ER algorithm (Wang, Yang, & Xu, 2006),
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fDng : mn ¼ l
YL

k¼1

ðmn;k þ �mD;k þ ~mD;kÞ �
YL

k¼1

ð �mD;k þ ~mD;kÞ
" #

;

n ¼ 1; . . . ;N; ðA:7Þ

fDg : ~mD ¼ l
YL

k¼1

ð �mD;k þ ~mD;kÞ �
YL

k¼1

ð �mD;kÞ
" #

; ðA:8Þ

fDg : �mD ¼ l
YL

k¼1

ð �mD;kÞ
" #

; ðA:9Þ

l ¼
XN

i¼1

YL

k¼1

ðmi;k þ �mD;k þ ~mD;kÞ � ðN � 1Þ
YL

k¼1

ð �mD;k þ ~mD;kÞ
" #�1

;

ðA:10Þ

fDng : bn ¼
mn

1� �mD
; n ¼ 1; . . . ;N; ðA:11Þ

fDg : bD ¼
~mD

1� �mD
; n ¼ 1; . . . ;N: ðA:12Þ

bn represents the combined belief degree to which the output is
assessed to Dn and bD represents the remaining belief degree unas-
signed to any known Dn If

PN
n¼1bn;k ¼ 1 for all k = 1, . . ., L, then

bD = 0. Eqs. (A-11) and (A-12) are used to provide a normalization
process to assign the remaining belief �mD back to all the known
consequents. It has been proven that

PN
n¼1bn þ bD ¼ 1 (Yang &

Xu, 2002b).
As a consequence, the output of a BRB system can be repre-

sented as the following belief structure,

SðyÞ ¼ fðDn;bnÞ; n ¼ 1; . . . ;Ng ðA:13Þ

Further, if we know the utility u(Dn) for each consequent Dn, the
numerical output is equal to,

y ¼
XN

n¼1

uðDnÞbn: ðA:14Þ

After the substitute of intermediate variable, bn (n = 1, . . . , N)
can also be represented as follows:
bn ¼
QL

k¼1ðwkbn;k þ 1�wk
PN

i¼1bi;kÞ �
QL

k¼1ð1�wk
PN

i¼1bi;kÞPN
j¼1

QL
k¼1ðwkbj;k þ 1�wk

PN
i¼1bi;kÞ � ðN � 1Þ

QL
k¼1ð1�wk

PN
i¼1bi;kÞ �

QL
k¼1ð1�wkÞ

ðA:15Þ
The logic behind the approach is that, if the kth rule is activated
by inputs and its consequent include Dn with bn,k > 0, then the
overall output must be assessed to Dn to a certain degree. The de-
gree is measured by both the degree to which the kth rule is impor-
tant to the overall output and the degree to which the antecedents
of the kth rule are activated by the input vector.
Appendix B. Derivatives of the analytical ER algorithm

According to the analytical algorithm of the ER approach (Wang
et al., 2006), the combined belief degrees bn can be calculated by
Eq. (A-15).
To calculate the first order derivatives, we define the following
intermediate variables,

l ¼
XN

j¼1

YL

k¼1

wkbj;k þ 1�wk

XN

i¼1

bi;k

 !
� ðN � 1Þ

�
YL

k¼1

1�wk

XN

i¼1

bi;k

 !
�
YL

k¼1

ð1�wkÞ;

Xj ¼
YL

k¼1

ðmj;k þ �mH;k þ ~mH;kÞ ¼
YL

k¼1

wkbj;k þ 1�wk

XN

i¼1

bi;k

 !
;

j ¼ 1; . . . ;N;
Y ¼
YL

k¼1

ð �mH;k þ ~mH;kÞ ¼
YL

k¼1

1�wk

XN

i¼1

bi;k

 !
;

Z ¼
YL

k¼1

ð �mH;kÞ ¼
YL

k¼1

ð1�wkÞ:

Hence, the above analytical equation can be represented as,

bn ¼
Xn � YPN

i¼1Xi � ðN � 1ÞY � Z
; n ¼ 1; . . . ;N

The first order derivatives of bn (n = 1, . . . , N) with respect to the
parameters pv (v = 1, . . . , L + L � N) including basic belief degrees
bn,k and activation weights wk can be represented as follows:

@bn
@pv
¼ 1

l2
@ðXn�YÞ
@pv

ð
PN

j¼1Xi � ðN � 1ÞY � ZÞ � ðXn � YÞ
@ð
PN

j¼1
Xi�ðN�1ÞY�ZÞ
@pv

" #

¼ 1
l2

@Xn
@pv

PN
j¼1

Xj � @Xn
@pv
ðN � 1ÞY � @Xn

@pv
Z � @Y

@pv

PN
j¼1

Xj þ @Y
@pv
ðN � 1ÞY þ @Y

@pv
Z

�Xn
PN
j¼1

@Xj

@pv
þ XnðN � 1Þ @Y

@pv
þ Xn

@Z
@pv
þ Y

PN
j¼1

@Xj

@pv
� YðN � 1Þ @Y

@pv
� Y @Z

@pv

2
66664

3
77775

¼ 1
l2

@Xn
@pv

PN
j¼1

Xj � @Xn
@pv
ðN � 1ÞY � @Xn

@pv
Z � frac@Y@pv

PN
j¼1

Xj þ @Y
@pv

Z

�Xn
PN
j¼1

@Xj

@pv
þ XnðN � 1Þ @Y

@pv
þ Xn

@Z
@pv
þ Y

PN
j¼1

@Xj

@pv
� Y @Z

@pv

2
66664

3
77775:
B.1. Derivatives to the basic belief degrees

We first calculate the first order derivatives of the intermediate
variables to the basic belief degree bn,k.
@Xj

@bn;k
¼

0 � Xn ¼ an � Xn; j ¼ n
�wk

wkbj;kþ1�wk

PN

i¼1
bi;k

8<
: � Xj ¼ aj � Xj; j – n;

@Y
@bn;k

¼ �wk

1�wk
PN

i¼1bi;k

� Y ¼ b � Y ;

@Z
@bn;k

¼ 0 � Z ¼ c � Z:

Using the above equations, we then have the first order derivatives
as follows:
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@bn

@bn;k
¼ 1

l2

@Xn

@bn;k

XN

j¼1

ðXj�YÞþ @Xn

@bn;k
ðY �ZÞþ

XN

j¼1

ðY @Xj

@bn;k
� @Y
@bn;k

XjÞ

�Xn
PN
j¼1
ð @Xj

@bn;k
� @Y
@bn;k

Þ� @Y
@bn;k

ðXn�ZÞþ @Z
@bn;k

ðXn�YÞ

2
66664

3
77775

¼ 1
l2

anXn
PN
j¼1
ðXj�YÞþanXnðY �ZÞþY

PN
j¼1
ðaj�bÞXj

�Xn
PN
j¼1
ðajXj�bYÞ�bYðXn�ZÞþ cZðXn�YÞ

2
66664

3
77775

¼ 1
l2 Y

PN
j¼1
ðaj�bÞXj�Xn

PN
j¼1
ðajXj�bYÞ�bYðXn�ZÞ

" #
:

According to the mathematical definition of parameters and inter-
mediate variables, it can be shown that,

Xj P 0; j ¼ 1; . . . ;N;

Y P 0;
Table C-I
Trained belief rule base for Himmelblau function.

Rule no. Rule weight x y

1 0.41 �6 �6
2 0.48 �6 �4
3 0.46 �6 �3
4 0.51 �6 �0
5 0.42 �6 3.0
6 0.27 �6 4.5
7 0.17 �6 6
8 1.00 �3.881 �6
9 1.00 �3.881 �4
10 1.00 �3.881 �3
11 0.77 �3.881 �0
12 0.53 �3.881 3.0
13 0.39 �3.881 4.5
14 0.32 �3.881 6
15 0.90 �2.054 �6
16 1.00 �2.054 �4
17 0.78 �2.054 �3
18 1.00 �2.054 �0
19 0.93 �2.054 3.0
20 0.36 �2.054 4.5
21 0.19 �2.054 6
22 0.56 �1.03 �6
23 0.72 �1.03 �4
24 1.00 �1.03 �3
25 1.00 �1.03 �0
26 1.00 �1.03 3.0
27 0.54 �1.03 4.5
28 0.50 �1.03 6
29 0.72 3.08 �6
30 0.43 3.08 �4
31 0.31 3.08 �3
32 0.58 3.08 �0
33 1.00 3.08 3.0
34 0.79 3.08 4.5
35 0.82 3.08 6
36 0.09 5.229 �6
37 0.08 5.229 �4
38 0.06 5.229 �3
39 0.20 5.229 �0
40 0.45 5.229 3.0
41 0.52 5.229 4.5
42 0.40 5.229 6
43 0.46 6 �6
44 0.46 6 �4
45 0.98 6 �3
46 0.75 6 �0
47 0.94 6 3.0
48 0.73 6 4.5
49 0.59 6 6
aj � b ¼

0þ wk

1�wk

PN

i¼1
bi;k

P 0; j ¼ n

� wk

wkbj;kþ1�wk

PN

i¼1
bi;kþ

wk

1�wk

PN

i¼1
bi;k

P0;
j – n

8>><
>>: ;
ajXj � bY ¼

wk

1�wk

PN

i¼1
bi;kYP0;

j ¼ n

� wk

wkbj;kþ1�wk

PN

i¼1
bi;k

Xj þ wk

1�wk

PN

i¼1
bi;k

Y 6 0; j – n

8><
>: ;
b ¼ �wk

1�wk
PN

i¼1bi;k

6 0;
Xn � Z P 0:

We therefore prove that the first order derivatives of bn

(n = 1, . . . , N) with respect to bn,k is not less than zero, i.e., @bn
@bn;l

P 0.
This means that the combined belief degree bn increases monoto-
nously with the increase of the basic belief degrees bn,k.
Consequents {D1, D2, D3, D4, D5}={0, 200, 500, 1000, 2200}

{(D1, 0.03), (D2, 0.33), (D3, 0.34), (D4, 0), (D5, 0.3)}
.854 {(D1, 0.72), (D2, 0.06), (D3, 0), (D4, 0), (D5,0.22)}
.166 {(D1, 0.21), (D2, 0.28), (D3, 0.15), (D4, 0.36), (D5, 0)}
.21 {(D1, 0), (D2, 0.48), (D3, 0 (D4, 0.37),), (D5,0.15)}
60 {(D1, 0.65), (D2, 0), (D3, 0), (D4, 0), (D5,0.35)}
85 {(D1, 0.23), (D2, 0.4), (D3, 0), (D4, 0), (D5, 0.37)}

{(D1, 0), (D2, 0.13), (D3, 0.27), (D4, 0), (D5, 0.6)}
{(D1, 0), (D2, 0.47), (D3, 0), (D4, 0.53), (D5, 0)}

.854 {(D1, 0.91), (D2, 0), (D3, 0), (D4, 0.09), (D5, 0)}

.166 {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}

.21 {(D1, 0.38), (D2, 0.6), (D3, 0), (D4, 0.02), (D5, 0)}
60 {(D1, 0.99), (D2, 0), (D3, 0), (D4, 0), (D5, 0.01)}
85 {(D1, 0.3), (D2, 0.7), (D3, 0), (D4, 0), (D5, 0)}

{(D1, 0), (D2, 0.73), (D3, 0), (D4, 0), (D5, 0.27)}
{(D1, 0), (D2, 0.33), (D3, 0), (D4, 0.54), (D5, 0.13)}

.854 {(D1, 0.6), (D2, 0.17), (D3, 0), (D4, 0.18), (D5, 0.05)}

.166 {(D1, 0.91), (D2, 0.06), (D3, 0), (D4, 0), (D5, 0.03)}

.21 {(D1, 0.45), (D2, 0.53), (D3, 0.01), (D4, 0), (D5, 0.01)}
60 {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
85 {(D1, 0.24), (D2, 0.76), (D3, 0), (D4, 0), (D5, 0)}

{(D1, 0), (D2, 0.69), (D3, 0), (D4, 0.03), (D5, 0.28)}
{(D1, 0.53), (D2, 0), (D3, 0), (D4, 0), (D5, 0.47)}

.854 {(D1, 0.43), (D2, 0), (D3, 0), (D4, 0.57), (D5, 0)}

.166 {(D1, 0.58), (D2, 0), (D3, 0.42), (D4, 0), (D5, 0)}

.21 {(D1, 0.03), (D2, 0.97), (D3, 0), (D4, 0), (D5, 0)}
60 {(D1, 0.69), (D2, 0.31), (D3, 0), (D4, 0), (D5, 0)}
85 {(D1, 0.01), (D2, 0.99), (D3, 0), (D4, 0), (D5, 0)}

{(D1, 0), (D2, 0.69), (D3, 0), (D4, 0), (D5, 0.31)}
{(D1, 0), (D2, 0.55), (D3, 0), (D4, 0.02), (D5, 0.43)}

.854 {(D1, 0), (D2, 0.88), (D3, 0), (D4, 0.12), (D5, 0)}

.166 {(D1, 0.93), (D2, 0.07), (D3, 0), (D4, 0), (D5, 0)}

.21 {(D1, 0.98), (D2, 0.02), (D3, 0), (D4, 0), (D5, 0)}
60 {(D1, 0.93), (D2, 0.07), (D3, 0), (D4, 0), (D5, 0)}
85 {(D1, 0), (D2, 0.97), (D3, 0), (D4, 0), (D5, 0.03)}

{(D1, 0.03), (D2, 0.55), (D3, 0), (D4, 0), (D5, 0.42)}
{(D1, 0.46), (D2, 0), (D3, 0), (D4, 0), (D5, 0.54)}

.854 {(D1, 0.54), (D2, 0.2), (D3, 0), (D4, 0.02), (D5, 0.24)}

.166 {(D1, 0.43), (D2, 0.06), (D3, 0.5), (D4, 0), (D5, 0.01)}

.21 {(D1, 0.86), (D2, 0), (D3, 0), (D4, 0), (D5, 0.14)}
60 {(D1, 0.46), (D2, 0.39), (D3, 0), (D4, 0), (D5, 0.15)}
85 {(D1, 0), (D2, 0.68), (D3, 0.03), (D4, 0), (D5, 0.29)}

{(D1, 0.27), (D2, 0), (D3, 0), (D4, 0), (D5, 0.73)}
{(D1, 0.02), (D2, 0.09), (D3, 0.15), (D4, 0.11 0.63)}

.854 {(D1, 0), (D2, 0.02), (D3, 0.17), (D4, 0.79), (D5, 0.02)}

.166 {(D1, 0.21), (D2, 0.26), (D3, 0.07), (D4, 0.46), (D5, 0)}

.21 {(D1, 0.71), (D2, 0), (D3, 0), (D4, 0), (D5, 0.29)}
60 {(D1, 0.59), (D2, 0), (D3, 0.03), (D4, 0), (D5, 0.38)}
85 {(D1, 0.07), (D2, 0.16), (D3, 0.09), (D4, 0.32), (D5, 0.36)}

{(D1, 0), (D2, 0.01), (D3, 0), (D4, 0), (D5, 0.99)}
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B.2. Derivatives to the activation weights

Similar to Section B.1, we can also deduce the first order deriva-
tives of the intermediate variables to the weight wk of the kth attri-
bute, and then calculate the first order derivatives of combined
belief degrees bn(n = 1, . . . , N) with respect to activation weights wk.

@Xj

@wk
¼

ðbj;k �
PN
i¼1

bi;kÞ

ðwkbj;k þ 1�wk
PN
i¼1

bi;kÞ
Xj ¼ aj � Xj;
@Y
@wk

¼
�
PN

i¼1bi;k

ð1�wk
PN

i¼1bi;kÞ
Y ¼ b � Y ;
Table D-I
Initial belief rule base with rule weights for pipeline leak detection.

Rule no. Rule weight FlowDiff AND Pressure

1 1 NL AND NL
2 1 NL AND NM
3 1 NL AND NS
4 1 NL AND Z
5 1 NL AND PS
6 1 NL AND PM
7 1 NL AND PL
8 1 NM AND NL
9 1 NM AND NM
10 1 NM AND NS
11 1 NM AND Z
12 1 NM AND PS
13 1 NM AND PM
14 1 NM AND PL
15 1 NS AND NL
16 1 NS AND NM
17 1 NS AND NS
18 1 NS AND Z
19 1 NS AND PS
20 1 NS AND PM
21 1 NS AND PL
22 1 NVS AND NL
23 1 NVS AND NM
24 1 NVS AND NS
25 1 NVS AND Z
26 1 NVS AND PS
27 1 NVS AND PM
28 1 NVS AND PL
29 1 Z AND NL
30 1 Z AND NM
31 1 Z AND NS
32 1 Z AND Z
33 1 Z AND PS
34 1 Z AND PM
35 1 Z AND PL
36 1 PS AND NL
37 1 PS AND NM
38 1 PS AND NS
39 1 PS AND Z
40 1 PS AND PS
41 1 PS AND PM
42 1 PS AND PL
43 1 PM AND NL
44 1 PM AND NM
45 1 PM AND NS
46 1 PM AND Z
47 1 PM AND PS
48 1 PM AND PM
49 1 PM AND PL
50 1 PL AND NL
51 1 PL AND NM
52 1 PL AND NS
53 1 PL AND Z
54 1 PL AND PS
55 1 PL AND PM
56 1 PL AND PL
@Z
@wk

¼ �1
ð1�wkÞ

Z ¼ c � Z:
Appendix C. Trained belief rule base for Himmelblau function

See Table C.1.
Appendix D. Initial and trained BRB systems for pipeline leak
detection

See Tables D.1 and D.2.
Diff LeakSize distribution {D1, D2, D3, D4, D5} = {0, 2, 4, 6, 8}

{(D1, 0), (D2, 0), (D3, 0), (D4, 0), (D5, 1)}
{(D1, 0), (D2, 0), (D3, 0), (D4, 0.3), (D5, 0.7)}
{(D1, 0), (D2, 0), (D3, 0.2),(D4, 0.8), (D5, 0)}
{(D1, 0), (D2, 0), (D3, 0.8), (D4, 0.2), (D5, 0)}
{(D1,0.65), (D2, 0.35), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0.85), (D2, 0.15), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0.95), (D2, 0.05), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0), (D2, 0), (D3, 0.1), (D4, 0.9), (D5, 0)}
{(D1, 0), (D2, 0), (D3, 0.7), (D4, 0.3), (D5, 0)}
{(D1, 0), (D2, 0.7), (D3, 0.3), (D4, 0), (D5, 0)}
{(D1, 0), (D2, 0.9), (D3, 0.1), (D4, 0), (D5, 0)}
{(D1, 0.8), (D2, 0.2), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0.9), (D2, 0.1), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0.99), (D2, 0.01), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0), (D2, 0), (D3, 0.4), (D4, 0.6), (D5, 0)}
{(D1, 0), (D2, 0), (D3, 0.8), (D4, 0.2), (D5, 0)}
{(D1, 0), (D2, 0.3), (D3, 0.6), (D4, 0.1), (D5, 0)}
{(D1, 0.1), (D2, 0.7), (D3, 0.2), (D4, 0), (D5, 0)}
{(D1, 0.7), (D2, 0.3), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0.9), (D2, 0.1), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0), (D2, 0.1), (D3, 0.4), (D4, 0.5), (D5, 0)}
{(D1, 0), (D2, 0.8), (D3, 0.2), (D4, 0), (D5, 0)}
{(D1, 0.2), (D2, 0.7), (D3, 0.1), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0), (D2, 0.4), (D3, 0.6), (D4, 0), (D5, 0)}
{(D1, 0.2), (D2, 0.7), (D3, 0.1), (D4, 0), (D5, 0)}
{(D1, 0.4), (D2, 0.6), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0), (D2, 0.8), (D3, 0.2), (D4, 0), (D5, 0)}
{(D1, 0.8), (D2, 0.2), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0.95), (D2, 0.05), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0.1), (D2, 0.9), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0.3), (D2, 0.7), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0.85), (D2, 0.15), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0.98), (D2, 0.02), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0.9), (D2, 0.1), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 0.99), (D2, 0.01), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
{(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}



Table D-II
Trained belief rule base with rule weights for pipeline leak detection.

Rule no. Rule weight FlowDiff AND PressureDiff LeakSize distribution {D1, D2, D3, D4, D5} = {0, 2, 4, 6, 8}

1 0.95 NL AND NL {(D1, 0.07), (D2, 0.01), (D3, 0), (D4, 0.01), (D5, 0.91)}
2 0.95 NL AND NM {(D1, 0.01), (D2, 0.03), (D3, 0), (D4, 0.26), (D5, 0.70)}
3 0.98 NL AND NS {(D1, 0), (D2, 0), (D3, 0.01), (D4, 0.48), (D5, 0.51)}
4 1.00 NL AND Z {(D1, 0.06), (D2, 0.04), (D3, 0), (D4, 0.12), (D5, 0.78)}
5 0.60 NL AND PS {(D1, 0.12), (D2, 0.10), (D3, 0.01), (D4, 0.08), (D5, 0.69)}
6 0.87 NL AND PM {(D1, 0), (D2, 0), (D3, 0), (D4, 0.22), (D5, 0.78)}
7 0.89 NL AND PL {(D1, 0), (D2, 0), (D3, 0), (D4, 0.15), (D5, 0.85)}
8 1.00 NM AND NL {(D1, 0.05), (D2, 0.02), (D3, 0.01), (D4, 0.86), (D5, 0.06)}
9 0.81 NM AND NM {(D1, 0.03), (D2, 0.05), (D3, 0.50), (D4, 0.28), (D5, 0.14)}
10 0.89 NM AND NS {(D1, 0.15), (D2, 0.15), (D3, 0.22), (D4, 0.06), (D5, 0.42)}
11 0.79 NM AND Z {(D1, 0.28), (D2, 0.12), (D3, 0), (D4, 0.05), (D5, 0.55)}
12 0.74 NM AND PS {(D1, 0.10), (D2, 0.11), (D3, 0.01), (D4, 0.40), (D5, 0.38)}
13 0.88 NM AND PM {(D1, 0.23), (D2, 0.13), (D3, 0), (D4, 0.14), (D5, 0.50)}
14 0.84 NM AND PL {(D1, 0.34), (D2, 0.10), (D3, 0), (D4, 0.06), (D5, 0.50)}
15 1.00 NS AND NL {(D1, 0), (D2, 0), (D3, 0.40), (D4, 0.60), (D5, 0)}
16 0.90 NS AND NM {(D1, 0.08), (D2, 0.06), (D3, 0.75), (D4, 0.11), (D5, 0)}
17 0.65 NS AND NS {(D1, 0), (D2, 0), (D3, 0.42), (D4, 0.21), (D5, 0.37)}
18 0.15 NS AND Z {(D1, 0.14), (D2, 0.16), (D3, 0.01), (D4, 0.23), (D5, 0.46)}
19 1.00 NS AND PS {(D1, 0.99), (D2, 0.01), (D3, 0), (D4, 0), (D5, 0)}
20 0.86 NS AND PM {(D1, 0.69), (D2, 0.01), (D3, 0), (D4, 0.03), (D5, 0.27)}
21 1.00 NS AND PL {(D1, 0.98), (D2, 0), (D3, 0), (D4, 0), (D5, 0.02)}
22 0.84 NVS AND NL {(D1, 0.19), (D2, 0.18), (D3, 0.31), (D4, 0.32), (D5, 0)}
23 0.59 NVS AND NM {(D1, 0.80), (D2, 0.15), (D3, 0.04), (D4, 0), (D5, 0.01)}
24 0.54 NVS AND NS {(D1, 0.49), (D2, 0.24), (D3, 0), (D4, 0.07), (D5, 0.20)}
25 0.22 NVS AND Z {(D1, 0.14), (D2, 0.01), (D3, 0.01), (D4, 0.22), (D5, 0.62)}
26 0.56 NVS AND PS {(D1, 0.25), (D2, 0.23), (D3, 0), (D4, 0.04), (D5, 0.48)}
27 1.00 NVS AND PM {(D1, 0), (D2, 0.02), (D3, 0), (D4, 0.07), (D5, 0.91)}
28 0.96 NVS AND PL {(D1, 0. 53), (D2, 0.02), (D3, 0), (D4, 0.12), (D5, 0.33)}
29 0.97 Z AND NL {(D1, 0.99), (D2, 0.01), (D3, 0), (D4, 0), (D5, 0)}
30 0.11 Z AND NM {(D1, 0.61), (D2, 0.11), (D3, 0.04), (D4, 0.02), (D5, 0.22)}
31 0.10 Z AND NS {(D1, 0.93), (D2, 0), (D3, 0.02), (D4, 0), (D5, 0.05)}
32 0.60 Z AND Z {(D1, 0.89), (D2, 0.03), (D3, 0.03), (D4, 0), (D5, 0.05)}
33 0.30 Z AND PS {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
34 0.10 Z AND PM {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
35 0.88 Z AND PL {(D1, 0.98), (D2, 0.02), (D3, 0), (D4, 0), (D5, 0)}
36 0.91 PS AND NL {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
37 1.00 PS AND NM {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
38 0.97 PS AND NS {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
39 0.58 PS AND Z {(D1, 0.97), (D2, 0), (D3, 0), (D4, 0), (D5, 0.03)}
40 1.00 PS AND PS {(D1, 0.97), (D2, 0), (D3, 0), (D4, 0.03), (D5, 0)}
41 0.99 PS AND PM {(D1, 0.97), (D2, 0.03), (D3, 0), (D4, 0), (D5, 0)}
42 1.00 PS AND PL {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
43 0.92 PM AND NL {(D1, 0.13), (D2, 0.87), (D3, 0), (D4, 0), (D5, 0)}
44 0.93 PM AND NM {(D1, 0.33), (D2, 0.67), (D3, 0), (D4, 0), (D5, 0)}
45 0.97 PM AND NS {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
46 1.00 PM AND Z {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
47 1.00 PM AND PS {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
48 1.00 PM AND PM {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
49 1.00 PM AND PL {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
50 1.00 PL AND NL {(D1, 0.90), (D2, 0.10), (D3, 0), (D4, 0), (D5, 0)}
51 1.00 PL AND NM {(D1, 0.99), (D2, 0.01), (D3, 0), (D4, 0), (D5, 0)}
52 1.00 PL AND NS {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
53 1.00 PL AND Z {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
54 1.00 PL AND PS {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
55 1.00 PL AND PM {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
56 1.00 PL AND PL {(D1, 1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
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